2014-2015年湖北省荆州市监利县朱河中学八年级上学期期中数学试卷及参考答案
2014-2015学年八年级上学期期中联考数学试题(含答案)
2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
【数学】2014-2015年湖北省荆州市监利县朱河中学七年级上学期数学期中试卷和解析答案PDF
2014-2015学年湖北省荆州市监利县朱河中学七年级(上)期中数学试卷一、选择题(第小题3分,共30分)1.(3分)下列说法中正确的是()A.最小的整数是0 B.0的倒数是0C.绝对值最小的数是0 D.﹣a一定是负数2.(3分)下列各数﹣6.1,﹣|+|,﹣(﹣1),﹣22,(﹣2)3,[﹣(﹣3)]中,负数的个数有()A.3 B.4 C.5 D.63.(3分)长城总长约为6 700 010米,用科学记数法表示是(保留两个有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米4.(3分)下列各组式子中是同类项的是()A.3y与3x B.﹣xy2与C.a3与23D.52与5.(3分)下列各对数中,数值相等的是()A.23和32B.(﹣2)2和﹣22C.()2和 D.﹣(﹣2)和|﹣2|6.(3分)如果m﹣n=5,那么﹣3m+3n﹣7的值是()A.﹣22 B.﹣8 C.8 D.﹣227.(3分)下列说法不正确的是()A.x的倒数与y的差:﹣y B.x与y的平方的差:x﹣y2C.x与y的和的倒数: D.x与y和的相反数:﹣x+y8.(3分)一个两位数,个位是a,十位比个位大1,这个两位数是()A.a(a+1)B.(a+1)a C.10(a+1)a D.10(a+1)+a9.(3分)x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3 B.1 C.﹣2 D.210.(3分)已知a、b为有理数,下列说法①若a、b互为相反数,则;②若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;③若|a﹣b|+a﹣b=0,则b>a;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(第小题3分,共24分)11.(3分)用“<”“>”或“=”号填空:(1)﹣﹣(2)|﹣5| 0 (3)﹣(﹣0.01)(﹣)2.12.(3分)单项式﹣的系数是,次数是.13.(3分)若(m﹣2)2+|n+3|=0,则m﹣n=.14.(3分)4a2+2a3﹣ab2c+25是次项式,最高次项是.15.(3分)已知x与y互为相反数,m与n为倒数,且|a|=3,则(x+y)﹣=.16.(3分)已知点A在数轴上表示的数是﹣2,点B到原点的距离等于3,则A、B两点间的距离是.17.(3分)若x2=4,|y|=3且x+y<0,则x﹣y的值为.18.(3分)观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:.三、解答题(共66分)19.(10分)(1)画一条数轴,把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:3,﹣2.5,﹣(﹣2),﹣1,﹣|﹣2|;(2)有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣a|+|﹣b|.20.(16分)计算:(1)﹣22×7﹣(﹣3)×6+5(2)24÷(﹣3)×(3)2×(﹣2)3﹣4×(﹣3)+15÷3(4)(1+﹣2.75)×(﹣24)+(﹣1)2013﹣(﹣2)3.21.(8分)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.22.(8分)已知某粮库一周前存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正)(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库存粮食达到200吨?23.(8分)便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?24.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?25.(8分)如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.2014-2015学年湖北省荆州市监利县朱河中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(第小题3分,共30分)1.(3分)下列说法中正确的是()A.最小的整数是0 B.0的倒数是0C.绝对值最小的数是0 D.﹣a一定是负数【解答】解:A、没有最小的整数,错误;B、0没有倒数,错误;C、绝对值最小的数是0,正确;D、﹣a可以是任意数,错误.故选:C.2.(3分)下列各数﹣6.1,﹣|+|,﹣(﹣1),﹣22,(﹣2)3,[﹣(﹣3)]中,负数的个数有()A.3 B.4 C.5 D.6【解答】解:﹣6.1,﹣|+|,﹣22,(﹣2)3是负数,故选:B.3.(3分)长城总长约为6 700 010米,用科学记数法表示是(保留两个有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【解答】解:根据题意6 700 010≈6.7×106.(保留两个有效数字)故选:B.4.(3分)下列各组式子中是同类项的是()A.3y与3x B.﹣xy2与C.a3与23D.52与【解答】解:A、两者所含的字母不同,不是同类项,故A选项错误;B、两者的相同字母的指数不同,故B选项错误;C、两者所含的字母不同,不是同类项,故C选项错误;D、两者符合同类项的定义,故D选项正确.故选:D.5.(3分)下列各对数中,数值相等的是()A.23和32B.(﹣2)2和﹣22C.()2和 D.﹣(﹣2)和|﹣2|【解答】解:A、前者是8,后者是9,不相等;B、前者是4,后者是﹣4,不相等;C、前者是,后者是,不相等;D、前者是2,后者是2,相等.故选:D.6.(3分)如果m﹣n=5,那么﹣3m+3n﹣7的值是()A.﹣22 B.﹣8 C.8 D.﹣22【解答】解:∵m﹣n=5,∴﹣3m+3n﹣7=﹣3(m﹣n)﹣7,=﹣3×5﹣7,=﹣15﹣7,=﹣22.故选:D.7.(3分)下列说法不正确的是()A.x的倒数与y的差:﹣y B.x与y的平方的差:x﹣y2C.x与y的和的倒数: D.x与y和的相反数:﹣x+y【解答】解:A、x的倒数与y的差是﹣y,B、x与y的平方的差是x﹣y2,C、x与y的和的倒数是,D、x与y和的相反数是﹣x﹣y,故选:D.8.(3分)一个两位数,个位是a,十位比个位大1,这个两位数是()A.a(a+1)B.(a+1)a C.10(a+1)a D.10(a+1)+a【解答】解:个位是a,十位比个位大1,这个两位数是10(a+1)+a.故选D.9.(3分)x2+ax﹣2y+7﹣(bx2﹣2x+9y﹣1)的值与x的取值无关,则﹣a+b的值为()A.3 B.1 C.﹣2 D.2【解答】解:原式=x2+ax﹣2y+7﹣bx2+2x﹣9y+1=(1﹣b)x2+(a+2)x﹣11y+8,由结果与x的取值无关,得到1﹣b=0,a+2=0,解得:a=﹣2,b=1,则﹣a+b=2+1=3.故选:A.10.(3分)已知a、b为有理数,下列说法①若a、b互为相反数,则;②若a+b<0,ab>0,则|3a+4b|=﹣3a﹣4b;③若|a﹣b|+a﹣b=0,则b>a;④若|a|>|b|,则(a+b)•(a﹣b)是正数,其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①0与0互为相反数,但是没有意义,本选项错误;②由a+b<0,ab>0,得到a与b同时为负数,即3a+4b<0,∴|3a+4b|=﹣3a﹣4b,本选项正确;③∵|a﹣b|+a﹣b=0,即|a﹣b|=﹣(a﹣b),∴a﹣b≤0,即a≤b,本选项错误;④若|a|>|b|,当a>0,b>0时,可得a>b,即a﹣b>0,a+b>0,∴(a+b)•(a﹣b)为正数;当a>0,b<0时,a﹣b>0,a+b>0,∴(a+b)•(a﹣b)为正数;当a<0,b>0时,a﹣b<0,a+b<0,∴(a+b)•(a﹣b)为正数;当a<0,b<0时,a﹣b<0,a+b<0,∴(a+b)•(a﹣b)为正数,本选项正确,则其中正确的有2个.故选:B.二、填空题(第小题3分,共24分)11.(3分)用“<”“>”或“=”号填空:(1)﹣<﹣(2)|﹣5| >0 (3)﹣(﹣0.01)=(﹣)2.【解答】解:(1)∵|﹣|=,|﹣|=,>,∴﹣<﹣,(2)∵|﹣5|=5,∴5>0;(3)∵﹣(﹣0.01)=0.01,(﹣)2=0.01,∴﹣(﹣0.01)=(﹣)2.故答案为<,>,=.12.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:根据单项式系数、次数的定义可知:单项式﹣的系数是﹣;次数是2+1=3.故答案为:﹣;3.13.(3分)若(m﹣2)2+|n+3|=0,则m﹣n=5.【解答】解:根据题意得,m﹣2=0,n+3=0,解得m=2,n=﹣3,所以,m﹣n=2﹣(﹣3)=2+3=5.故答案为:5.14.(3分)4a2+2a3﹣ab2c+25是四次四项式,最高次项是﹣ab2c.【解答】解:4a2+2a3﹣ab2c+25是四次四项式,最高次项是﹣ab2c.故答案为:四;四;﹣ab2c.15.(3分)已知x与y互为相反数,m与n为倒数,且|a|=3,则(x+y)﹣=﹣9.【解答】解:∵x与y互为相反数,∴x+y=0,∵m与n为倒数,∴mn=1,又∵|a|=3,∴(x+y)﹣=0﹣9=﹣9.故答案为:﹣9.16.(3分)已知点A在数轴上表示的数是﹣2,点B到原点的距离等于3,则A、B两点间的距离是1或5.【解答】解:如图,∵点B到原点的距离等于3,∴点B表示±3,∴A、B两点间的距离是1或5.故答案为:1或5.17.(3分)若x2=4,|y|=3且x+y<0,则x﹣y的值为1或5.【解答】解:∵x2=4,|y|=3且x+y<0,∴x=2,y=﹣3;x=﹣2,y=﹣3,则x﹣y=1或5,故答案为:1或5.18.(3分)观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:(n+1)2﹣n2=2n+1.【解答】解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:n2﹣(n﹣1)2=2n﹣1;故答案为(n+1)2﹣n2=2n+1.三、解答题(共66分)19.(10分)(1)画一条数轴,把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接起来:3,﹣2.5,﹣(﹣2),﹣1,﹣|﹣2|;(2)有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|﹣|c﹣a|+|﹣b|.【解答】解:(1)数轴如图:,数轴上的点表示的数右边的总比左边的大,得﹣2.5<﹣|﹣2|<﹣1<﹣(﹣2)<3;(2)由数轴可知:a﹣b<0,c﹣a>0,﹣b>0,∴|a﹣b|﹣|c﹣a|+|﹣b|=﹣(a﹣b)﹣(c﹣a)﹣b=﹣a+b﹣c+a﹣b=﹣c.20.(16分)计算:(1)﹣22×7﹣(﹣3)×6+5(2)24÷(﹣3)×(3)2×(﹣2)3﹣4×(﹣3)+15÷3(4)(1+﹣2.75)×(﹣24)+(﹣1)2013﹣(﹣2)3.【解答】解:(1)原式=﹣28+23=﹣5;(2)原式=﹣24××=﹣;(3)原式=﹣16+12+5=1;(4)原式=﹣32﹣3+66﹣1+8=22.21.(8分)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.【解答】解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.22.(8分)已知某粮库一周前存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正)(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库存粮食达到200吨?【解答】解:(1)星期一100+35=135吨;星期二135﹣20=115吨;星期三115﹣30=85吨;星期四85+25=110吨;星期五110﹣24=86吨;星期六86+50=136吨;星期日136﹣26=110吨.故星期六最多,是136吨;(2)2300×(20+30+24+26)﹣2000×(35+25+50)=2300×100﹣2000×110=230000﹣220000=10000元;(3)(200﹣100)÷(35+25+50﹣20﹣30﹣24﹣26)﹣1=100÷10﹣1=10﹣1=9周.故再过9周粮库存粮食达到200吨.23.(8分)便民超市原有(5x2﹣10x)桶食用油,上午卖出(7x﹣5)桶,中午休息时又购进同样的食用油(x2﹣x)桶,下午清仓时发现该食用油只剩下5桶,请问:(1)便民超市中午过后一共卖出多少桶食用油?(用含有x的式子表达)(2)当x=5时,便民超市中午过后一共卖出多少桶食用油?【解答】解:5x2﹣10x﹣(7x﹣5)+(x2﹣x)﹣5=5x2﹣10x﹣7x+5+x2﹣x﹣5=6x2﹣18x(桶),答:便民超市中午过后一共卖出(6x2﹣18x)桶食用油;(2)当x=5时,6x2﹣18x=6×52﹣18×5=150﹣90=60(桶),答:当x=5时,便民超市中午过后一共卖出60桶食用油.24.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款(3600+36x)元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.25.(8分)如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离是2.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是a+b﹣c,A、B两点间的距离是|b﹣c| .【解答】解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
监利县朱河镇初级中学2014-2015学年八年级上期中数学试卷
∠C=100°,则下列说法正确的是 ( )
C
A.点 M 在 AB 上, B.点 M 在 BC 的中点处,
A
M
D
A
100° 30°
图 D图
B
C. 点 M 在 BC 上,且距点 B 较近,距点 C 较远, D. 点 M 在 BC 上,且距点 C 较近,距点 B 较远。
图 2图 图
3.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,
度数为( )。
A. 49°
B. 50°
C. 51°
D. 52°
6.如图,△ABC 中,AB = AC,∠BAC = 100°,AD 是 BC 边上的中线,且 BD = BE,
则∠ADE 的大小为(
)。
A.10°
B.20°
C.40°
D.70°
A
A
D
1O
E
A E
B
OD
H
2
C
B
G
F
CB
D
C
第 4 题图
第 5 题图
b 的值
为
。
13.若等腰三角形一腰上的高与另一腰的夹角为 45°,则这个等腰三角形的底角
为
。
14.如图,在 Rt△ABC 中,∠A=90°∠ABC 的平分线 BD 交 AC 于点 D,AD=3,BC=10,则△
BDC 的面积是
。
C
B
A D
D
PC
D
B
CO
第 14 题图
E
A
A
B E
第 15 题图
第 16 题图
其中,可以看作是轴对称图形的有(
)。
2014-2015年湖北省荆州市监利县八年级(上)期末数学试卷(解析版)
2014-2015学年湖北省荆州市监利县八年级(上)期末数学试卷一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)观察下列图形,从图案看是轴对称图形的有()A.1个B.2个C.3个D.4个2.(3分)下列等式成立的是()A.(x+3y)(x﹣3y)=x2﹣9y2B.(a+b)2=a2+b2C.(x+2)(x﹣1)=x2+x﹣1D.(a﹣b)2=a2﹣b23.(3分)下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a64.(3分)适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.(3分)下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半6.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC7.(3分)等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定8.(3分)若xy=x﹣y≠0,则分式=()A.B.y﹣x C.1D.﹣19.(3分)分式有意义的条件是()A.x≠0B.y≠0C.x≠0或y≠0D.x≠0且y≠010.(3分)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°二、填空题(每小题3分,共24分)11.(3分)若分式的值为0,则x=.12.(3分)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.13.(3分)已知x2+16x+k是完全平方式,则常数k等于.14.(3分)如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.15.(3分)已知a2+ab=5,ab+b2=﹣2,那么a﹣b=.16.(3分)如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是度.17.(3分)一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为.18.(3分)如图,AB⊥BC,AD⊥DC,∠BAD=120°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是.三、解一解试试谁更棒(本大题7小题,满分66分)19.(8分)(1)计算:(2ab2)3÷(﹣ab)2(2)因式分解:m2n﹣2mn2+n3.20.(6分)如图(1)、(2)分别是由16个小正方形组成的正方形网格图,现已将其中部分小正方形涂黑,请你用两种不同的方法,分别在两个图中再涂黑两个空白的小正方形,使它(涂黑部分)成为轴对称图形.21.(11分)(1)化简求值:,其中x=3;(2)若关于x的分式方程无解,求m的值.22.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D 作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.23.(10分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x ﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c 满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.24.(11分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?25.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.2014-2015学年湖北省荆州市监利县八年级(上)期末数学试卷参考答案与试题解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.(3分)观察下列图形,从图案看是轴对称图形的有()A.1个B.2个C.3个D.4个【分析】分别沿一条直线将每个图形对折,看直线两旁的部分能否重合.【解答】解:图1没有对称轴,不是轴对称图形;图2有两条对称轴,是轴对称图形;图3有两条对称轴,是轴对称图形;图4有一条对称轴,是轴对称图形.故选:C.2.(3分)下列等式成立的是()A.(x+3y)(x﹣3y)=x2﹣9y2B.(a+b)2=a2+b2C.(x+2)(x﹣1)=x2+x﹣1D.(a﹣b)2=a2﹣b2【分析】根据平方差公式和完全平方公式对各选项分析判断后利用排除法求解.【解答】解:A、(x+3y)(x﹣3y)=x2﹣9y2正确,故本选项正确;B、应为(a+b)2=a2+2ab+b2,故本选项错误;C、应为(x+2)(x﹣1)=x2+x﹣2,故本选项错误;D、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误.故选:A.3.(3分)下列计算中正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a4=a8D.(﹣a2)3=﹣a6【分析】根据合并同类项,可判断A;根据同底数幂的除法,可判断B;根据同底数幂的乘法,可判断C;根据积的乘方,可判断D.【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.4.(3分)适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.5.(3分)下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3条高,其中2条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选:B.6.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选:B.7.(3分)等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A.4cm,10cm B.7cm,7cmC.4cm,10cm或7cm,7cm D.无法确定【分析】由于长为4的边可能为腰,也可能为底边,故应分两种情况讨论.【解答】解:当腰为4时,另一腰也为4,则底为18﹣2×4=10,∵4+4=8<10,∴这样的三边不能构成三角形.当底为4时,腰为(18﹣4)÷2=7,∵0<7<7+4=11,∴以4,7,7为边能构成三角形.故选:B.8.(3分)若xy=x﹣y≠0,则分式=()A.B.y﹣x C.1D.﹣1【分析】异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.【解答】解:原式=.故选:C.9.(3分)分式有意义的条件是()A.x≠0B.y≠0C.x≠0或y≠0D.x≠0且y≠0【分析】分式有意义的条件是分母不为0,则x2+y2≠0.【解答】解:只要x和y不同时是0,分母x2+y2就一定不等于0.故选:C.10.(3分)如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°【分析】过E作EM∥BC,交AD于N,连接CM交AD于F,连接EF,推出M为AB中点,求出E和M关于AD对称,根据等边三角形性质求出∠ACM,即可求出答案.【解答】解:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选:C.二、填空题(每小题3分,共24分)11.(3分)若分式的值为0,则x=2.【分析】分式值为零的条件:分子等于零且分母不等于零,所以,据此求出x的值是多少即可.【解答】解:∵分式的值为0,∴解得x=2.故答案为:2.12.(3分)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.13.(3分)已知x2+16x+k是完全平方式,则常数k等于64.【分析】利用完全平方公式的结构特征判断即可得到k的值.【解答】解:∵x2+16x+k是完全平方式,∴k=64.故答案为:6414.(3分)如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.15.(3分)已知a2+ab=5,ab+b2=﹣2,那么a﹣b=.【分析】利用提取公因式得出a(a+b)=5,b(a+b)=﹣2,进而求出a,b的值进而得出答案.【解答】解:∵a2+ab=5,ab+b2=﹣2,∴a(a+b)=5,b(a+b)=﹣2,∵(a+b)2=a2+b2+2ab=5+(﹣2)=3,故a+b=±∴a=,b=±,且a和b异号,∴a﹣b=.故答案为:.16.(3分)如图,在△ABC中,∠B=70°,DE是AC的垂直平分线,且∠BAD:∠BAC=1:3,则∠C的度数是44度.【分析】由DE垂直平分AC可得∠DAC=∠DCA;∠ADB是△ACD的外角,故∠DAC+∠DCA=∠ADB又因为∠B=70°⇒∠BAD=180°﹣∠B﹣∠BAD,由此可求得角度数.【解答】解:设∠BAD为x,则∠BAC=3x,∵DE是AC的垂直平分线,∴∠C=∠DAC=3x﹣x=2x,根据题意得:180°﹣(x+70°)=2x+2x,解得x=22°,∴∠C=∠DAC=22°×2=44°.故填44°.17.(3分)一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为cm或6cm.【分析】由于已知没有明确哪一部分长2,应分两种情况讨论:当腰比底长时和当底比腰长时来分别计算,还应依据三边关系判断能否组成三角形.【解答】解:设腰长为x,底长为y,当腰比底长时有解得;当底比腰长时有解得.∵0<<6+6=12,0<6<+=∴这两种情况都构成三角形.故填:cm或6cm.18.(3分)如图,AB⊥BC,AD⊥DC,∠BAD=120°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是120°.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,利用三角形内角和定理即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠A A′M+∠A″=180°﹣∠BAD=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,三、解一解试试谁更棒(本大题7小题,满分66分)19.(8分)(1)计算:(2ab2)3÷(﹣ab)2(2)因式分解:m2n﹣2mn2+n3.【分析】(1)先利用积的乘方化简,进而利用整式的除法运算法则化简求出即可;(2)首先提取公因式n,进而利用完全平方公式分解因式得出即可.【解答】解:(1)(2ab2)3÷(﹣ab)2=8a3b6÷a2b2=8ab4;(2)m2n﹣2mn2+n3=n(m2﹣2mn+n2)=n(m﹣n)2.20.(6分)如图(1)、(2)分别是由16个小正方形组成的正方形网格图,现已将其中部分小正方形涂黑,请你用两种不同的方法,分别在两个图中再涂黑两个空白的小正方形,使它(涂黑部分)成为轴对称图形.【分析】根据轴对称图形的性质先确定一个对称轴,再找出阴影部分的图形的关键点的对称点,画出图形即可.【解答】解:如图所示,即为所作图形.(答案不唯一,主要合理即可).21.(11分)(1)化简求值:,其中x=3;(2)若关于x的分式方程无解,求m的值.【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,由分式方程无解得到最简公分母为0求出x的值,代入整式方程即可求出m的值.【解答】解:(1)原式=•=,当x=3时,原式=;(2)去分母得:2mx+x2﹣x2+3x=2x﹣6,由分式方程无解得到x(x﹣3)=0或化简后的一次项系数(2m+3﹣2)=0,即x=0或x=3,当(2m+3﹣2)=0,m=把x=0代入整式方程得:0=﹣6,矛盾,把x=3代入整式方程得:6m+9=0,解得:m=﹣.综上,m=﹣或m=﹣22.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D 作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【分析】(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.23.(10分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x ﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c 满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c的关系,判断三角形形状即可.【解答】解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c,∴△ABC的形状是等腰三角形或等边三角形.24.(11分)荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【分析】(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买台灯的个数是购买手电筒个数的一半,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过670元”列出不等式.【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.25.(12分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m 经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.。
湖北省荆州市八年级上学期数学期中考试试卷
湖北省荆州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2016·黄石) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2017七上·上城期中) 如果一个实数的平方根与它的立方根相等,则这个数是().A . 和B . 正实数C .D .3. (2分) (2018八上·辽阳月考) 下列说法不能推出△ABC是直角三角形的是()A .B .C . ∠A=∠B=∠CD . ∠A=2∠B=2∠C4. (2分) (2019八上·鄞州期中) 下列命题是真命题的是A . 三角形的三条高线相交于三角形内一点B . 等腰三角形的中线与高线重合C . 三边长为,,的三角形为直角三角形D . 到线段两端距离相等的点在这条线段的垂直平分线上5. (2分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到直线AB的距离是()A . 3 cmB . 5 cmC . 6 cmD . 8 cm6. (2分)(2012·深圳) 下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有()A . 4个B . 3个C . 2个D . 1个7. (2分)如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,则∠C为().A . 25°B . 35°C . 40°D . 50°8. (2分)如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A . 1号袋B . 2 号袋C . 3 号袋D . 4 号袋二、填空题 (共10题;共10分)9. (1分) (2018八上·青山期中) 如图,△ABC≌△A’B’C’,AB=2,BC=4.2,CA=5.5,则C’A’=________.10. (1分)(2017·郑州模拟) 计算:(π﹣1)0+ =________.11. (1分) (2018九上·桥东期中) 如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=110°,则∠ABD=________°.12. (1分) (2018八上·甘肃期末) 如图,在△ABC中,AB=AC , AB的垂直平分线DE交AB于点D ,交AC于点E ,若△ABC与△EBC的周长分别是22、14,则AC的长是________.13. (1分)(2018·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于 CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为________.14. (1分) (2016九上·和平期中) 如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=________.15. (1分) (2019八下·澧县期中) 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于________16. (1分) (2018九上·柳州期末) 如图,在△A BC中,∠ACB=90 ,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则△ABC的面积是________.17. (1分)(2017·盘锦模拟) 如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为________ m(容器厚度忽略不计).18. (1分) (2017九上·萧山月考) 在平面直角坐标系中,已知点A ,点B ,点C是y 轴上的一个动点,当∠BCA=30°时,点C的坐标为________.三、解答题 (共8题;共56分)19. (5分)(2017·宝应模拟) 计算:2tan60°﹣()﹣1+(﹣2)2×(2017﹣sin45°)0﹣|﹣|20. (10分) (2019八上·周口期中) 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB.(1)尺规作图:作线段AB的垂直平分线l(要求:保留作图痕迹,不写作法)(2)记直线l与AB,CD的交点分别是点E,F.当AC=4时,求EF的长.21. (5分)如图,在等边△ADM中,BC∥MD交AM于C,交AD于B,延长BC到E,使CE=AM,过M作MF⊥BC 于F,求证:BF=EF.22. (10分) (2018九上·湖州期中) 已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D (如图所示).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到直线AB的距离为6,求AC的长23. (5分) (2019七下·成都期中) 如图,点D在AB上,点E在AC上,AD=AE,∠B=∠C,求证:AB=AC.24. (3分) (2015七下·杭州期中) 我国南宋时期杰出的数学家杨辉是钱塘人,如图是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+________ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过814天是星期________.25. (10分)(2017·润州模拟) 如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠OD B.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当tan∠AEC= ,BC=8时,求OD的长.26. (8分)(2017·安阳模拟) 已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.(1)问题发现如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为________,BD、AB、CB之间的数量关系为________.(2)拓展探究当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.(3)解决问题当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=________.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共56分)19-1、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
监利初二联考数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 下列各数中,正数是()A. -3B. 0C. -2/3D. 2/33. 若a=3,b=-2,则a² - b²的值是()A. 5B. -5C. 7D. -74. 已知等腰三角形底边长为8,腰长为6,则该三角形的周长是()A. 18B. 20C. 24D. 285. 下列函数中,y是x的一次函数是()A. y = x² + 2x + 1B. y = 2x³ - 3x² + 4x - 1C. y = 3x + 2D. y = √x6. 下列图形中,有两条平行边的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形7. 已知一个长方体的长、宽、高分别为3cm、4cm、5cm,则该长方体的体积是()A. 60cm³B. 72cm³C. 120cm³D. 180cm³8. 下列不等式中,正确的是()A. 2x > 6B. 3x ≤ 9C. 4x < 12D. 5x ≥ 159. 下列各数中,绝对值最大的是()A. -5B. -4C. -3D. -210. 下列各数中,无理数是()A. √4B. √-9C. πD. 0.123456789…二、填空题(每题5分,共20分)11. 若x² - 5x + 6 = 0,则x的值为______。
12. 在直角坐标系中,点P(2,-3)关于x轴的对称点坐标为______。
13. 已知一个正方形的边长为4cm,则该正方形的周长是______cm。
14. 若a、b是方程2x² - 5x + 2 = 0的两个根,则a+b的值是______。
15. 下列图形中,对角线互相平分的四边形是______。
三、解答题(共50分)16. (10分)已知a、b是方程x² - 3x + 2 = 0的两个根,求a² + b²的值。
人教版八年级数学上册湖北省荆州地区期中考试.doc
初中数学试卷桑水出品湖北省荆州地区2013~2014学年度上学期期中考试八年级数学试卷题号 1 2 3 4 5 6 7 8 9 10答案1、等腰三角形的一边长等于4,一边长等于9,则它的周长是A.17 B.22 C.17或22 D.132、已知等腰三角形的一个角为75°,则其顶角为A.30° B.75° C.105° D.30°或75°3、已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm4、如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)5、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE6、已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是A.∠A与∠D互为余角B.∠A=∠2 C.△ABC≌△CED D.∠1=∠27、如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是A.①②③B.②③④C.①③⑤D.①③④8、观察下列图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是( )第5题图第6题图第7题图9、如图,把图①中的ABC V 经过一定的变换得到图②中的A B C '''V ,如果图①中ABC V 上点P 的坐标为(),a b ,那么这个点在图②中的对应点P '的坐标为第10题图A .()2,3a b --B .()3,2a b --C .()3,2a b ++D .()2,3a b ++10、如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点。
湖北省荆州市八年级上学期数学期中考试试卷
湖北省荆州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2019·广西模拟) 下列各数中属于无理数的是()A .B . -C .D . -12. (1分)计算3y3•(﹣y2)2•(﹣2y)3的结果是()A . ﹣24y10B . ﹣6y10C . ﹣18y10D . 54y103. (1分) (2019八上·盘龙镇月考) ,那么p,的值为()A . p=5,q=6B . p=l,q=-6C . p=-l,q=6D . p=5,q=-64. (1分) (2018八上·武昌期中) 如图所示,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠B的度数是()A . 33°B . 47°C . 53°D . 100°5. (1分) (2019九上·景县期中) 如图,在△ABC中,∠ACB=90°,∠A=20°将△ABC绕点C按逆时针方向旋转得△A′B′C,且点B在A'B′上,CA′交AB于点D,则∠BDC的度数为()A . 40°B . 50°C . 60°D . 70°6. (1分)如图,∠E=∠F=90°,∠B=∠C,AE=AF,则下列结论:①∠1=∠2;②BE=CF;③CD=DN;④△ACN≌△ABM,其中正确的有()A . 4个B . 3个C . 2个D . 1个7. (1分)下列各因式分解正确的是()A . x2+2x﹣1=(x﹣1)2B . ﹣x2+(﹣2)2=(x﹣2)(x+2)C . x3﹣4x=x(x+2)(x﹣2)D . (x+1)2=x2+2x+18. (1分) (2019八上·常州期末) 如图,点B、E、C、F在同一条直线上,,,要用SAS证明≌ ,可以添加的条件是A .B .C .D .9. (1分)如图,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,则∠A的度数为()A . 110°B . 60°C . 80°D . 100°10. (1分) (2019八下·武昌期中) 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,EF=,点G、H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,则GH的长为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018七上·大庆期中) 计算:am•a3•________=a3m+2 .12. (1分)(2019·宝鸡模拟) 如图,在四边形ABCD中,∠A+∠D=220°,∠ABC的平分线与∠BCD的平分线交于点P,则∠P的度数为________.13. (1分) (2017八上·安定期末) 已知a+b=8,a2b2=4,则-ab=________.14. (1分)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下三个结论:①AD=BE;②EQ=DP;③△CPQ 是等边三角形;其中一定成立的结论有________.15. (1分) (2015八上·龙华期末) 如图,△ABC中,AB=AC,点D为AC上一点,且BD=BC.将△BCD沿直线BD折叠后,点C落在AB上的点E处,若AE=DE,则∠A的度数为________.三、解答题 (共8题;共14分)16. (2分) (2020八上·淅川期末)(1)因式分解(2)对于任何实数,规定一种新运算,如 .当时,按照这个运算求的值.17. (1分)先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣4y2+2x3),其中x=﹣3,y=﹣2.18. (2分) (2020九下·碑林月考) 如图,△ABC中,点P在边AB上,请用尺规在边AC上作一点Q,使.(保留作图痕迹,不写作法).19. (1分) (2019七下·海拉尔期末) 定义一种新运算.(1)若a=2,求满足的x、y的解;(2)若关于x的不等式的解集为x<3,求a的值.20. (1分)(2018·柳州模拟) 如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是________.21. (2分)(2013·河南) 如图,在等边三角形ABC中,BC=6cm.射线AG∥B C,点E从点A出发沿射线AG 以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为________s时,四边形ACFE是菱形;②当t为________s时,以A、F、C、E为顶点的四边形是直角梯形.22. (3分) (2016八下·启东开学考) 在△ABC中,AB=AC,∠BAC=α(0°<α<60°),分别以AB、BC为边作等边三角形ABE和等边三角形BCD,连结CE,如图1所示.(1)直接写出∠ABD的大小(用含α的式子表示);(2)判断DC与CE的位置关系,并加以证明;(3)在(2)的条件下,连结DE,如图2,若∠DEC=45°,求α的值.23. (2分) (2016八上·望江期中) 如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在A,E的异侧,BD⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果;(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的关系如何?请直接写出结果,不需说明理由.参考答案一、单选题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共14分)16-1、16-2、17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。
2014年湖北省荆州市中考数学试卷(有答案)
湖北省荆州市2014年中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案.每小题3分,共30分)1.(3分)(2014•荆州)若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选D.点评:本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.2.(3分)(2014•荆州)下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.(3分)(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.点评:本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.4.(3分)(2014•荆州)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)(2014•荆州)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(3分)(2014•荆州)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD 相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.(3分)(2014•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.(3分)(2014•荆州)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2014•荆州)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.(3分)(2014•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,则则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.故选A.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•荆州)化减×﹣4××(1﹣)0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.(3分)(2014•荆州)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.(3分)(2014•荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.(3分)(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.(3分)(2014•荆州)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014•荆州)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如图所示:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.(3分)(2014•荆州)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.18.(3分)(2014•荆州)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.三、解答题(本大题共7题,共66分)19.(7分)(2014•荆州)先化简,再求值:()÷,其中a,b满足+|b ﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,则原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(8分)(2014•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE(SAS)∴DF=BE.点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.(8分)(2014•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C 处.(参考数据:cos59°≈0.52,sin46°≈0.72)考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:本题考查了解直角三角形的应用,解决本题的关键在于设出未知数a,使得运算更加方便,难度中等.22.(9分)(2014•荆州)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:(1)根据题意得:a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.23.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?考点:二次函数的应用.分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.(12分)(2014•荆州)已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:(1)根据a取值的不同,有三种情形,需要分类讨论,避免漏解.(2)①函数与x轴相交于点A(x1,0),B(x2,0)两点,则x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,则可平方,用x1+x2,x1x2表示,则得关于a的方程,可求,并得抛物线解析式.②已知解析式则可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:(1)函数y=ax2﹣(3a+1)x+2a+1(a为常数),若a=0,则y=﹣x+1,与坐标轴有两个交点(0,1),(1,0);若a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点(0,0),(1,0);若a≠0且图象与x轴只有一个交点时,令y=0有:△=(3a+1)2﹣4a(2a+1)=0,解得a=﹣1,有两个交点(0,﹣1),(1,0).综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.(2)①∵函数与x轴相交于点A(x1,0),B(x2,0)两点,∴x1,x2为ax2﹣(3a+1)x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=(x2﹣x1)2=(x1+x2)2﹣4x1x2=()2﹣4•,解得a=﹣(函数开口向上,a>0,舍去),或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x1<x2,∴A(1,0),B(3,0),C(0,3),∵D为A关于y轴的对称点,∴D(﹣1,0).根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,则EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:本题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规基础,是一道非常值得考生练习的题目.25.(12分)(2014•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C 的对应点为G.设CE=x,△EFG与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:本题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
湖北省荆州市八年级上学期期中数学试卷
湖北省荆州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·港南模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2019八上·恩施期中) 已知一个多边形的内角和为540°,则这个多边形为()A . 三角形B . 四边形C . 五边形D . 六边形3. (2分) (2017八下·临沭期末) 给出下列命题:①在直角三角形ABC中,已知两边长3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2 ,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形;④△ABC中,若a:b:c=1::2,则这个三角形是直角三角形;其中,正确命题的个数为()A . 1个B . 2个C . 3个D . 4个4. (2分) (2018八上·双城期末) 下列说法错误的是()A . 等腰三角形的高、中线、角平分线互相重合B . 三角形两边的垂直平分线的交点到三个顶点距离相等C . 等腰三角形的两个底角相等D . 等腰三角形顶角的外角是底角的二倍5. (2分) (2020八上·滨州期末) 已知点关于x轴的对称点和点关于y轴的对称点相同,则点关于x轴对称的点的坐标为()A .B .C .D .6. (2分) (2016八上·阳新期中) 如图,将两根钢条AA′、BB′的中点 O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A . SASB . ASAC . SSSD . AAS7. (2分)两条不平行的直线被第三条直线所截,下列说法可能成立的是()A . 同位角相等B . 内错角相等C . 同旁内角相等D . 同旁内角互补8. (2分) (2019八下·浏阳期中) 若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A . 22B . 26C . 22或26D . 28或26二、填空题 (共6题;共6分)9. (1分) (2019八上·长兴月考) 如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________ (只需写一个,不添辅助线)。
湖北省荆州市八年级上学期数学期中考试试卷
湖北省荆州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·巴州期中) 在“线段、等腰三角形、直角三角形、矩形、菱形、正方形、平行四边形、圆、等腰梯形”中既是中心对称,又是轴对称的图形有()A . 6个B . 5个C . 4个D . 3个2. (2分) (2017七下·龙华期末) 如果一个三角形的两边长分别为5,12,则第三边的长可以是()A . 18B . 13C . 7D . 53. (2分)若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A . 十三边形B . 十二边形C . 十一边形D . 十边形4. (2分) (2020七下·南宁期末) 用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB 的依据是()A . SASB . AASC . ASAD . SSS5. (2分)(2020·大连) 平面直角坐标系中,点P(3, 1)关于x轴对称的点的坐标是()A . (3,1)B . (3,-1)C . (-3,1)D . (-3,-1)6. (2分) (2019八下·松滋期末) 若一个等腰三角形的腰长为5,底边长为6,则底边上的高为()A . 4B . 3C . 5D . 67. (2分)(2017·如皋模拟) 一个凸n边形的内角和小于1999°,那么n的最大值是()A . 11B . 12C . 13D . 148. (2分)若多边形的边数增加1,则其内角和的度数()A . 增加180°B . 其内角和为360°C . 其内角和不变D . 其外角和减少9. (2分)在下列条件中不能判断两个直角三角形全等的是()A . 已知两个锐角B . 已知一条直角边和一个锐角C . 已知两条直角边D . 已知一条直角边和斜边10. (2分) (2017八下·下陆期中) 如图,△ABC中,M是BC中点,AD平分∠BAC,BD⊥AD于D,延长交AC 于N,若AB=10,AC=16,则MD的长为()A . 5B . 4C . 3D . 2二、填空题 (共6题;共6分)11. (1分)在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=________.12. (1分) (2018九上·泰州期中) 如图,己知AB、AD是⊙O的弦,∠B=32°,点C在弦AB上,连接CO并延长交⊙O于点D,∠D=32°,则∠BAD的度数是________.13. (1分) (2019七下·江苏月考) 以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是________.14. (1分) (2019八下·苍南期末) 已知多边形的内角和等于外角和的1.5倍,则这个多边形的边数为________。
2014-2015年湖北省荆州市监利县朱河中学八年级(上)期中数学试卷(解析版)
2014-2015学年湖北省荆州市监利县朱河中学八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,112.(3分)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远3.(3分)对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对5.(3分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A.49°B.50°C.51°D.52°6.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°7.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或79.(3分)已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为()A.(﹣2,3)B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)10.(3分)已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°﹣2∠A C.90°﹣∠A D.二、填空题(8×3分=24分):11.(3分)如果等腰三角形的两边长分别为3cm、6cm,那么这个等腰三角形的周长为.12.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.13.(3分)如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为.14.(3分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.(3分)如图,∠AOB=30°,OC平分∠AOB,P为OC上的任意一点,PD∥OA,交OB于点D,PE⊥OA于点E,若OD=6cm,则PE的长为cm.16.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于D,AD=5cm,DE=2cm,则BE的长为cm.17.(3分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.18.(3分)如图所示,在△ABC中,∠A=80°,延长BC到D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依此类推,∠A4BC 与∠A4CD的平分线相交于A5点,则∠A5的度数是.三、解答题(共7小题,满分66分)19.(6分)已知:多边形的内角和与外角和的比是7:2,求这个多边形的边数.20.(6分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(图1)(2)过一条边的三等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法)请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法(只要求正确画图,不写画法).21.(10分)如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.22.(10分)如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6.(1)作出点P关于OB的对称点P1,关于OA的对称点P2,并求△P1OP2的周长;(2)若点M为OA上一动点,点N为OB上一动点,求△PMN的最小周长.23.(10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.24.(12分)已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC.(1)如图,若点O在边BC上,求证:AB=AC;(2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由;(3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.25.(12分)如图,已知:在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.(1)求证:△BPO≌△PDE;(2)若BP平分∠ABO,其余条件不变,求证:AP=CD;(3)若点P是一个动点,当点P运动到OC的中点P′时,满足题中条件的点D 也随之在直线BC上运动到点D′,已知CD′=D′E,请直接写出CD′与AP′的数量关系.(不必写解答过程)2014-2015学年湖北省荆州市监利县朱河中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.2.(3分)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远【解答】解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选:C.3.(3分)对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形是轴对称图形;综上所述,可以看作是轴对称图形的有4个.故选:D.4.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABO和△ADO中,,∴△ABO≌△ADO(SAS),∴BO=DO,△CBO和△CDO中,,∴△BCO≌△DCO(SSS).故选:B.5.(3分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A.49°B.50°C.51°D.52°【解答】解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C.6.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△ABC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选:B.7.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.8.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7【解答】解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.9.(3分)已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为()A.(﹣2,3)B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)【解答】解:∵点A的坐标为(﹣2,3),点B与点A关于x轴对称,∴B(﹣2,﹣3),∵点C与点B关于y轴对称,∴C(2,﹣3),∴点C关于x轴对称的点的坐标为(2,3),故选:C.10.(3分)已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°﹣2∠A C.90°﹣∠A D.【解答】解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=.故选:D.二、填空题(8×3分=24分):11.(3分)如果等腰三角形的两边长分别为3cm、6cm,那么这个等腰三角形的周长为15cm.【解答】解:①3cm是腰长时,三角形的三边分别为3cm、3cm、6cm,∵3+3=6,∴不能组成三角形,②3cm是底边时,三角形的三边分别为3cm、6cm、6cm,能组成三角形,周长=3+6+6=15cm.综上所述,这个等腰三角形的周长为15cm.故答案为:15cm.12.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.13.(3分)如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为67.5°或22.5°.【解答】解:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°,(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G,=×(180°﹣135°),=22.5°.故答案为:67.5°或22.5°.14.(3分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.15.(3分)如图,∠AOB=30°,OC平分∠AOB,P为OC上的任意一点,PD∥OA,交OB于点D,PE⊥OA于点E,若OD=6cm,则PE的长为3cm.【解答】解:如图,过点P作PF⊥OB于F,∵OC平分∠AOB,PE⊥OA,∴PE=PF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵PD∥OA,∴∠AOC=∠OPD,∠PDF=∠AOB=30°,∴∠BOC=∠OPD,∴PD=OD=6cm,∴PF=PD=×6=3cm,∴PE=PF=3cm.故答案为:3.16.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于D,AD=5cm,DE=2cm,则BE的长为3cm.【解答】解:∵∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴BE=CD=CE﹣DE=AD﹣DE=3cm,故答案为3.17.(3分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有4个.【解答】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故答案为:4.18.(3分)如图所示,在△ABC中,∠A=80°,延长BC到D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依此类推,∠A4BC 与∠A4CD的平分线相交于A5点,则∠A5的度数是 2.5°.【解答】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.三、解答题(共7小题,满分66分)19.(6分)已知:多边形的内角和与外角和的比是7:2,求这个多边形的边数.【解答】解:设这个多边形的边数为n,则有,解得:n=9.∴这个多边形的边数为9.20.(6分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(图1)(2)过一条边的三等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法)请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法(只要求正确画图,不写画法).【解答】解:答案不惟一.21.(10分)如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴DF=BE.22.(10分)如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6.(1)作出点P关于OB的对称点P1,关于OA的对称点P2,并求△P1OP2的周长;(2)若点M为OA上一动点,点N为OB上一动点,求△PMN的最小周长.【解答】解:(1)∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2=6,且∠P1OP2=2∠AOB=60°,∴故△OP1P2是等边三角形.∴△P1OP2的周长=3×6=18;(2)分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CD=6.23.(10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.【解答】解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.24.(12分)已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC.(1)如图,若点O在边BC上,求证:AB=AC;(2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由;(3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.【解答】(1)证明:∵OE⊥AB,OF⊥AC,∴∠BEO=∠CFO=90°.∵在Rt△OBE和Rt△OCF中,∴Rt△OBE≌Rt△OCF(HL).∴∠B=∠C.∴AB=AC.(2)解:成立.证明:过O作OE⊥AB,OF⊥AC,垂足分别为E、F,则∠BEO=∠CFO=90°,∵在Rt△OBE和Rt△OCF中,∴Rt△OBE≌Rt△OCF(HL).∴∠EBO=∠FCO.∵OB=OC,∴∠OBC=∠OCB.∴∠EBO+∠OBC=∠FCO+∠OCB.即∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立,如右图.25.(12分)如图,已知:在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.(1)求证:△BPO≌△PDE;(2)若BP平分∠ABO,其余条件不变,求证:AP=CD;(3)若点P是一个动点,当点P运动到OC的中点P′时,满足题中条件的点D 也随之在直线BC上运动到点D′,已知CD′=D′E,请直接写出CD′与AP′的数量关系.(不必写解答过程)【解答】证明:(1)∵PB=PD,∴∠PDB=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠OBC=45°,∴∠OBC=∠C=45°,∵∠PBO=∠PBC﹣∠OBC,∠DPE=∠PDB﹣∠C,∴∠PBO=∠DPE,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中,,∴△BPO≌△PDE(AAS);(2)∵△ABP和△CPD,∴∠ABP=∠PBO,在△ABP和△CPD中,,∴△ABP≌△CPD(AAS),∴AP=CD;(3)作出图形,设∠OBP'=x,则∠P'BC=45°﹣x,∵BP'=P'D',∴∠P'D'C=45°﹣x,∵CD′=D′E,D'E⊥CE,∴∠CD'E=45°,CE=D'E,∴∠P'D'E=90°﹣x,∴∠D'P'E=∠OBP',在△BOP'和△P'ED'中,,∴△BOP'≌△P'ED'(AAS),∴P'E=OB,ED'=OP',∵AP'=AO+OP'=3P'O,CD'=DE=P'O,∴=.。
荆州市2014年初中升学考试数学试题
荆州市2014年初中升学考试数学试题注意事项:1.本试卷共两页,两道大题,包括选择题和解答题,其中选择题共10题,每题所给的四个选项中只有一个正确,请直接填写选项前的字母;解答题共5题,要求写出大致的演算过程,只有结果不给分。
2.本试卷总分为120分,包括选择题60分,解答题60分。
★祝考试顺利★一、选择题(60分)1.对于函数y=(a-1)x²-2ax+1,下列说法正确的是A.该函数图像与x轴始终有两个交点B.当(x+1)(x-1)/x(x-2)=2时,该函数有最小值C.该函数图象可能与x轴没有交点D.方程(a-1)x²-2ax+1=0中x可以取2,不能取02.如图2,在Rt△ABC中,AB=5,BC=3,∠ABD=45°,则CD为A.3/7B.5/7C.3/11D.5/113.已知函数,则该函数的最小值为A.13B.14C.15D.16.34.如图4,矩形ABCD靠在∠O上,且∠O=90°,AB=1,AC=2,则B点距离O点最远时BO的长为A.√5B. √2 +1C. (√149)/5D. 5/25.无论t取什么实数,点P(t-1,2t-3)都在直线l上,点Q(m,n)是l上一点,则(2m-n+3)²的值为A.9B.16C.25D.366.如图6,在圆中,PA=6,PB=3,PC=4,则PD=A.1.9B.2C.2.25D.2.5第2题图第4题图第6题图7.在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与其有交点,则k不可能为A.125/36B.1+√2C.-πD.-2√28.如图8,抛物线y=-x²+2x+3与x轴交于B,C两点,与y轴交于A点,直线y=3x+b与x轴交于P点,与抛物线交于Q点,使得以A,P,Q,C为顶点的四边形,则b满足该条件的值的数量为A.0B.1C.2D.39.如图9,在等腰Rt△ABC中,∠A=90°,点P位于△ABC内部PA=2,PB=3,PC=1,则∠APC的度数为A.120°B.135°C.150°D.165°10.已知一列有序数对:(1,6)、(2,14)、(3,26)、(4,42)…。
湖北省荆州市2014年中考数学试卷及答案(word解析版)
湖北省荆州市2014年中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案.每小题3分,共30分)1.(3分)(2014•荆州)若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选D.点评:本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.2.(3分)(2014•荆州)下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.(3分)(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.点评:本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.4.(3分)(2014•荆州)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)(2014•荆州)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(3分)(2014•荆州)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.(3分)(2014•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.(3分)(2014•荆州)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2014•荆州)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.(3分)(2014•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,则则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.故选A.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•荆州)化减×﹣4××(1﹣)0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.(3分)(2014•荆州)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.(3分)(2014•荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.(3分)(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.(3分)(2014•荆州)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014•荆州)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如图所示:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.(3分)(2014•荆州)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.18.(3分)(2014•荆州)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A 的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C 坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.三、解答题(本大题共7题,共66分)19.(7分)(2014•荆州)先化简,再求值:()÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,则原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(8分)(2014•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE(SAS)∴DF=BE.点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.(8分)(2014•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:本题考查了解直角三角形的应用,解决本题的关键在于设出未知数a,使得运算更加方便,难度中等.22.(9分)(2014•荆州)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:(1)根据题意得:a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.23.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?考点:二次函数的应用.分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.(12分)(2014•荆州)已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:(1)根据a取值的不同,有三种情形,需要分类讨论,避免漏解.(2)①函数与x轴相交于点A(x1,0),B(x2,0)两点,则x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,则可平方,用x1+x2,x1x2表示,则得关于a 的方程,可求,并得抛物线解析式.②已知解析式则可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:(1)函数y=ax2﹣(3a+1)x+2a+1(a为常数),若a=0,则y=﹣x+1,与坐标轴有两个交点(0,1),(1,0);若a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点(0,0),(1,0);若a≠0且图象与x轴只有一个交点时,令y=0有:△=(3a+1)2﹣4a(2a+1)=0,解得a=﹣1,有两个交点(0,﹣1),(1,0).综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.(2)①∵函数与x轴相交于点A(x1,0),B(x2,0)两点,∴x1,x2为ax2﹣(3a+1)x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=(x2﹣x1)2=(x1+x2)2﹣4x1x2=()2﹣4•,解得a=﹣(函数开口向上,a>0,舍去),或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x1<x2,∴A(1,0),B(3,0),C(0,3),∵D为A关于y轴的对称点,∴D(﹣1,0).根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,则EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:本题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规基础,是一道非常值得考生练习的题目.25.(12分)(2014•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD 重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:本题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
监利县八年级期中数学试卷
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. 1/32. 若a,b是方程x^2-3x+2=0的两个根,则a+b的值是()A. 1B. 2C. 3D. 43. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°4. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 直角三角形的斜边最长C. 等边三角形的三边相等D. 等腰梯形的对角线相等5. 若m,n是方程2x^2+3x-4=0的两个根,则mn的值是()A. -4B. -3C. 2D. 46. 下列函数中,单调递减的是()A. y=2x+1B. y=x^2C. y=-xD. y=x^37. 若m,n是方程x^2-5x+6=0的两个根,则m+n的值是()A. 5B. 6C. 7D. 88. 在△ABC中,若a=5,b=8,c=10,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形9. 下列各数中,无理数是()A. √9B. √16C. √25D. √2710. 若m,n是方程x^2-6x+9=0的两个根,则m+n的值是()A. 3B. 6C. 9D. 12二、填空题(每题4分,共20分)11. 若a=2,b=-3,则a^2+b^2的值是______。
12. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是______。
13. 下列函数中,y=2x+3的单调性是______。
14. 若m,n是方程x^2-4x+3=0的两个根,则mn的值是______。
15. 在△ABC中,若a=6,b=8,c=10,则△ABC是______。
三、解答题(每题10分,共30分)16. (1)已知方程x^2-2x-3=0,求方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年湖北省荆州市监利县朱河中学八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,112.(3分)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远3.(3分)对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对5.(3分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A.49°B.50°C.51°D.52°6.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°7.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或79.(3分)已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为()A.(﹣2,3)B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)10.(3分)已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°﹣2∠A C.90°﹣∠A D.二、填空题(8×3分=24分):11.(3分)如果等腰三角形的两边长分别为3cm、6cm,那么这个等腰三角形的周长为.12.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.13.(3分)如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为.14.(3分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是.15.(3分)如图,∠AOB=30°,OC平分∠AOB,P为OC上的任意一点,PD∥OA,交OB于点D,PE⊥OA于点E,若OD=6cm,则PE的长为cm.16.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于D,AD=5cm,DE=2cm,则BE的长为cm.17.(3分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.18.(3分)如图所示,在△ABC中,∠A=80°,延长BC到D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依此类推,∠A4BC 与∠A4CD的平分线相交于A5点,则∠A5的度数是.三、解答题(共7小题,满分66分)19.(6分)已知:多边形的内角和与外角和的比是7:2,求这个多边形的边数.20.(6分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(图1)(2)过一条边的三等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法)请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法(只要求正确画图,不写画法).21.(10分)如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.22.(10分)如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6.(1)作出点P关于OB的对称点P1,关于OA的对称点P2,并求△P1OP2的周长;(2)若点M为OA上一动点,点N为OB上一动点,求△PMN的最小周长.23.(10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.24.(12分)已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC.(1)如图,若点O在边BC上,求证:AB=AC;(2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由;(3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.25.(12分)如图,已知:在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.(1)求证:△BPO≌△PDE;(2)若BP平分∠ABO,其余条件不变,求证:AP=CD;(3)若点P是一个动点,当点P运动到OC的中点P′时,满足题中条件的点D 也随之在直线BC上运动到点D′,已知CD′=D′E,请直接写出CD′与AP′的数量关系.(不必写解答过程)2014-2015学年湖北省荆州市监利县朱河中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.2.(3分)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远【解答】解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选:C.3.(3分)对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一个图形是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形是轴对称图形;综上所述,可以看作是轴对称图形的有4个.故选:D.4.(3分)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对【解答】解:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABO和△ADO中,,∴△ABO≌△ADO(SAS),∴BO=DO,△CBO和△CDO中,,∴△BCO≌△DCO(SSS).故选:B.5.(3分)如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.若∠1=129°,则∠2的度数为()A.49°B.50°C.51°D.52°【解答】解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.故选:C.6.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△ABC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选:B.7.(3分)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.8.(3分)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或7【解答】解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6.则原多边形的边数为5或6或7.故选:D.9.(3分)已知点A的坐标为(﹣2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为()A.(﹣2,3)B.(2,﹣3)C.(2,3) D.(﹣2,﹣3)【解答】解:∵点A的坐标为(﹣2,3),点B与点A关于x轴对称,∴B(﹣2,﹣3),∵点C与点B关于y轴对称,∴C(2,﹣3),∴点C关于x轴对称的点的坐标为(2,3),故选:C.10.(3分)已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=()A.2∠A B.90°﹣2∠A C.90°﹣∠A D.【解答】解:∵AB=AC,∴∠B=∠C,∵BD=CF,BE=CD∴△BDE≌△CFD,∴∠BDE=∠CFD,∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=∠C,∵∠A+∠B+∠C=180°.∴∠A+2∠EDF=180°,∴∠EDF=.故选:D.二、填空题(8×3分=24分):11.(3分)如果等腰三角形的两边长分别为3cm、6cm,那么这个等腰三角形的周长为15cm.【解答】解:①3cm是腰长时,三角形的三边分别为3cm、3cm、6cm,∵3+3=6,∴不能组成三角形,②3cm是底边时,三角形的三边分别为3cm、6cm、6cm,能组成三角形,周长=3+6+6=15cm.综上所述,这个等腰三角形的周长为15cm.故答案为:15cm.12.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.13.(3分)如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为67.5°或22.5°.【解答】解:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,已知∠ABD=45°,∴∠A=90°﹣45°=45°,∵AB=AC,∴∠ABC=∠C=×(180°﹣45°)=67.5°,(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,已知∠HFE=45°,∴∠HEF=90°﹣45°=45°,∴∠FEG=180°﹣45°=135°,∵EF=EG,∴∠EFG=∠G,=×(180°﹣135°),=22.5°.故答案为:67.5°或22.5°.14.(3分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.【解答】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.15.(3分)如图,∠AOB=30°,OC平分∠AOB,P为OC上的任意一点,PD∥OA,交OB于点D,PE⊥OA于点E,若OD=6cm,则PE的长为3cm.【解答】解:如图,过点P作PF⊥OB于F,∵OC平分∠AOB,PE⊥OA,∴PE=PF,∵OC平分∠AOB,∴∠AOC=∠BOC,∵PD∥OA,∴∠AOC=∠OPD,∠PDF=∠AOB=30°,∴∠BOC=∠OPD,∴PD=OD=6cm,∴PF=PD=×6=3cm,∴PE=PF=3cm.故答案为:3.16.(3分)如图,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于D,AD=5cm,DE=2cm,则BE的长为3cm.【解答】解:∵∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴BE=CD=CE﹣DE=AD﹣DE=3cm,故答案为3.17.(3分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有4个.【解答】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故答案为:4.18.(3分)如图所示,在△ABC中,∠A=80°,延长BC到D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依此类推,∠A4BC 与∠A4CD的平分线相交于A5点,则∠A5的度数是 2.5°.【解答】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.三、解答题(共7小题,满分66分)19.(6分)已知:多边形的内角和与外角和的比是7:2,求这个多边形的边数.【解答】解:设这个多边形的边数为n,则有,解得:n=9.∴这个多边形的边数为9.20.(6分)为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等.现已有两种不同的分法:(1)分别作两条对角线(图1)(2)过一条边的三等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法)请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法(只要求正确画图,不写画法).【解答】解:答案不惟一.21.(10分)如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴DF=BE.22.(10分)如图,已知∠AOB=30°,点P在∠AOB的内部,OP=6.(1)作出点P关于OB的对称点P1,关于OA的对称点P2,并求△P1OP2的周长;(2)若点M为OA上一动点,点N为OB上一动点,求△PMN的最小周长.【解答】解:(1)∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2=6,且∠P1OP2=2∠AOB=60°,∴故△OP1P2是等边三角形.∴△P1OP2的周长=3×6=18;(2)分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CD=6.23.(10分)如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.【解答】解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.24.(12分)已知:点O到△ABC的两边AB、AC所在直线的距离OE、OF相等,且OB=OC.(1)如图,若点O在边BC上,求证:AB=AC;(2)如图,若点O在△ABC的内部,则(1)中的结论还成立吗?若成立,请证明;若不成立,说明理由;(3)若点O在△ABC的外部,则(1)的结论还成立吗?请画图表示.【解答】(1)证明:∵OE⊥AB,OF⊥AC,∴∠BEO=∠CFO=90°.∵在Rt△OBE和Rt△OCF中,∴Rt△OBE≌Rt△OCF(HL).∴∠B=∠C.∴AB=AC.(2)解:成立.证明:过O作OE⊥AB,OF⊥AC,垂足分别为E、F,则∠BEO=∠CFO=90°,∵在Rt△OBE和Rt△OCF中,∴Rt△OBE≌Rt△OCF(HL).∴∠EBO=∠FCO.∵OB=OC,∴∠OBC=∠OCB.∴∠EBO+∠OBC=∠FCO+∠OCB.即∠ABC=∠ACB.∴AB=AC.(3)解:不一定成立,如右图.25.(12分)如图,已知:在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E.(1)求证:△BPO≌△PDE;(2)若BP平分∠ABO,其余条件不变,求证:AP=CD;(3)若点P是一个动点,当点P运动到OC的中点P′时,满足题中条件的点D 也随之在直线BC上运动到点D′,已知CD′=D′E,请直接写出CD′与AP′的数量关系.(不必写解答过程)【解答】证明:(1)∵PB=PD,∴∠PDB=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠OBC=45°,∴∠OBC=∠C=45°,∵∠PBO=∠PBC﹣∠OBC,∠DPE=∠PDB﹣∠C,∴∠PBO=∠DPE,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中,,∴△BPO≌△PDE(AAS);(2)∵△ABP和△CPD,∴∠ABP=∠PBO,在△ABP和△CPD中,,∴△ABP≌△CPD(AAS),∴AP=CD;(3)作出图形,设∠OBP'=x,则∠P'BC=45°﹣x,∵BP'=P'D',∴∠P'D'C=45°﹣x,∵CD′=D′E,D'E⊥CE,∴∠CD'E=45°,CE=D'E,∴∠P'D'E=90°﹣x,∴∠D'P'E=∠OBP',在△BOP'和△P'ED'中,,∴△BOP'≌△P'ED'(AAS),∴P'E=OB,ED'=OP',∵AP'=AO+OP'=3P'O,CD'=DE=P'O,∴=.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。