有理数、数轴、相反数、绝对值练习卷

合集下载

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

有理数,数轴相反数,绝对值习题

有理数,数轴相反数,绝对值习题

正?负数、数轴、相反数、绝对值综合练习1、如果温度上升3o C记作+3o C,那么下降5o C记作______,+6o C表示_____,—7o C表示______?2、今天的气温是零上3o C记作___________,若记作—6o C说明今天的气温是______________3、海拔高度是+561米表示__________________,海拔高度是—189米表示______________?4、如果向西走12米记作+12米,则向东走—120米表示的意义是___________________?5、味精袋上标有“300±5克”字样,+5表示__________________,—5表示_____________?还说明这袋味精的质量应该是____~____?6、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为___地,最低处为____地,最高处与最低处相差_________?7、______________________统称整数。

(如:?,—4,—3,—2,—1,0,1,2,3,?)10、规定了______、_________、_________的________叫做数轴。

?11、数轴上原点左边的数表示____数,原点右边的数表示_____数,_____表示0。

?12、如果点A表示的数是2.2,将点A向左边移动2个单位长度,那么这时点A表示的数是_______,如过再向左移动1.2个单位长度,那么这时点A表示的数是_______,第三次再向右移动15个单位长度,那么这时点A表示的数是________?13、数轴上,到原点的距离等于4个单位长度的点所表示的数是_____,它们互为_________?14、数轴上与距离原点3个单位长度的点所表示的负数是___,它与表示数1的点的距离为___?15、在数轴上,到表示—3的点的距离等于199个单位长度的点所表示的数是___________?16、在数轴上,原点及原点左边的点表示的数是_______数?17、在数轴上,点M表示—7,把点M向左移动5个单位长度到点N,再把N向右移动6个单位长度到点P。

初中数学湘教版七年级上册第一章 有理数1.2 数轴、相反数与绝对值-章节测试习题(50)

初中数学湘教版七年级上册第一章 有理数1.2 数轴、相反数与绝对值-章节测试习题(50)

章节测试题1.【答题】如图,数轴上两点A,B表示的数互为相反数,则点B表示的数是()A. -6B. 6C. 0D. 无法确定【答案】B【分析】本题考查相反数.【解答】-6的相反数是6,A点表示-6,∴B点表示6.故选B.2.【答题】在数轴上,点A表示的数为-3,将点A在数轴上移动4个单位长度到达点B,则点B表示的数是______.【答案】+1或-7【分析】本题考查数轴上的动点问题.【解答】∵点A表示−3,∴从点A出发,沿数轴向右移动4个单位长度到达B点,则点B表示的数是−3+4=1;∴从点A出发,沿数轴向左移动4个单位长度到达B点,则点B表示的数是−3−4=−7;∴点B表示的数是1或−7.故答案为+1或−7.3.【答题】小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.【分析】本题考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.【解答】设被污染的部分为a,由题意得,-1<a<3,在数轴上这一部分的整数有0,1,2.∴被污染的部分中共有3个整数,分别为0,1,2.故答案为0,1,2.4.【答题】的相反数是()A. B. 2 C. D.【答案】B【分析】本题考查求相反数.根据相反数的性质可得结果.【解答】∵-2+2=0,∴﹣2的相反数是2,选B.5.【答题】如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,那么点A对应的数是()A. ﹣6B. ﹣3C. 0D. 正数【答案】B【分析】本题考查有理数和数轴.【解答】假设A点为原点,则d﹣b+c≠10,故不可能;假设B为原点,则d﹣b+c=10,因此可知A点的数为-3.选B.6.【答题】﹣a﹣b+c的相反数是______.【分析】本题考查了求一个数的相反数,解题关键是利用只有符号不同的两数互为相反数,这一特点求解即可.【解答】根据只有符号不同的两数互为相反数,可知-a-b+c的相反数为a+b-c.故答案为a+b-c.7.【答题】小于﹣3.8的最大整数是______.【答案】﹣4【分析】本题考查有理数和数轴.【解答】根据数轴上面的数的特点可知小于-3.8的最大整数是-4.故答案为-4.8.【答题】数轴上一个点到-1所表示的点的距离为4,那么这个点在数轴上所表示的数是______.【答案】-5或3【分析】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.【解答】设这个点在数轴上所表示的数是x,则|x+1|=4,解得x=3或x=-5.故答案为3或-5.9.【答题】﹣(+7)=______.【答案】-7【分析】本题考查相反数的意义.【解答】根据相反数的意义可求解.﹣(+7)=﹣710.【答题】﹣(﹣5)=______.【答案】5【分析】本题考查相反数的意义.【解答】根据相反数的意义可求解.﹣(﹣5)=5.11.【综合题文】如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.12.【答题】﹣6的相反数是()A. ﹣6B. ﹣C. 6D.【答案】C【分析】根据相反数的定义,即可解答.【解答】−6的相反数是6,选C.13.【答题】2016的相反数是()A. -2016B. 2016C. -D.【答案】A【分析】本题考查相反数.【解答】2016的相反数是-2016.选A.14.【答题】如图,数轴的单位长度为1,点A,B表示的两个数互为相反数,点A表示的数是()A. -3B. -2C. 2D. 3【答案】A【分析】本题考查有理数和数轴,以及相反数的定义.【解答】根据数轴可知AB之间的距离为6,然后根据其二者互为相反数,可知A为-3,B为3.选A.15.【题文】把下列各数按要求填入相应的大括号里:5,﹣,0,﹣(﹣3),2.10010001…,42,﹣10,﹣,3.1415,﹣0.333…整数集合:{ …};分数集合:{ …};非正整数集合:{ …};无理数集合:{ …}.【答案】见解答.【分析】本题考查有理数及其分类,相反数.【解答】整数集合:{5,0,﹣(﹣3),42,﹣10,…};分数集合:{﹣,3.1415,﹣0.333…,…};非正整数集合:{0,﹣10,…};无理数集合:{2.10010001…,﹣,…}.16.【答题】数轴上的点A表示的数是+1.5,那么与点A相距3个单位长度的点表示的数是______.【答案】或【分析】本题考查数轴上两点之间的距离.【解答】右边个单位长度是,左边个单位长度是.故答案为或.17.【答题】如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是______.【答案】-4π【分析】本题考查有理数和数轴.【解答】该圆的周长为2π×2=4π,∴A′与A的距离为4π,由于圆形是逆时针滚动,∴A′在A的左侧,∴A′表示的数为-4π,故答案为-4π.18.【题文】化简下列各数:(1)-[-(-2)];(2)-{[+(-3)]};(3)-[+(-1)];(4)+[-(+7)];(5)-{-[-(-│-3│)};(6)-{+[-(+3)]}.【答案】(1)-2;(2)3;(3)1;(4)-7;(5)3;(6)3.【分析】本题考查相反数的定义.根据相反数的定义化简即可.【解答】(1)-[-(-2)]=-2;(2)-{[+(-3)]}=3;(3)-[+(-1)]=1;(4)+[-(+7)]=-7;(5)-{-[-(-│-3│)}=3;(6)-{+[-(+3)]}=3.19.【答题】已知点A、B、C分别是数轴上的三个点,点A表示的数是–1,点B表示的数是2,且B、C两点间的距离是A、B两点间距离的3倍,则点C表示的数是()A. 11B. 9C. –7D. –7或11【答案】D【分析】本题考查数轴上两点间的距离.【解答】如图所示:∵点A表示的数是–1,点B表示的数是2,∴A、B两点间距离为3,∵B,C两点间的距离是A、B两点间距离的3倍,∴BC=9,故点C表示的数是–7或11.选D.20.【答题】已知A,B两点在数轴上表示的数是-5,1,在数轴上有一点C,满足AC=2BC,则C点表示的数为()A. -1B. 0C. 7D. -1或7【答案】D【分析】本题考查有理数和数轴,数轴上两点间的距离.【解答】如图,当点C在A与B之间时,点C表示的数是-1,当点C在B的右侧时,点C表示的数是7.选D.。

初中数学湘教版七年级上册第一章 有理数1.2 数轴、相反数与绝对值-章节测试习题(28)

初中数学湘教版七年级上册第一章 有理数1.2 数轴、相反数与绝对值-章节测试习题(28)

章节测试题1.【答题】如图,数轴上点A表示的数是()A. –1B. 0C. 1D. 2【答案】C【分析】本题考查了数轴上的点和实数之间的对应关系.【解答】数轴上点A所表示的数是1.选C.2.【答题】如图,数轴的单位长度为1,如果点A表示的数是–1,那么点B表示的数是()A. 0B. 1C. 2D. 3【答案】D【分析】本题考查了实数轴,正确应用数形结合分析是解题关键.【解答】数轴的单位长度为1,如果点A表示的数是–1,那么点B表示的数是3.选D.3.【答题】在数轴上表示–3,0,5.1,的点中,在原点左边的点有()A. 0个B. 1个C. 2个D. 3个【答案】B【分析】本题考查了数轴上的点和实数之间的对应关系.【解答】根据原点左边的点表示负数,即可得出:只有–3在原点左边.选B.4.【答题】如图,在数轴上,小手遮挡住的点表示的数可能是()A. –1.5B. –2.5C. –0.5D. 0.5【答案】C【分析】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.【解答】设小手盖住的点表示的数为x,则–1<x<0,则表示的数可能是–0.5.选C.5.【答题】数轴上+5表示的点位于原点______边距原点______个单位长度,数轴上位于原点左边4个单位长度的点表示______,数轴上距原点6个单位长度并在原点右边的点表示的数是______.【答案】右 5 –4 +6【分析】本题考查的是实数与数轴,数轴上两点间的距离.【解答】数轴上+5表示的点位于原点右边距原点5个单位长度,数轴上位于原点左边4个单位长度的点表示–4,数轴上距原点6个单位长度并在原点右边的点表示的数是+6.故答案为:右,5,–4,+6.6.【题文】(1)在数轴上表示出下列各有理数:–2,–3,0,−4,;(2)指出下图所示的数轴上A、B、C、D、E各点分别表示的有理数.【答案】(1)见解答;(2)A表示–4,B表示–1.5,C表示0.5,D表示3,E表示4.5.【分析】本题考查了数轴上的点和实数之间的对应关系.【解答】(1)如图所示:(2)由题可得,A表示–4,B表示–1.5,C表示0.5,D表示3,E表示4.5.7.【题文】a,b,c在数轴上的位置如图.(1)用>,<号填空:a______0,b______0,c______0,a______–1,b______c.(2)把a,b,c,–1,0用<号连接起来.【答案】见解答.【分析】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴.当数轴方向朝右时,右边的数总比左边的数大.【解答】(1)a<0,b<0,c>0,a<–1,b<c;(2)b<–1<a<0<c.8.【答题】下列所示的数轴中,画得正确的是()A. B.C. D.【答案】A【分析】本题关键是注意数轴的三要素:原点、正方向和单位长度.【解答】A.正确.B.虽有单位长度,但前后单位长度不一致,错误;C.没有原点,错误;D.无正方向,错误.选A.9.【答题】如图,在数轴上点A表示的数可能是()A. 1.5B. -1.5C. -2.4D. 2.4【答案】C【分析】本题考查了数轴:数轴有三要素(正方向、原点、单位长度),原点左边的点表示负数,右边的点表示正数.根据数轴上的点表示数的方法得到点A表示的数大于﹣3且小于﹣2,然后分别进行判断即可.【解答】∵点A表示的数大于﹣3且小于﹣2,∴A、B、D三选项错误,C选项正确.选C.10.【答题】在数轴上表示-5,0,3,的点中,在原点右边的点有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了数轴的知识,熟记数轴上原点右边的数是正数是解题的关键.【解答】在数轴上表示-5,0,3,的点中,在原点右边的点有3,共2个.选B.11.【答题】数轴上原点和原点左边的点表示的数是()A. 负数B. 正数C. 非负数D. 非正数【答案】D【分析】本题考查了数轴的知识,熟记数轴上原点右边的数是正数是解题的关键.【解答】∵从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应0,∴数轴上原点和原点左边的点表示的数是0和负数,即非正数,选D.12.【答题】在数轴上表示-2的点离开原点的距离等于()A. 2B. -2C. ±2D. 4【答案】A【分析】本题考查了数轴上两点间距离的问题,直接运用概念就可以求解.【解答】根据数轴上两点间距离,得-2的点离开原点的距离等于2.选A.13.【答题】在数轴上和原点距离为4个单位长度的点对应的有理数是()A. 4B. -4C. 4或-4D. 无数个【答案】C【分析】本题考查的是数轴上各点到原点距离的定义,解答此题的关键是熟知数轴上到原点距离相等的点有两个,这两个数互为相反数.【解答】根据数轴上各点到原点距离的定义可知:在数轴上和原点距离为4个单位长度的点对应的有理数是±4.选C.14.【答题】在数轴上,一个点从-3开始向左移动1个单位长度,再向右移动5个单位长度后表示的数是()A. +3B. +1C. -9D. -2【答案】B【分析】本题考查了数轴,主要利用了向左平移减,向右平移加.【解答】-3-1+5=-4+5=1.选B.15.【答题】点A为数轴上的表示-2的动点,当点A沿数轴移动4个单位长度到点B 时,点B所表示的有理数为()A. 2B. -6C. 2或-6D. 不同于以上答案【答案】C【分析】注意数的大小变化和平移之间的规律:左减右加.与点A的距离为4个单位长度的点B有两个,一个向左,一个向右.【解答】∵点A为数轴上的表示-2的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-2-4=-6;②当点A沿数轴向右移动4个单位长度时,点B 所表示的有理数为-2+4=2.选C.16.【答题】有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A. a<bB. a>bC. a=bD. 无法确定【答案】B【分析】本题考查的是数轴的特点及有理数的大小比较,比较简单.【解答】∵b在原点的左边,∴b<0,∵a在原点的右边,∴a>0,∴a>b.选B.17.【答题】数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A. 2002或2003B. 2003或2004C. 2004或2005D. 2005或2006 【答案】C【分析】本题考查了数轴的实际应用.【解答】某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数可能正好是2005个,也可能不是整数,而是有两个半数那就是2004个.由题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.选C.18.【答题】如图所示,点A表示______,点B表示______,点C表示______,点D表示______.【答案】1 -1 2.5 -1.5【分析】本题考查有理数在数轴上的表示.【解答】由图可知:点A表示1,点B表示-1,点C表示2.5,点D表示-1.5.19.【答题】如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是______.【答案】3【分析】本题考查数轴上的动点问题.【解答】向右移动几个单位,则表示加上几,则-1+3=2.20.【答题】在数轴上表示-4的点位于原点的______边,与原点的距离是______个单位长度.【答案】左 4【分析】本题考查了数轴的知识. 根据数轴的特点及距离的定义解答即可.【解答】在数轴上表示-4的点位于原点的左边,与原点的距离是4个单位长度.。

七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)

七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)

七年级数学上册《数轴、相反数、绝对值》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为( )A.-5 B.5 C.-15D.152.-18的相反数是( )A.-8 B.18C.0.8 D.83.在下面所画的数轴中,你认为正确的数轴是( )4.下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3 B.5 C.6 D.7 6.若a=7,b=5,则a-b的值为( )A.2 B.12C.2或12 D.2或12或-12或-2 7.实数a,b在数轴上的位置如图所示,以下说法正确的是()A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122=C .00=D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a -b +c 2-d 的值是 ( )A .-2B .-1C .0D .110.如果abcd<0,a +b =0,cd>0,那么这四个数中的负因数至少有 ( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数. 13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A ,B 表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x 的值,使1x -=x -1成立,你写出的x 的值是______.17.若x ,y 是两个负数,且x<y ,那么x _______y .18.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,若a >b >c ,则该数轴的原点O 的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4 ,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x-=1,这样的数x可以是0或2.1x-=2的几何意义可仿上解释为:在数轴上____________________________,(1)等式2其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。

正负数、有理数、数轴和绝对值练习题

正负数、有理数、数轴和绝对值练习题

b -0一、正、负数、有理数、数轴和绝对值练习题1、下列各数中,哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?哪些是正数?哪些是负数?5.8,117,25.1,294,31,175,7.9,5---- 2、数轴上到原点的距离是3个单位长度的点有___个,表示的数分别是____。

数轴上点A 和点B 表示的数分别为2-和1,则A 、B 两点的距离为_____。

如图所示,根据有理数a ,b -,c -,在数轴上的位置,比较a ,b ,c 的大小,则有___________。

3、比较下列每组数的大小:(1)7,8-- (2)32,43--(3)23,1-- (4)π-,14.3- (5)2.3,7.4,8.4--4、5-的相反数是____;7.2+的相反数是____;49-的相反数是____; 747的相反数是____;0的相反数是____;3.5-的相反数是____; ____的相反数是433-;95.5与____互为相反数; 5、计算:(1)=-6 (2)=-311 (3)=+1511 (4)=-655 (5)=0 (6)=+9 (7)=-4.10 (8)=7.56、计算:(1)302416---+- (2)⎪⎪⎭⎫ ⎝⎛-+÷+-31322121 (3)213123.5-+-(4)12567-- (5)214143----+; (6)21415322+÷-⨯-(7)18.618.9-+- (8)221723-+-; (9)7.35225---⨯-(10)3131543221--++-+ (11)8365-+-;7、探究题:191201415131412131-++-+-+-。

七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)

七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)

七年级数学上册《数轴、相反数、绝对值》专题练习(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为( )A .-5 B .5C .-D .15152.-的相反数是 ( )18 A .-8 B . C .0.8D .8183.在下面所画的数轴中,你认为正确的数轴是( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若=7,=5,则a -b 的值为 ()a b A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a +b =0B .b <aC .ab >0D .|b |<|a |8.下列式子不正确的是 ( )A .B .44-=1122=C .D .00= 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a -b +c 2-的值是( )d A .-2 B .-1 C .0 D .110.如果abcd<0,a +b =0,cd>0,那么这四个数中的负因数至少有( ) A .4个 B .3个 C .2个 D .1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与互为倒数.11013.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A ,B 表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x 的值,使=x -1成立,你写出的x 的值是______.1x -17.若x ,y 是两个负数,且x<y ,那么_______.x y 18.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,若>a >,则该数轴的原点O 的位置应该在______.b c三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-1,-(+6.3),+(-32),12,312.3520.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-,,2.5,0,1,-(-7),-5,-112.132421.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A 队:-50分;B 队:150分;C 队:-300分;D 队:0分;E 队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A 队与B 队相差多少分?C 队与E 队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x 的点与表示数1的点的距离等于1,其几何意义可表示为:=1,这样的数x 可以是0或2.1x(1)等式=2的几何意义可仿上解释为:在数轴上2x -____________________________,其中x 的值可以是______________.(2)等式=2的几何意义可仿上解释为:在数轴上3x +____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设,,求的值。

初中数学有理数数轴、相反数、绝对值基础题(含答案)

初中数学有理数数轴、相反数、绝对值基础题(含答案)

七年级数学上册数轴、相反数、绝对值基础题北
师版
一、单项选择题(共10道,每道10分)
1.若是60m表示“向北走60m”,那么“向南走40m”能够表示为()
答案:B
试题难度:三颗星知识点:正数和负数的意义
2.在:0、一、-二、这四个数中,是负整数的是()
答案:C
试题难度:三颗星知识点:有理数及其分类
3.以下图为数轴的是()
A. B.
C. D.
答案:C
试题难度:三颗星知识点:数轴的概念
4.如图,在数轴上点A表示的数是()
C.±2
答案:A
试题难度:三颗星知识点:用数轴表示数
,b为有理数,在数轴上的位置如下图,那么以下关于a,b,0三者之间的大小关系,表示
正确的选项是()
<a<b <0<b
<0<a <b<0
答案:B
试题难度:三颗星知识点:用数轴比较大小
6.到原点的距离等于3的数是()
或-3
答案:C
试题难度:三颗星知识点:用数轴表示任意点到原点距离
7.数轴上表示-2和-101的两个点别离为A、B,那么A、B两点间的距离等于()
答案:C
试题难度:三颗星知识点:用数轴表示任意两点之间距离
的相反数是()
A. B.
答案:D
试题难度:三颗星知识点:相反数
9.假设|x|=-x,那么x的取值范围是()
=-1 =0
≥0 ≤0
答案:D
试题难度:三颗星知识点:绝对值及其法那么
的结果是()
A. B.
C. D.
答案:A
试题难度:三颗星知识点:绝对值。

数轴、相反数、绝对值易错点训练

 数轴、相反数、绝对值易错点训练

专题01数轴、相反数、绝对值易错题型训练考点一数轴1.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.﹣2D.﹣42.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.3.如图,在数轴上,点A、B分别表示a、b,且a+b=0,若AB=10,则点A表示的数为()A.﹣5B.0C.5D.﹣104.如图,有一个直径为1个单位长度的圆片,把圆片上的点放在数轴上﹣1处,然后将圆片沿数轴向右滚动一周,点A到达点A'位置,则点A'表示的数是()A.﹣π+1B.C.π+1D.π﹣15.在数轴上,与表示﹣2的点的距离是4个单位的点所对应的数是.6.一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是﹣8,6,现以点C为折点,将数轴向右对折,若点A'落在射线CB上,并且A'B=4,则C点表示的数是()A.1B.﹣1C.1或﹣2D.1或﹣37.在数轴上,点A、B表示的数分别为,,则A、B间的距离为.8.如图1,点A,B,C是数轴上从左到右排列的三点,分别对应的数为﹣4,b,5.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度尺1.5cm处,点C对齐刻度尺4.5cm处.(1)在图1的数轴上,AC=个单位长度;(2)求数轴上点B所对应的数b为.9.一天,某出租车被安排以A地为出发地,只在东西方向道路上营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10.假设该出租车每次乘客下车后,都在停车地等待下一个乘客,直到下一个乘客上车再出发.(1)将最后一名乘客送到目的地,出租车在A地何处?(2)若每千米的价格为3元,司机当天的营业额是多少?10.点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=﹣1,b=5时,线段AB的“和谐点”所表示的数为;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,此时a的值为.11.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请写出此时点P表示的数.考点二相反数1.﹣2022的相反数是()A.2022B.﹣2020C.﹣D.2.﹣(﹣5)的相反数是()A.﹣5B.﹣C.D.53.下列说法正确的有()①a的相反数是﹣a②所有的有理数都能用数轴上的点表示③若有理数a+b=0,则a、b互为相反数④﹣1的绝对值等于它的相反数A.1个B.2个C.3个D.4个4.若m与互为相反数,则m的值为()A.﹣3B.C.D.35.若式子3x与7x﹣10互为相反数,则x=.6.如果x的相反数是﹣2021,那么2﹣x的值是.7.已知a、b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c﹣d=.8.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.9.数轴上A点表示+8,B、C两点表示的数为互为相反数,且C到A的距离为3,求点B和点C各对应什么数?10.已知表示数a的点在数轴上的位置如图所示.(1)在数轴上表示出a的相反数的位置.(2)若数a与其相反数相距20个单位长度,则a表示的数是多少?(3)在(2)的条件下,若数b表示的数与数a的相反数表示的点相距5个单位长度,求b表示的数是多少?考点三绝对值1.下列各数中,绝对值最小的是()A.﹣3B.﹣2C.0D.32.已知﹣3<x<3,下列四个结论中,正确的是()A.|x|>3B.|x|<3C.0≤|x|<3D.0<|x|<33.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)4.如图,检测排球的质量,其中质量超过标准的克数记为正数,不足的克数记为负数,下面已检测的四个排球中其中质量最接近标准的是()A.B.C.D.5.下列各式的结论成立的是()A.若|m|=|n|,则m=n B.若|m|>|n|,则m>nC.若m>n,则|m|>|n|D.若m<n<0,则|m|>|n|6.若a为有理数,且满足|a|=﹣a,则()A.a>0B.a≥0C.a<0D.a≤07.在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是()A.2023B.2021C.1011D.18.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣39.下列说法中正确的是()A.两个负数中,绝对值大的数就大B.两个数中,绝对值较小的数就小C.0没有绝对值D.绝对值相等的两个数不一定相等10.有理数m、n在数轴上的位置如图所示,则|m﹣n|+|m+n|的值为()A.2n B.2m C.﹣2n D.﹣2m11.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±212.下列说法正确的是()①已知a>0,b<0,则=1;②若|a+4|=﹣4﹣a,|b﹣3|=b﹣3,则化简|b+3|﹣|a﹣4|=a﹣b﹣7;③如果定义{a,b}=,当ab<0,a+b>0,|a|>|b|时,则{a,b}的值为a+b.A.①②B.①③C.②③D.①②③13.已知|a﹣1|+|b﹣2|=0.求(1)a+b的值;(2)|a|﹣|b|的值14.对于有理数a,b,n,若|a﹣n|+|b﹣n|=1,则称b是a关于n的“相关数”,例如,|2﹣2|+|3﹣2|=1,则3是2关于2的“相关数”.若x1是x关于1的“相关数”,x2是x1关于2的“相关数”,…,x4是x3关于4的“相关数”.则x1+x2+x3=.(用含x的式子表示)15.对于式子|x﹣1|+|x﹣5|在下列范围内讨论它的结果.(1)当x<1时;(2)当1≤x≤5时;(3)当x>5时.16.综合应用题:|m﹣n|的几何意义是数轴上表示m的点与表示n的点之间的距离.(1)|x|的几何意义是数轴上表示的点与之间的距离,|x||x﹣0|;(选填“>”“<”或“=”)(2)|2﹣1|几何意义是数轴上表示2的点与表示1的点之间的距离,则|2﹣1|=;(3)|x﹣3|的几何意义是数轴上表示的点与表示的点之间的距离,若|x﹣3|=1,则x=;(4)|x﹣(﹣2)|的几何意义是数轴上表示的点与表示的点之间的距离,若|x﹣(﹣2)|=2,则x=;(5)找出所有符合条件的整数x,使得|x﹣(﹣5)|+|x﹣2|=7这样的整数是.。

数轴、相反数、绝对值经典习题

数轴、相反数、绝对值经典习题

数轴1.如图所示的图形为四位同学画的数轴,其中正确的是()2.下列说法正确的是()A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.4.A.正数5.A.56.A.0个7.8.9.是910.11.点A B 。

(1(2)如果A 表示的数是2,将点A 向左移动6个单位长度,再向右移动3个单位长度,那么终点B 表示的数是。

(3)如果A 表示的数是m ,将点A 向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示的数是,A 、B 两点间的距离是。

12.在数轴上表示出下列各数,并把它们按从小到大的顺序排列起来:-4,3,0,-0.5,+214,-212。

13.有理数a,b 在数轴上的位置如图所示,试比较a,b,-a,-b 的大小。

ab-2-1123相反数1、如果a=-a ,那么表示a 的点在数轴上的什么位置?2.如果a 的相反数是-2,且2x+3a=4.求x 的值.3.已知a 和b 互为相反数且b ≠0,求a+b 与ab 的值.4.已知4-m 与-1互为相反数,求m 的值。

5.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是-3,由于粗心,把数轴的原点7.A.正数 8.互为相反数;⑤+3A .2个B 9.A. C.10.A.C.11A .-|a|C .若|a|=|b|则a 与b 互为相反数 D .若一个数小于它的绝对值,则这个数是负数12.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A .0个B .1个C .2个D .3个13.化简下列各数(1)-(-21)(2)-[-(+3.5)](3)-[-(-7)](4)-{-[-(+5)]}绝对值A档(巩固专练)(一)填空题:1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、相反数等于-5的数是______,绝对值等于5的数是________。

沪科版七年级数学上册 第一章 有理数 1.2 数轴、相反数和绝对值 同步练习 含答案

沪科版七年级数学上册 第一章 有理数  1.2 数轴、相反数和绝对值 同步练习 含答案

第一章有理数 1.2 数轴、相反数和绝对值1. 下列各式中,不成立的是( )A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=62. 数轴是( )A.规定了原点,正方向和单位长度的一条直线 B.一条射线C.有原点、正方向的直线 D.有单位长度的直线3. 下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.在数轴上表示1的点和-1的点的距离是1C.数轴上原点表示的数是0D.在数轴上原点左边的点表示的数是负数4. 下列说法正确的是( )A.正数与负数互为相反数 B.符号不同的两数互为相反数C.0没有相反数 D.-a与a互为相反数5. 下列是四位同学画出的数轴,其中正确的是( )6. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 7. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A .a ,b ,c 都是负数B .a ,b ,c 都是正数C .a ,b 是正数,c 是负数D .a ,b 是负数,c 是正数8. 数轴上到原点的距离为2的点所表示的数是( )A .-2B .2C .±2D .不能确定9.化简-(-113)的结果是( ) A .113 B .-113 C .-34 D.3410. 下列说法中正确的是( )A .没有一个数的相反数是它本身B .整数的相反数必为整数C . -(+3)的相反数是-3D . +(-6)的相反数是-611. 一个数a 的相反数表示为______.12. 如图,数轴上点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是____.13. 若|x|=5,则x的值是14. -(-2)表示________的相反数,故其结果是____.15. 若a=-3,则-a=____;若-a=-(-5),则a=____.16. 在数轴上,把表示2的对应点移动5个单位后,得到的对应点所表示的数是17. 下列说法中:①若a=10,则-a=-10;②若a是负数,则-a 必是正数;③如果a是负数,则-a在原点的左边;④若a与b互为相反数,则a,b对应的点一定在原点的两侧.其中正确的是(填序号)18. 在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的数为____.19. 如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.20. 化简:(1)-(+4)=_______;+(-π)=_______;(2)-(-1.5)=_______;-[+(-5)]=____.21. 化简:(1)+[-(+0.3)](2)-[+(-212)]22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C到原点的距离,那么点D表示什么数?并标出点D.答案:1---10 DABDC CDCAB11. -a12. 213. ±514. -2 215. 3 -516. 7或-317. ①②18. -5或-119. 820. (1) -4 -π(2) 1.5 521. (1) 解:原式=-0.3(2) 解:原式=21222. 解:原式=x =223. 解:(1)(2)点C 表示的数是5(3)点D 表示-5,如图。

有理数、数轴、相反数、绝对值练习卷

有理数、数轴、相反数、绝对值练习卷

有理数【2 】.数轴.相反数.绝对值检测卷班级:___________姓名:____________一.填空题1.假如向南走5 km记为-5 km,那么向北走10 km记为____2.大于-5.1的所有负整数为__________________.3.珠穆朗玛峰凌驾海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为_________.4.原点表示的数是_______,原点右边的数是________,左边的数是________.5.绝对值是2的数有_____个,它们是_________,绝对值是110的数有_____个,它们是________,0的绝对值记作:_____=_____,-100的绝对值是_____,记作:_____=_____.6.一个数与它的相反数之和等于_____.7._______的倒数是它本身,_______的绝对值是它本身.8.-|-67|=_______,-(-110)=_______,-|+13|=_______,-(+25)=_______,+|-12|=_______,9.若|-x|=|12|,则x=_______.10.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.11.比较大小:(1)-35___|-12| (2)|-15|___0(3)|-65|___|-43| (4)-97___-6512.距原点3个单位长度的数是___________二.断定题1.-13的相反数是3. ()2.划定了正偏向的直线叫数轴. ()3.数轴上表示数0的点叫做原点.()4.假如A.B两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.()5.若两个数的绝对值相等,则这两个数也相等. ()6.一个有理数的绝对值不小于它自身7.-a的绝对值等于a8.一个数的绝对值是它的相反数,则这个数必定是负数. ( )9.若-a是负数,则a是正数. ()10.正整数聚集与负整数集归并在一路是整数聚集.()三.选择题1.|x|=2,则这个数是()A.2B.2和-2C.-2D.以上都错2.|12a|=-12a,则a必定是()A.负数B.正数C.非正数D.非负数3.假如一个数的绝对值等于这个数的相反数,那么这个数是()A.正数B.负数C.正数.零D.负数.零4.每个有理数都可以用数轴上的以下哪项来表示()A.一个点B.线C.单位D.长度5.下列图形中不是数轴的是()6.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分离是-213与-2,那么-2在右边D.所有的有理数都可以用数轴上的点表示出来7.下列各数中,大于-12小于12的负数是()A.-23B.-13 C.13 D.08.负数是指()A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数9.关于零的论述错误的是()A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数10.下面是关于0的一些说法,个中准确说法的个数是()①0既不是正数也不是负数;②0是最小的天然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.311.下面准确的是()A.数轴是一条划定了原点,正偏向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴上的点可以表示随意率性有理数D.原点在数轴的正中央12.关于相反数的论述错误的是()A.两数之和为0,则这两个数为相反数B.假如两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,必定互为相反数D.零的相反数为零13.若数轴上A.B两点所对应的有理数分离为a.b,且b在a的右边,则a-b的成果必定()A.大于零B.小于零C.等于零D.无法肯定14.假如点A .B .C .D 所对应的数为a .b .c .d ,则a .b .c .d 的大小关系为( )A.a <c <d <bB.b <d <a <cC.b <d <c <aD.d <b <c <a15.0,12,-15,-8,+10,+19,+3,-3.4中整数的个数是()A.6B.5C.4D.3四.解答题1.某气象预告显示,我国五个地区的最高气温第二天比第一世界降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温. 2.在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,52,-43.下图是一个长方体纸盒的睁开图,请把-5,3,5,-1,-3,1分离填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.4.出租车司机李师傅一世界午的营运满是在器械走向的萧绍路长进行的,假如划定向东行驶为正,他这世界午行车的里程(单位:千米)是: +8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)若把李师傅下昼动身地记为0,他将最后一名乘客送抵目标地时,李师傅距下昼动身地有多远?(2)假如汽车耗油量为0.41升/千米,那么这世界午汽车共耗油若干升?5.(1)已知ab>0,试求ab ab b b aa ||||||++的值. (2)若|x -2|+|y +3|+|z -5|=0,盘算:①x ,y ,z 的值.②求|x |+|y |+|z |的值.。

七年级数学 数轴、相反数、绝对值单元测试题

七年级数学 数轴、相反数、绝对值单元测试题

一、单选题2.在跳远测验中,合格标准是4米,张非跳出了4.22米,记为+0.22米,李敏跳出了3.85米,记作( )A .+0.15B .﹣0.15C .+3.85D .﹣3.853.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A .2B .-1C .-2D .-34.在一次数学测验中,小明所在班级的平均分为86分,把高出平均分的部分记为正数,小明考了98分记作+12分,若小强成绩记作-4分,则他的考试分数为( )A .90分B .88分C .84分D .82分5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.已知有理数a ,b 在数轴上的位置如图所示,则下列关系正确的是( )A .0a b >>B .0b a >>C .0b a >>D .0a b >>7.实际测量一座山的高度时,有时需要在若干个观测点中测量两个相邻可视观测点的相对高度如A C -为90米表示观测点A 比观测点C 高90米),然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录,根据这次测量的数据,可得A B -是( )米.A .210B .130C .390D .-2108.A 、B 为数轴上的两点,若点A 表示的数是2,且线段AB =5,则点B 表示的数为( )A .7B .﹣3C .﹣7或3D .7或-39.如图所示,圆的周长为4个单位长度在圆周的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴上的原点重合,再将圆沿着数轴向右滚动,那么数轴上的1949所对应的点与圆周上字母( )所对应的点重合.A .AB .BC .CD .D二、填空题 11.172-的相反数是___________. 12.在直线上向右为正方向,负数都在0的_______边,也就是负数都比0_____,正数都比0_____.13.比-2.5大,比92小的所有整数有______ 14.在数4.3,3-5,|0|,227⎛⎫-- ⎪⎝⎭,-|-3|,-(+5)中,___________ 是正数 15.已知m 与n 互为相反数,且m 与n 之间的距离为6,且m <n .则m =_____,n=_______.16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.点A 、B 在数轴上对应的数分别为,a b ,满足()2250a b ++-=,点P 在数轴上对应的数为x ,当x =_________时,10PA PB +=.18.定义:[]x 表示不大于x 的最大整数,()x 表示不小于x 的最小整数,例如:[]2.32=,()2.33=,[]2.33-=-,()2.32-=-.则[]()1.7 1.7+-=___________.19.绝对值大于1而小于3.5的所有整数的和为_____.三、解答题21.把下列各数分别填入相应的集合:0,﹣7,5.6 ,﹣4.8,﹣814,227,15,19. 整数集合{ …};分数集合{ …};非负数集合{ …};负数集合{ …}.22.我们知道数形结合是解决数学问题的重要思想方法,例如|3-1|可表示为数轴上3和1这两点的距离,而31+即()|31|--则表示3和-1这两点的距离.式子1x -的几何意义是数轴上x 所对应的点与1所对应的点之间的距离,而()22x x +=--,所以2x +的几何意义就是数轴上x 所对应的点与-2所对应的点之间的距离.根据以上发现,试探索:(1)直接写出|8(2)|--=____________.(2)结合数轴,找出所有符合条件的整数x ,235x x -++=的所有整数的和.(3)由以上探索猜想,对于任何有理数x ,46x x ++-是否有最小值?如果有,请写出最小值并说明理由;如果没有,请说明理由.参考答案:1.B【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:若把向东走2km 记做“+2km”,那么向西走1km 应记做﹣1km .故选:B .【点睛】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.2.B【分析】根据正负数的意义解答.【详解】解:∵4.22-4=0.22,∵以4米为标准,若张非跳出了4.22米,可记做+0.22米,∵3.85-4=-0.15,∵李敏跳出了3.85米,记作﹣0.15米,故选:B .【点睛】此题考查了正负数的意义,有理数减法的应用,正确理解正负数的意义是解题的关键.3.B【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】解:由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.4.D【分析】根据高出平均分的部分记作正数,得到低于平均分的部分记作负数,即可得到结果.【详解】解:根据题意得:小明98分,应记为+12分;小强成绩记作-4分,则他的考试分数为82分.故选:D .【点睛】此题考查了正数与负数,弄清题意是解本题的关键.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∵1624a -+=-=, ∵144a =-=,∵56254a =-+⨯=, ∵15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】通过识图可得a <0<b ,|a |>|b |,从而作出判断.【详解】解:由题意可得:a <0<b ,|a |>|b |,A 、0a b >>,错误,此选项不符合题意;B 、0b a >>,正确,故此选项符合题意;C 、0b a >>,错误,故此选项不符合题意;D 、0a b >>,错误,故此选项不符合题意;故选:B .【点睛】本题考查了数轴上的点,理解数轴上点的特点,准确识图是解题关键.7.A【分析】数轴法:设点C 为原点,则A 表示数90,D 表示数-80,以此类推,将以上各观测点在数轴上表示,即可解题.【详解】解:设点C 为原点,则A 表示数90,D 表示数-80,以此类推将以上各观测点在数轴上表示如下:即E 表示数-140,F 表示数-90,G 表示数-160,B 表示数-12090(120)90120210A B ∴-=--=+=故选:A .【点睛】本题考查正负数在实际生活中的应用,是基础考点,利用数轴解题是关键.8.D【分析】根据题意,结合数轴确定出点B所表示的数即可.【详解】解:∵点A表示的数是2,且AB=5,当点B在A的左侧,点B表示的数为:2-5=-3,当点B在点A的右侧,点B表示的数为:2+5=7,∵点B表示的数为7或-3,故选:D.【点睛】此题考查了用数轴上的点表示数,熟练掌握数轴上点表示的意义是解本题的关键.9.D【分析】因为圆沿着数轴向右滚动,依次与数轴上数字顺序重合的是A、D、C、B,且A点只与4的倍数点重合,即数轴上表示4n的点都与A点重合,表示4n+1的数都与D点重合,依此按序类推.【详解】解:设数轴上的一个整数为x,由题意可知当x=4n时(n为整数),A点与x重合;当x=4n+1时(n为整数),D点与x重合;当x=4n+2时(n为整数),C点与x重合;当x=4n+3时(n为整数),B点与x重合;而1949=487×4+1,所以数轴上的1949所对应的点与圆周上字母D重合.故选D.【点睛】本题考查的是数轴上数字在圆环旋转过程中的对应规律,看清圆环的旋转方向是重点,关键要找到旋转过程中数字的对应方式.10.C【分析】∵根据两点间距离进行计算即可;∵利用路程除以速度即可;∵分两种情况,点P在点B的右侧,点P在点B的左侧,由题意求出AP的长,再利用路程除以速度即可;∵分两种情况,点P在点B的右侧,点P在点B的左侧,利用线段的中点性质进行计算即可.【详解】解:设点B对应的数是x,∵点A对应的数为8,且AB=12,∵8-x=12,∵x=-4,∵点B对应的数是-4,故∵正确;由题意得:12÷2=6(秒),∵点P到达点B时,t=6,故∵正确;分两种情况:当点P在点B的右侧时,∵AB=12,BP=2,∵AP=AB-BP=12-2=10,∵10÷2=5(秒),∵BP=2时,t=5,当点P在点B的左侧时,∵AB=12,BP=2,∵AP=AB+BP=12+2=14,∵14÷2=7(秒),∵BP=2时,t=7,综上所述,BP=2时,t=5或7,故∵错误;分两种情况:当点P在点B的右侧时,∵M,N分别为AP,BP的中点,∵MP=12AP,NP=12BP,∵MN=MP+NP=1 2AP+12BP=12AB=12×12=6,当点P在点B的左侧时,∵M,N分别为AP,BP的中点,∵MP=12AP,NP=12BP,∵MN=MP-NP=1 2AP-12BP=12AB=12×12=6,∵在点P的运动过程中,线段MN的长度不变,故∵正确;所以,上列结论中正确的有3个,故选:C.【点睛】本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.11.1 7 2【分析】绝对值相等,符号相反的数互为相反数.【详解】解:172-的相反数是172.故答案是:172.【点睛】本题考查相反数的定义,解题的关键是根据相反数的定义求相反数.12.左;小;大【分析】在数轴上,首先确定原点0的位置和单位长度,且从左到右的顺序就是数从小到大的顺序,所有的负数都在0的左边,越往左数越小,正数都在0的右边,越往右数越大.【详解】在数轴上,所有的负数都在0的左边,也就是负数都比0小,正数都在0的右边,正数都比0大,负数都比正数小.故答案为:左;小;大.【点睛】此题考查在数轴上表示正负数,理解所有的负数都在0的左边,正数都在0的右边是解题的关键.13.-2,-1,0,1,2,3,4【分析】根据整数的定义结合已知得出符合题意的答案.【详解】比﹣2.5大,比92小的所有整数有:﹣2,﹣1,0,1,2,3,4.故答案为:﹣2,﹣1,0,1,2,3,4.【点睛】本题考查了有理数大小比较的方法,正确把握整数的定义是解答本题的关键.14.4.3,227⎛⎫-- ⎪⎝⎭【分析】首先将各数化简,再根据正数的定义可得结果.【详解】解:在数4.3,3-5,|0|=0,222277⎛⎫--= ⎪⎝⎭,-|-3|=-3,-(+5)=-5中,4.3,227⎛⎫-- ⎪⎝⎭是正数. 故答案为:4.3,227⎛⎫-- ⎪⎝⎭. 【点睛】本题主要考查了有理数的定义,绝对值的意义,相反数的意义,熟练掌握有理数的分类是解答此题的关键. 15. -3 3【分析】先根据m ,n 互为相反数,可得:n=-m ,然后根据m <n ,且m 与n 在数轴上所对应的点之间的距离是6,可得:n -m=6,求出m 的值即可.【详解】∵m ,n 互为相反数,∵n=-m ,∵m <n ,且m 与n 在数轴上所对应的点之间的距离是6,∵n -m=6,∵-m -m=6,∵m=-3,n=3.故答案为:-3,3.【点睛】考查了数轴上两点间的距离,解题关键是由相反数的含义得到n=-m 和数轴上两点之间的距离. 16.99【详解】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99.故答案为99.17.72-或132【分析】由绝对值和完全平方的非负性可得2050a b +=⎧⎨-=⎩,则可计算出A 、B 对应的数,然后分三种情况进行讨论求解即可. 【详解】解:()2250a b ++-=,20+≥a ,2(5)0b -≥ , 则可得:2050a b +=⎧⎨-=⎩, 解得:25a b =-⎧⎨=⎩, 5(2)7AB ∴=--= ,∵当P 在A 点左侧时,210PA PB PA AB +=+= ,32PA ∴= ,则可得:322x --=, 解得:72x =- ∵当P 在B 点右侧时,210PA PB PB AB +=+= ,32PB ∴= , 则可得:352x -=, 解得:132x = , ∵当P 在A 、B 中间时,则有710PA PB AB +==≠ ,∵P 点不存在. 综上所述:132x =或72x =-. 故答案为:72-或132. 【点睛】本题考查了绝对值和完全平方的非负性,数轴上两点间的距离:a ,b 是数轴上任意不同的两点,则这两点间的距离=右边的数-左边的数,掌握数轴上两点距离和分情况讨论是本题的关键.18.0【分析】根据题意,[1.7]中不大于1.7的最大整数为1,(-1.7)中不小于-1.7的最小整数为-1,则可解答【详解】解:依题意:[1.7]=1,(-1.7)=-1∵[]()1.7 1.711=0+-=-故答案为:0【点睛】此题主要考查有理数大小的比较,读懂题意,即可解答.19.0【详解】根据已知得出1<|x|<3.5,求出符合条件的整数包括±2,±3,即2+(﹣2)+3+(﹣3)=0.故答案为0.点睛:本题考查了对绝对值、相反数的意义的应用,主要考查学生的理解能力和计算能力.20.4【分析】根据x 的取值范围,分别判断x -1与x+3的正负,然后根据绝对值的性质求解即可.【详解】∵31x -<<,∵10x -<,30x +>,∵原式(1)(3)x x =--++13x x =-+++4=【点睛】此题主要考查了两点间距离公式的应用,解题的关键是根据绝对值的性质化简.21.0,﹣7,15;5.6,﹣4.8,﹣814,227,19;5.6,227,15,19;﹣7,﹣4.8,﹣814【分析】由题意直接根据有理数的分类,把相应的数填写到相应的集合中即可.【详解】解:整数集合{0,﹣7,15…};分数集合{5.6,﹣4.8,﹣814,227,19…}; 非负数集合{5.6,227,15,19…}; 负数集合{﹣7,﹣4.8,﹣814…}. 故答案为:0,﹣7,15;5.6,﹣4.8,﹣814,227,19;5.6,227,15,19;﹣7,﹣4.8,﹣814. 【点睛】本题考查有理数的分类.注意掌握有理数分为整数和分数;正整数、0、负整数统称整数;正分数、负分数统称分数.非负整数包括正整数和0.22.(1)10(2)-3,-2,-1,0,1,2,和为-3(3)有,10【分析】(1)根据有理数减法法则计算;(2)分析得到2x -表示x 与2的距离,3x +表示x 与-3的距离,由235x x -++=,确定32x -≤≤,进而解答; (3)设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,分三种情况:当P 在点A 左侧时,当P 在点B 右侧时,当P 在A 、B 之间时,分别求出最小值解答.(1)|8(2)|--=10,故答案为10;(2)2x -表示x 与2的距离,3x +表示x 与-3的距离,∵235x x -++=,∵32x -≤≤,∵整数x =-3,-2,-1,0,1,2,和为-3-2-1+0+1+2=-3;(3)46x x ++-有最小值10,理由如下:设-4表示点A ,6表示点B ,x 表示点P ,则()6410AB =--=,当P 在点A 左侧时,()46221010x x PA PB PA PA AB PA AB PA ++-=+=++=+-+>,当P 在点B 右侧时,()46210210x x PA PB AB PB PB AB PB PB ++-=+=++=+=+>,当P 在A 、B 之间时,4610x x PA PB AB ++-=+==,∵46x x ++-的最小值为10.【点睛】此题考查了数轴上两点之间的距离,有理数绝对值计算,正确理解题中两点之间的距离计算是解题的关键.答案第9页,共9页。

有理数测试题(一)-数轴相反数绝对值

有理数测试题(一)-数轴相反数绝对值

有理数测试题(一)姓名: 分数:100分 分数:一、 填空。

(每小题3分,共24分)1、如果-30表示支出30元,那么+200元表示 。

2、在数轴上与原点距离2个单位长度的点表示的数有 个,为 。

3、规定了 的直线叫做数轴。

4、在数轴上表示整数(原点除外)的点中,与原点距离最近的点有 个,表示的数是 。

5、103的相反数是__ _,1132⎛⎫- ⎪⎝⎭的相反数是___ ,(a-2)的相反数是__ __。

6、化简:—[—(—0.3)]= ;—[—(+4)]=__________;—[+(—50)]=_________;7、比较大于(填写“>”或“<”号)(1)-2.1 1 (2)-41 0 (3)-21 -31 (4)-3.1 -3.09 8、在数轴上表示-2的点相距8个单位长度的点表示的数为_____________。

二、选择题。

(每小题3分,共24分)9、绝对值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )A)+8或- 8 B)+4或-4C)-4或+8 D)-8或+410、给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3> (B)<1><2<4>(C)<1><3><4> (D)<2><3><4>11.一个数等于它的相反数的绝对值,则这个数是( )A.正数和零B.负数或零C.一切正数D.所有负数12、若|a|>-a,则( )A)a>0 B)a<0 C)a<-1 D)1<a13、一个数的相反数小于原数,这个数是( )A)正数 B)负数 C)零 D)正分数14、不小于-4的非整数有( )A 、5个B 、4个C 、3个D 、2个15、如图所示,数a ,b 在数轴上的位置,下列判断正确的是( )A 、a<0B 、a>1C 、b>-1D 、b<-116、在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.正整数D.非负数三、解答题。

专项一_有理数_数轴_相反数_绝对值提高题

专项一_有理数_数轴_相反数_绝对值提高题

专项一 有理数提高训练:1.6,2005,212,0,—3,+1,41-,—6.8中,正整数和负分数共有( ) A .3个 B .4个 C .5个 D .6个2.1- 不是( ) A.自然数. B.负数. C.整数. D.有理数.3.下列说法正确的是( )A.0是表示没有. B。

非负有理数就是正有理数.C。

整数和分数统称为有理数. D.正整数和负整数统称为整数.4.下列说法错误的是( )A.零是整数 B.零是非负数. C.零是最小的整数.D.零是偶数.5.最小的整数是( ) A.1- B.0 C。

1 D。

不存在.6.下列说法不正确的是( ) A.有理数可分为正整数.正分数.0。

负整数.负分数. B.一个有理数不是分数就是整数.C.一个有理数不是正数就是负数. D.若一个数是整数,则这个数一定是有理数.7.在数2005,1.10,32,6.0,,4.6--π中 ( ) A.有理数有6个 B。

π-是负数 C.非正数有3个 D.以上都不对.8。

下列各数中一定是有理数的是( ) A 。

π B 。

a C 。

13D.a-3 9.最小的有理数是( )A 。

0 B 。

1 C.0,1 D.没有10.下列说法正确的是( )A 。

有最大的负数,没有最小的正数;B 。

没有最大的有理数,也没有最小的有理数C.有最大的非负数,没有最小的非负数; D 。

有最大的负整数,没有最小的正整数11.某年度某国家有外债10亿美元,有内债10亿美元,应用数学知识来解释说明,下列说法合理的是( )A.如果记外债为—10亿美元,则内债为+10亿美元B.这个国家的内债。

外债互相抵消C 。

这个国家欠债共20亿美元 D.这个国家没有钱12. 在 —3 ,+ 3,21—,—4。

7,—0.1,0,2中,最大的数是( ) A 、—0。

1 B 、0 C 、—4。

7 D 、313。

下列互为相反数的有( )对 ①-1与+(—1), ②+(+1)与-1, ③—(-2)与+(-2), ④+[-(+1)与—[+(—1)],⑤—(—2)与-(+2) ⑥(A)6 (B )5 (C )4 (D )314。

有理数-数轴-绝对值-加减法练习卷

有理数-数轴-绝对值-加减法练习卷

2016.6有理数、数轴、绝对值、加减法练习卷一.选择题(共15小题)1.六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A.20°B.﹣20℃C.44℃ D.﹣44℃2. 2的相反数是()A. B.C.﹣2 D.23.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C4.如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q5. a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a6.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q7. |﹣2|=x,则x的值为()A.2 B.﹣2 C.±2 D.8.下列说法错误的是()A.绝对值最小的数是0B.最小的自然数是1C.最大的负整数是﹣1D.绝对值小于2的整数是:1,0,﹣19. a、b是有理数,如果|a﹣b|=a+b,那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确10.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1311.若a≤0,则|a|+a+2等于()A.2a+2 B.2 C.2﹣2a D.2a﹣212.下列式子中,正确的是()A.|﹣5|=﹣5 B.﹣|﹣5|=5 C.﹣(﹣5)=﹣5 D.﹣(﹣5)=513.下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大14.(2015秋•东明县期末)有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣a C.a>|b|>b>﹣a D.a >|b|>﹣a>b15.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)二.解答题(共15小题)16.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17.先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:解:原式=====15+=13;(2)计算.18.计算:31+(﹣102)+(+39)+(+102)+(﹣31)19.口算:(﹣13)+(+19)=(﹣4.7)+(﹣5.3)=(﹣2009)+(+2010)=(+125)+(﹣128)=(+0.1)+(﹣0.01)=(﹣1.375)+(﹣1.125)=(﹣0.25)+(+)=(﹣8)+(﹣4)=+(﹣)+(﹣)=(﹣1.125)+(+)=(﹣15.8)+(+3.6)=(﹣5)+0=20.已知|x|=2003,|y|=2002,且x>0,y<0,求x+y的值.21.计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)22.计算下列各式:(1)(﹣1.25)+(+5.25)(2)(﹣7)+(﹣2)(3)﹣8(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)(6).23.在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3=,1+3+5=,1+3+5+7=,1+3+5+7+9=,…,按规律计算:(1)1+3+5+…+99(2)1+3+5+7+…+(2n﹣1)25.已知:|m|=3,|n|=2,且m<n,求m+n的值.26.计算题(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)(3)1+(﹣1)++(﹣1)+(﹣3)(4)+(﹣)+(﹣)+(﹣)+(﹣)(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5(6)(﹣1)+(﹣6)+(﹣2.25)+.27.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.28.若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.29.已知|a|=2,|b|=3,|c|=4,a>b>c,求a﹣b﹣c的值.30.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c 同号,求a﹣b﹣(﹣c)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一.选择题(共15小题)1.(2014•南岗区校级一模)六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A.20°B.﹣20℃C.44℃ D.﹣44℃【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12﹣(﹣32)=12+32=44℃.故选C.2.(2016•德州)2的相反数是()A. B.C.﹣2 D.2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.3.(2016•亭湖区一模)如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C 【分析】根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为﹣2,点D表示的数为2,根据数轴上表示数a的点与表示数﹣a的点到原点的距离相等,∴点A与点D到原点的距离相等,故选:C.4.(2016•海淀区二模)如图,数轴上有M,N,P,Q四个点,其中点P所表示的数为a,则数﹣3a所对应的点可能是()A.M B.N C.P D.Q【分析】根据数轴可知﹣3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:∵点P所表示的数为a,点P在数轴的右边,∴﹣3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数﹣3a所对应的点可能是M,故选:A.5.(2016•花都区一模)a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可.【解答】解:由图形可知,a<0,b<0,所以a+b<0,所以|a+b|=﹣a﹣b.故选:A.6.(2016•石景山区二模)如图,数轴上有四个点M,P,N,Q,若点M,N 表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:∵点M,N表示的数互为相反数,∴原点为线段MQ的中点,∴点Q到原点的距离最大,∴点Q表示的数的绝对值最大.故选D.7.(2016•鄂城区一模)|﹣2|=x,则x的值为()A.2 B.﹣2 C.±2 D.【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:∵|﹣2|=2,∴x=2,故选:A.8.(2016春•上海校级月考)下列说法错误的是()A.绝对值最小的数是0B.最小的自然数是1C.最大的负整数是﹣1D.绝对值小于2的整数是:1,0,﹣1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B.最小的自然数是0,所以此选项错误;C.最大的负整数是1,所以此选项正确;D.可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0,所以绝对值小于2的整数是:﹣1,0,1,所以此选项正确.故选B.9.(2015秋•苏州期末)a、b是有理数,如果|a﹣b|=a+b,那么对于结论:(1)a一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C.(1),(2)都正确D.(1),(2)都不正确【分析】分两种情况讨论:(1)当a﹣b≥0时,由|a﹣b|=a+b得a﹣b=a+b,所以b=0,(2)当a﹣b<0时,由|a﹣b|=a+b得﹣(a﹣b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a﹣b|≥0,而a﹣b有两种可能性.(1)当a﹣b≥0时,由|a﹣b|=a+b得a﹣b=a+b,所以b=0,因为a+b≥0,所以a≥0;(2)当a﹣b<0时,由|a﹣b|=a+b得﹣(a﹣b)=a+b,所以a=0,因为a﹣b<0,所以b>0.根据上述分析,知(2)错误.故选A.10.(2015秋•内江期末)若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.11.(2015秋•青岛校级期末)若a≤0,则|a|+a+2等于()A.2a+2 B.2 C.2﹣2a D.2a﹣2【分析】由a≤0可知|a|=﹣a,然后合并同类项即可.【解答】解:∵a≤0,∴|a|=﹣a.原式=﹣a+a+2=2.故选:B.12.(2015秋•南京校级期末)下列式子中,正确的是()A.|﹣5|=﹣5 B.﹣|﹣5|=5 C.﹣(﹣5)=﹣5 D.﹣(﹣5)=5【分析】根据绝对值的意义对A、B进行判断;根据相反数的定义对C、D 进行判断.【解答】解:A、|﹣5|=5,所以A选项错误;B、﹣|﹣5|=﹣5,所以B选项错误;C、﹣(﹣5)=5,所以C选项错误;D、﹣(﹣5)=5,所以D选项正确.故选D.13.(2015秋•高邮市期末)下列说法正确的是()A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大【分析】A:根据整数的特征,可得最小的正整数是1,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0,据此判断即可.D:一个非零数的绝对值比0大,0的绝对值等于0,据此判断即可.【解答】解:∵最小的正整数是1,∴选项A正确;∵负数的相反数一定比它本身大,0的相反数等于它本身,∴选项B不正确;∵绝对值等于它本身的数是正数或0,∴选项C不正确;∵一个非零数的绝对值比0大,0的绝对值等于0,∴选项D不正确.故选:A.14.(2015秋•东明县期末)有理数a在数轴上的对应点的位置如图所示,则a、b、﹣a、|b|的大小关系正确的是()A.|b|>a>﹣a>b B.|b|>b>a>﹣a C.a>|b|>b>﹣a D.a >|b|>﹣a>b【分析】观察数轴,则a是大于1的数,b是负数,且|b|>|a|,再进一步分析判断.【解答】解:∵a是大于1的数,b是负数,且|b|>|a|,∴|b|>a>﹣a>b.故选A.15.(2007•天水)对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=﹣(|a|+|b|)C.a+b=﹣(|a|﹣|b|)D.a+b=﹣(|b|﹣|a|)【分析】题中给出了a,b的范围,根据“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”进行分析判断.【解答】解:由已知可知:a,b异号,且正数的绝对值<负数的绝对值.∴a+b=﹣(|b|﹣|a|).故选D.二.解答题(共15小题)16.(2015秋•民勤县校级期末)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.17.(2015秋•简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:=13解:原式=====15+=13;(2)计算.【分析】首先分析(1)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】解:原式=(﹣205)+400++(﹣204)+(﹣)+(﹣1)+(﹣)=(400﹣205﹣204﹣1)+(﹣﹣)=﹣10.18.(2015秋•克拉玛依校级期中)计算:31+(﹣102)+(+39)+(+102)+(﹣31)【分析】先将互为相反数的两数相加,然后再进行计算即可.【解答】解:原式=[31+(﹣31)]+[(﹣102)+(+102)]+39=0+0+39=39.19.(2015秋•南江县校级月考)口算:(﹣13)+(+19)=(﹣4.7)+(﹣5.3)=(﹣2009)+(+2010)=(+125)+(﹣128)=(+0.1)+(﹣0.01)=(﹣1.375)+(﹣1.125)=(﹣0.25)+(+)=(﹣8)+(﹣4)=+(﹣)+(﹣)=(﹣1.125)+(+)=(﹣15.8)+(+3.6)=(﹣5)+0=【分析】根据有理数的加法,即可解答.【解答】解:(﹣13)+(+19)=6;(﹣4.7)+(﹣5.3)=﹣10;(﹣2009)+(+2010)=1;(+125)+(﹣128)=﹣3;(+0.1)+(﹣0.01)=0.09;(﹣1.375)+(﹣1.125)=﹣2.5;(﹣0.25)+(+)=;(﹣8)+(﹣4)=﹣12;+(﹣)+(﹣)=0;(﹣1.125)+(+)=﹣;(﹣15.8)+(+3.6)=﹣12.2;(﹣5)+0=﹣5.20.(2015秋•德州校级月考)已知|x|=2003,|y|=2002,且x>0,y<0,求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案.【解答】解:由|x|=2003,|y|=2002,且x>0,y<0,得x=2003,y=﹣2002.x+y=2003﹣2002=1.21.(2015秋•盐津县校级月考)计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4)(5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1)5.6+4.4+(﹣8.1)=10﹣8.1=1.9;(2)(﹣7)+(﹣4)+(+9)+(﹣5)=﹣7﹣4+9﹣5=﹣16+9=﹣7;(3)+(﹣)+=(﹣)+(﹣﹣)+=0﹣1+=﹣;(4)5=(5+4)+(﹣5﹣)=10﹣6=4;(5)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.22.(2015秋•克什克腾旗校级月考)计算下列各式:(1)(﹣1.25)+(+5.25)(2)(﹣7)+(﹣2)(3)﹣8(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)(6).【分析】(1)根据有理数的加法法则计算,即可解答;(2)根据有理数的加法法则计算,即可解答;(3)根据有理数的加法法则计算,即可解答;(4)利用加法的结合律和交换律,即可解答;(5)利用加法的结合律和交换律,即可解答.【解答】解;(1)(﹣1.25)+(+5.25)=5.25﹣1.25=4;(2)(﹣7)+(﹣2)=﹣(7+2)=﹣7;(3)﹣8=﹣3+7﹣8=11;(5)0.36+(﹣7.4)+0.5+0.24+(﹣0.6)=1.1+(﹣8)=﹣6.9;(6)=8.7﹣3.7=5.23.(2014秋•巩留县校级期中)在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.【分析】由于竖线上的所有3个数之和为0,所以第一排第二个数(即﹣1右边的数)等于0+2=2的相反数,是﹣2;由于横线上的所有3个数之和为0,所以第一排第三个数等于﹣1﹣2=﹣3的相反数,是3;同样,第三排第一个数等于2+1=3的相反数,是﹣3;同理,求出第二行的两个数.【解答】解:.24.(2014秋•文登市校级期中)观察算式:1+3=,1+3+5=,1+3+5+7=,1+3+5+7+9=,…,按规律计算:(1)1+3+5+…+99(2)1+3+5+7+…+(2n﹣1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式.【解答】解:(1)由题意得:1+3+5+…+99==2500;(2)1+3+5+7+…+(2n﹣1)==n2.25.(2014秋•滕州市校级月考)已知:|m|=3,|n|=2,且m<n,求m+n 的值.【分析】利用绝对值求出m,n的值,再代入求值.【解答】解:∵|m|=3,|n|=2,∴m=±3,n=±2∵m<n,∴m=﹣3,n=±2,∴m+n=﹣3±2=﹣1或﹣5.26.(2014秋•长沙校级月考)计算题(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)(3)1+(﹣1)++(﹣1)+(﹣3)(4)+(﹣)+(﹣)+(﹣)+(﹣)(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5(6)(﹣1)+(﹣6)+(﹣2.25)+.【分析】根据有理数的加法,逐一解答即可.【解答】解:(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)=5.6+4.4+(﹣0.9﹣8.1﹣0.1)=10+(﹣9.1)=0.9.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=(﹣0.5)+(+7)+[(﹣3)+(﹣2.75)]=6+(﹣6)=0.(3)1+(﹣1)++(﹣1)+(﹣3)=(1+)+(﹣1﹣1﹣3)=3+(﹣6)=﹣3.(4)+(﹣)+(﹣)+(﹣)+(﹣)=[+(﹣)]+[(﹣)+(﹣)+(﹣)]=0+(﹣1)=﹣1.(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=[(﹣0.8)+0.8]+[(﹣0.7)+(﹣2.1)]+(1.2+3.5)=0+(﹣2.8)+4.7=1.9.(6)(﹣1)+(﹣6)+(﹣2.25)+=(﹣1﹣2.25)+[(﹣6)+]=﹣4+(﹣3)=﹣7.27.(2015秋•自贡期末)已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a﹣b|=b﹣a,∴a=﹣5时,b=3或﹣3,∴a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.28.(2013秋•滨湖区校级期末)若|a|=5,|b|=3,(1)求a+b的值;(2)若|a+b|=a+b,求a﹣b的值.【分析】(1)由|a|=5,|b|=3可得,a=±5,b=±3,可分为4种情况求解;(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3,代入计算即可.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.29.已知|a|=2,|b|=3,|c|=4,a>b>c,求a﹣b﹣c的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、c的值,然后代入代数式进行计算即可得解.【解答】解:∵|a|=2,|b|=3,|c|=4,∴a=±2,b=±3,c=±4,∵a>b>c,∴a=±2,b=﹣3,c=﹣4,∴a﹣b﹣c=2﹣(﹣3)﹣(﹣4)=2+3+4=9,或a﹣b﹣c=(﹣2)﹣(﹣3)﹣(﹣4)=﹣2+3+4=5,综上所述,a+b﹣c的值为9或5.30.若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c 同号,求a﹣b﹣(﹣c)的值.【分析】根据题意,利用绝对值的代数意义求出a,b,c的值,即可确定出原式的值.【解答】解:∵a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,∴a=3,b=﹣10,c=﹣5;a=﹣3,b=10,c=5,则原式=a﹣b+c=8或﹣8...。

初中数学沪科版七年级上册第1章 有理数1.2 数轴、相反数和绝对值-章节测试习题(5)

初中数学沪科版七年级上册第1章 有理数1.2 数轴、相反数和绝对值-章节测试习题(5)

章节测试题1.【答题】p、q互为相反数,那么p+(﹣1)+q+(﹣3)的值为()A.﹣4B.4C.0D.不能确定【答案】A【分析】考查相反数的定义,只有符号不同的两个数互为相反数.先化简,再根据相反数的定义判断即可.【解答】解:因为互为相反数,所以,则,故本题应选A.2.【答题】﹣6的相反数是()A. B.﹣ C.6 D.﹣6【答案】C【分析】考查相反数的定义,只有符号不同的两个数互为相反数.先化简,再根据相反数的定义判断即可.【解答】-6的相反数是6.选C.3.【答题】若一个数的相反数是,则这个数是().A.3B.C.D.【答案】A【分析】考查相反数的定义,只有符号不同的两个数互为相反数.【解答】因为3+(-3)=0,所以这个数是3.选A.4.【答题】-的相反数是()A. B.- C.- D.-【答案】A【分析】考查相反数的定义,只有符号不同的两个数互为相反数.先化简,再根据相反数的定义判断即可.【解答】根据只有符号不同的两数互为相反数,可知-的相反数为=.故选:A5.【答题】下列说法中错误的是()A. 零的相反数是零B. 任何有理数都有相反数C. a的相反数是﹣aD. 表示相反意义的量的两个数互为相反数【答案】D【分析】考查相反数的定义,只有符号不同的两个数互为相反数.【解答】A中,0的相反数是0本身,故A不符合题意;B中,任何有理数都有相反数,故B不符合题意;C中,a的相反数是﹣a,故C不符合题意;D中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示.选D.6.【答题】﹣2015的相反数是()A.2015B.±2015C.D.﹣【答案】A【分析】考查相反数的定义,只有符号不同的两个数互为相反数.【解答】根据只有符号不同的两数互为相反数,可知-2015的相反数为2015.故选:A7.【答题】有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数。

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

2.意义:在同一个问题上用正数和负数表示具有相反意义的量。

考点2 有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数负数和零统称为非正数正整数和零统称为非负整数负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法在原点的两侧作加法。

(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数则a+b=0 即a=-b;反之若a+b=0 则a与b互为相反数。

两个符号:符号相同是正数符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简看负号的个数(:当“—”号的个数是偶数个时结果取正号当“—”号的个数是奇数个时结果取负号)考点5 绝对值1.几何意义:一般地数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身(若|a|=|b| 则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0 |a|=a 反之|a|=a 则a≥0 |a|=﹣a 则a≦0a = 0 |a|=0a<0 |a|=‐a注:非负数的绝对值是它本身非正数的绝对值是它的相反数。

初中数学综合滚动练习:数轴、相反数、绝对值及其综合

初中数学综合滚动练习:数轴、相反数、绝对值及其综合
A.A 点 B.B 点 C.C 点 D.D 点
4.下列各对数中,相等的是( B )
A.-(- 3 )和-0.75 4
B.+(-0.2)和-(+1 ) 5
C.-(+ 1 )和-(-0.01) 100
D.-(-31 )和-(+16 )的本身小,则这个数是
(A) A.正数 B.负数 C.正数和零 D.负数和零 6.下列说法正确的是( C ) A.绝对值等于 3 的数是-3 B.绝对值小于 2 的数有±2,±1,0 C.若|a|=-a,则 a≤0 D.一个数的绝对值一定大于这个数的相反数
二、填空题(每小题 4 分,共 32 分)
9.计算:|-20|= 20 .
10.若 a+ 2 =0,则 a=
2 5
.
5
11.数轴上点 A 表示-1,点 B 表示 2,则 A、B 两
点间的距离是 3 .
12.将-3,-|+2|,-1 ,-1 按从小到大的顺序,
3
用“<”连接应当是 -3<-|+2|<-1<-13
2
2
-(-5).(8 分)
19.(8 分)如图,图中数轴的单位长度为 1.请回答下 列问题:
(1)如果点 A、B 表示的数是互为相反数,那么点 C、 D 表示的数是多少? 解:(1)点 C 表示的数是-1,点 D 表示的数是-6.(4 分)
(2)如果点 D、B 表示的数是互为相反数,那么点 C、 D 表示的数分别是多少? (2)点 C 表示的数是 0.5,点 D 表示的数是-4.5.(8 分)
快速对答案
1A 2D 3C 4B 5A 6C
7C
提示:点击 进入习题
8B
9 20
10
2 5
11 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数、数轴、相反数、绝对值
一、填空题
1、如果向南走5 km记为-5 km,那么向北走10 km记为____
2、大于-5.1的所有负整数为__________________.
3、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为_________.
4、原点表示的数是_______,原点右边的数是________,左边的数是________.
5、绝对值是2的数有_____个,它们是_________,绝对值是
1
10
的数有_____个,它们是________,0的绝对值记作:|
| =_____,-100的绝对值是_____,记作:| | =_____.
6、一个数与它的相反数之和等于_____.
7、_______的倒数是它本身,_______的绝对值是它本身.
8、-|-6
7
|=_______,-(-
1
10
)=_______,-|+
1
3
|=_______,-(+
2
5
)=_______,+|-
1
2
|=_______,
9、若|-x| = |
1
2
|,则x=_______.
10、一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.
11、比较大小:(1)-3
5
___ |-
1
2
| (2)|-
1
5
| ___0 (3)|-
6
5
| ___ |-
4
3
| (4)-
9
7
___-
6
5
12、距原点3个单位长度的数是___________
二、判断题
1、-1
3
的相反数是3. ()
2、规定了正方向的直线叫数轴. ()
3、数轴上表示数0的点叫做原点. ()
4、如果A、B两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.()
5、若两个数的绝对值相等,则这两个数也相等. ()
6、一个有理数的绝对值不小于它自身
7、-a的绝对值等于a
8、一个数的绝对值是它的相反数,则这个数一定是负数
9、若-a是负数,则a是正数. ()
10、正整数集合与负整数集合并在一起是整数集合.()
三、选择题
1、|x|=2,则这个数是()
A.2
B.2和-2
C.-2
D.以上都错
2、|1
2
a| = -
1
2
a,则a 一定是()
A.负数
B.正数
C.非正数
D.非负数
3、如果一个数的绝对值等于这个数的相反数,那么这个数是()
A.正数
B.负数
C.正数、零
D.负数、零
4、每个有理数都可以用数轴上的以下哪项来表示()
A.一个点
B.线
C.单位
D.长度
5、下列图形中不是数轴的是()
6、下列说法错误的是()
A.零是最小的整数
B.有最大的负整数,没有最大的正整数
C.数轴上两点表示的数分别是-21
3
与-2,那么-2在右边
D.所有的有理数都可以用数轴上的点表示出来
7、下列各数中,大于-1
2
小于
1
2
的负数是()
A.-2
3
B.-
1
3
C.
1
3
D.0
8、负数是指()
A.把某个数的前边加上“-”号
B.不大于0的数
C.除去正数的其他数
D.小于0的数
9、关于零的叙述错误的是()
A.零大于所有的负数
B.零小于所有的正数
C.零是整数
D.零既是正数,也是负数
10、下面是关于0的一些说法,其中正确说法的个数是()
①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;
④0是最小的非负数;⑤0既不是奇数也不是偶数.
A.0
B.1
C.2
D.3
11、下面正确的是()
A.数轴是一条规定了原点,正方向和长度单位的射线
B.离原点近的点所对应的有理数较小
C.数轴上的点可以表示任意有理数
D.原点在数轴的正中间
12、关于相反数的叙述错误的是()
A.两数之和为0,则这两个数为相反数
B.如果两数所对应的点到原点的距离相等,这两个数互为相反数
C.符号相反的两个数,一定互为相反数
D.零的相反数为零
13、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且b 在a 的右边,则a -b 的结果一定( )
A.大于零
B.小于零
C.等于零
D.无法确定
14、如果点A 、B 、C 、D 所对应的数为a 、b 、c 、d ,则a 、b 、c 、d 的大小关系为( )
A.a <c <d <b
B.b <d <a <c
C.b <d <c <a
D.d <b <c <a 15、0,12,-15,-8,+10,+19,+3,-3.4中整数的个数是( ) A.6
B.5
C.4
D.3 四、解答题
1、某天气预报显示,我国五个地区的最高气温第二天
比第一天下降了12℃,这五个地区第一天最高气温
如图所示,请填写第二天的最高气温
2、在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,
52
,-4
3、下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.
4、出租车司机李师傅一天下午的营运全是在东西走向的萧绍路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)是: +8, -6, -5, +10, -5, +3, -2, +6, +2, -5
(1)若把李师傅下午出发地记为0,他将最后一名乘客送抵目的地时,李师傅距下午出发地有多远?
(2)如果汽车耗油量为0.41升/千米,那么这天下午汽车共耗油多少升?
5、 已知有理数a,b 在数轴上的对应点的位置如图,0表示原点。

(1)请在数轴上表示出数—a,-b 对应的点的位置;
(2)请按从小到大的顺序排列a, —a ,-b,b, —1,0的大小;
││ │ ││
a —1 0 1 b
6、(1)已知ab>0,试求ab
ab b b a a ||||||++的值。

(2)若|x -2|+|y + 3|+|z -5|= 0,计算: ①x ,y ,z 的值. ②求|x |+|y |+|z |的值.。

相关文档
最新文档