原子物理学——单电子辐射跃迁的选择定则

合集下载

原子物理学总复习

原子物理学总复习
原子物理学总复习
段正路
2014年
1
第一章 原子的基本状况
重点: 1,原子的核式结构 2,α粒子散射实验的意义
2
1、卢瑟福的原子核式模型
原子中的全部正电荷和几乎全部质量都集中在原子中央一 个很小的体积内,称为原子核。原子中的电子在核的周围 绕核运动。
2. α粒子的散射实验:
α粒子被静止核的库仑场散射的角度θ由下式决定
• Z:质子数 • A: 质量数
C4 0
20
a
原子核的角动量
P 核 LnSnLpSp
P核 I(I1)h
原子核的磁矩
I g
I(I1) he 2M
38
原子核的统计性:A为奇数的原子核属于费米子;A为偶 数的原子核属于玻色子。
原子核的结合能
E [Z m p (A Z )m n m 核 ]C 2 或 E [Z m H (A Z )m n m 原 子 ]C 2
r rr 总角动量 JLS JLS,LS 1 ,......,LS
L LS耦合下的原子态符号表示:
2S 1
s=0,单重态
J s=1,三重态
能级排布规则
洪特定则 朗德间隔定则
17
j-j 耦合
rjrj21 rrll12srsr12 rr r Jj1j2
j1 l1 s 1 ,l1 s 1 1 ,....,l1 s 1 j2 l2 s 2 ,l2 s 2 1 ,....,l2 s 2 Jj1j2,j1j2 1 ,....,j1j2
% 1R (m 12n 1 2)Tm Tn
R — 里德堡常数;T(m) —光谱项。
光谱线系 m = 1,n = 2、3、4…,赖曼系(紫外) m = 2,n = 3、4、5…,巴尔末系(可见光) m = 3,n = 4、5、6…,帕邢系(红外) m = 4,n = 5、6、7…,布喇开系(远红外)

原子物理学褚圣麟第四、五章复习

原子物理学褚圣麟第四、五章复习

第四章:碱金属原子和电子自旋锂、钠、钾、铷、铯、钫化学性质相仿、都是一价、电离电势都比较小,容易被电离,具有金属的一般性质。

一、碱金属原子的光谱1、四个线系(锂为例):其他碱金属光谱系相仿,只是波长不同主线系:波长范围最广,第一条线是红色的,其余在紫外,系限2299.7埃;第一辅线系(漫线系):在可见部分;第二辅线系(锐线系):第一条线在红外,其余在可见部分;伯格漫线系(基线系):全在红外。

2、巴尔末氢原子光谱规律: ,5,4,3),1-21(1~22===n nR v H λ 碱金属原子光谱:2*∞-~~nR v v n = R 为里德伯常数,当,所以∞v ~是线系限的波数,且有效量子数*n 不是整数,Δ==-*n TR n 3、碱金属原子的光谱项:22*Δ)-(n R n R T == 4、同一线系的有效量子数与主量子数差别不大;与某一量子数对应不同线系的有效量子数差别明显,引进角量子数加以区分:5、每一线系线系限波数恰好是另一线系第二谱项值中最大的那个。

共振线:主线系第一条。

6、碱金属原子氢原子能级的比较n 很大时,碱金属原子能级 很接近氢原子能级;n 较小时,碱金属原子能级 与氢原子能级相差大; 且n 相同,l 不同的能级高低差别很大。

二、原子实极化和轨道贯穿:原子=原子实+价电子1、原子实:碱金属原子中的电子具有规则组合,共同点是在一个完整的结构之外,多余一个电子,这个完整而稳固的结构称为原子实。

由于原子实的存在,发生原子实的极化和轨道在原子实中的贯穿。

2、价电子:原子实外的那个电子称作价电子。

价电子在较大的轨道上运动,与原子实结合不是很强,容易脱离。

它决定元素的化学性质,在较大的轨道上运动。

3、原子实的极化:由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心发生微小相对位移,于是负电的中心不再在原子核上,形成一个电偶极子。

① 角量子数l 小:轨道偏心率大(椭圆),极化强,能量影响大;② 角量子数l 大:轨道偏心率小(接近圆),极化弱,能量影响小。

第5节 辐射跃迁的普用选择定则

第5节 辐射跃迁的普用选择定则
例:sp 组态和 pd 组态能否出现跃迁? sp 组态: li 0 1 1 (奇数) pd 组态:
l
不允许出现跃迁
i
1 2 3 (奇数)
同理,同一组态中不同原子组态间的跃迁也是不允许的。
除了满足奇偶性条件外,还要满足如下关系: L-S耦合选择定则: S 0、L 1、J 0, 1(0 0除外) 碱金属的只有一个电子,如果满足了 l 1 ,自然也 就满足了奇偶性的变化以及 L 1 的要求;同时S总 是1/2,所以 S 0 自然满足。 在有些较重的原子中,由于L-S 耦合遭到部分破坏,会产 生例外的跃迁。如汞原子的一个波长2537埃的强谱线,是 由6s6p3P1 6s6s1S0跃迁产生的,违反了 S 0 。 J-J耦合选择定则: J p 0 或对换 j 0, 1
J 0,பைடு நூலகம்1(0 0除外)
P165有错
§ 5.5 辐射跃迁的普用选择定则
对于多个电子的辐射跃迁,也存在着一个选择定则 原子中电子的空间分布分为偶性和奇性两类,这性质称作 “宇称”。原子中各电子的 l 量子数相加,如果得到偶数, 则原子为偶性,如果得到奇数,则原子为奇性。跃迁只发生 在不同宇称的状态之间.
偶性态( li 偶数) 奇性态( li 奇数) (必要条件)

高二物理竞赛单电子辐射跃迁的选择定则课件

高二物理竞赛单电子辐射跃迁的选择定则课件

•只考虑自旋轨道耦合时,
Els 0, j l 1 /2; 3p(n=3,l=1)
Els 0, j l 1 / 2; •相对论效应与自旋轨道耦合都考虑后,
Er Els 0
3p(n=3,l=1)
32P3/2 32P1/2
32P3/2 32P1/2
11
Balmer系第一条谱线Hα 7种跃迁,5条谱线
单电子辐射跃迁的选择定则
一、选择定则: 单电子,电偶极辐射跃迁(吸收或发射光子)只能在
下列条件下发生,
l 1 j 0, 1
• 主量子数n的改变不受限制; • 跃迁对角动量有选择性; •选择性既是由光谱线实验测量规律总结,在量子力学中也 有理论推导.
1
4.5 单电子辐射跃迁的选择定则
二、碱金属光谱的解释
n,j相同、l不同的能级简并
氢原子精细结构能级图 •主量子数n的改变不受限制,但是由于跃迁几率与辐射频 率立方成正比,同一n值的不同能级间跃迁的几率很小.
12
例题: 氢原子考虑精细结构之后有状态32D3/2, 32P3/2和 22P1/2, 22S1/2。试问这两组状态之间能否产生跃迁, 有几种可能,实际对应几条谱线?
A. 不能跃迁; B. 二种可能,一条谱线; C. 四种可能,四条谱线; D. 二种可能,两条谱线。
13
氢 原 子 光 谱 的 精 细 结 构
E
S L =0
p
d
L =1
L =2
f L =3
Hn

32
12
12
52 32
72
4
32
12
12
52 32
3
32
2
12
12

原子物理学复习资料

原子物理学复习资料

解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,ħc,玻尔磁子,精细结构常数,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。

2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。

3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。

4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

6.原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。

原子物理学复习资料

原子物理学复习资料

原子物理学总复习指导名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,ħc,玻尔磁子,精细结构常数,拉莫尔进动频率著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应,理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。

2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。

3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离电势。

4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

6.原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。

原子物理课件 第5节 辐射跃迁的普用选择定则

原子物理课件   第5节 辐射跃迁的普用选择定则

碱金属的只有一个电子,如果满足了 l 1 ,自然也 就满足了奇偶性的变化以及 L 1 的要求;同时S总 是1/2,所以 S 0 自然满足。
在有些较重的原子中,由于L-S 耦合遭到部分破坏,会产 生例外的跃迁。如汞原子的一个波长2537埃的强谱线,是 由6s6p3P1 6s6s1S0跃迁产生的,违反了 S 0 。
J-J耦合选择定则:J p j
0,
0 1
或对换
J 0, 1(0 0除外)
P165有错
§ 5.5 辐射跃迁的普用选择定则
对于多个电子的辐射跃迁,也存在着一个选择定则 原子中电子的空间分布分为偶性和奇性两类,这性质称作 “宇称”。原子中各电子的 l 量子数相加,如果得到偶数, 则原子为偶性,如果得到奇数,则原子为奇性。跃迁只发生 在不同宇称的状态之间.
偶性态( li 偶数) 奇性态( li 奇数) (必要条件)
例:sp ቤተ መጻሕፍቲ ባይዱ态和 pd 组态能否出现跃迁?
sp 组态: li 0 1 1 (奇数) 不允许出现跃迁 pd 组态: li 1 2 3 (奇数)
同理,同一组态中不同原子组态间的跃迁也是不允许的。
除了满足奇偶性条件外,还要满足如下关系:
L-S耦合选择定则: S 0、L 1、J 0, 1(0 0除外)

宇称—原子状态的奇偶性态

宇称—原子状态的奇偶性态

• j-j 耦合 J J P je
sP (sP 1) s(s 1)
J LS
对三个或三个以上价电子的原子,洪特定则,朗德间隔特定则仍
有效。对同科电子仍需考虑泡利原理。
同一次壳层由同科电子构成。同科 s 电子最多只能有2个,同科 p 电子最多6 个,同科 d 电子最多10个,…
➢ 多个电子同时激发到高能级 双里德伯态原子:现在应用激光技术,将两个电子同时激发到高
➢ 多价电子的原子态
任何原子的状态,都可以看作它的一次电离的离子加一个电子形成 的。而它的一次电离离子的状态同按周期表顺序前一个元素的状态 相似,所以有前一个元素的状态可推知后继元素的状态。
• L-S耦合
LP e
L LP Le S S p Se
n2 n3 n3 n4
三层能级之间的跃迁产生一组复杂结构的谱线
主线系:
~ 23S1 n3P0,1,2 , n 2
第二辅线系: 第一辅线系:
~ ~ ~
2233PP00,1,2n3Dn31S1 23P1 n3D1,2
, ,
n
3 n3
基线系:
~ ~ ~ ~
23P2
n3D1,2,3
33D1 n3F2 32D2 n3F2,3
❖ 电离电势和激 发电势较低
3P2
•存在两个亚稳态
3P1
3P0
6s6p的3P2和3P0
汞原子能级图
四. 复杂原子光谱的一般规律
➢ 位移定律
具有原子序数Z的中性原子的光谱和能级,同具有原子序数Z+1的 原子一次电离后的光谱和能级很相似 — 光谱和能级的位移定律。
➢ 多重性的交替律
元素周期表中相邻元素原子的能级多重数呈奇偶交替变化 — 原子 能级多重性的交替律。

宇称—原子状态的奇偶性态

宇称—原子状态的奇偶性态

➢ 多价电子的原子态
任何原子的状态,都可以看作它的一次电离的离子加一个电子形成 的。而它的一次电离离子的状态同按周期表顺序前一个元素的状态 相似,所以有前一个元素的状态可推知后继元素的状态。
• L-S耦合
LP lP (lP 1) Le l(l 1)
SP Se
L LP Le S S p Se
• j-j 耦合 J J P je
sP (sP 1) s(s 1)
J LS
对三个或三个以上价电子的原子,洪特定则,朗德间隔特定则仍
有效。对同科电子仍需考虑泡利原理。
同一次壳层由同科电子构成。同科 s 电子最多只能有2个,同科 p 电子最多6 个,同科 d 电子最多10个,…
➢ 多个电子同时激发到高能级 双里德伯态原子:现在应用激光技术,将两个电子同时激发到高
忽略
介质
热平衡 状态
粒子数 反转态
N2
E2 E1
e kT
1
N1
光强 I 的变化
N1 N2 I 0
N2 N1 I 0
说明
若介质处于粒子数反转态,光在其中传播时得以放大。 采用光泵浦方法。
例 He-Ne(5:1或10:1)激光器中Ne气粒子数反转态的实现
• 激活介质中光强随传播距离的变换关系 激活介质:处于粒子数反转态的介质。光传播时被放大。
末 系
的 2发



收 1
• 热激发原子的能量分布
达到热平衡状态时( T ) ,各状态的原子数
E3
E2
N i e Ei / kT
若能级是 gi 重简并的
E1
Ni
g e Ei / kT i
N g e i
i ( Ei E1 ) / kT

原子物理学试题

原子物理学试题

高校原子物理学试题试卷一、选择题1.分别用1MeV的质子和氘核(所带电荷与质子相同,但质量是质子的两倍)射向金箔,它们与金箔原子核可能达到的最小距离之比为:A.1/4;B.1/2; C.1; D.2.2.处于激发态的氢原子向低能级跃适时,可能发出的谱总数为:A.4;B.6;C.10;D.12.3.根据玻尔-索末菲理论,n=4时氢原子最扁椭圆轨道半长轴与半短轴之比为:A.1;B.2;C.3;D.4.4.f电子的总角动量量子数j可能取值为:A.1/2,3/2;B.3/2,5/2;C.5/2,7/2;D.7/2,9/2.5.碳原子(C,Z=6)的基态谱项为A.3P O;B.3P2;C.3S1;D.1S O.6.测定原子核电荷数Z的较精确的方法是利用A.α粒子散射实验;B. x射线标识谱的莫塞莱定律;C.史特恩-盖拉赫实验;D.磁谱仪.7.要使氢原子核发生热核反应,所需温度的数量级至少应为(K)A.107;B.105;C.1011;D.1015.8.下面哪个粒子最容易穿过厚层物质?A.中子;B.中微子;C.光子;D.α粒子9.在(1)α粒子散射实验,(2)弗兰克-赫兹实验,(3)史特恩-盖拉实验,(4)反常塞曼效应中,证实电子存在自旋的有:A.(1),(2);B.(3),(4);C.(2),(4);D.(1),(3).l的简10.论述甲:由于碱金属原子中,价电子与原子实相互作用,使得碱金属原子的能级对角量子数并消除. 论述乙:原子中电子总角动量与原子核磁矩的相互作用,导致原子光谱精细结构. 下面判断正确的是:A.论述甲正确,论述乙错误;B.论述甲错误,论述乙正确;C.论述甲,乙都正确,二者无联系;D.论述甲,乙都正确,二者有联系.二、填充题(每空2分,共20分)1.氢原子赖曼系和普芳德系的第一条谱线波长之比为().2.两次电离的锂原子的基态电离能是三次电离的铍离子的基态电离能的()倍.3.被电压100伏加速的电子的德布罗意波长为()埃.4.钠D1线是由跃迁()产生的.5.工作电压为50kV的X光机发出的X射线的连续谱最短波长为()埃.6.处于4D3/2态的原子的朗德因子g等于().7.双原子分子固有振动频率为f,则其振动能级间隔为().8.Co原子基态谱项为4F9/2,测得Co原子基态中包含8个超精细结构成分,则Co核自旋I=(). 9.母核A Z X衰变为子核Y的电子俘获过程表示()。

跃迁选择定则

跃迁选择定则

Ji = Jf + j, Jf + j -1, …, ⏐Jf - j⏐
对一定的多极辐射场j,原子分子初态和末态之间可能 取的角动量差为 ΔJ = ±j, ±(j-1), …, 0
由于跃迁速率随跃迁多极次 j 增加而迅速减少,一般情 况下只有最小极次j =∣Ji - Jf∣的辐射才能出现。如果它被 禁戒,则可出现下一极次的辐射。 光谱实验上能够观测到辐射除了电偶极辐射E1之外, 只有M1+E2和M2+E3的混合辐射。 由于j ≥ 1, 所以 0→0的跃迁是禁戒的。
2
式中Ei – Ef = hν,上式已对k和ε的各个方向取了平均,相当 于原子与各向同性的非偏振辐射的相互作用。
跃迁速率包括两项: 第一项对应于受激辐射,在通常光源作用下可以忽略,只有 在较强光场中才明显出现。 第二项对应于自发辐射,即外界不存在辐射 (nk,ε= 0)时的辐 射速率。 如果存在简并态,自发辐射的速率变为
. ..
5(1) 4(1) 3(1)
537.0 6675.2
. ..
5(2) 4(2) 3(2)
. ..
5(1) 4(1) 3(1)
. ..
5(2,1,0)
. ..
5(3,2,1) 4(3,2,1) 4(2,1,0) 3(3,2,1) 3(2,1,0)
5875.6
3(0)
538.9
2(0) 171129.148
λm1 1 μ ⎛ Z μ B ⎞ ⎛ Zα ⎞ −5 ≈ 2 ≈⎜ = ≈ 10 ⎟ ⎟ ⎜ λE1 c er ⎝ ea0 c ⎠ ⎝ 2 ⎠
2 2 2
电四极跃迁的跃迁速率与电偶极跃迁速率之比为
λE2 3 ⎛ ω r ⎞ 3 ⎛ Zα ⎞ −6 10 ≈ ⎜ = ≈ ⎜ ⎟ λE1 40 ⎝ c ⎟ 40 ⎝ 2 ⎠ ⎠

4[1].5 选择定则 4.6 氢原子光谱精细结构

4[1].5 选择定则 4.6 氢原子光谱精细结构

玻尔能级
n4 n3
S能级 l0
P能级 l 1
D能级 l2
F能级 l 3
1 2 1 2
3/ 2 1/ 2 3/ 2 1/ 2
3/ 2 5/ 2 3/ 2
5/ 2
5/ 2
7/2
n2
1 2
3/ 2 1/ 2
n 1
1 j 2
图4.14 氢原子能级的精细结构
五、氢原子的精细光谱
1.赖曼线系:激发能级跃迁到 n=1 能级,由选择定则知: 第一条谱线的双线结构:
对氢原子 Z-s=1。
当主量子数 n 一定时,轨道量子数 l 越小, Er 就越大, 能级就越低。对 S 能级,相对论效应尤为显著。
(2)和(3)式两者基本一致,我们采用量子力学结论
三、电子自旋与轨道的相互作用能
Rch 2 ( Z s ) 4 j 2 l 2 s 2 Esl , (4) 1 2 3 n l (l )(l 1) 2
589 .6nm
589 .0nm
课堂练习
作出锂原子的精细结构能级图,并写出其第一 辅线系第一条光谱的波数公式.
§4.6 氢原子光谱的精细结构
• • • • 1.相对论修正 2.自旋与轨道的相互作用 3.氢原子能级的狄拉克公式 4.氢原子光谱的精细结构
一、原子能量的主要部分(玻尔理论提出)
Rhc Z ) ( E0 ,() 1 2 n (Z-):原子实的有效电荷数
作业题
第四章习题:1、2、3、4、6、7
~ 4 22 P3/ 2 32 D3/ 2
六、碱金属原子能级的分裂
1 j l ,能级分裂为双层 2
当 当
1 j l 时, 2

原子物理学知识要点总结

原子物理学知识要点总结

碱金属原子态符号:
j
理解量子数 n , l , s , j 的物理含义及取值特点。
(4)掌握单电子跃迁的选择定则。 (5)了解氢原子光谱的精细结构。
锂原子的四个线系可公式表为:
主线系:
第二辅线系: 第一辅线系:
R R 2 (2 S ) (n p )2
R R 2 (2 p ) (n s )2
l 1 j 0, 1
2、碱金属光谱的解释
2P 1/2
主线系
2P 3/2
2S
1/2
l 1, j 0 ,1
对Li:
2 n 2P 2 S1/ 2 1/ 2
n P3/ 2 2 S1/ 2
2 2
n 2,3, 4...
对Na:
2 n 2P 3 S1/ 2 1/ 2
玻尔认为:符合经典力学的一切可能轨道中,只有那些角 动量为 的整数倍的轨道才能实际存在。
h L n n 2
n 1, 2,3....
三、关于氢原子的主要结果
1、量子化轨道半径
电子定态轨道角动量满足量子化条件:
圆周运动:
me rn vn n
2 vn Ze2 me rn 4π 0 rn2
l
: 量子数亏损
能级图
0 5 4
s
=0 5 4 3 3
p =1 5 4 3
d =2 5 4
f =3 H 7 6 5 4 3
10000
柏 格 曼 系
20000 2
30000
2
40000
厘米-1
2
锂原子能级图
锂的四个线系
主 线 系:
第二辅线系:
~ P nS

单电子辐射跃迁选择定则的讨论

单电子辐射跃迁选择定则的讨论

单电子辐射跃迁选择定则的讨论(理学院物理系物理学)摘要原子辐射跃迁选择定则是原子物理学中的一个重要原则。

本文主要采用两种方法对单电子辐射跃迁选择定则进行讨论。

第一种方法,利用量子方法讨论;第二种方法,利用半经典方法讨论;两种方法分别对电子的轨道和自旋有无耦合的情况下进行了推导。

用两种不同的方法,得到了一致的结果。

关键词:电偶极辐射;跃迁几率;角动量守恒;量子数;选择定则Discussion of Single Elect ron’s transition Selection Rule(Department of Physics, College of science, Physics )AbstractSelection rule of atom transition is one of the important principles in the atom physics. This paper adopts two methods to discuss the selection rule of the single electron transition.In the first method, quantum method is used to analyze the problem.In the second method, semiclassical method is used to discuss the thesis. Two cases that the electric orbit and spin have coupling and no coupling are respectively discussed in both methods. By two different methods, the same result is conclued.Keywords:Electric dipole radiation;Transition probability;Conservation of angular momentum;Quantum number;Selection rule目录1 引言 (1)2 量子方法讨论选择定则 (1)2.1 电子的轨道和自旋无耦合的情况 (1)2.2 电子的轨道和自旋有耦合的情况 (3)3 半经典方法讨论选择定则 (7)3.1 角动量的矢量合成法则 (7)3.2 电子组态变动定则 (7)3.3 L S-无耦合的跃迁选择定则 (9)3.4 L S-有耦合的跃迁选择定则 (10)4 结论 (11)参考文献 (12)致谢 (13)1引言微观粒子(分子、原子、原子核、基本粒子等)的运动规律,是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。

辐射跃迁的普用选择定则教学难点LS耦合课件

辐射跃迁的普用选择定则教学难点LS耦合课件

LS耦合在实验教学中的作用
提供实验设计思路
LS耦合理论可以指导实验设计,帮助学生理解实验原理和操 作过程,提高实验效果和准确性。
分析实验结果
通过将实验结果与LS耦合理论进行对比,学生可以更好地理 解实验数据,并
与泡利原理的关联
LS耦合在解释原子能级和光谱时,需 要用到泡利原理,即一个轨道最多容 纳两个自旋方向相反的电子。
意义
选择定则对于理解原子结构和能级跃迁机制具有重要意义,它有助于解释和预测原子在辐射跃迁过程中的行为 ,为实验研究和应用提供了理论依据。
应用
选择定则广泛应用于原子光谱学、量子光学、激光物理等领域,对于深入理解原子结构和量子力学原理具有重 要意义。
02
教学难点解析
学生对选择定则的理解困难
概念抽象
选择定则是一个抽象的概念,学生难以直观 理解其物理意义和原理。
特性
该规则主要考虑了跃迁前后量子 数的变化、角动量守恒和选择定 则的近似条件。
选择定则的来源与推导
来源
选择定则来源于量子力学原理和原子 结构理论,通过对原子能级跃迁的数 学描述推导得出。
推导
通过对原子能级跃迁的角动量守恒和 量子数变化的分析,结合量子力学的 数学描述,推导出辐射跃迁的选择定 则。
选择定则在物理中的意义
选择定则的计算结果往往 需要进一步解读,学生可 能难以理解计算结果的物 理意义。
计算错误率高
由于选择定则计算过程的 复杂性,学生容易出现计 算错误,影响结果的准确 性。
选择定则与其他物理概念的关联
与量子力学的关联
选择定则是量子力学中的重要概 念,学生需要掌握量子力学的基 本原理才能更好地理解选择定则
案例选择
选择具有代表性的辐射跃迁案例,如氢原子能级跃迁、激光光谱等,以便学生更好地理解辐射跃迁的原理和规律 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档