七年级(下)数学竞赛试卷(含答案)

合集下载

七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案

数学竞赛试题 (第 页,共4页)1 七年级数学培优竞赛试题 (满分100分) 一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元3.如果关于x 的不等式 (a+1) x>a+1的解集为x 〈1,那么a 的取值范围是:A 、a 〉0B 、a<0C 、a 〉-1D 、a 〈—1 4已知关于的方程无解,那么的值是:A 、负数B 、正数C 、非负数D 、非正数 5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =,则S 阴影的值为:A 、B 、C 、D 、6、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、28、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:●● ▲■ ●■ ▲ ●▲ ? (1) (2) (3)A、70≤x≤87.5B、x≤70或x≥87.5C、x≤70D、x≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分,已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题.10、已知,则_____________ .11、在平面直角坐标系中,点A(,)在第四象限,那么点B(,)在第_____________ 象限。

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

七年级下学期数学竞赛试卷(满分150,时间90分钟)一、单选题。

1.在方程中,二元一次方程有()A.1个B.2个C.3个D.4个2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A.20元B.42元C.44元D.46元3.不等式组的解集为( )A.2≤x<3 B.2<x<3 C.x<3 D.x≥24.关于x的不等式组只有3个整数解,则a的取值范围是()A .B .C .D .5.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()1A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=746.不等式的解集为()A .B .C .D .7.若则下列不等式不正确的是A .B .C .D .8.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .9.已知是二元一次方程组的解,那么的值是( )A.0 B.5 C.-1 D.110.下列方程组不是二元一次方程组的是( )A .B .C .D .11.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的2人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=2512.一元二次方程x2+2x=0的根是()A.2 B.0 C.0或2 D.0或﹣2 13.不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .14.已知方程组和有相同的解,则a-2b 的值为()A.15 B.14 C.12 D.1015.下列不等式中一定成立的是()A.3a>2a B.a>-2a C.a+2<a+3 D .<二、填空题。

七年级下数学竞赛试卷(含答案)

七年级下数学竞赛试卷(含答案)

七年级下册数学竞赛试卷一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。

每小题3分,共30分。

) 1.下列计算正确的是( )A .4416x x x ∙=B .235()x x x -∙-=C .2222a a a ∙=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( )A .相等B .互补C .互余D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( ) A .15.1510-⨯ B . 25.1510-⨯ C .10.51510-⨯ D . -25.210⨯4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个 A .0 B .1 C .2 D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( ) A .AB=5cm ,∠A=700,∠B=500 B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=5009.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的A B C DE G F顺序是( )A .a <b <c <dB .a <b <d <cC .b <a <c <dD .a <d <b <c10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。

初一下数学竞赛试题及答案

初一下数学竞赛试题及答案

初一下数学竞赛试题及答案【试题一】题目:一个数的平方根是另一个数的立方根,求这个数。

【答案】设这个数为 \( x \),则根据题意,我们有 \( \sqrt{x} =\sqrt[3]{y} \),其中 \( y \) 是另一个数。

将等式两边立方,得到\( x = y^{1/3} \)。

由于 \( y \) 可以是任意数,\( x \) 也可以是任意数的立方。

例如,如果 \( y = 8 \),则 \( x = 2 \)。

【试题二】题目:一个直角三角形的两条直角边分别为 \( 3 \) 厘米和 \( 4 \) 厘米,求斜边的长度。

【答案】根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过公式 \( c = \sqrt{a^2 + b^2} \) 计算,其中 \( a \) 和 \( b \) 是直角边的长度。

将 \( a = 3 \) 和 \( b = 4 \) 代入公式,得到 \( c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。

【试题三】题目:如果一个数的 5 倍加上 12 等于这个数的 3 倍减去 8,求这个数。

【答案】设这个数为 \( x \),根据题意,我们有 \( 5x + 12 = 3x - 8 \)。

将等式两边的 \( x \) 项移项,得到 \( 2x = -20 \)。

解得 \( x = -10 \)。

【试题四】题目:一个圆的半径是 7 厘米,求这个圆的面积。

【答案】圆的面积 \( A \) 可以通过公式 \( A = \pi r^2 \) 计算,其中\( r \) 是圆的半径。

将 \( r = 7 \) 代入公式,得到 \( A = \pi \times 7^2 = 49\pi \) 平方厘米。

【试题五】题目:一个分数的分子和分母的和是 21,且这个分数等于\( \frac{3}{4} \),求这个分数。

七年级(下)学科竞赛数学试题(含答案)

七年级(下)学科竞赛数学试题(含答案)

七年级综合知识竞赛数 学 试 卷一.选择题(每小题3分,共30分)1。

下列各方程中,是二元一次方程的是( ) A .y x yx +=-523 B .3x +1=2xy C .51x =y 2+1 D .x +y =12.下列运算正确的是( )A .()333a b a b +=+ B .326236a a a ⋅=C .()4312xx -= D .()()32n nn x x x -÷-=-3。

如图,直线a ∥b ,∠1=70°,那么∠2的度数是( )A .130°B 。

110°C 。

70° D. 80° 4. 下列分解因式正确的是( )A .()()422xy x y -=-+B .()36332x y x y -+=-C .()()2221x x x x --=+-D .()22211x x x -+-=--5. 如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ) A 、–3 B 、3 C 、0D 、16.要使分式)2)(1(2-+-x x x 有意义,x 的取值应该满足( )A 。

1-≠xB . 2≠xC . 1-≠x 或 2≠xD .1-≠x 且 2≠x7.已知{21x y ==是二元一次方程组{81mxny nx my +=-=的解,则2m -n 的算术平方根为( ) A 。

2± B 。

2 C 。

4 D 。

2 8.若x,y 均为整数,且124128x y +⋅=,则x y +的值为( )A .4B .5C .4或5D .无法确定 9.(-2)2015 +(-2)2016所得的结果等于( )A .22015B . -22015C . -2 2016D .210。

如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.ab21(第3题图)A .8B .4C .2D .1二.填空题(每小题3分,共24分.) 11.分解因式:2161a -= .12.某种感冒病毒的直径是0. 00000012米,用科学记数法表示为 米.13.若m 为正实数,且13m m-=,221m m +=__________________________ 。

七年级(下)数学竞赛试卷(含答案)

七年级(下)数学竞赛试卷(含答案)

七年级数学竞赛试卷一、选择题:(每题3分,共33分) 1.如图,AB∥ED,∠B+∠C+∠D=( )A.180°B.360°C.540°D.270°2.一元一次不等式组⎩⎨⎧>-<-xx x 332312的解集是( )A .32<<-xB .23<<-xC .3-<xD .2<x 3.三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.锐角三角形 B.钝角三角形; C.直角三角形 D.无法确定 4.有两边相等的三角形的两边长为3cm,5cm,则它的周长为( ) A.8cm B.11cm C.13cm D.11cm 或13cm 5.若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A.第一象限 B.第二象限; C.第三象限 D.第四象限 6.已知点P 在第三象限,且到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为( )A.(3,5)B.(-5,3)C.(3,-5)D.(-5,-3) 7.如图,已知EF∥BC,EH∥AC,则图中与∠1互补的角有( ) A.3个 B.4个 C.5个 D.6个 8. 解下列不等式组,结果准确的是( ) A. 不等式组⎩⎨⎧>>37x x 的解集是3>x B. 不等式组⎩⎨⎧->-<23x x 的解 C. 不等式组⎩⎨⎧-<-<13x x 的解集是1-<x D. 不等式组⎩⎨⎧<->24x x 的解集是24<<-x9. 关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是( ) A .3>a B .3≤a C .3<a D .3≥a 10.△ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.都有可能DAECBH 1FED CB A G32x -<<-(第1题图)(第7题图)ACE D11.学校的操场上,升旗的旗杆与地面关系属于( ) A.直线与直线平行 B.直线与平面平行 C.直线与直线垂直 D.直线与平面垂直 二、填空题:(每题3分,共21分)12.如图,AB∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°, 则∠2=________度.13.不等式0103≤-x 的正整数解是_________________.14.若A(a,b)在第二、四象限的角平分线上,a 与b 的关系是 . 15.两根木棒长分别为5和7,要选择第三根木棒将其钉成三角 形,•若第三根木棒的长选择偶数时,有 种选择情况. 16.一个多边形除了一个内角外,其余各内角之和为1680°, 那 么这个多边形的边数为 . 17. 若不等式组⎩⎨⎧><bx ax 无解,则a 、b 的大小关系是 .18.如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β为 度的方向动工. 三、解答题:(每题7分,共21分)19.如图,△ABC 中,∠A=70º,外角平分线CE∥AB.求∠B 和∠ACB 的度数20.如图,△ABC 中,AD⊥BC,AE 平分∠BAC,∠B=20°,∠C=30°,求∠DAE 的度数.21F EDCBA G北βα北乙甲(第12题图)(第12题图)ACE D21.平面直角坐标系中,顺次连结(-2,1),(-2,-1),(2,-2),(2,3)各点,你会得到一个什么图形?试求这个图形的面积.四. 列二元一次方程组解应用题(本大题满分8分)22.某书店的两个下属分店共有某种图书5000册,若将甲书店的该种图书调出400册给乙书店,这样乙书店该种图书的数量仍比甲书店该种图书的数量的一半还少400册.求这两个书店原有该种图书的数量差.五、列一元一次不等式(或不等式组)解应用题(本大题满分8分)23.某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0.5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)六、先阅读下列知识,然后解答问题(本大题满分9分,第1小题4分,第2小题5分)24.含有一个未知数,并且未知数的最高次指数是2的方程,叫做一元二次方程,如:0122=+-x x .已知关于x 的一元二次方程02=++c bx ax (a 、b 、c 表示已知量,a ≠0)的解的情况是:① 当042>-ac b 时,方程有两个不相等的解;② 当042=-ac b 时,方程有两个相等的解(即一个解); ③ 当042<-ac b 时,方程没有解;(1)一元二次方程05422=+-x x 有几个解?为什么?(2)当a 取何值时,关于x 的一元二次方程0)2(22=-+-a x x 有两个不相等的解.参考答案一、BCBDA DADDBD二、12、54°,13、1,2,3, 14、互为相反数,15、4, 16、12,17、a<b, 18、150°,三、19、70°,40°,20、5°,21、梯形,20, 22、3000册,23、400米~800米, 24、(1)因为(-4)2-4×2×5=-24<0,所以此方程无解,(2)a<2。

人教版初一下数学竞赛试题及答案

人教版初一下数学竞赛试题及答案

人教版初一下数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果a和b是两个连续的整数,且a > b,那么a-b的值是:A. 1B. 0C. -1D. 23. 一个数的平方根是它本身,这个数可以是:A. 1B. -1C. 0D. 44. 一个数的立方等于它本身,这个数有:A. 1个B. 2个C. 3个D. 4个5. 一个圆的半径是r,它的面积是:A. πr²B. 2πrC. πrD. r²6. 一个长方体的长、宽、高分别是a、b、c,它的体积是:A. abcB. 2abcC. a+b+cD. a²b²c²7. 一个等差数列的首项是a,公差是d,第n项是:A. a+(n-1)dB. a+ndC. a-dD. a-d(n-1)8. 如果一个三角形的三边长分别为a、b、c,且a² + b² = c²,那么这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 不规则三角形9. 一个分数的分子和分母同时扩大相同的倍数,其值:A. 增大B. 减小C. 不变D. 无法确定10. 一个数的绝对值是它本身,这个数:A. 必须为正数B. 必须为负数C. 可以是正数或零D. 可以是负数或零二、填空题(每题4分,共20分)11. 一个数的平方等于16,这个数是________。

12. 如果一个数的相反数是-5,那么这个数是________。

13. 一个数的绝对值等于5,这个数可以是________。

14. 一个数的立方根是2,那么这个数是________。

15. 一个数的倒数是1/4,这个数是________。

三、解答题(每题10分,共50分)16. 计算下列表达式的值:(3+5)² - 2×(4-1)。

17. 一个长方体的长是10厘米,宽是8厘米,高是6厘米,求它的表面积和体积。

人教版七年级数学下册竞赛试卷(含解析)

人教版七年级数学下册竞赛试卷(含解析)

人教版七年级数学下册竞赛试卷一、选择题1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.20176.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.二.填空题7.关于x的不等式组恰好只有三个整数解,则a的取值范围是8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=.10.使代数式的值为整数的全体自然数x的和是.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=;x n+x n+1=.12.已知S=,则S的整数部分是.三.解答题13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是.(参考公式:S n=1+2+3+…+n=)17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是.参考答案与试题解析一、选择题(每题5分,共30分)1.设a=,b=,c=,则a,b,c之间的大小关系是()A.a<b<c B.c<b<a C.c<a<b D.a<c<b【分析】利用平方法把三个数值平方后再比较大小即可.【解答】解:∵a2=2000+2,b2=2000+2,c2=4000=2000+2×1000,1003×997=1 000 000﹣9=999 991,1001×999=1 000 000﹣1=999 999,10002=1 000 000.∴c>b>a.故选:A.2.设有理数a、b、c都不为零,且a+b+c=0,则的值是()A.正数B.负数C.零D.不能确定【分析】由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,然后代入化简即可得出答案.【解答】解:由a+b+c=0,则b2+c2﹣a2=﹣2bc,a2+b2﹣c2=﹣2ab,a2+c2﹣b2=﹣2ac,代入,=++,=,=0.故选:C.3.如果0<p<15,那么代数式|x﹣p|+|x﹣15|+|x﹣p﹣15|在p≤x≤15的最小值是()A.30B.0C.15D.一个与p有关的代数式【分析】根据x、p的取值范围,根据所给代数式,简化原式,再把x的最大值15代入计算即可.【解答】解:∵p≤x≤15,∴x﹣p≥0,x﹣15≤0,x﹣p﹣15≤0,∴|x﹣p|+|x﹣15|+|x﹣p﹣15|=x﹣p+(15﹣x)+(﹣x+p+15)=x﹣p+15﹣x﹣x+p+15=﹣x+30,又∵p≤x≤15,∴x最大可取15,即x=15,∴﹣x+30=﹣15+30=15.故选:C.4.由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足a+c=b+d.这样的四位数共有()A.36个B.40个C.44个D.48个【分析】由题意可知这样的四位数可分别从使用的不同数字的个数分类考虑:(1)只用1个数字,(2)使用2个不同的数字,(3)使用3个不同的数字,(4)使用4个不同的数字,然后分别分析求解即可求得答案.【解答】解:根据使用的不同数字的个数分类考虑:(1)只用1个数字,组成的四位数可以是1111,2222,3333,4444,共有4个.(2)使用2个不同的数字,使用的数字有6种可能(1、2,1、3,1、4,2、3,2、4,3、4).如果使用的数字是1、2,组成的四位数可以是1122,1221,2112,2211,共有4个;同样地,如果使用的数字是另外5种情况,组成的四位数也各有4个.因此,这样的四位数共有6×4=24个.(3)使用3个不同的数字,只能是1、2、2、3或2、3、3、4,组成的四位数可以是1232,2123,2321,3212,2343,3234,3432,4323,共有8个.(4)使用4个不同的数字1,2,3,4,组成的四位数可以是1243,1342,2134,2431,3124,3421,4213,4312,共有8个.因此,满足要求的四位数共有4+24+8+8=44个.故选:C.5.在2014,2015,2016,2017四个数中,不能表示为两个整数的平方差的数是()A.2014B.2015C.2016D.2017【分析】根据平方差公式将各数变形后判断即可.【解答】解:如果一个数可以表示成两个正整数的平方差,记为x=a2﹣b2=(a+b)(a ﹣b),则x可以分解为a+b,a﹣b的积,且注意到这两个因子差2b,即同奇同偶,所以大于1的奇数可以分解为两个奇数之积(1和他自身),必可以写成两数平方之差(可以反求出来);而一个偶数必须要写成两个偶数之积,则必能被4整除才行,所以四个数中,只有2014不能写成两整数之平方差,故选:A.6.10个全等的小正方形拼成如图所示的图形,点P、X、Y是小正方形的顶点,Q是边XY 一点.若线段PQ恰好将这个图形分成面积相等的两个部分,则的值为()A.B.C.D.【分析】首先设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解方程即可求得QY的长,即可解决问题.【解答】解:设QY=x,根据题意得到PQ下面的部分的面积为:S△+S正方形=×5×(1+x)+1=5,解得x=,∴XQ=1﹣=,∴==,故选:B.二.填空题(每题5分,共计30分)7.关于x的不等式组恰好只有三个整数解,则a的取值范围是【分析】首先确定不等式组的解集,根据整数解的个数确定有哪些整数解,根据解的情况得到关于a的不等式组,从而求出a的范围.【解答】解:解不等式组得,,∴不等式组的解集是﹣a<x≤a,∵关于x的不等式组恰好只有三个整数解,∴必定有整数解0,∵|﹣a|>|a|,∴三个整数解不可能是0,1,2.若三个整数解为﹣1,0,1,则,解得≤a≤;若三个整数解为﹣2,﹣1,0,则,此不等式组无解,所以a的取值范围是≤a≤.故答案为≤a≤.8.已知,,,则代数式a2+b2+c2﹣ab﹣bc ﹣ac的值为3.【分析】把已知的式子化成[(a﹣b)2+(a﹣c)2+(b﹣c)2]的形式,然后代入求解.【解答】解:∵,,,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:3.9.已知x、y为正整数,且满足2x2+3y2=4x2y2+1,则x2+y2=2.【分析】根据完全平方公式和非负性解答即可.【解答】解:由题意得:(2x2﹣1)(y2﹣1)+2y2(x2﹣1)=0,因为x≥1,y≥1,所以y2﹣1=0,x2﹣1=0,∴y=1,x=1,∴x2+y2=2,故答案为:2.10.使代数式的值为整数的全体自然数x的和是22.【分析】将原式分解为x﹣1+,得到使得原式的值为整数的自然数分别为0、1、2、3、5、11,求的其和即可.【解答】解:∵原式==x﹣1+,∴使得代数式的值为整数的全体自然数x分别为0、1、2、3、5、11,∴全体自然数x的和是0+1+2+3+5+11=22.故答案为22.11.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2…,第n个三角形数记为x n,则x10=55;x n+x n+1=(n+1)2.【分析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】解:∵x1=1,x2═3=1+2,x3=6=1+2+3,x4═10=1+2+3+4,x5═15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+…+n=,x n+1=,则x n+x n+1=+=(n+1)2,故答案为:55、(n+1)2.12.已知S=,则S的整数部分是60.【分析】由已知可得,<S<,则可确定60<S<60,即可求解.【解答】解:S=>=60,S=<=60,∴60<S<60,∴S的整数部分是60,故答案为:60.三.解答题(第13题20分,其余每题14分,共计90分)13.(20分)(1)证明:1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4能被8整除(n为正整数).【分析】(1)设a=2002,将原式转化为[a(a﹣7)]2的形式,此题得证;(2)先将原式分解成[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),在判断出(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,即可得出结论.【解答】(1)证明:设a=2002,原式=(a﹣3)(a﹣2)(a﹣1)(a+1)(a+2)(a+3)+36=(a2﹣1)(a2﹣4)(a2﹣9)+36=a6﹣(1+4+9)a4+(4+9+36)a2﹣36+36=a6﹣14a4+49a2=a2(a4﹣14a2+49)=a2•(a﹣7)2=[a(a﹣7)]2.故1999×2000×2001×2003×2004×2005+36=[2002(2002﹣7)]2=(2002×1995)2,即1999×2000×2001×2003×2004×2005+36是一个完全平方数;(2)证明:98n+4﹣78n+4=(92n+1)4﹣(72n+1)4=[(92n+1)2+(72n+1)2][(92n+1)2﹣(72n+1)2]=[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1),∵n为正整数,∴(92n+1)2+(72n+1)2,92n+1+72n+1,92n+1﹣72n+1都是偶数,∴[(92n+1)2+(72n+1)2](92n+1+72n+1)(92n+1﹣72n+1)能被8整除,即98n+4﹣78n+4能被8整除.14.(14分)已知实数a、b、c,满足abc≠0且(a﹣c)2﹣4(b﹣c)(a﹣b)=0,求的值.【分析】先将(a﹣c)2﹣4(b﹣c)(a﹣b)=0,按照完全平方公式和多项式乘法的运算法则展开化简,再利用三项的完全平方公式变形,从而利用偶次方的非负性得出a+c 与b的数量关系,则的值可得.【解答】解:∵(a﹣c)2﹣4(b﹣c)(a﹣b)=0,∴a2﹣2ac+c2﹣4ab+4b2+4ac﹣4bc=0,∴a2+c2+4b2+2ac﹣4ab﹣4bc=0,∴(a+c﹣2b)2=0,∴a+c=2b,∵abc≠0,∴=2.∴的值为2.15.(14分)对非负实数x“四舍五入”到个位的值记为[x],即当n为非负整数时,若n﹣≤x<n+,则[x]=n.如:[2.9]=3,[2.4]=2,[x]=n,求满足[x]=x﹣2的所有实数x 的值.【分析】设,用m的代数式表示x,再根据“若,则[x]=n“,可以列出关于m的不等式,求出m的范围,再代回求出x.【解答】解:设是非负整数,,∴,∴,解得,4<m⩽8,∵m是非负整数,∴m=5,6,7,8,当m=5 时,得,当m=6 时,得x=6,当m=7 时,得,当m=8 时,得,即满足的所有实数x的值是,.16.(14分)有n个连续的自然数1,2,3,…,n,若去掉其中的一个数x后,剩下的数的平均数是16,则满足条件的n和x的值分别是n=30,x=1;n=31,x=16;n=32,x =32.(参考公式:S n=1+2+3+…+n=)【分析】根据已知得n个连续的自然数的和为.再根据两种特殊情况,即x=n;x=1;求得剩下的数的平均数的公式,从而得出1<x<n时,剩下的数的平均数的范围,则n有3种情况,分别计算即可.【解答】解:由已知,n个连续的自然数的和为.若x=n,剩下的数的平均数是;若x=1,剩下的数的平均数是,故,解得30≤n≤32当n=30时,29×16=﹣x,解得x=1;当n=31时,30×16=﹣x,解得x=16;当n=32时,31×16=﹣x,解得x=32.故答案为:n=30,x=1;n=31,x=16;n=32,x=32.17.(14分)设a+b+c=6,a2+b2+c2=14,a3+b3+c3=36.求(1)abc的值;(2)a4+b4+c4的值.【分析】(1)由已知得出(a+b+c)2=36,再由(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc,将已知条件代入即可解出abc=6;(2)由(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2),将已知条件及(1)中推得的式子代入,即可求出a2b2+b2c2+a2c2的值,由(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2),即可解出答案.【解答】解:(1)∵a+b+c=6∴(a+b+c)2=36∴a2+b2+c2+2(ab+bc+ac)=36∵a2+b2+c2=14∴ab+bc+ac=11∵a3+b3+c3=36∴(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac)=a3+b3+c3﹣3abc=6×(14﹣11)=18∴36﹣3abc=18∴abc=6.(2)∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2(a2bc+ab2c+abc2)∴121=a2b2+b2c2+a2c2+12(a+b+c)∴a2b2+b2c2+a2c2=121﹣12×6=49∴(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴a4+b4+c4=142﹣2×49=98∴a4+b4+c4的值为98.18.(14分)如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC 于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是3∠CNP =∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a.利用平行线的性质即可解决问题.(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°﹣(2y+x),∠CGD=180°﹣(2x+y),推出∠AFB+∠CGD=360°﹣(3x+3y)即可解决问题.(3)分两种情形分别画出图形求解即可.【解答】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°﹣(2y+x),同理:∠CGD=180°﹣(2x+y),∴∠AFB+∠CGD=360°﹣(3x+3y),=360°﹣3×45°=225°.(3)如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同法可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.故答案为:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.。

七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)

七年级下数学竞赛考试(含答案)————————————————————————————————作者:————————————————————————————————日期:姓名___________ 考号___________ 班别___________ 校名_____________………………………… 密 ………… 封 ………… 线 ………… 内 ………第二学期校际联考七年级数学试卷题次 一 二 16 17 18 19 20 21 22 23 24 25 总分 得分说明:本卷共8页,25题,总分120分,考试时间共120分钟。

温馨提示:亲爱的同学们,请相信自己,仔细审题,沉着作答,就一定能考出好成绩,祝你成功!一、精心选一选:(每小题给出四个供选答案,其中只有一个是正确的,把正确的答案代号填放下表相应题号下的空格内。

每小题3分,共30分。

) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列计算正确的是( )A .4416x x x •=B .235()x x x -•-=C .2222a a a •=D .235a a a +=2.已知∠A+∠B=1800,∠A 与∠C 互补,则∠B 与∠C 的关系是( ) A .相等 B .互补 C .互余 D .不能确定 3.用科学计数法表示近似数0.0515的正确的是( )A .15.1510-⨯B . 25.1510-⨯C .10.51510-⨯D . -25.210⨯ 4.下列说法正确的是( )A .0不是单项式B .ba是单项式 C .11x-多项式 D .单项式32x y π-的次数是3,系数是3π-5.如下图所示,已知AB ∥CD ∥EF ,且CG ∥AF ,则图中与∠BAF 相等的角的个数是( )A .7个B .3个C .4个D .9个6.用长分别为10cm ,30cm ,40cm ,50cm 的四段线段,任取其中三段线段可以构成不同的三角形有( )个A B C D E G FA .0B .1C .2D .37.已知等腰三角形的一个外角为1100,则它的一个底角等于( )A .550B .700C .550 或700D .不能确定 8.已知下列条件,不能唯一画出一个三角形的是( )A .AB=5cm ,∠A=700,∠B=500B .AB=5cm ,∠A=700,∠C=500C .AB=5cm ,AC=4 cm ,∠C=500D .AB=5cm ,AC=4 cm ,∠A=500 9.已知554433222,3,5,6a b c d ====,那么,,,a b c d 从小到大的顺序是( ) A .a <b <c <d B .a <b <d <c C .b <a <c <d D .a <d <b <c 10.计算:(2-1)(2+1)(22+1)(23+1)(24+1)……(232+1)+1结果的个位数是( ) A .2 B .4 C .6 D .7 二、耐心填一填:(把答案填放下表相应的空格里。

人教版七年级下册数学竞赛试题(附答案)

人教版七年级下册数学竞赛试题(附答案)

人教版七年级下册数学竞赛试题(附答案)一、选择题(每小题4分,共40分)1、如果m 是大于1的偶数,那么m 一定小于它的……………………( )A 、相反数B 、倒数C 、绝对值D 、平方2、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是 ( )A 、-23B 、-17C 、23D 、173、255,344,533,622这四个数中最小的数是………………………( )A. 255B. 344C. 533D. 6224、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立体,然后将露出的表面部分染成红色.那么红色部分的面积为 …………………………….. ( ).A 、21B 、24C 、33D 、375、有理数的大小关系如图2所示,则下列式子中一定成立的是…… ( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-6、某商场国庆期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于打 ( )A 、9折B 、8.5折C 、8折D 、7.5折7、如果有2005名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2005名学生所报的数是……………………………………………………………… ( ) 图1 图2A 、1B 、2C 、3D 、48、方程 |x|=ax+1有一负根而无正根, 则a 的取值范围…………( )A. a>-1B. a>1C. a ≥-1D. a ≥19、122-+-++x x x 的最小值是…………………………………( )A. 5B.4C.3D. 210、某动物园有老虎和狮子,老虎的数量是狮子的2倍。

七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案

数学竞赛试题 (第 页,共4页) 1 七年级数学培优竞赛试题 (满分100分)一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元 3。

如果关于x 的不等式 (a+1) x 〉a+1的解集为x 〈1,那么a 的取值范围是:A 、a 〉0B 、a 〈0C 、a 〉—1D 、a 〈-14已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为: A 、2Mcm 61 B 、2Mcm 51C 、2Mcm 41D 、2Mcm 316、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零 7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:●●▲■●■▲●▲?(1)(2)(3)数学竞赛试题 (第 页,共4页)2A 、5B 、4C 、3D 、28、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是: A 、70≤x ≤87。

5 B 、x ≤70或x ≥87。

5 C 、x ≤70 D 、x ≥87。

5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。

2023年七年级下册数学竞赛试题及答案

2023年七年级下册数学竞赛试题及答案

2023~2023年七年级下学期数学竞赛试题一.选择题(每小题5分,共30分)1.若a<0 , ab<0 , 那么51---+-baab等于( )A . 4B .-4C . -2a+2b+6 D. 19962.数轴上坐标是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2023厘米的线段AB,则线段AB盖住的整点的个数是( )A.2023 或2023 B . 2023或2023 C . 2023 或2023 D . 2023 或20233.已知{a x b y==是方程组{5272=+=+y x y x的解, 则a-b的值为( )A . 2B . 1 C. 0 D. -14.若a<3 , 则不等式(a-3)x<a-3的解集是( )A. x>1 B .x<1 C . x>-1 D . x<-15.方程2x+y=7的正整数解有( )A.一组 B .二组 C .三组 D . 四组6.不等式组{5335+<-<xxax的解集为x<4, 则a满足的条件是( )A. a<4 B .a=4 C .a≤4 D .a≥4二.填空题(每小题4分,共24分)1.不等式组{4252>+<-axbx的解集是0<x<2, 则a+b的值等于_______2.已知543zyx ==, 且10254=+-z y x ,则z y x +-52的值等于________3.计算200920081431321211⨯+⋅⋅⋅+⨯+⨯+⨯ = _________4.一个角的补角的31等于它的余角, 则这个角等于_____度.5.计算(1+715131++)×-91715131⎪⎪⎭⎫ ⎝⎛+++(1+91715131+++)×(715131++)=.6。

b b a -=+22若,______622=+-+b a b a 则三. 解答题:(,共46分). 1(本题6分)解方程组 345238x y x y -=⎧⎨+=-⎩,.2.(本题10分)已知: 0634=--z y x ,072=-+z y x ()0≠xyz , 求代数式222222103225z y x z y x ---+的值3(本题10分).如图,已知CD ⊥AB ,DE ∥BC,∠1=∠2求证:FG ⊥AB21G F E D CB A4.(本题10分)在平面直角坐标系中,已知三点()()()b c C b B a A ,,0,,,0,其中c b a ,,满足关系式()a b c b a -==-+-2,0322;(1)求c b a ,,的值,(2)请你将三点()()()b c C b B a A ,,0,,,0在平面直角坐标系中描出来,并计算出ABC ∆的面积。

七年级数学竞赛试卷含答案

七年级数学竞赛试卷含答案

一、选择题(每题3分,共30分)1. 下列数中,哪个是质数?A. 15B. 17C. 28D. 352. 下列哪个图形是轴对称图形?A. 长方形B. 三角形C. 平行四边形D. 梯形3. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 24B. 32C. 16D. 204. 如果一个数的平方是25,那么这个数可能是?A. 5B. -5C. 5或-5D. 255. 下列哪个数是负数?A. -3B. 0C. 3D. ±36. 一个等腰三角形的底边长是6厘米,腰长是8厘米,那么这个三角形的周长是多少厘米?A. 20B. 24C. 28D. 327. 下列哪个数是正数?A. -0.5B. 0C. 0.5D. ±0.58. 一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 25C. 15D. 209. 下列哪个数是有理数?A. √2B. πC. 0.101001D. √-110. 一个圆的半径是3厘米,那么它的直径是多少厘米?A. 6B. 9C. 12D. 15二、填空题(每题5分,共20分)11. 一个数的倒数是它的什么数?12. 一个等腰直角三角形的两条直角边长分别是3厘米和4厘米,那么它的斜边长是________厘米。

13. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是________平方厘米。

14. 下列分数中,哪个是最简分数?________三、解答题(每题10分,共30分)15. 一辆汽车从甲地出发,以每小时60公里的速度行驶,2小时后到达乙地。

如果以每小时80公里的速度行驶,那么到达乙地需要多少小时?16. 一个梯形的上底是10厘米,下底是20厘米,高是15厘米,求这个梯形的面积。

17. 解下列方程:3x - 5 = 4x + 2。

四、应用题(每题15分,共30分)18. 小明家住在5楼,他每层楼爬3分钟,那么他从1楼到5楼一共需要多少时间?19. 一块正方形的草坪,边长是20米,现在要在草坪周围围一圈篱笆,篱笆的长度是多少米?答案:一、选择题1. B2. A3. B4. C5. A6. B7. C8. B9. C 10. A二、填空题11. 相反数 12. 5 13. 50 14. 2/3三、解答题15. 2小时16. 300平方厘米17. x = -7四、应用题18. 10分钟19. 80米。

七年级下册数学竞赛题和经典题含解答共10题

七年级下册数学竞赛题和经典题含解答共10题

七年级下册数学竞赛题和经典题含解答共10题1. 题目:甲、乙两个正整数的和是300,差是120,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。

根据题意,我们可以得到以下两个方程:x + y = 300 (方程1)x - y = 120 (方程2)解方程组得到甲的数x = 210,乙的数y = 90。

2. 题目:某数的4倍减去该数的2倍等于30,求这个数。

解答:设这个数为x。

根据题意,我们可以得到以下方程:4x - 2x = 30化简得到2x = 30解方程得到x = 153. 题目:一个正整数加上自身的平方等于140,求这个正整数。

解答:设这个正整数为x。

根据题意,我们可以得到以下方程:x + x²= 140化简得到x²+ x - 140 = 0解方程得到x = 10 或x = -14,由题目要求为正整数,所以x = 10。

4. 题目:一个三位数加上它的逆序数等于1333,求这个三位数。

解答:设这个三位数为xyz。

根据题意,我们可以得到以下方程:100x + 10y + z + 100z + 10y + x = 1333化简得到101x + 20y + 101z = 1333由于101为质数,所以x和z只能为1,y只能为6。

解方程得到x = 1,y = 6,z = 1,所以这个三位数为161。

5. 题目:甲、乙两个数的和是90,差是20,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。

根据题意,我们可以得到以下两个方程:x + y = 90 (方程1)x - y = 20 (方程2)解方程组得到甲的数x = 55,乙的数y = 35。

6. 题目:某个三位数的百位数是7,个位数是2,且各位上的数字之和是13,求这个三位数。

解答:设这个三位数为xyz。

根据题意,我们可以得到以下方程:x = 7 (百位数是7)z = 2 (个位数是2)x + y + z = 13 (各位上的数字之和是13)代入得到7 + y + 2 = 13解方程得到y = 4所以这个三位数为742。

七下数学竞赛试题及答案

七下数学竞赛试题及答案

七下数学竞赛试题及答案一、选择题(每题4分,共20分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 已知一个直角三角形的两个直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -84. 如果一个多项式f(x) = ax^2 + bx + c,其中a ≠ 0,那么f(x)的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆5. 一个圆的半径是5,求这个圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题3分,共15分)6. 一个数的立方根是2,这个数是________。

7. 两个连续整数的和是21,这两个整数分别是________和________。

8. 如果一个数的绝对值是5,那么这个数可以是________或________。

9. 一个数的倒数是1/4,这个数是________。

10. 一个长方体的长、宽、高分别是2、3、4,这个长方体的体积是________。

三、解答题(每题5分,共65分)11. 证明:对于任意实数x,(x + 1)^2 ≥ 2x。

12. 一个长方体的长、宽、高分别是a、b、c,求证:这个长方体的对角线长度是√(a^2 + b^2 + c^2)。

13. 已知一个二次方程ax^2 + bx + c = 0(a ≠ 0),求证:如果b^2 - 4ac > 0,那么这个方程有两个不相等的实数根。

14. 一个圆的半径是r,求证:这个圆的周长是2πr。

15. 已知一个等腰三角形的两个腰长是a,底边长是b,求证:这个等腰三角形的面积是(1/2)ab。

16. 一个数列的前n项和为S_n,如果S_n = n^2,求证:这个数列是等差数列。

17. 已知一个函数f(x) = kx + b(k ≠ 0),求证:这个函数的图像是一条直线。

七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案

数学竞赛试题 (第 页,共4页)1 七年级数学培优竞赛试题 (满分100分) 一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元3。

如果关于x 的不等式 (a+1) x 〉a+1的解集为x<1,那么a 的取值范围是:A 、a 〉0B 、a 〈0C 、a 〉—1D 、a 〈—1 4已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数 5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61B 、2Mcm 51 C 、2Mcm 41 D 、2Mcm 31 6、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?"处应放“■” 的个数为:●● ▲■ ●■ ▲ ●▲ ? (1) (2) (3)A、5 B 、4 C 、3 D 、28、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:A 、70≤x ≤87.5B 、x ≤70或x ≥87。

5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题.10、已知2,322-=+=+y xy xy x ,则=--2232y xy x _____________ 。

七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案

七年级下数学竞赛试题及答案一、选择题:(每小题5分,共40分)1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:A 、14辆B 、12辆C 、16辆D 、10辆2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板:A 、赚了5元B 、亏了25元C 、赚了25元D 、亏了5元3.如果关于x 的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:A 、a>0B 、a<0C 、a>-1D 、a<-14已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数 5、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61B 、2Mcm 51 C 、2Mcm 41 D 、2Mcm 31 6、x 是任意有理数,则2|x |+x 的值:A 、大于零B 、不大于零C 、小于零D 、不小于零7、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、2●● ▲■ ●■ ▲ ●▲ ? (1) (2)(3)8、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题6分,共60分)9、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总分是74分,则他答对了________________ 道题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学竞赛试卷
一、选择题(共11小题)
1.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()
A.0.8kg B.0.6kg C.0.5kg D.0.4kg
2.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20%,另一个亏了20%,则该老板()
A.赚了5元B.亏了25元C.赚了25元D.亏了5元
3.如图是一个4×4的正方形网格,图中所标示的7个角的角度之和
等于()
A.585°B.540°C.270°D.315°
4.如果有2003名学生排成一列,按1,2,3,4,3,2,l,2,3,
4,3,2,…的规律报数,那么第2003名学生所报的数是()
A.1 B.2 C.3 D.4
5.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()
A.5 B.4 C.3 D.2
6.某人下午6点多外出购物,表上的时针和分针的夹角恰为55°,下午近7点回家,发现表上的时针和分针的夹角又是33°,此人外出共用了()分钟?
A.16 B.20 C.32 D.40
7.如果将加法算式1+2+3+…+1994+1995中任意项前面“+”号改为“﹣”号,所得的代数和是()
A.总是偶数B.n为偶数时是偶数,n为奇数时是奇数
C.总是奇数D.n为偶数时是奇数,n为奇数时是偶数
8.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是(a>0,b>0);
丙商场:第一次提价的百分率为b,第二次提价的百分率为a,则提价最多的商场是()A.甲B.乙C.丙D.不能确定
二、填空题(共10小题)
9.观察这一列数:,,,,,依此规律下一个数是______.10.自然数按一定规律排成如图所示,那么第200行的第5个数是_________.
11.设有四个数,其中每三个数的和分别是17、21、25、30.则这四个数分别是__.12.若|x﹣y+1|+(y+5)2=0,则xy=_________.
13.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D点.若∠A′DC=90°,则∠A=_________度.
14.已知2a=5,4b=3,求4a+2b=_________.
15.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有_________级.
三、解答题(共5小题)
16.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,问每隔几分钟有车从车站开出?
17.阅读、理解和探索
(1)观察下列各式:①;②;③;…用你发现的规律写出:第④个式子是(_________),第n个式子是(_________);
(2)利用(1)中的规律,计算:++;
(3)应用以上规律化简:
+;
18.对于有理数x、y,定义新运算:x*y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=9,(﹣3)*3=6,求2*(﹣7)的值.
19.设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.
20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.
参考答案
一、选择题(共11小题)
1 B.
2.D.
3 A
4.C.
5 B.
6.A.
7 A.
8.B.
二、填空题(共10小题)
9.观察这一列数:,,,,,依此规律下一个数是.
10.自然数按一定规律排成如图所示,那么第200行的第5个数是19905.
11.设有四个数,其中每三个数的和分别是17、21、25、30.则这四个数分别是
14、10、6、1.
12.若|x﹣y+1|+(y+5)2=0,则xy=30.
13.如图,把三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于D点.若∠A′DC=90°,则∠A=55度.
14.已知2a=5,4b=3,求4a+2b=225.
15.小龙乘坐商场的自动扶梯下楼,他以每步一级的速度往下走,结果走了30步就到楼下,猛然发现,由于匆忙包丢在购物处了,接着他又以下楼时速度的3倍冲上楼梯,结果走了90步才到楼上,当电梯停下时,露在外面的电梯一共有60级.
三、解答题(共5小题)
16.某人沿电车路线骑车,每隔12分钟有一辆车从后面超过,每4分钟有车迎面驶来,若人、车的速度不变,问每隔几分钟有车从车站开出?
分析:每12分钟有一辆电车从后面赶上属于追及问题,等量关系为:电车12分钟走的路程=行人12分钟走的路程+两辆电车间隔的路程;每4分钟有一辆电车迎面开来属于相遇问题,等量关系为:电车4分钟走的路程+行人4分钟走的路程=两辆电车间隔的路程.两辆电车间隔的路程为两辆电车相隔的时间×电车的速度.
解答:解:设电车每分钟走x米,行人每分走y米,电车每隔a分钟从起点开出一辆.则,
两式相减得:x=2y.
把x=2y代入方程组中第二个式子,得到a=6.
答:每隔6分钟有车从车站开出.
17.附加题阅读、理解和探索
(1)观察下列各式:①;②;③;…用你发现的规律写出:第④个式子是(),第n个式子是
(.);
(2)利用(1)中的规律,计算:++;
(3)应用以上规律化简:
+;
解答:解:根据以上分析故(1)第④个式子是,第n个式子是

(2)解:++=
(3)解:原式===
18.对于有理数x、y,定义新运算:x*y=ax+by,其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=9,(﹣3)*3=6,求2*(﹣7)的值.
解答:解:根据题意可得方程组
解得
那么定义的新运算xy=ax+by可替换为xy=x+y
因此2×(﹣7)=2×+(﹣7)×=﹣.
答:所求值为﹣.
19.设x1,x2,…,x9是正整数,且x1<x2<…<x9,x1+x2+…+x8+x9=230,求x9的最小值,并写出x9取得最小值且x1取得最大值时一组x1,x2,…,x9的值.
分析:由题意可知,x9最大,由于都是正整数,所以x8≤x9﹣1.x7≤x8﹣1≤x9﹣2.…,x2≤x9﹣7,x1≤x9﹣8.然后将x1+x2+…+x8+x9=230用含有x9的式子表示出来,即可求出x9
的值,再解答即可得出答案.
解答:解:由已知x8≤x9﹣1.x7≤x8﹣1≤x9﹣2.…,x2≤x9﹣7,x1≤x9﹣8.(4分)
∴x1+x2+…+x9≤(x9﹣8)+(x9﹣7)+(x9﹣2)+(x9﹣1)+x9=9x9﹣(1+2++7+8)=9x9﹣36.(8分)
∴9x9﹣36≥230.x9≥即x9的最小值为30.(11分)
若x l=22,x2=23,…,x9=230.其和为234>230,
可取x l=21,x2=22,x3=23,x4=24,x5=26x6=27,x7=28,x8=29,x9=30.(14分)20.如图,△ABC是边长为l的等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB于M,交AC于N,连接MN,形成一个三角形,求证:△AMN的周长等于2.
分析:可在AC延长线上截取CM1=BM,得Rt△BDM≌Rt△CDM1,得出边角关系,再求解△MDN≌△M1DN,得MN=NM1,再通过线段之间的转化即可得出结论.解答:证明:如图,在AC延长线上截取CM1=BM,
∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,
∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠ABD=∠ACD=90°,
∴∠DCM1=90°,
∵BD=CD,
∵在Rt△BDM≌Rt△CDM1中,

∴Rt△BDM≌Rt△CDM1(SAS),
得MD=M1D,∠MDB=∠M1DC,
∴∠MDM1=120°﹣∠MDB+∠M1DC=120°,
∴∠NDM1=60°,
∵MD=M1D,∠MDN=∠NDM1=60°,DN=DN,
∴△MDN≌△M1DN,
∴MN=NM1,
故△AMN的周长=AM+MN+AN=AM+AN+NM1=AM+AM1=AB+AC=2.。

相关文档
最新文档