基本运算电路实验报告
集成运放组成的基本运算电路 实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。
2.掌握基本运算电路的调试方法。
3.学习集成运算放大器的实际应用。
二、实验内容和原理1.实现反相加法运算电路2.实现反相减法运算电路3.用积分电路将方波转换为三角波4.同相比例运算电路的电压传输特性(选做)5.查看积分电路的输出轨迹(选做)三、主要仪器设备HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块四、操作方法和实验步骤1.两个信号的反相加法运算1) 按设计的运算电路进行连接。
2) 静态测试:将输入接地,测试直流输出电压。
保证零输入时电路为零输出。
3) 调出0.2V 三角波和0.5V 方波,送示波器验证。
4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。
记录示波器波形(坐标对齐,注明幅值)。
2. 减法器(差分放大电路)减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。
专业: 姓名:学号: 日期: 地点:学生序号61) 按设计的运算电路进行连接。
2) 静态测试:输入接地,保证零输入时为零输出。
3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。
4) 用示波器测量输入和输出信号幅值,记到表格中。
3.用积分电路转换方波为三角波电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。
运算器实验报告

运算器实验报告实验背景运算器是计算机中一种重要的基本逻辑电路,用于进行算术和逻辑运算。
本次实验旨在设计一个基于逻辑门的4位二进制加法器,以实现两个4位二进制数的加法运算。
实验设备与材料1. 逻辑门:AND门、OR门、XOR门、NOT门2. 电路连接线3. 电压源4. 实验板5. 4个开关、8个LED灯实验原理在二进制数的加法中,我们需要对每一位进行逐个相加,并考虑进位的情况。
对于两个4位二进制数的加法,我们可以将其划分为4个单独的位加法运算,再结合进位的情况进行计算。
实验步骤1. 连接电路:根据逻辑门的真值表和逻辑方程,使用电路连接线将逻辑门按照设计要求连接在一起。
2. 设计输入:使用4个开关分别表示两个4位二进制数的每一位输入。
3. 设计输出:使用8个LED灯分别表示两个4位二进制数的每一位输出和进位。
4. 进行实验:按照设计的输入情况,观察LED灯的亮灭情况,验证加法器的正确性。
5. 记录结果:将实验结果记录在实验报告中。
实验结果与分析实验中,我们设计的4位二进制加法器成功实现了两个4位二进制数的加法运算。
通过观察LED灯的亮灭情况,我们可以判断出加法器的计算是否正确。
在实验过程中,我们发现在某些情况下,LED灯的亮灭可能存在短暂的闪烁现象,这是因为逻辑门的切换速度限制导致的,不会影响加法器的正常运算结果。
实验总结通过本次实验,我们深入理解了运算器的工作原理,并成功设计并实现了一个基于逻辑门的4位二进制加法器。
在实验中,我们熟悉了逻辑门的连接方法,并通过观察LED灯的亮灭情况验证了加法器的正确性。
此外,在实验中我们也发现了逻辑门的切换速度限制会导致LED 灯的闪烁现象。
在实际应用中,我们需要根据逻辑门的性能要求选择适当的门延迟时间,以保证运算器的稳定工作。
总体而言,本次实验对于我们理解运算器的工作原理,掌握逻辑门的应用具有重要意义。
我们相信通过进一步的学习和实践,我们能够设计出更加复杂和高效的运算器,为计算机的发展做出更大的贡献。
基本运算电路 实验报告

基本运算电路实验报告基本运算电路实验报告引言:基本运算电路是电子电路中最基础的一种电路,它能够对输入信号进行加法、减法、乘法和除法等数学运算。
本实验旨在通过搭建基本运算电路并进行实验验证,加深对基本运算电路的理解和掌握。
一、实验目的本实验的主要目的是:1. 了解基本运算电路的工作原理;2. 学习基本运算电路的搭建方法;3. 掌握基本运算电路的实验操作;4. 验证基本运算电路的运算功能。
二、实验器材和材料1. 实验板;2. 集成运算放大器(Op-Amp);3. 电阻、电容、二极管等元器件;4. 示波器、函数发生器等实验设备。
三、实验步骤1. 搭建加法器电路首先,根据加法器电路的原理图,使用实验板和元器件搭建加法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到加法器的输入端。
然后,使用示波器观察加法器的输出信号,并记录实验数据。
2. 搭建减法器电路接下来,根据减法器电路的原理图,使用实验板和元器件搭建减法器电路。
同样地,将电源连接到实验板上,并将函数发生器的输出信号接入到减法器的输入端。
使用示波器观察减法器的输出信号,并记录实验数据。
3. 搭建乘法器电路然后,根据乘法器电路的原理图,使用实验板和元器件搭建乘法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到乘法器的输入端。
使用示波器观察乘法器的输出信号,并记录实验数据。
4. 搭建除法器电路最后,根据除法器电路的原理图,使用实验板和元器件搭建除法器电路。
将电源连接到实验板上,并将函数发生器的输出信号接入到除法器的输入端。
使用示波器观察除法器的输出信号,并记录实验数据。
四、实验结果与分析根据实验数据,我们可以得出以下结论:1. 加法器能够对输入信号进行加法运算,输出结果为输入信号的和;2. 减法器能够对输入信号进行减法运算,输出结果为输入信号的差;3. 乘法器能够对输入信号进行乘法运算,输出结果为输入信号的积;4. 除法器能够对输入信号进行除法运算,输出结果为输入信号的商。
基本逻辑门电路实验报告

基本逻辑门电路实验报告实验报告:基本逻辑门电路摘要:本实验旨在加深学生对于基本逻辑门电路的理解,并且实际操作电路完成基本的逻辑运算。
在实验中,我们探究了与门、或门、非门和异或门的工作原理,以及如何利用这些门实现一些简单的逻辑运算。
通过该实验,我们更深入的了解了基本逻辑门电路及其在计算机中的应用。
前言:数字逻辑电路是现代电子科技中的最基本、最基础的部分之一,是微电子工程所需要掌握的重要课程。
它是现代信息技术的核心,无论是计算机系统、通讯系统还是控制系统都离不开数字逻辑电路。
因此,对于数字逻辑电路的学习是我们深入学习计算机的必要前提。
材料及设备:1. 实验箱2. 电源3. 集成电路 7400(与门)、7402(或门)、7404(非门)、7486(异或门)4. 七段码数码管实验步骤:1. 确定各种门的输入输出端口2. 用实际物料组装好多个电路(与门、或门、非门、异或门)并完成接线3. 测试电路供电情况,并查看是否有异常现象4. 对于每一个电路,接入输入端口并测试输出的波形5. 利用实际电路完成几个简单的逻辑运算,并通过七段码数码管显示结果实验结果及分析:通过实验,我们了解到与门是实现逻辑与运算的一种基本电路,或门是实现逻辑或运算的一种基本电路,非门是实现逻辑非运算的一种基本电路,而异或门则可以实现异或功能。
同时,我们还探究了异或门的特殊性质,即异或门可以用于加法器电路的设计。
此外,我们发现,几种电路的运算皆相当简单,但其效果却十分明显。
结论:通过本实验,我们更加深入地了解了基本逻辑门电路及其在计算机中的应用,掌握了数字逻辑电路的基本操作方法。
以后,我们将继续加深对数字逻辑电路的理解与应用,并将其应用到更深入、更广泛的领域之中。
电路基本定理研究实验报告

电路基本定理研究实验报告电路基本定理研究实验报告一、实验目的本实验旨在通过实际操作,深入理解和掌握电路基本定理,包括基尔霍夫定律、欧姆定律、戴维南定理和诺顿定理。
通过实验,期望学生能将理论知识应用于实际电路中,提高实践能力和理论水平。
二、实验原理1.基尔霍夫定律:基尔霍夫定律是电路理论中最基本的定律之一,它包括两个部分,即节点电流定律和回路电压定律。
节点电流定律指出,在任意一个节点上,流入的电流总和等于流出的电流总和;回路电压定律指出,在任意一个闭合回路中,电势升高的总和等于电势降低的总和。
2.欧姆定律:欧姆定律是电路中有关电阻、电流和电压的基本定律。
它指出,在一个线性电阻器件中,电压与电流成正比,电阻保持恒定。
3.戴维南定理:戴维南定理又称为等效电源定理,它可以将一个含源电路等效为一个电压源和一个电阻串联的形式。
该定理实质上是将有源二端网络等效为一个实际电源。
4.诺顿定理:诺顿定理是戴维南定理的反定理,它可以将一个含源电路等效为一个电流源和电阻并联的形式。
该定理也是将有源二端网络等效为一个实际电源。
三、实验步骤1.准备实验器材:电源、电阻器、电感器、电容器、开关、导线等。
2.搭建实验电路:根据实验要求,设计并搭建实际电路。
3.测量数据:使用万用表等测量仪器,测量电路中的电流、电压、电阻等参数。
4.分析数据:根据测量数据,分析电路的性能和特点,验证电路基本定理的正确性。
5.整理实验结果:整理实验数据,撰写实验报告。
四、实验结果及分析实验一:基尔霍夫定律验证在实验中,我们搭建了一个简单的电路,包含一个电源、一个电阻和一个电流表。
通过测量流入和流出的电流,验证了节点电流定律。
同时,我们还搭建了一个闭合回路,包含一个电源、一个电阻和一个电压表,验证了回路电压定律。
结果表明,实验数据与理论预测相符,证明基尔霍夫定律的正确性。
实验二:欧姆定律验证在实验中,我们选取了三个不同阻值的电阻器,分别测量了它们两端的电压和流过的电流。
电路基本定理研究实验报告

电路基本定理研究实验报告电路基本定理研究实验报告摘要:电路基本定理是电路分析的基础,通过实验研究电路中的欧姆定律、基尔霍夫定律和电压分压定律,深入理解电路中电流、电压和电阻之间的关系。
本实验通过搭建不同电路,测量电流和电压,验证电路基本定理的正确性。
1. 引言电路基本定理是电路分析的重要基础,它们描述了电流、电压和电阻之间的基本关系。
欧姆定律表示电流与电压和电阻之间的关系,基尔霍夫定律描述了电流在节点和回路中的分布规律,而电压分压定律则阐述了电压在串联电路中的分配规律。
2. 实验目的本实验旨在通过实际操作验证电路基本定理的正确性,加深对电路分析原理的理解,并掌握基本测量仪器的使用方法。
3. 实验装置与方法实验装置包括电源、电阻、导线、电流表和电压表。
首先,根据实验要求搭建不同的电路,如串联电路、并联电路和混合电路。
然后,使用电流表和电压表分别测量电路中的电流和电压值。
最后,根据测量结果,验证电路基本定理。
4. 实验结果与分析在实验过程中,我们搭建了一个简单的串联电路,连接了一个电源和三个不同电阻。
通过测量电流和电压,我们得到了如下结果:电源电压:12V电阻1阻值:2Ω电阻2阻值:4Ω电阻3阻值:6Ω根据欧姆定律,电流与电压和电阻之间满足以下关系:I = V/R。
根据基尔霍夫定律,电路中的电流在节点和回路中分布均衡。
在串联电路中,电流在各个电阻中的分布相同。
根据电压分压定律,电压在串联电路中按照电阻大小进行分配。
根据实验结果,我们可以计算出电阻1、电阻2和电阻3上的电压值分别为6V、8V和10V。
通过实验结果的验证,我们可以得出结论:电路基本定理在实际电路中成立。
5. 实验总结通过本次实验,我们深入理解了电路基本定理的原理和应用。
实验结果表明,欧姆定律、基尔霍夫定律和电压分压定律在实际电路中具有重要作用。
同时,我们也掌握了基本测量仪器的使用方法,提高了实验操作的能力。
电路基本定理的研究对于电路分析和设计具有重要意义。
运算方法电路实验报告

运算方法电路实验报告实验目的本实验旨在通过搭建运算方法电路,进一步了解电路的基本原理和运算方法的应用,同时培养实验操作和报告撰写能力。
实验设备和材料- 面包板- 运算放大器- 电阻- 电压源- 电线实验原理运算方法电路是利用运算放大器(Operational Amplifier, 简称Op-Amp)实现各种基本的数学运算方法。
运算放大器是一种高增益、差分输入的电压放大器,常用于模拟电路中。
运算放大器有两个输入端和一个输出端,其中一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
当两个输入电压相等时,输出电压为零,其差分增益较高,一般可达数十万倍以上。
根据运算放大器的基本原理,可以实现加法、减法、乘法、除法等运算。
实验步骤1. 搭建加法器电路首先,将运算放大器和电阻等材料准备好,并依次连接如下电路:输入端A > 电阻R1 > \ 输入端C输入端B > 电阻R2 > /运算放大器虚拟地-> \ 输出端> 运算放大器虚拟地-> /运算放大器输入端D > 电阻Rf(反馈电阻)2. 测量电路参数使用万用表或示波器等仪器,对电路各个参数进行测量和记录:输入电流、输出电流、放大倍数等。
3. 测试电路功能通过输入不同的电压值,测试电路的加法运算功能。
首先令输入端A为2V,输入端B为3V,当输入端D为1kΩ时,记录输出电压。
4. 搭建其他运算电路利用相同的原理和方法,搭建减法、乘法、除法等运算电路,并测试其功能。
实验结果与分析通过测量,我们得到了加法器电路的输出电压为5V。
此时我们可以得出结论:加法器电路能够正确进行加法运算,并通过反馈电阻调节输出电压。
同样的方法,我们搭建了减法器、乘法器和除法器电路,并测试它们的功能。
实验结果表明,这些电路能够正确地进行相应的运算操作。
总结与心得通过本次实验,我们进一步了解了运算放大器的基本原理和应用。
我们学会了搭建加法器、减法器、乘法器和除法器电路,并能够利用它们进行相应的运算操作。
电路基本定理及定律的验证实验报告

一、实验名称:电路基本定律及定理的验证 二、实验目的:1、 通过实验验证并加深对基尔霍夫定律、叠加原理及其适用范围的理解;2、 用实验验证并加深对戴维南定理与诺顿定理的理解;3、 掌握电压源与电流源相互转换的条件和方法;4、 灵活运用等效电源定理来简化复杂线性电路的分析。
三、实验原理基尔霍夫定律:(1)基尔霍夫电流定律: 在任一时刻,流入到电路任一节点的电流的代数和为零。
5个电流的参考方向如图中所示,根据基尔霍夫定律就可写出I 1+I 2+I 3+I 4+I 5=0(2)基尔霍夫电压定律: 在任一时刻,沿闭合回路电压降的代数和总等于零。
把这一定律写成一般形式即为∑U=0。
叠加原理: 几个电压源在某线性网络中共同作用时,也可以是几个电流源共同作用于线性网络,或电压源和电流源混合共同作用。
它们在电路中任一支路产生的电流或在任意两点间所产生的电压降,等于这些电压源或电流源分别单独作用时,在该部分所产生的电流或电压降的代数和。
戴维南定理:对外电路来说,一个线性有源二端网络可以用一个电压源和一个电阻串联的电路来等效代替。
该电压源的电压等于此有源二端网络的开路电压U oc ,串联电阻等于此有源二端网络除去独立电源后(电压源短接,电流源断开)在其端口处的等效电阻R o ,这个电压源和电阻串联的电路称为戴维南等效电路。
四、实验步骤及任务(1):KCL 及KVL 的验证 实验线路图:NI 1I 2 I 3 I 4I 5KCL 定律示意图A B CDE FI 1 I 3I 2510Ω330Ω 510Ω510Ω 1k ΩU 1=10V_+KCL 及KVL 实验数据记录项目支路电流端点电压节点电流回路电压I 1(mA)I 2(mA) I 3(mA) U AC (V) U CD (V) U DA (V) I 1+ I 2- I 3 U AC +U CD + U DA计算值 7.201 -1.996 5.205 -1.996 -0.659 2.655 0 0 测量值7.201-1.9965.205-1.996-0.65872.655-0.0003(2):叠加原理的验证根据实验预习和实验过程预先用叠加原理计算出表中电压、电流计算值,最后通过电路测量验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实报告
课程名称:电路与模拟电子技术实验指导老师:成绩:
实验名称:基本运算电路设计实验类型:同组学生姓名:
一、实验目的和要求:
实验目的:
1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。
2、了解集成运算放大器在实际应用中应考虑的一些问题。
实验要求:
1、实现两个信号的反向加法运算
2、用减法器实现两信号的减法运算
3、用积分电路将方波转化为三角波
4、实现同相比例运算(选做)
5、实现积分运算(选做)
二、实验设备:
双运算放大器LM358
三、实验须知:
1.在理想条件下,集成运放参数有哪些特征?
答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。
2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础?
答:(1)能对差模输入信号放大
(2)对共模输入信号抑制
(3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。
3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信
息?
答:运算放大器的电压传输特性是指输出电压和输入电压之比。
4.何谓集成运放的输出失调电压?怎么解决输出失调?
答:失调电压是直流(缓变)电压,会叠
加到交流电压上,使得交流电的零线偏移
(正负电压不对称),但是由于交流电可
以通过“隔直流”电容(又叫耦合电容)
输出,因此任何漂移的直流缓变分量都不
能通过,所以可以使输出的交流信号不受
失调电压的任何影响。
专业:
姓名:
日期:
地点:紫金港东
5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算?
答:反相加法运算电路,反相减法运算电路,积分运算电路。
都为负反馈形式。
四、实验步骤:
1.实现两个信号的反相加法运算
实验电路:
R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差
输入信号v s1v s1输出电压v o
,1kHz 0
2.减法器(差分放大电路)
实验电路:
R1=R2、R F=R3
输入信号v s1v s1输出电压v o
,1kHz 0
共模抑制比850
3.用积分电路转换方波为三角波
实验电路:
电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。
在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。
因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变
五、思考题
(后附仿真实验)
仿真实验
1、实现两个信号的反相加法运算
两种情况下仿真电路分别为:
①v s1=,v s1=0,由探针的显示的参数V(rms)为输出电压,大小为
②v s1=,v s1=,由探针的显示的参数V(rms)为输出电压,大小为2
①v s1=,v s1=0V
②v s1=0V,v s1=
③v s1=,v s1=
3
①T=,方波频率为10KHz
②T=R2C,方波频率为1KHz
③T=10R2C,方波频率为。