2018年上海市松江区高考数学一模试卷

合集下载

2018-2019学年上海市松江区高三一模试卷

2018-2019学年上海市松江区高三一模试卷

松江区2018学年度第一学期期末质量监控试卷高三数学(满分150分,完卷时间120分钟) 2018.12考生注意:1. 本考试设试卷和答题纸两部分,试卷包括试题与答题要求,所有答题必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。

2. 答题前,务必在答题纸上填写座位号和姓名。

3. 答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位。

一、填空题(本大题满分54分)本大题共有12题,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分. 1. 设集合{}|1A x x =>,|03x B x x ⎧⎫=<⎨⎬-⎩⎭,则A B = .2. 若复数z 满足()3443i z i -=+,则||z = .3. 已知函数()y f x =的图像与函数()0,1x y a a a =>≠的图像关于直线y x =对称,且点()4,2P 在函数()y f x =的图像上,则实数a = .4. 已知等差数列{}n a 的前10和为30,则14710a a a a +++= .5. 若增广矩阵为1112m m m m +⎛⎫⎪⎝⎭的线性方程组无解,则实数m 的值为 . 6. 已知双曲线标准方程为2213x y -=,则其焦点到渐近线的距离为 .7. 若向量a ,b 满足()7a b b +⋅=,且||3a =,||2b =,则向量a 与b 夹角为 . 8. 在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,若()226c a b =-+,3C π=。

则△ABC的面积= . 9. 若函数()()|lg 10sin 0|x x f x xx ⎧->⎪=⎨≤⎪⎩,则()y f x =图像上关于原点O 对称的点共有 对. 10. 已知A ,B ,C 是单位圆上三个互不相同的点,若||||AB AC =,则AB AC ⋅的最小值是 .11. 已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题:①线段AB 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭; ②A 、B 两点间的距离为()()221212x x y y -+-; ③向量OA 平行于向量OB 的充要条件是1221x y x y =; ④向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是 .(请写出所有真命题的序号)12. 已知函数()f x 的定义域为R ,且()()1f x f x ⋅-=和()()114f x f x +⋅-=对任意的x R ∈都成立,若当[]0,1x ∈时,()f x 的值域为[]1,2,则当[]100,100x ∈-时,函数()f x 的值域为 . 二、选择题(本大题满分20分)13. 过点()0,1且与直线210x y -+=垂直的直线方程是( )(A )210x y +-= (B )210x y ++= (C )220x y -+= (D )210x y --= 14. 若0a >,0b >,则x y a b x y a b +>+⎧⎨⋅>⋅⎩是x ay b >⎧⎨>⎩的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分又非必要条件15. 将函数()2sin 34f x x π⎛⎫=+ ⎪⎝⎭的图像向下平移1个单位,得到()g x 的图像,若()()129g x g x ⋅=,其中[]12,0,4x x π∈,则12x x 的最大值为( ) (A )9 (B )375(C )3 (D )1 16. 对于平面上一点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(),d P C ,若曲线C 是边长为6的等边三角形,则点集(){}|,1D P d P C =≤所表示的图形的面积为( )(A )36 (B )3633- (C )36π+ (D )3633π-+三、解答题(本大题满分76分)本大题共有5题17. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知向量()3sin ,1a x =,()cos ,1b x =-. (1)若∥a b ,求tan 2x 的值;(2)若()()f x a b b =+⋅,求函数()f x 的最小正周期及当0,2x π⎡⎤∈⎢⎥⎣⎦时的最大值.18. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数()221x f x a =-+(常数a R ∈) (1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,若对任意的[]2,3x ∈,都有()2xmf x ≥成立,求m 的最大值.19. (本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分某科技创新公司投资400万元研发了一款网络产品,产品上线第1个月的收入为40万元,预计在今后若干月内,该产品每月的收入平均比上一月增长50%。

上海市松江区高考数学一模试卷解析版

上海市松江区高考数学一模试卷解析版

(i,j=1,2,3,4,5,6,i≠j)},在 M 中任取两个元素 、 ,则
率为______. 三、解答题(本大题共 5 小题,共 76.0 分) 17. 如图,圆锥的底面半径 OA=2,高 PO=6,点 C 是底面直径 AB
所对弧的中点,点 D 是母线 PA 的中点. (1)求圆锥的侧面积和体积; (2)求异面直线 CD 与 AB 所成角的大小.(结果用反三角 函数表示)
10. 若关于 x、y 的二元一次方程组
无解,则实数 m=______.
11. 已则实数 m=______.
12. 已知函数 y=f(x)存在反函数 y=f-1(x),若函数 y=f(x)+2x 的图象经过点(1,6 ),则函数 y=f-1(x)+log2x 的图象必经过点______.
的概
18. 已知函数

(1)求 f(x)的最大值;
(2)在△ABC 中,内角 A、B、C 所对的边分别为 a、b、c,若 f(A)=0,b、a、c
成等差数列,且 • =2,求边 a 的长.
第 2 页,共 12 页
19. 汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前 方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就
11.【答案】
【解析】解:向量


则 -2 =(1-2m,8),

∥,
则-3(1-2m)-8m=0,
解得 m=- .
故答案为:- .
根据平面向量的坐标运算与共线定理,列方程求出 m 的值. 本题考查了平面向量的共线定理与坐标运算问题,是基础题.
12.【答案】(4,3)
【解析】解:y=f(x)+2x 图象经过点(1,6),得 6=f(1)+2,f(1)=4,故 f(x) 反函数经过(4,1)点, 所以 y=f-1(4)+log24=1+2=3, 故答案为:(4,3) 根据反函数的性质,先求出 f(x)上(1,4)对应的点(4,1),代入求出 y 即可. 本题考查了反函数的求法,属于基础题.

最新上海市2018届高三一模数学试卷(含答案)

最新上海市2018届高三一模数学试卷(含答案)

高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 方程lg(34)1x +=的解x =2. 若关于x 的不等式0x a x b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A B C D -,12AA =,E 为棱1CC 的中点,则三棱锥1D ADE -的体积为7. 从单词“shadow ”中任意选取4个不同的字母排成一排,则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P为弧AB 上的一个动点,则OP AB ⋅取值范围是10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}n nb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分)13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒,(1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小;(用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2A n A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m =⋅(万元),m 表示污水流量,铺设管道的费 用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用?(2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂的距离为x 千米,求联合建厂的总费用y 与x 的函数关系式,并求y 的取值范围;20. 如图,椭圆2214yx+=的左、右顶点分别为A、B,双曲线Γ以A、B为顶点,焦距为25,点P是Γ上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为k,O为坐标原点;(1)求双曲线Γ的方程;(2)求点M的纵坐标M y的取值范围;(3)是否存在定直线l,使得直线BP与直线OM关于直线l对称?若存在,求直线l方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤);(1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列,点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;。

(最新整理)2018高三“一模”数学试题汇编(函数)

(最新整理)2018高三“一模”数学试题汇编(函数)

2018高三“一模”数学试题汇编(函数)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高三“一模”数学试题汇编(函数))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高三“一模”数学试题汇编(函数)的全部内容。

2018上海各区高三“一模”数学试题分类(函数)一、填空题: 1.若全集,集合,则U R ={}02A x x x =≤≥或U C A = 2.设集合,,则{2,3,4,12}A ={}0,1,2,3B =A B = 3.已知集合,,若,则{}1,2,5A ={}2,B a ={}1,2,3,5A B = a =4.已知全集,集合,集合,则U N ={}1,2,3,4A ={}3,4,5B =()U C A B = 5.设全集,集合,,则U Z ={}1,2M ={}2,1,0,1,2P =--()U P C M = 6.已知函数,,若,则实数{}2,3A ={}1,2,B a =A B ⊆a =7.已知集合,,则{}03A x x =<<{}24B x x =≥A B = 8.已知集合,,若,则实数{}1,2,A m ={}3,4B ={}3A B = m =9.函数的定义域是()lg(2)f x x =-10.函数的定义域为()f x =11.若行列式,则 124012x -=x =12.不等式的解为 10x x-<13.不等式的解集是 11x<14.不等式的解集是 211x x +>+15.不等式的解集是 2433(1)12(2x x x --->16.不等式的解集为 111x ≥-17.已知是定义在上的奇函数,则()f x R (1)(0)(1)f f f -++=18.已知函数的反函数为,则()21f x x =-1()f x -1(5)f -=19.若函数的反函数的图像经过点,则 ()f x x α=11(,)24a =20.方程的解222log (2)log (3)log 12x x -+-=x =21.已知函数的反函数为,则,则实数2()log ()f x x a =+1()y f x -=1(2)1f -=a =22.已知函数是奇函数,当时,,且,则()y f x =0x <()2x f x ax =-(2)2f =a =23.已知函数,是函数的反函数,若的图像()1log a f x x =+1()y f x -=()y f x =1()y f x -= 过点,则实数的值是(2,4)a 24.已知函数是定义在上且周期为的偶函数,当时,()f x R 4[2,4]x ∈43()log ()2f x x =- 则 1(2f =25.已知函数是定义在上的偶函数,且在上是增函数,若,()y f x =R [0,)+∞(1)(4)f a f +≤ 则实数的取值范围是a 26.已知,函数在区间上有最小值,且有最大值为13a >()lg(1)f x x a =-+[0,31]a -0,则实数的取值范围是lg(1)a +a 27.若不等式对任意正整数恒成立,则实数的取值范围是 1(1)(1)31n na n +--⋅<++n a 28.若不等式对满足的任意实数恒成立,则实数的最大值222()x y cx y x -≤-0x y >>,x y c 为29.已知函数有三个零点,则实数的取值范围是()21f x x x a =--a 30.已知函数有三个不同的零点,则实数的取值范围是 22log (),0()3,0x a x f x x ax a x +≤⎧=⎨-+>⎩a 31.定义,已知函数、的定义域都是,则下列四个命题中为,(,),a a b F a b b a b ≤⎧=⎨>⎩()f x ()g x R 真命题的是 (写出所有真命题的序号)①若、都是奇函数,则函数为奇函数;()f x ()g x ((),())F f x g x ②若、都是偶函数,则函数为偶函数;()f x ()g x ((),())F f x g x ③若、都是增函数,则函数为增函数;()f x ()g x ((),())F f x g x ④若、都是减函数,则函数为减函数。

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩C U M {﹣2,﹣1,0} .【解答】解:C U M={﹣2,﹣1,0},故P∩C U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}2.(4分)已知复数(i为虚数单位),则=.【解答】解:复数==,∴=,∴=•==,故答案为.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.10.(5分)已知函数f(x)=有三个不同的零点,则实数a的取值范围是[1,+∞).【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C在同一直线上,则S2018=2.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2 D.4【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个 B.2个 C.4个 D.无数个【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,则四边形AMQN能构成矩形,由作图知,四边形AMQN能构成矩形的个数为无数个.故选:D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,==1.∴S△ABC故V P==.﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+7>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n (﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.。

2018年上海市各区高考数学一模试卷及答案解析(全集)

2018年上海市各区高考数学一模试卷及答案解析(全集)

2018年上海市普陀区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A=.2.(4分)若,则=.3.(4分)方程log2(2﹣x)+log2(3﹣x)=log212的解x=.4.(4分)的二项展开式中的常数项的值为.5.(4分)不等式的解集为.6.(4分)函数的值域为.7.(5分)已知i是虚数单位,是复数z的共轭复数,若,则在复平面内所对应的点所在的象限为第象限.8.(5分)若数列{a n}的前n项和(n∈N*),则=.9.(5分)若直线l:x+y=5与曲线C:x2+y2=16交于两点A(x1,y1)、B(x2,y2),则x1y2+x2y1的值为.10.(5分)设a1、a2、a3、a4是1,2,3,4的一个排列,若至少有一个i(i=1,2,3,4)使得a i=i成立,则满足此条件的不同排列的个数为.11.(5分)已知正三角形ABC的边长为,点M是△ABC所在平面内的任一动点,若,则的取值范围为.12.(5分)双曲线绕坐标原点O旋转适当角度可以成为函数f(x)的图象,关于此函数f(x)有如下四个命题:①f(x)是奇函数;②f(x)的图象过点或;③f(x)的值域是;④函数y=f(x)﹣x有两个零点;则其中所有真命题的序号为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若数列{a n}(n∈N*)是等比数列,则矩阵所表示方程组的解的个数是()A.0个B.1个C.无数个D.不确定14.(5分)“m>0”是“函数f(x)=|x(mx+2)|在区间(0,+∞)上为增函数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件15.(5分)用长度分别为2、3、5、6、9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258cm2B.414cm2C.416cm2D.418cm216.(5分)定义在R上的函数f(x)满足,且f(x﹣1)=f(x+1),则函数在区间[﹣1,5]上的所有零点之和为()A.4B.5C.7D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示的圆锥的体积为,底面直径AB=2,点C是弧的中点,点D是母线PA的中点.(1)求该圆锥的侧面积;(2)求异面直线PB与CD所成角的大小.18.(14分)某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)=+x+150万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q(m)=(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?19.(14分)设函数f(x)=sin(ωx+φ)(ω>0,),已知角φ的终边经过点,点M(x1,y1)、N(x2,y2)是函数f(x)图象上的任意两点,当|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值是.(1)求函数y=f(x)的解析式;(2)已知△ABC面积为,角C所对的边,,求△ABC的周长.20.(16分)设点F1、F2分别是椭圆(t>0)的左、右焦点,且椭圆C上的点到点F2的距离的最小值为,点M、N是椭圆C上位于x轴上方的两点,且向量与向量平行.(1)求椭圆C的方程;(2)当时,求△F1MN的面积;(3)当时,求直线F2N的方程.21.(18分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足(n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.(1)请判断b1、b2是否具有性质P6,并说明理由;(2)设S n为数列{a n}的前n项和,若{S n﹣2λa n}是单调递增数列,求证:对任意的k(k∈N*,k≥3),实数λ都不具有性质P k;(3)设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,求所有满足条件的k的值.2018年上海市普陀区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A={1,2} .【解答】解:∵全集U={1,2,3,4,5},集合A={3,4,5},∴∁U A={1,2}.故答案为:{1,2}.2.(4分)若,则=.【解答】解:,∴=.故答案为:.3.(4分)方程log2(2﹣x)+log2(3﹣x)=log212的解x=﹣1.【解答】解:∵方程log2(2﹣x)+log2(3﹣x)=log212,∴,即,解得x=﹣1.故答案为:﹣1.4.(4分)的二项展开式中的常数项的值为﹣84.【解答】解:二项展开式的通项=,由,得r=3.∴的二项展开式中的常数项为.故答案为:﹣84.5.(4分)不等式的解集为[0,1)∪(1,2] .【解答】解:由题意得:,解得:0≤x<1或1<x≤2,故答案为:[0,1)∪(1,2].6.(4分)函数的值域为[﹣1,3] .【解答】解:∵=sinx+cosx+1=2sin(x+)+1,∵sin(x+)∈[﹣1,1],∴f(x)=2sin(x+)+1∈[﹣1,3].故答案为:[﹣1,3].7.(5分)已知i是虚数单位,是复数z的共轭复数,若,则在复平面内所对应的点所在的象限为第一象限.【解答】解:,设z=a+bi,则z×2i﹣(1+i)=0,即(a+bi)×2i﹣1﹣i=0,则2ai﹣2b﹣1﹣i=0,∴﹣2b﹣1+(2a﹣1)i=0,则,则,∴z=﹣i,则=+i,∴则在复平面内所对应的点位于第一象限,故答案为:一.8.(5分)若数列{a n}的前n项和(n∈N*),则=﹣2.【解答】解:数列{a n}的前n项和(n∈N*),可得n=1时,a1=S1=﹣3+2+1=0;当n≥2时,a n=S n﹣S n﹣1=﹣3n2+2n+1+3(n﹣1)2﹣2n+2﹣1=﹣6n+5,则==(﹣2+)=﹣2+0=﹣2.故答案为:﹣2.9.(5分)若直线l:x+y=5与曲线C:x2+y2=16交于两点A(x1,y1)、B(x2,y2),则x1y2+x2y1的值为16.【解答】解:直线l:x+y=5与曲线C:x2+y2=16交于两点A(x1,y1)、B(x2,y2),则:,所以:2x2﹣10x+9=0,则:x1+x2=5,,则:x1y2+x2y1=x1(5﹣x2)+x2(5﹣x1),=5(x1+x2)﹣2x1x2,=25﹣9,=16.故答案为:16.10.(5分)设a1、a2、a3、a4是1,2,3,4的一个排列,若至少有一个i(i=1,2,3,4)使得a i=i成立,则满足此条件的不同排列的个数为15.【解答】解:根据题意,a1、a2、a3、a4是1,2,3,4的一个排列,则所有的排列有A44=24个,假设不存在i(i=1,2,3,4)使得a i=i成立,则a1可以在第2、3、4位置,有3种情况,假设a1在第二个位置,则a1可以在第1、3、4位置,也有3种情况,此时a3、a4只有1种排法,剩余的两个数在其余两个位置,有1种情况,则不存在i(i=1,2,3,4)使得a i=i成立的情况有3×3=9种,则至少有一个i(i=1,2,3,4)使得a i=i成立排列数有24﹣9=15个;故答案为:15.11.(5分)已知正三角形ABC的边长为,点M是△ABC所在平面内的任一动点,若,则的取值范围为[0,6] .【解答】解:以A点为原点,建立如图所示的平面直角坐标系,则A(0,0),B(,0),C(,),∵,不妨设M(cosθ,sinθ),∴++=(﹣cosθ,﹣sinθ)+(﹣cosθ,﹣sinθ)+(﹣cosθ,﹣sinθ)=(﹣3cosθ,﹣3sinθ),∴|++|2=(﹣3cosθ)2+(﹣3sinθ)2=9(2﹣cosθ﹣sinθ)=18﹣18sin(θ+),∵﹣1≤sin(θ+)≤1,∴0≤18﹣18sin(θ+)≤36,∴的取值范围为[0,6],故答案为:[0,6]12.(5分)双曲线绕坐标原点O旋转适当角度可以成为函数f(x)的图象,关于此函数f(x)有如下四个命题:①f(x)是奇函数;②f(x)的图象过点或;③f(x)的值域是;④函数y=f(x)﹣x有两个零点;则其中所有真命题的序号为①②.【解答】解:双曲线关于坐标原点对称,可得旋转后得到的函数f(x)的图象关于原点对称,即有f(x)为奇函数,故①对;由双曲线的顶点为(±,0),渐近线方程为y=±x,可得f(x)的图象的渐近线为x=0和y=±x,图象关于直线y=x对称,可得f(x)的图象过点,或,由对称性可得f(x)的图象按逆时针60°旋转位于一三象限;按顺时针旋转60°位于二四象限;故②对;f(x)的图象按逆时针旋转60°位于一三象限,由图象可得顶点为点,或,不是极值点,则f(x)的值域不是;f(x)的图象按顺时针旋转60°位于二四象限,由对称性可得f(x)的值域也不是.故③不对;当f(x)的图象位于一三象限时,f(x)的图象与直线y=x有两个交点,函数y=f(x)﹣x有两个零点;当f(x)的图象位于二四象限时,f(x)的图象与直线y=x没有交点,函数y=f(x)﹣x没有零点.故④错.故答案为:①②.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若数列{a n}(n∈N*)是等比数列,则矩阵所表示方程组的解的个数是()A.0个B.1个C.无数个D.不确定【解答】解:根据题意,矩阵所表示方程组为,又由数列{a n}(n∈N*)是等比数列,则有===,则方程组的解有无数个;故选:C.14.(5分)“m>0”是“函数f(x)=|x(mx+2)|在区间(0,+∞)上为增函数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:∵m>0,∴函数f(x)=|x(mx+2)|=|mx2+2x|,∵f(0)=0,∴f(x)在区间(0,+∞)上为增函数”;∵函数f(x)=|x(mx+2)|=|mx2+2x|在区间(0,+∞)上为增函数,f(0)=0,∴m∈R,∴“m>0”是“函数f(x)=|x(mx+2)|在区间(0,+∞)上为增函数”的充分非必要条件.故选:A.15.(5分)用长度分别为2、3、5、6、9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258cm2B.414cm2C.416cm2D.418cm2【解答】解:设长方体的三条棱分别为a,b,c,则长方体的表面积S=2(ab+bc+ac)≤(a+b)2+(b+c)2+(a+c)2,当且仅当a=b=c时上式“=”成立.由题意可知,a,b,c不可能相等,故考虑当a,b,c三边长最接近时面积最大,此时三边长为8,8,9,用2、6连接,3、5连接各为一条棱,第三条棱为9组成长方体,此时能够得到的长方体的最大表面积为2(8×8+8×9+8×9)=416(cm2).故选:C.16.(5分)定义在R上的函数f(x)满足,且f(x﹣1)=f(x+1),则函数在区间[﹣1,5]上的所有零点之和为()A.4B.5C.7D.8【解答】解:∵函数,且f(x﹣1)=f(x+1),函数的周期为2,函数,的零点,就是y=f(x)与y=图象的交点的横坐标,∴y=f(x)关于点(0,3)中心对称,将函数两次向右平移2个单位,得到函数y=f(x)在[﹣1,5]上的图象,每段曲线不包含右端点(如下图),去掉端点后关于(2,3)中心对称.又∵y==3+关于(2,3)中心对称,故方程f(x)=g(x)在区间[﹣1,5]上的根就是函数y=f(x)和y=g(x)的交点横坐标,共有三个交点,自左向右横坐标分别为x1,x2,x3,其中x1和x3关于(2,3)中心对称,∴x1+x3=4,x2=1,故x1+x2+x3=5.故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示的圆锥的体积为,底面直径AB=2,点C是弧的中点,点D是母线PA的中点.(1)求该圆锥的侧面积;(2)求异面直线PB与CD所成角的大小.【解答】解:(1)∵圆锥的体积为,底面直径AB=2,∴,解得PO=,∴PA==2,∴该圆锥的侧面积S=πrl=π×1×2=2π.(2)∵圆锥的体积为,底面直径AB=2,点C是弧的中点,点D是母线PA的中点.∴PO⊥平面ABC,OC⊥AB,∴以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,则A(0,﹣1,0),P(0,0,),D(0,﹣,),B(0,1,0),C(1,0,0),=(0,1,﹣),=(﹣1,﹣,),设异面直线PB与CD所成角为θ,则cosθ===,∴θ=.∴异面直线PB与CD所成角为.18.(14分)某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)=+x+150万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q(m)=(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?【解答】解:(1)由总成本p(x)=+x+150万元,可得每台机器人的平均成本y==2.当且仅当,即x=300时,上式等号成立.∴若使每台机器人的平均成本最低,应买300台;(2)引进机器人后,每台机器人的日平均分拣量q(m)=,当1≤m≤30时,300台机器人的日平均分拣量为160m(60﹣m)=﹣160m2+9600m,∴当m=30时,日平均分拣量有最大值144000.当m>30时,日平均分拣量为480×300=144000.∴300台机器人的日平均分拣量的最大值为144000件.若传统人工分拣144000件,则需要人数为人.∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少=75%.19.(14分)设函数f(x)=sin(ωx+φ)(ω>0,),已知角φ的终边经过点,点M(x1,y1)、N(x2,y2)是函数f(x)图象上的任意两点,当|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值是.(1)求函数y=f(x)的解析式;(2)已知△ABC面积为,角C所对的边,,求△ABC的周长.【解答】解:(1)已知角φ的终边经过点,且,则:φ=﹣,点M(x1,y1)、N(x2,y2)是函数f(x)图象上的任意两点,当|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值是.则:T=π,所以:ω=,所以:;(2)由于:=sin()=,且0<C<π,解得:C=,△ABC面积为,所以:,解得:ab=20.由于:c2=a2+b2﹣2abcosC,c=2,所以:20=(a+b)2﹣3ab,解得:a+b=4,所以:.20.(16分)设点F1、F2分别是椭圆(t>0)的左、右焦点,且椭圆C上的点到点F2的距离的最小值为,点M、N是椭圆C上位于x轴上方的两点,且向量与向量平行.(1)求椭圆C的方程;(2)当时,求△F1MN的面积;(3)当时,求直线F2N的方程.【解答】解:(1)点F1、F2分别是椭圆(t>0)的左、右焦点,∴a=t,c=t,∵椭圆C上的点到点F2的距离的最小值为,∴a﹣c=t﹣t=2﹣2,解得t=2,∴椭圆的方程为+=1,(2)由(1)可得F1(﹣2,0),F2(2,0),点M、N是椭圆C上位于x轴上方的两点,可设N(2cosθ,2sinθ),∴=(2cosθ+2,2sinθ),=(2cosθ﹣2,2sinθ),∵,∴(2cosθ+2)(2cosθ﹣2)+4sin2θ=0,解得cosθ=0,sinθ=1,∴N(0,2),∴=(﹣2,2),∴k==﹣1,∵向量与向量平行,∴直线F1M的斜率为﹣1,∴直线方程为y=﹣x﹣2,联立方程组,解得x=0,y=﹣2(舍去),或x=﹣,y=,∴M(﹣,),∴|F1M|==,点N到直线直线y=﹣x﹣2的距离为d==2,∴△F1MN的面积=|F1M|•d=××2=,(3)∵向量与向量平行,∴λ=,∴,∴(λ﹣1)||=,即λ>1,设M(x1,y1),N(x2,y2),∴λ(x1+2)=x2﹣2,y2=λy1,∴x2=λx1+2(λ+1)∵+=1,∴x22+2y22=8,∴[λx1+2(λ+1)]2+2λ2y12=12λ2+8λ+4+4λ(λ+1)x1=8,∴4λ(λ+1)x1=(1﹣3λ)(λ+1),∴x1==﹣3,∴y12=4﹣,∴||2=(x1+2)2+y12=(﹣3+2)2+4﹣=,∴||=,∴(λ﹣1)•=,∴λ2﹣2λ﹣1=0解得λ=2+,或λ=2﹣(舍去)∴x1=﹣3=﹣3=﹣1﹣,∴y12=4﹣=2﹣==,∴y1=,∴k==﹣,∴直线F2N的方程为y﹣0=﹣(x﹣2),即为x+y﹣2=021.(18分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足(n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.(1)请判断b1、b2是否具有性质P6,并说明理由;(2)设S n为数列{a n}的前n项和,若{S n﹣2λa n}是单调递增数列,求证:对任意的k(k∈N*,k≥3),实数λ都不具有性质P k;(3)设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,求所有满足条件的k的值.【解答】解:(1)(n∈N*),可得n=1时,T1+=﹣b1=﹣T1,解得b1=﹣,T2+=b2=﹣+b2+=b2,T3+=﹣b3=﹣+b2+b3+,即b2+2b3=,T4+=b4=﹣+b2+b3+b4+,即b2+b3=,解得b2=,b3=﹣,同理可得b4=,b5=﹣,b6=,b7=﹣,…,b2n﹣1=﹣,d=a5=b2,可得d=a1+4d=,解得a1=﹣,d=,a n=,P6={x|a4<x<a9}(k∈N*,k≥3)={x|0<x<},则b1不具有性质P6,b2具有性质P6;(2)证明:设S n为数列{a n}的前n项和,若{S n﹣2λa n}是单调递增数列,﹣2λa n+1≥S n﹣2λa n,可得S n+1即为≥,化为4λ+6≤2n对n为一切自然数成立,即有4λ+6≤2,可得λ≤﹣1,又P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),且a1=﹣,d>0,可得P k中的元素大于﹣1,则对任意的k(k∈N*,k≥3),实数λ都不具有性质P k;(3)设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,由于H1=T1=b1=﹣,H3=T1+T2+T3=﹣,H5=T1+T2+T3+T4+T5=﹣,H7=﹣+0﹣=﹣,…,H2n﹣1=H2n﹣3+b2n﹣1,(n≥2),当k=3时,P3={x|a1<x<a6}={x|﹣<x<},当k=4时,P4={x|a2<x<a7}={x|﹣<x<},当k=5时,P5={x|a3<x<a8}={x|﹣<x<1},当k=6时,P3={x|a4<x<a9}={x|0<x<},显然k=5,6不成立,故所有满足条件的k的值为3,4.2018年上海市浦东新区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合A={1,2,3,4},B={1,3,5,7},则A∩B=.2.(4分)不等式<1的解集为.3.(4分)已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=.4.(4分)已知向量,,则向量在向量的方向上的投影为.5.(4分)已知i是虚数单位,复数z满足,则|z|=.6.(4分)在(2x+1)5的二项展开式中,x3的系数是.7.(5分)某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,其中恰好有1个二等品的概率为.8.(5分)已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,若f(a+1)≤f(4),则实数a的取值范围是.9.(5分)已知等比数列前n项和为S n,则使得S n>2018的n的最小值为.10.(5分)圆锥的底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的表面积为.11.(5分)已知函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)的图象,令h(x)=f(x)+g(x),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,则ω的最小值为.12.(5分)在平面直角坐标系中,O为坐标原点,M、N是双曲线上的两个动点,动点P满足,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得||PF1|﹣|PF2||为定值,则该定值为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若实数x,y∈R,则命题甲“”是命题乙“”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.(5分)已知△ABC中,,AB=AC=1,点P是AB边上的动点,点Q是AC边上的动点,则的最小值为()A.﹣4B.﹣2C.﹣1D.015.(5分)某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),若该食品在0°C 的保鲜时间是192小时,在22°C的保鲜时间是48小时,则该食品在33°C的保鲜时间是()小时.A.22B.23C.24D.3316.(5分)关于x的方程x2+arcsin(cosx)+a=0恰有3个实数根x1、x2、x3,则x12+x22+x32=()A.1B.2C.D.2π2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1.(1)求异面直线BC1与CD1所成的角;(2)求三棱锥B﹣D1AC的体积.18.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,且.(1)求C;(2)若c2=7b2,且,求b的值.19.(14分)已知等差数列{a n}的公差为2,其前n项和(n∈N*,p∈R).(1)求p的值及{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2+4,令(k∈N*),求数列{c n}的前n项和T n.20.(16分)已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.(1)求椭圆Γ的方程;(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP 面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.21.(18分)已知函数f(x)的定义域为D,值域为f(D),即f(D)={y|y=f(x),x∈D},若f(D)⊆D,则称f(x)在D上封闭.(1)分别判断函数f(x)=2017x+log2017x,在(0,1)上是否封闭,说明理由;(2)函数的定义域为D=[a,b],且存在反函数y=f﹣1(x),若函数f(x)在D上封闭,且函数f﹣1(x)在f(D)上也封闭,求实数k的取值范围;(3)已知函数f(x)的定义域为D,对任意x,y∈D,若x≠y,有f(x)≠f(y)恒成立,则称f(x)在D上是单射,已知函数f(x)在D上封闭且单射,并且满足f x(D)⊊D,其中f n+1(x)=f(f n(x))(n∈N*),f1(x)=f(x),证明:存在D的真子集,D n⊊D n﹣1⊊…⊊D3⊊D2⊊D1⊊D,使得f(x)在所有D i(i=1,2,3,…,n)上封闭.2018年上海市浦东新区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合A={1,2,3,4},B={1,3,5,7},则A∩B={1,3} .【解答】解:∵集合A={1,2,3,4},B={1,3,5,7},∴A∩B={1,3}.故答案为:{1,3}.2.(4分)不等式<1的解集为(1,+∞)∪(﹣∞,0).【解答】解:原不等式等价于,即x(x﹣1)>0,所以不等式的解集为(1,+∞)∪(﹣∞,0);故答案为:(1,+∞)∪(﹣∞,0)3.(4分)已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=3.【解答】解:令f﹣1(5)=a,则f(a)=2a﹣1=5,解得:a=3,故答案为:3.4.(4分)已知向量,,则向量在向量的方向上的投影为﹣1.【解答】解:向量=(1,﹣2),=(3,4),则向量在向量方向上的投影为:||cos<,>===﹣1.故答案为:﹣15.(4分)已知i是虚数单位,复数z满足,则|z|=.【解答】解:∵复数z满足,∴z=,化为4z=,即z=,∴|z|==.故答案为:.6.(4分)在(2x+1)5的二项展开式中,x3的系数是80.=C5r(2x)5﹣r,【解答】解:设求的项为T r+1今r=2,∴T3=23C52x3=80x3.∴x3的系数是80.故答案为:807.(5分)某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,其中恰好有1个二等品的概率为.【解答】解:某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,基本事件总数n==495,其中恰好有1个二等品包含的基本事件个数m==240,∴其中恰好有1个二等品的概率为p===.故答案为:.8.(5分)已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,若f(a+1)≤f(4),则实数a的取值范围是[﹣5,3] .【解答】解:函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,可得f(x)=f(|x|),则f(a+1)≤f(4),即为f(|a+1|)≤f(4),可得|a+1|≤4,即﹣4≤a+1≤4,解得﹣5≤a≤3,则实数a的取值范围是[﹣5,3].故答案为:[﹣5,3].9.(5分)已知等比数列前n项和为S n,则使得S n>2018的n的最小值为10.【解答】解:根据题意,等比数列为{a n},其首项a1=,公比q==3,其前n项和S n==(3n﹣1),若S n>2018,即3n﹣1>18×2018又由n∈N*,则n≥10,故答案为:10.10.(5分)圆锥的底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的表面积为36π.【解答】解:设此圆锥的母线长为l,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2π×3=×l,解得l=9,∴此圆锥的表面积为S=πrl+πr2=π×3×9+π×9=36π.故答案为:36π.11.(5分)已知函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)的图象,令h(x)=f(x)+g(x),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,则ω的最小值为π.【解答】解:函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)=sin(ωx+)=cosωx的图象,令h(x)=f(x)+g(x)=sinωx+cosωx=sin(ωx+),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,∴•≤1,∴ω≥π,则ω的最小值为π,故答案为:π.12.(5分)在平面直角坐标系中,O为坐标原点,M、N是双曲线上的两个动点,动点P满足,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得||PF1|﹣|PF2||为定值,则该定值为2.【解答】解:设动点P(x,y),M(x1,y1)、N(x2,y2),∵直线OM与ON的斜率之积为2,∴•=2,所以2x1x2﹣y1y2=0,①,∵动点P满足,∴(x,y)=(2x1﹣x2,2y1﹣y2),则x=2x1﹣x2,y=2y1﹣y2,∵M、N是双曲线上的点,∴2x12﹣y12=4,2x22﹣y22=4.∴2x2﹣y2=2(2x1﹣x2)2﹣(2y1﹣y2)2=4(2x12﹣y12)﹣(2x22﹣y22)﹣4(2x1x2﹣y1y2)=4×4﹣4﹣4(2x1x2﹣y1y2)=12﹣4(2x1x2﹣y1y2),把①代入上式得:2x2﹣y2=12,即﹣=1,所以点P是双曲线﹣=1上的点,因为即﹣=1的两个焦点为:F1(﹣3,0)、F2(3,0),所以||PF1|﹣|PF2||为定值2.故答案为:2.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若实数x,y∈R,则命题甲“”是命题乙“”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要【解答】解:由甲推不出乙,比如x=1,y=7,故不是充分条件,由乙可推出甲,是必要条件,故选:B.14.(5分)已知△ABC中,,AB=AC=1,点P是AB边上的动点,点Q 是AC边上的动点,则的最小值为()A.﹣4B.﹣2C.﹣1D.0【解答】解:∵△ABC中,,AB=AC=1,以A为原点,以AB所在对的直线为x轴,以AC所在的直线为y轴,建立如图所示的平面直角坐标系,则B(1,0),C(0,1)设P的坐标为(m,0)0≤m≤1,Q的坐标为(0,n),0≤n≤1,∴=(﹣1,n),=(m,﹣1),∴=﹣m﹣n=﹣(m+n)≥﹣2,当且仅当m=n=1时取等号,故的最小值为﹣2,故选:B.15.(5分)某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),若该食品在0°C 的保鲜时间是192小时,在22°C的保鲜时间是48小时,则该食品在33°C的保鲜时间是()小时.A.22B.23C.24D.33【解答】解:某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),该食品在0°C的保鲜时间是192小时,在22°C的保鲜时间是48小时,∴,解得e11k=,∴该食品在33°C的保鲜时间:y=e33k+b=(e11k)3×e b=()3×192=24(小时).故选:C.16.(5分)关于x的方程x2+arcsin(cosx)+a=0恰有3个实数根x1、x2、x3,则x12+x22+x32=()A.1B.2C.D.2π2【解答】解:令f(x)=x2+arcsin(cosx)+a,可得f(﹣x)=(﹣x)2+arcsin(cos(﹣x))+a=f(x),则f(x)为偶函数,∵f(x)=0有三个实数根,∴f(0)=0,即0++a=0,故有a=﹣,关于x的方程即x2+arcsin(cosx)﹣=0,∴x2 =0,且+arcsin(cosx1)﹣=0,x32+arcsin(cosx3)﹣=0,x1=﹣x3,由y=x2和y=﹣arcsin(cosx),当x>0,且0<x<π时,y=﹣arcsin(cosx)=﹣arcsin(sin(﹣x))=﹣(﹣x))=x,则﹣π<x<0时,y=﹣arcsin(cosx)=﹣x,由y=x2和y=﹣arcsin(cosx)的图象可得:它们有三个交点,且为(0,0),(﹣1,1),(1,1),则x12+x22+x32=0+1+1=2.故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1.(1)求异面直线BC1与CD1所成的角;(2)求三棱锥B﹣D1AC的体积.【解答】解:(1)∵在长方体ABCD﹣A1B1C1D1中,AD1∥BC1,∴∠AD1C是异面直线BC1与CD1所成的角或其补角.(2分)∵AB=2,AD=1,A1A=1.∴在等腰△ACD1中,∴cos∠CD1A===,…(4分)∴异面直线BC1与CD1所成的角.…(1分)(2)…(4分)==.…(3分)18.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,且.(1)求C;(2)若c2=7b2,且,求b的值.【解答】解:(1)由,∴2ccosC+acosB+bcosA=0,由正弦定理得:2sinCcosC+sinAcosB+sinBcosA=0,∴2sinCcosC+sin(A+B)=0;2sinCcosC+sinC=0;由sinC≠0,∴,∴;(2)由c2=a2+b2﹣2abcosC,∴7b2=a2+b2﹣2abcosC,∴a2+ab﹣6b2=0,∴a=2b;由知,,∴,∴b=2.19.(14分)已知等差数列{a n}的公差为2,其前n项和(n∈N*,p ∈R).(1)求p的值及{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2+4,令(k∈N*),求数列{c n}的前n项和T n.【解答】解:(1)根据题意,等差数列{a n}中,当n≥2时,有a n=S n﹣S n﹣1=pn2+2n﹣[p(n﹣1)2+2(n﹣1)]=2pn﹣p+2,=2p(n+1)﹣p+2,则a n+1∴a n﹣a n=2p=2,+1∴p=1,a n=3+(n﹣1)2=2n+1,(2)∵b2=a1=3,b3=a2+4=9,∴q=3,,当n=2k,k∈N*时,T n=a1+b2+a3+b4+…+a2k﹣1+b2k=(a1+a3+…+a2k﹣1)+(b2+b4+…+b2k)=(3+7+…+4k﹣1)+(3+27+…+32k﹣1)==;当n=2k﹣1,k∈N*时,n+1是偶数,=,∴.20.(16分)已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.(1)求椭圆Γ的方程;(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP 面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.【解答】(1)解:由,得,∴…①又△AF1F2周长为,∴…②联立①②,解得.∴椭圆方程为;(2)证明:设直线l方程:y=kx+m,交点B(x1,y1),C(x2,y2)由,得(1+4k2)x2+8kmx+4(m2﹣1)=0.,,依题:k AB+k AC=﹣1,即:,∵y1=kx1+m,y2=kx2+m,∴,得,则m=﹣2k﹣1.∴y=kx+m=kx﹣2k﹣1过定点(2,﹣1);(3)解:l AE:x+y﹣1=0,.设直线l:y=﹣x+t与椭圆相切,由,得.由△=4t2﹣5(t2﹣1)=0,得t=.得两切线到l AE:x+y﹣1=0的距离分别为,∴,.当时,△AEP个数为0个;当时,△AEP个数为1个;当时,△AEP个数为2个;当时,△AEP个数为3个;当时,△AEP个数为4个.21.(18分)已知函数f(x)的定义域为D,值域为f(D),即f(D)={y|y=f(x),x∈D},若f(D)⊆D,则称f(x)在D上封闭.(1)分别判断函数f(x)=2017x+log2017x,在(0,1)上是否封闭,说明理由;(2)函数的定义域为D=[a,b],且存在反函数y=f﹣1(x),若函数f(x)在D上封闭,且函数f﹣1(x)在f(D)上也封闭,求实数k的取值范围;(3)已知函数f(x)的定义域为D,对任意x,y∈D,若x≠y,有f(x)≠f(y)恒成立,则称f(x)在D上是单射,已知函数f(x)在D上封闭且单射,并且满足f x(D)⊊D,其中f n+1(x)=f(f n(x))(n∈N*),f1(x)=f(x),证明:存在D的真子集,D n⊊D n﹣1⊊…⊊D3⊊D2⊊D1⊊D,使得f(x)在所有D i(i=1,2,3,…,n)上封闭.【解答】解:(1)因为函数f(x)的定义域为(0,+∞),值域为(﹣∞,+∞),(取一个具体例子也可),所以f(x)在(0,1)上不封闭.…(结论和理由各1分)t=x+1∈(1,2),g(x)在(0,1)上封闭…(结论和理由各1分)(2)函数f(x)在D上封闭,则f(D)⊆D.函数f﹣1(x)在f(D)上封闭,则D⊆f(D),得到:D=f(D).…(2分)在D=[a,b]单调递增.则f(a)=a,f(b)=b在[﹣1,+∞)两不等实根.,故,解得.另解:在[﹣1,+∞)两不等实根.令k+1=t2﹣t在t∈[0,+∞)有两个不等根,故解得.(3)如果f(D)=D,则f n(D)=D,与题干矛盾.因此f(D)⊊D,取D1=f(D),则D1=f(D),则D1⊊D.接下来证明f(D1)⊊D1,因为f(x)是单射,因此取一个p∈D{D1,则p是唯一的使得f(x)=f(p)的根,换句话说f(p)∉f(D1).考虑到p∈D\D1,即,因为f(x)是单射,则f(D1)⊊f(D\{p})=f(D)\{f(p)}=D1\{f(p)}⊊D1这样就有了f(D1)⊊D1.接着令D n=f(D n),并重复上述论证证明D n+1⊊D n.+12018年上海市闵行区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M=.2.(4分)计算=.3.(4分)方程的根是.4.(4分)已知是纯虚数(i是虚数单位),则=.5.(4分)已知直线l的一个法向量是,则l的倾斜角的大小是.6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是(用数字作答)7.(5分)在(1+2x)5的展开式中,x2项系数为(用数字作答)8.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1,则异面直线A1B与B1C1所成角的大小是(结果用反三角函数表示)9.(5分)已知数列{a n}、{b n}满足b n=lna n,n∈N*,其中{b n}是等差数列,且,则b1+b2+…+b1009=.10.(5分)如图,向量与的夹角为120°,,,P是以O为圆心,为半径的弧上的动点,若,则λμ的最大值是.11.(5分)已知F1、F2分别是双曲线(a>0,b>0)的左右焦点,过F1且倾斜角为30°的直线交双曲线的右支于P,若PF2⊥F1F2,则该双曲线的渐近线方程是.12.(5分)如图,在折线ABCD中,AB=BC=CD=4,∠ABC=∠BCD=120°,E、F分别是AB、CD的中点,若折线上满足条件的点P至少有4个,则实数k 的取值范围是.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2∥l3,则下列结论一定正确的是()A.l1⊥l3B.l1∥l3C.l1、l3既不平行也不垂直D.l1、l3相交且垂直14.(5分)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bc C.ac>bd D.ac<bd15.(5分)无穷等差数列{a n}的首项为a1,公差为d,前n项和为S n(n∈N*),则“a1+d>0”是“{S n}为递增数列”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分也非必要16.(5分)已知函数(n<m)的值域是[﹣1,1],有下列结论:①当n=0时,m∈(0,2];②当时,;③当时,m∈[1,2];④当时,m∈(n,2];其中结论正确的所有的序号是()A.①②B.③④C.②③D.②④三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知函数(其中ω>0).(1)若函数f(x)的最小正周期为3π,求ω的值,并求函数f(x)的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.18.(14分)如图,已知AB是圆锥SO的底面直径,O是底面圆心,,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?20.(16分)已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.(18分)对于函数y=f(x)(x∈D),如果存在实数a、b(a≠0,且a=1,b=0不同时成立),使得f(x)=f(ax+b)对x∈D恒成立,则称函数f(x)为“(a,b)映像函数”.(1)判断函数f(x)=x2﹣2是否是“(a,b)映像函数”,如果是,请求出相应的a、b的值,若不是,请说明理由;(2)已知函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,且当x∈[0,1)时,f(x)=2x,求函数y=f(x)(x∈[3,7))的反函数;(3)在(2)的条件下,试构造一个数列{a n},使得当x∈[a n,a n+1)(n∈N*)时,2x+1∈[a n,a n+2),并求x∈[a n,a n+1)(n∈N*)时,函数y=f(x)的解析+1式,及y=f(x)(x∈[0,+∞))的值域.2018年上海市闵行区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M={0,1,2} .【解答】解:∵集合P={x|0≤x<3,x∈Z}={0,1,2},M={x|x2≤9}={x|﹣3≤x≤3},∴P∩M={0,1,2}.故答案为:{0,1,2}.2.(4分)计算=.【解答】解:===,故答案为:.3.(4分)方程的根是10.【解答】解:∵,即1+lgx﹣3+lgx=0,∴lgx=1,∴x=10.故答案为:10.4.(4分)已知是纯虚数(i是虚数单位),则=.【解答】解:∵是纯虚数,。

上海市松江区2017-2018学年高三一模数学(文)试题 Word版含解析

上海市松江区2017-2018学年高三一模数学(文)试题 Word版含解析

上海市松江区2017-2018学年高考数学一模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足|=0,则z的值为__________.2.已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=__________.3.在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10=__________.4.已知正方形ABCD的边长为2,E为CD的中点,则=__________.5.在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为__________(结果用反三角函数表示).6.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是__________.7.按如图所示的流程图运算,则输出的S=__________.8.已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移φ个单位长度(0<φ<)所得图象关于y轴对称,则φ=__________.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于__________.10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为__________.11.函数f(x)=sin2x﹣cos2x+1的单调递增区间为__________.12.某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是__________.13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=.若函数g(x)=f(x)﹣log a(x+2)(a>1)在区间(﹣2,6]恰有3个不同的零点,则a的取值范围是__________.14.在正项等比数列{a n}中,已知a1<a4=1,若集A={t|(a1﹣)+(a2﹣)+…+(a t﹣)≤0,t∈N*},则A中元素个数为__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知p,q∈R,则“q<p<0”是“||<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.若二项式展开式中含有常数项,则n的最小取值是( )A.5 B.6 C.7 D.817.设P是△ABC所在平面内的一点,,则( )A.B.C.D.18.已知满足条件x2+y2≤1的点(x,y)构成的平面区域面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2,其中[x]、[y]分别表示不大于x,y的最大整数,例如:[﹣0.4]=﹣1,[1.6]=1,则S1与S2的关系是( )A.S1<S2B.S1=S2C.S1>S2D.S1+S2=π+3三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足a<b<c,b=2asinB.(1)求A的大小;(2)若a=2,b=2,求△ABC的面积.20.已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.21.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).22.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.23.(18分)对于曲线C:f(x,y)=0,若存在最小的非负实数m和n,使得曲线C上任意一点P(x,y),|x|≤m,|y|≤n恒成立,则称曲线C为有界曲线,且称点集{(x,y)||x|≤m,|y|≤n}为曲线C的界域.(1)写出曲线(x﹣1)2+y2=4的界域;(2)已知曲线M上任意一点P到坐标原点O与直线x=1的距离之和等于3,曲线M是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线的界域.上海市松江区2015届高考数学一模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足|=0,则z的值为±2i.考点:二阶行列式的定义;复数代数形式的乘除运算.专题:矩阵和变换.分析:由已知得z2+4=0,由此能求出z=±2i..解答:解:∵=0,∴z2+4=0,解得z=±2i.故答案为:±2i.点评:本题考查复数的求法,是基础题,解题时要注意二阶行列式性质的合理运用.2.已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=.考点:对数函数图象与性质的综合应用.专题:计算题;函数的性质及应用.分析:由题意可得f(2)=log a2=﹣1;从而得到a=;再写反函数即可.解答:解:由题意,∵f﹣1(﹣1)=2,∴f(2)=log a2=﹣1;故a=;故f﹣1(x)=;故答案为:.点评:本题考查了反函数的应用及指数对数函数的应用,属于基础题.3.在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10=90.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知条件,利用等差数列的前n项和公式求出首项和公差,由此能求出结果.解答:解:∵在等差数列{a n}中,a2=6,a5=15,∴,解得a1=3,d=3,∴a2+a4+a6+a8+a10=5a1+25d=90.故答案为:90.点评:本题考查数列的若干项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.4.已知正方形ABCD的边长为2,E为CD的中点,则=2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.解答:解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.5.在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为arccos(结果用反三角函数表示).考点:异面直线及其所成的角.专题:计算题;空间位置关系与距离;空间角.分析:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.由于CC1⊥平面ABCD,则∠C1BC=60°,设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,即b=a,再由余弦定理,即可得到.解答:解:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,则由于CC1⊥平面ABCD,则∠C1BC=60°,即有tan60°=,即b=a,在△BA1C1中,BC1=BA1==2a,A1C1=a,cos∠BC1A1==.则BC1与AC所成的角为arccos.故答案为:arccos.点评:本题考查空间的直线和平面所成的角,异面直线所成的角的求法,考查运算能力,属于基础题.6.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(x﹣2)2+(y﹣1)2=1.考点:圆的标准方程;圆的切线方程.专题:计算题.分析:依据条件确定圆心纵坐标为1,又已知半径是1,通过与直线4x﹣3y=0相切,圆心到直线的距离等于半径求出圆心横坐标,写出圆的标准方程.解答:解:∵圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,∴半径是1,圆心的纵坐标也是1,设圆心坐标(a,1),则1=,又a>0,∴a=2,∴该圆的标准方程是(x﹣2)2+(y﹣1)2=1;故答案为(x﹣2)2+(y﹣1)2=1.点评:本题考查利用圆的切线方程求参数,圆的标准方程求法.7.按如图所示的流程图运算,则输出的S=20.考点:循环结构.专题:阅读型.分析:根据流程图,先进行判定条件,不满足条件则运行循环体,一直执行到满足条件即跳出循环体,输出结果即可.解答:解:第一次运行得:S=5,a=4,满足a≥4,则继续运行第二次运行得:S=20,a=3,不满足a≥4,则停止运行输出S=20故答案为:20点评:本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,在近两年的新课标地区2015届高考都考查到了,属于基础题.8.已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移φ个单位长度(0<φ<)所得图象关于y轴对称,则φ=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:根据函数的周期为π,结合周期公式可得ω=2.得到函数的表达式后,根据函数y=f (x+φ)是偶函数,由偶函数的定义结合正弦的诱导公式化简整理,即可得到实数φ的值.解答:解:∵函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,∴ω==2,函数表达式为:f(x)=sin(2x+),又∵y=f(x)图象向左平移φ个单位长度所得图象为y=sin[2(x+φ)+)]关于y轴对称,∴2φ+=+kπ,k∈Z,因为0<φ<,所以取k=0,得φ=,故答案为:.点评:本题给出y=Asin(ωx+φ)的图象左移φ个单位后得到偶函数的图象,求φ的值.着重考查了函数y=Asin(ωx+φ)的图象与性质和正弦的诱导公式等知识,属于基本知识的考查.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于.考点:双曲线的简单性质.专题:计算题.分析:可求得抛物线y2=12x的焦点坐标,从而可求得b2及双曲线﹣=1的右焦点坐标,利用点到直线间的距离公式即可.解答:解:∵抛物线y2=12x的焦点坐标为(3,0),依题意,4+b2=9,∴b2=5.∴双曲线的方程为:﹣=1,∴其渐近线方程为:y=±x,∴双曲线的一个焦点F(3,0)到其渐近线的距离等于d==.故答案为:.点评:本题考查双曲线的简单性质,求得b2的值是关键,考查点到直线间的距离公式,属于中档题.10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由题意知,七个数的中位数是5,说明5之前5个数中取3个,5之后4个数中取3个,根据概率公式计算即可.解答:解:5之前5个数中取3个,5之后4个数中取3个,P==.故答案为:.点评:本题主要考查了古典概率和中位数的问题,关键是审清题意,属于基础题.11.函数f(x)=sin2x﹣cos2x+1的单调递增区间为[kπ﹣](k∈Z).考点:两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的求值;三角函数的图像与性质.分析:化简可得解析式f(x)=sin(2x﹣)+1,令2kπ﹣≤2x﹣≤2kπ+,k∈Z即可解得函数f(x)的单调递增区间.解答:解:∵f(x)=sin2x﹣cos2x+1=sin(2x﹣)+1,∴令2kπ﹣≤2x﹣≤2kπ+,k∈Z,∴可解得函数f(x)=sin2x﹣cos2x+1的单调递增区间为:[kπ﹣](k∈Z),故答案为:[kπ﹣](k∈Z).点评:本题主要考查了两角和与差的正弦函数公式的应用,正弦函数的单调性,属于基本知识的考查.12.某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是[,].考点:函数的值域.专题:计算题;函数的性质及应用.分析:分别在Rt△PCF和Rt△PAB中利用勾股定理,得PA+PF=+.运动点P,可得A、P、B三点共线时,PA+PF取得最小值;当P在点B或点C时,PA+PF取得最大值.由此即可得到函数f(x)的值域.解答:解:Rt△PCF中,PF==同理可得,Rt△PAB中,PA=∴PA+PF=+∵当A、B、P三点共线时,即P在矩形ADFE的对角线AF上时,PA+PF取得最小值=当P在点B或点C时,PA+PF取得最大值+1∴≤PA+PF≤+1,可得函数f(x)=AP+PF的值域为[,].故答案为:[,].点评:本题以一个实际问题为例,求函数的值域,着重考查了勾股定理和函数的值域及其求法等知识点,属于基础题.13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=.若函数g(x)=f(x)﹣log a(x+2)(a>1)在区间(﹣2,6]恰有3个不同的零点,则a的取值范围是(,2).考点:根的存在性及根的个数判断;函数的周期性.专题:计算题;压轴题;数形结合.分析:由题意中f(x﹣2)=f(2+x),可得函数f(x)是一个周期函数,且周期为4,又由函数为偶函数,则可得f(x)在区间(﹣2,6]上的图象,结合方程的解与函数的零点之间的关系,可将方程f(x)﹣log a x+2=0恰有3个不同的实数解,转化为两个函数图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.解答:解:∵对于任意的x∈R,都有f(x﹣2)=f(2+x),∴函数f(x)是一个周期函数,且T=4又∵当x∈[﹣2,0]时,f(x)=,且函数f(x)是定义在R上的偶函数,故函数f(x)在区间(﹣2,6]上的图象如下图所示:若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0恰有3个不同的实数解则log a4<3,log a8>3,解得:<a<2,即a的取值范围是(,2);故答案为(,2).点评:本题考查根的存在性及根的个数判断,关键是根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题.14.在正项等比数列{a n}中,已知a1<a4=1,若集A={t|(a1﹣)+(a2﹣)+…+(a t﹣)≤0,t∈N*},则A中元素个数为7.考点:等比数列.专题:等差数列与等比数列.分析:设公比为q,由已知得a1=q﹣3,从而(a1﹣)+(a2﹣)+…+(a t﹣)=﹣=(a12q n﹣1﹣1)=•[q n﹣7﹣1]≤0,由此求出n≤7.解答:解:设公比为q∵a1<a4=a1q3=1∴0<a1<1 1<q3,q>1,①∴a1=q﹣3,②∴(a1﹣)+(a2﹣)+…+(a t﹣)=(a1+a2+…+a t)﹣(++…+)(后一个首项,公比)=﹣=(a12q n﹣1﹣1),代入②,得•[q n﹣7﹣1]≤0∵>0∴q t﹣7﹣1≤0q t﹣7≤1∴t﹣7≤0解得t≤7故答案为:7.点评:本题考查集合中元素个数的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知p,q∈R,则“q<p<0”是“||<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式之间的关系结合充分条件和必要条件的定义进行判断即可.解答:解:∵“q<p<0”,∴0<<1,则||<1成立,即充分性成立,若当q=2,p=﹣1时,满足||<1,但q<p<0不成立,即必要性不成立,故“q<p<0”是“||<1”充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.16.若二项式展开式中含有常数项,则n的最小取值是( )A.5 B.6 C.7 D.8考点:二项式定理的应用.专题:计算题.分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0方程有解.由于n,r都是整数求出最小的正整数n.解答:解:展开式的通项为T r+1=3n﹣r(﹣2)r C n r x2n﹣令2n﹣=0,据题意此方程有解∴n=,当r=6时,n最小为7.故选C.点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于中档题.17.设P是△ABC所在平面内的一点,,则( )A.B.C.D.考点:向量的加法及其几何意义;向量的三角形法则.专题:平面向量及应用.分析:根据所给的关于向量的等式,把等式右边二倍的向量拆开,一个移项一个和左边移来的向量进行向量的加减运算,变形整理,得到与选项中一致的形式,得到结果.解答:解:∵,∴,∴∴∴故选B.点评:本题考查了向量的加法运算和平行四边形法则,可以借助图形解答.向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好向量的加减运算.18.已知满足条件x2+y2≤1的点(x,y)构成的平面区域面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2,其中[x]、[y]分别表示不大于x,y的最大整数,例如:[﹣0.4]=﹣1,[1.6]=1,则S1与S2的关系是( )A.S1<S2B.S1=S2C.S1>S2D.S1+S2=π+3考点:二元一次不等式(组)与平面区域.专题:计算题;不等式的解法及应用;直线与圆.分析:先把满足条件x2+y2≤1的点(x,y)构成的平面区域,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域表达出来,然后看二者的区域的面积,再求S1与S2的关系.解答:解:满足条件x2+y2≤1的点(x,y)构成的平面区域为一个圆;其面积为:π当0≤x<1,0≤y<1时,满足条件[x]2+[y]2≤1;当0≤x<1,1≤y<2时,满足条件[x]2+[y]2≤1;当0≤x<1,﹣1≤y<0时,满足条件[x]2+[y]2≤1;当﹣1≤x<0,0≤y<1时,满足条件[x]2+[y]2≤1;当0≤y<1,1≤x<2时,满足条件[x]2+[y]2≤1;∴满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域是五个边长为1的正方形,其面积为:5综上得:S1与S2的关系是S1<S2,故选A.点评:本题类似线性规划,处理两个不等式的形式中,第二个难度较大,[x]2+[y]2≤1的平面区域不易理解.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足a<b<c,b=2asinB.(1)求A的大小;(2)若a=2,b=2,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinA的值,根据A为锐角求出A的度数即可;(2)由a,b,cosA的值,利用余弦定理求出c的值,根据b,c,sinA的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:(1)∵b=2asinB,∴由正弦定理化简得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵a<b<c,∴A为锐角,则A=;(2)∵a=2,b=2,cosA=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即4=12+c2﹣2×2×c×,整理得:c2﹣6c+8=0,解得:c=2(舍去)或c=4,则S=bcsinA=×2×4×=2.点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.20.已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)因为f(x)为偶函数,得到对任意的x∈R,都有f(﹣x)=f(x),求出b;(2)记h(x)=|x+b|=,讨论a值得到b的范围.解答:解:(1)因为f(x)为偶函数,∴对任意的x∈R,都有f(﹣x)=f(x),即a|x+b|=a|﹣x+b|,所以|x+b|=|﹣x+b|得b=0.(2)记h(x)=|x+b|=,①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,∴﹣b≤2,b≥﹣2②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数但h(x)在区间[﹣b,+∞)上是增函数,故不可能∴f(x)在区间[2,+∞)上是增函数时,a、b应满足的条件为a>1且b≥﹣2点评:本题考查了函数奇偶性的运用以及讨论思想的运用,属于中档题.21.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:计算题;应用题;函数的性质及应用.分析:(1)开始时,沙漏上部分圆锥中的细沙的高为H=×8=,底面半径为r=×4=;从而求时间;(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为H′,从而得V=π×42×H′=π;从而求高.解答:解:(1)开始时,沙漏上部分圆锥中的细沙的高为H=×8=,底面半径为r=×4=;V=πr2H=π×()2×=π≈39.71;V÷0.02≈1986(秒)所以,沙全部漏入下部约需1986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为H′,V=π×42×H′=π;H′=≈2.4;锥形沙堆的高度约为2.4cm.点评:本题考查了函数在实际问题中的应用,属于中档题.22.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.考点:二项式定理的应用;等差数列的性质;等比数列的性质.专题:综合题;转化思想.分析:(1){a n}为常数列,a1=1,可求a n=1,代入f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*)可求f(4)的值;(2)根据题意可求a n=2n﹣1(n∈N*),f(n)=C n1+2C n2+4C n3+…+2n﹣1C n n,两端同时2倍,配凑二项式(1+2)n,问题即可解决;(3)假设数列{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,利用倒序相加法求得,最终转化为(d﹣2)+(d﹣2)(n+2)2n﹣1=0对n∈N*恒成立,从而求得d=2,问题解决.解答:解:(1)∵{a n}为常数列,∴a n=1(n∈N*).∴f(4)=C41+C42+C43+C44=15.(2)∵{a n}为公比为2的等比数列,∴a n=2n﹣1(n∈N*).∴f(n)=C n1+2C n2+4C n3+…+2n﹣1C n n,∴1+2f(n)=1+2C n1+22C n2+23C n3+…+2n C n n=(1+2)n=3n,故.(3)假设数列{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,设公差为d,则f(n)=a1C n1+a2C n2+…+a k C n k+…+a n﹣1C n n﹣1+a n C n n,且f(n)=a n C n n+a n﹣1C n n﹣1+…+a k C n k+…+a2C n2+a1C n1,相加得2f(n)=2a n+(a1+a n﹣1)(C n1+C n2+…+C n k+…+C n n﹣1),∴==1+(n﹣1)d+[2+(n﹣2)d](2n﹣1﹣1).∴f(n)﹣1=(d﹣2)+[2+(n﹣2)d]2n﹣1=(n﹣1)2n对n∈N*恒成立,即(d﹣2)+(d﹣2)(n+2)2n﹣1=0对n∈N*恒成立,∴d=2.故{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,它的通项公式为a n=2n ﹣1.点评:本题重点考查二项式定理的应用,解决的方法有倒序相加法求f(n),难点在于综合分析,配凑逆用二项式定理,属于难题.23.(18分)对于曲线C:f(x,y)=0,若存在最小的非负实数m和n,使得曲线C上任意一点P(x,y),|x|≤m,|y|≤n恒成立,则称曲线C为有界曲线,且称点集{(x,y)||x|≤m,|y|≤n}为曲线C的界域.(1)写出曲线(x﹣1)2+y2=4的界域;(2)已知曲线M上任意一点P到坐标原点O与直线x=1的距离之和等于3,曲线M是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线的界域.考点:曲线与方程.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得(x﹣1)2≤4,y2≤4,由此能求出曲线(x﹣1)2+y2=4的界域.(2)设P(x,y),则+|x﹣1|=3,从而得到﹣1≤x≤2,﹣2,由此得到曲线M为有界曲线,并能求出求出其界域.(3)由已知得:=a,×=a,从而得到|x|,,进而得到|y|≤,由此能求出曲线C界域.解答:解:(1)∵曲线(x﹣1)2+y2=4,∴(x﹣1)2≤4,y2≤4,∴﹣1≤x≤3,﹣2≤y≤2,∴界域为{(x,y)||x|≤3,|y|≤2}.(2)设P(x,y),则+|x﹣1|=3,化简,得:y2=,∴﹣1≤x≤2,﹣2,∴界域为{(x,y)||x|≤2,|y|}.(3)由已知得:=a,×==a,∴(x2+y2+1)2﹣4x2=a2,∴,∵y2≥0,∴,∴(x2+1)2≤4x2+a2,∴(x2﹣1)2≤a2,∴1﹣a≤x2≤a+1,∴|x|,,令t=,,,当t=2,即时,等号成立.若0<a≤2,1﹣[1﹣a,1+a],时,,∴|y|≤,若a>2,1﹣<0,,∴x=0时,=a﹣1,∴|y|≤,∴曲线C界域为:①0<a≤2时,{(x,y)|x|≤,|y|≤}.②a>2时,{(x,y)||x|,|y|≤}.点评:本题考查曲线的界域的求法,考查曲线是否为有界曲线的判断与界域的求法,解题时要认真审题,注意函数与方程思想的合理运用.。

(完整版)2018年上海高考数学试卷(参考答案)

(完整版)2018年上海高考数学试卷(参考答案)

2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。

若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。

若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r,则AE BF ⋅u u u r u u u r的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。

从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。

若11lim2n n n S a →+∞+=,则q =_________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。

若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A) (B) (C) (D) 14.已知a ∈R ,则“1a >”是“11a<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

第一学期教学质量检测高三数学试卷一、填空题(本大题共有12题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________.()12,2. 抛物线24=y x 的焦点坐标为_________.()10, 3. 不等式2log 1021>x 的解为____________.4(,)+∞4. 已知复数z 满足(1i)4i z +⋅=(i 为虚数单位),则z 的模为_________. 225. 若函数()=y f x 的图像恒过点01(,),则函数13()-=+y fx 的图像一定经过定点____.()13,6. 已知数列{}n a 为等差数列,其前n 项和为n S .若936=S ,则348++=a a a ________.127. 在△ABC 中,内角,,A B C 的对边是,,a b c .若22)32(b a ⋅+=,c b =,则=A ___.56π 8. 已知圆锥的体积为π33,母线与底面所成角为3π,则该圆锥的表面积为 .π3 9.已知二项式n的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为________.358x 10. 已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.(,-∞11. 已知数列{}n a 满足:211007(1)2018(1)++=-++n n n na n a n a *()∈n N , 且121,2,a a ==若1lim,+→∞=n n na A a 则=A ___________. 100912. 已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. [)2,6∈-a解:当[)12,∈+∞x 时,1211041616x x ⎛⎤∈ ⎥+⎝⎦,.当()2,2∈-∞x 时,(1)若2a ≥,则()11=22x aa xf x --⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭在(),2-∞上是单调递增函数,所以()2210,2a f x -⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.若满足题目要求,则21100,162a -⎛⎫⎛⎤⎛⎫⊆ ⎪ ⎪⎥ ⎪⎝⎦⎝⎭⎝⎭,,所以24111,24,62162a a a -⎛⎫⎛⎫>=∴-<< ⎪⎪⎝⎭⎝⎭.又2a ≥,所以[)2,6a ∈. (2)若2a <,则()1,,21=21, 2.2a xx ax ax a f x a x ---⎧⎛⎫<⎪ ⎪⎪⎝⎭⎛⎫=⎨ ⎪⎝⎭⎛⎫⎪≤< ⎪⎪⎝⎭⎩,()f x 在(),a -∞上是单调递增函数,此时()()0,1f x ∈;()f x 在[),2a 上是单调递减函数,此时()21,12a f x -⎛⎤⎛⎫∈ ⎥ ⎪ ⎝⎭⎥⎝⎦.若满足题目要求,则211,2162aa -⎛⎫≤∴≥- ⎪⎝⎭,又2a <,所以[)2,2a ∈-.综上,[)2,6a ∈-.二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分. 13. “14<a ”是“一元二次方程20-+=x x a 有实数解”的( A ) (A )充分非必要条件 (B )充分必要条件(C )必要非充分条件 (D )非充分非必要条件 14. 下列命题正确的是( D )(A )如果两条直线垂直于同一条直线,那么这两条直线平行(B )如果一条直线垂直于一个平面内的两条直线,那么这条直线垂直于这个平面 (C )如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面 (D )如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行15. 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( B )种.(A )72 (B )36 ( (D )81 16. 已知点()()1,2,2,0-A B ,P ⋅AP AB 的取值范围为( A )(A )[]1,7 (B )[]1,7- (C)1,3⎡+⎣ (D)1,3⎡-+⎣三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤. 17.(本小题满分14分,第1小题满分7分,第2小题满分7分 已知直三棱柱ABC C B A -111中,︒=∠===9011BAC ,AA AC AB .(1)求异面直线B A 1与11C B 所成角; (2)求点1B 到平面BC A 1的距离.解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A ,所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h , 由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分 因为,B B A C BC A B V V 1111--=,…………………………12分所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分 或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,A ,()01111,,C B -=,…………4分A1C CB1B 1A因为,321221π=θ⇒=⋅-==θcos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u n =,则B A n ,BC n 1⊥⊥. 又()011,,-=,()1011-=,,A ,……………9分所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u A ,得()111,,n =.…………12分所以,点1B 到平面BC A 1的距离33==d .…………………………14分 18.(本小题满分14分,第1小题满分7分,第2小题满分7分)已知函数2()cos 2sin f x x x x =-.(1)若角α的终边与单位圆交于点3455(,)P ,求()f α的值; (2)当[,]63ππ∈-x 时,求()f x 的单调递增区间和值域.解:(1)∵角α的终边与单位圆交于点3455(,)P ,∴43sin =,cos =55αα ……2分2243432()cos 2sin 2()55525αααα=-=⨯-⨯=f …4分(2)2()cos 2sin f x x x x =-2cos21x x =+- …………………6分2sin(2)16x π=+- …………………………8分由222262k x k πππππ-≤+≤+得,36k x k ππππ-≤≤+又[,]63x ππ∈-,所以()f x 的单调递增区间是[,]66x ππ∈-; ………………10分∵[,]63x ππ∈-,∴52666x πππ-≤+≤…………………………12分 ∴1sin(2)126x π-≤+≤,()f x 的值域是[2,1]-. ………………14分19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E =    (6分)(2)03t <≤时,16()=20aH t t t++  (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨⎪⎩     (10分) ②39(,)1616343a a⎧>⎪⇒∈+∞⎨+≥⎪⎩    (12分) 综上,1[,)4a ∈+∞        (14分)20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知双曲线Γ: 22221(0,0)x y a b a b-=>>的左、右焦点分别是 1F 、2F ,左、右两顶点分别是 1A 、2A ,弦 AB 和CD 所在直线分别平行于x 轴与 y 轴,线段BA 的延长线与线段CD 相交于点 P (如图).(1)若(2,3)d =是Γ的一条渐近线的一个方向向量,试求Γ的两渐近线的夹角θ;(2)若1PA =,5PB = ,2PC =,4PD =,试求双曲线Γ的方程;(3)在(..1.)的条件下.....,且124A A =,点C 与双曲线的顶点不重合,直线1CA 和直线2CA 与直线:1l x =分别相交于点M 和N ,试问:以线段MN 为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.解:(1)双曲线22221x y a b-=的渐近线方程为:即0bx ay ±=,所以3b a =,…………2分 从而3tan2θ=22tan 2tan 431tan2θθθ==-, 所以arctan 3θ=………………………………………………..4分(2)设 (,)P P P x y ,则由条件知:11()()322P x PB PA PA PB PA =-+=+=,11()()122P y PC PD PC PD PC =+-=-=,即(3,1)P .…………6分所以(2,1)A ,(3,3)C ,………………………………………………………..…………7分代入双曲线方程知:2751,2781199114222222==⇒⎪⎩⎪⎨⎧=-=-b a ba b a ……9分 127527822=-y x ………………………………………………………………….. 10分 (3)因为124A A =,所以2a =,由(1)知,3b =Γ的方程为: 22143x y -=, 令00(,)C x y ,所以2200143x y -=,010:(2)2y CA y x x =++,令1x =,所以003(1,)2y M x +, 020:(2)2y CA y x x =--,令1x =,所以00(1,2y N x --, …………12分故以MN 为直径的圆的方程为:200003(1)()()022y y x y y x x --+--=+-, 即222000200033(1)()0224y y y x y y x x x -++--=-+-,即22000039(1)()0224y y x y y x x -++--=-+,…………………………………………….14分 若以MN 为直径的圆恒经过定点),(y x于是⎪⎩⎪⎨⎧=±=⇒⎪⎩⎪⎨⎧=-+-=0231049)1(022y x y x y 所以圆过x 轴上两个定点5(,0)2和1(,0)2-……………………………………………16分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点123,,,n A A A A (*n N ∈),并在第一象限内的抛物线232y x =上依次取点123,,,,n B B B B (*n N ∈),使得1k k kA B A -∆*()k N ∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .(1)求(1),(2)f f ,并猜想()f n (不要求证明); (2)令9()8n a f n =-,记m t 为数列{}n a 中落在区间2(9,9)mm内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2λ≤m S 对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; (3)已知数列{}n b满足:11,2n b b +==数列{}n c 满足:111,n nc c +==求证:1()2n n n b f c π+<<.解:(1)(1)1f =,(2)2f =  (2分) 猜想()f n n =  (2分) (2)98n a n =-  (5分)由21218899899999m mm m n n --<-<⇒+<<+112191,92,,9---∴=++⋅⋅⋅⋅⋅⋅m m m n  (6分)21199m m m t --∴=-  (7分) 352211(91)(99)(99)(99)m m m S --∴=-+-+-+⋅⋅⋅+- 352121(9999)(1999)m m --=+++⋅⋅⋅+-+++⋅⋅⋅+22129(19)(19)91091191980m m m m +---⋅+=-=-- (9分) 2λ≤m S 对任意*m N ∈恒成立min 12()83λλ⇒≤==⇒≤m S S (10分).(3)1sin,4b π=记1sin ,4n n b πθθ==,则1sin sin 2n n θθ+== *1()2n n n N πθ+⇒=∈  (12分) 1tan ,4c π=记1tan ,4n n c πϕϕ==,则1sec 1tan tan tan 2n n n n ϕϕϕϕ+-==*1()2n n n N πϕ+⇒=∈  (14分) 11sin,tan ,22n n n n b c ππ++∴==当(0,)2x π∈时,sin tan x x x <<可知: 1111sin()tan ,2222n n n n n n b f c ππππ++++=<=<=  (18分)杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷 2018.12.18一、填空题(本大题有12题,满分54分,第1——6题每题4分,第7—12题每题5分) 1、设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则____u=2、已知扇形的半径为6,圆心角为3π,则扇形的面积为_____ 3、已知双曲线221x y -=,则其两条渐近线的夹角为_____ 4、若()na b +展开式的二项式系数之和为8,则____n = 5、若实数,x y 满足221x y +=,则xy 的取值范围是_____6、若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于_______7、在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是____8、若函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围__9、在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是____10、已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期______ 11、当0x a <<时,不等式()22112x a x +≥-恒成立,则实数a 的最大值为______ 12、设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112nn n n T b n N *+=-∈, 且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为_____二、选题题(本题共有4题,满分20分,每题5分)13、下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )(A )()arcsin f x x= (B )lg y x= (C )()f x x=-(D )()cos f x x =14、某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( )(A )310 (B ) 35 (C ) 25 (D )2315、已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos sin ,,2sin cos a f b f c f θθθθθ+⎛⎫⎛⎫===⎪⎪+⎝⎭⎝⎭,则,,a b c 的大小关系是 (A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16、已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R ==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( ) ( A )[]0,4 (B )[]1,4- (C )[]3,5- (D )[]0,7三、解答题(本大题共有5题,满分76分) 17、(本题满分14分,第1题满分6分,第2小题满分8分)如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。

(2021年整理)2018年上海高三一模真题汇编——函数专题(教师版)

(2021年整理)2018年上海高三一模真题汇编——函数专题(教师版)

2018年上海高三一模真题汇编——函数专题(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年上海高三一模真题汇编——函数专题(教师版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年上海高三一模真题汇编——函数专题(教师版)的全部内容。

2018年一模汇编—-函数专题一、知识梳理【知识点1】函数的概念与函数三要素【例1】 设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -= 。

【答案】2-。

【解析】()11144f --==,()()1124f f f ⎛⎫-==- ⎪⎝⎭。

【点评】考察函数的概念。

【例2】函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .【答案】()1a ,∈-∞-. 【解析】①当0a ≥时,112a a ->,2a <-(舍);② 当0a <时,1a a>,1a >(舍)或1a <-;综上,所以()1a ,∈-∞-.【点评】考察分段函数的概念.【知识点2】函数的奇偶性【例1】已知()f x 、g()x 分别是定义在R 上的偶函数和奇函数,且()g()2x f x x x -=+,则(1)g(1)f += .【答案】12-。

【解析】()()()2x f x g x x ----=+-,根据奇偶性可得,()()2x f x g x x -+=-,所以()()1111212f g -+=-=-.【点评】考察函数的奇偶性,利用奇偶性求解析式。

2018年上海市15区高考高三一模数学试卷合集 带答案

2018年上海市15区高考高三一模数学试卷合集 带答案

8
第 2 卷 2018 年崇明区一模
一、填空题(本大题共有 12 题,满分 54 分,其中 1-6 题每题 4 分,7-12 题每题 5 分)
1、已知集合 A {1, 2, 5}, B {2, a} ,若 A B {1, 2, 3, 5} ,则 a

2、抛物线 y2 4x 的焦点坐标是
Sn ,首项 a1
1,公比为
a
3 2
,且
lim
n
S
n
a
,则
a ________.
11.从 5 男 3 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2 人组成 4 人志愿者服
务,要求服务队中至少有 1 名女生,共有
种不同的选法.(用数字作答)
12.在 ABC 中, BC 边上的中垂线分别交 BC, AC 于点 D, E .若 AE BC 6 , AB 2 ,
f (C) 1 ,求 ABC 面积的最大值,并指出此时 ABC 为何种类型的三角形. 2
19. 设数列{an} ,{bn} 及函数 f (x) ( x R ), bn f (an ) ( n N * ). (1)若等比数列{an} 满足 a1 1, a2 3 , f (x) 2x ,求数列{bnbn1} 的前 n ( n N * ) 项和; (2)已知等差数列{an} 满足 a1 2 , a2 4 , f (x) (q x 1) ( 、 q 均为常数, q 0 且 q 1), cn 3 n (b1 b2 bn ) ( n N * ),试求实数对 (, q) ,使得{cn} 成等比 数列.
x 1 5. 若 z 2 3i (其中 i 为虚数单位),则 Im z
i 6. 若从五个数 1 ,0,1,2,3 中任选一个数 m ,则使得函数 f (x) (m2 1)x 1 在 R 上

2018年上海高三一模真题汇编——三角比三角函数专题(学生版).docx

2018年上海高三一模真题汇编——三角比三角函数专题(学生版).docx

2018年上海高三一模真题汇编——三角比三角函数专题(学生版).docx 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年上海高三一模真题汇编——三角比三角函数专题(学生版).docx)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年上海高三一模真题汇编——三角比三角函数专题(学生版).docx的全部内容。

2018年一模汇编—-三角比三角函数专题一、知识梳理【知识点1】三角比求值【例1】已知是第二象限的角,且,利用表示 。

【例2】已知且,则 。

【知识点2】两角和与差公式、诱导公式、倍角公式【例1】设且求【例2】已知 求证【知识点3】万能公式【例1】已知,求的值.【知识点4】正余弦定理【例1“在中,角A ,B ,C 所对的边分别为已知______________,求角.”经推断破损处的条件为三角形一边的长度,且答案提示试将条件补充完整.【例2】在△ABC 中,分别是对边的长.已知成等比数列,且,求的大小及的值。

【知识点5】判断三角形形状【1】 在△ABC 中,若,则△ABC 的形状一定是( ) A 、等腰直角三角形; B 、直角三角形; C 、等腰三角形; D 、等边三角形。

αa =αcosa t a n α=),,0(πα∈51cos sin -=+ααta n α=12c o s (),s i n (),2923βααβ-=--=,0,22ππαπβ<<<<co s ().αβ+si n (2)2s i n 0.αββ++=t a n 3t a n ().ααβ=+),2(,0cos 2cos sin sin 622ππααααα∈=-+)32sin(πα+A B C ∆,,.a b c 045,a B =A 060,A =c b a ,,C B A ∠∠∠,,c b a ,,bc ac c a -=-22A ∠c Bb sin C A B sin sin cos 2=【知识点6】解三角形应用题【例1】如图,旅客从某旅游区的景点A 处下山至C 处有两种路径。

2018年上海市高三一模数学试题完整解析

2018年上海市高三一模数学试题完整解析

2018年高三一模数学试题解析目录2018年杨浦区高三一模试题分析 (1)2018年松江区高三一模试题分析 (10)2018年青浦区高三一模试题分析 (20)2018年虹口区高三一模试题分析 (31)2018年普陀区高三一模试题分析 (42)2018年徐汇区高三一模试题分析 (56)2018年长宁、嘉定区高三一模试题分析 (67)2018年浦东新区高三一模试题分析 (77)2018年崇明区高三一模试题分析 (87)2018年静安区高三一模试题分析 (96)2018年闵行区高三一模试题分析 (105)2018年黄浦区高三一模试题分析 (117)2018年三区高三一模填选难题试题分析 (127)2018年杨浦区高三一模试题分析一、填空题的结果是 1 .1.计算∞【考点】极限及其运算.=1.【分析】由n→+∞,→0,即可求得∞=1,故答案为:1.【解答】解:当n→+∞,→0,∴∞【点评】本题考查极限的运算,考查计算能力,属于基础题.2.已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m= 3 .【考点】交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.3.已知,则= ﹣.【考点】三角函数的恒等变换及化简求值.【分析】由已知利用诱导公式即可化简求值得解.【解答】解:∵θ,∴θπ=θ.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.4.若行列式,则x= 2 .【考点】二阶矩阵.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1,∴x=2,故答案为:2【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.5.已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y= 6 .【考点】增广矩阵的概念.【分析】由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,由此能求出x+y.【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得 x=4,y=2,∴x+y=6.故答案为:6.【点评】本题考查两数和的求法,是基础题,解题时要认真审题,注意增广矩阵的合理运用.6.在的二项展开式中,常数项等于﹣160 .【考点】二项式定理.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应r,从而可求出常数项.【解答】解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r ,令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160,故答案为:﹣160【点评】本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.7.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【考点】古典概型及其概率计算公式.【分析】分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.【点评】本题考查的知识点是古典概型概率计算公式,难度不大,属于基础题.8.数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n= 2n﹣1.【考点】反函数.【分析】先利用点(n,S n)都在f(x)的反函数图象上即点(S n,n)都在f(x)的原函数图象上,得到关于S n的表达式;再利用已知前n项和为S n求数列{a n}的通项公式的方法即可求数列{a n}的通项公式;【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣1【点评】本小题主要考查反函数、利用已知前n项和为S n求数列{a n}的通项公式的方法等基础知识,考查运算求解能力,属于基础题.9.在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【考点】余弦定理.【分析】由sinA、sinB、sinC依次成等比数列,利用等比数列的性质列出关系式,利用正弦定理化简,再利用余弦定理表示出cosB,把得出关系式代入并利用基本不等式求出cosB的范围,利用余弦函数的性质可求B的最大值.【解答】解:∵在△ABC 中,sinA 、sinB 、sinC 依次成等比数列,∴sin 2B=sinAsinC , 利用正弦定理化简得:b 2=ac ,由余弦定理得:cosB==≥=(当且仅当a=c 时取等号),则B 的范围为(0,π],即角B 的最大值为π.故答案为:π.【点评】此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于基础题.10.抛物线y 2=﹣8x 的焦点与双曲线﹣y 2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【考点】双曲线的性质.【分析】由已知条件推导出a 2+1=4,从而得到双曲线的渐近线方程为y=,由此能求出这条双曲线的两条渐近线的夹角.【解答】解:∵抛物线y 2=﹣8x 的焦点F (﹣2,0)与双曲线﹣y 2=1的左焦点重合,∴a 2+1=4,解得a= ,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为π ,故答案为:π. 【点评】本题考查双曲线的两条渐近线的夹角的求法,是基础题,解题时要认真审题,注意抛物线性质的合理运用.11.已知函数,x ∈R ,设a >0,若函数g (x )=f (x+α)为奇函数,则α的值为2k πα=【考点】三角函数中的恒等变换应用.【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质求出结果.【解答】()cos (sin )sin(2)3f x x x x x π=+,()sin(22)3g x x πα=++为奇函数,且0α>,∴23k παπ+=,26k ππα=-,k ∈*N .【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.12.已知点C 、D 是椭圆上的两个动点,且点M (0,2),若,则实数λ的取值范围为1[,3]3λ∈.【考点】椭圆的性质.【分析】数形结合,取极端情况,考查椭圆的性质,直线与椭圆的位置关系. 【解答】数形结合,取极端情况. 作CE ⊥y 轴,DF ⊥y 轴,3MD MF MB MC ME MA λ==≤=,同理13λ≥ 当D 点位于(0,1)-,C 点位于(0,1)时,λ等于3; 当D 点位于(0,1),C 点位于(0,1)-时,λ等于13,∴1[,3]3λ∈.【点评】本题考查椭圆的性质,直线与椭圆的位置关系,考查计算能力,属于中档题. 二、选择题13.在复平面内,复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义. 【分析】直接由复数的除法运算化简,求出复数对应的点的坐标,则答案可求.【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C .【点评】本题考查了复数代数形式的除法运算,考查了复数的代数表示法及其几何意义,是基础题. 14.给出下列函数:①y=log 2x;②y=x 2;③y=2|x|;④y=arcsinx .其中图象关于y 轴对称的函数的序号是( ) A.①②B.②③C.①③D.②④【考点】函数奇偶性的性质与判断.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:①y=log 2x 的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数; ②y=x 2;是偶函数,图象关于y 轴对称,满足条件.③y=2|x|是偶函数,图象关于y 轴对称,满足条件. ④y=arcsinx 是奇函数,图象关于y 轴不对称,不满足条件,故选:B .【点评】本题主要考查函数奇偶性的判断,利用函数奇偶性的定义和性质是解决本题的关键 15.“t ≥0”是“函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 【考点】充分条件、必要条件、充要条件.【分析】t ≥0⇒△=t 2+4t ≥0⇒函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点,函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点⇒△=t 2+4t ≥0⇒t ≥0或t ≤﹣4.由此能求出结果. 【解答】解:t ≥0⇒△=t 2+4t ≥0⇒函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点, 函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点⇒△=t 2+4t ≥0⇒t ≥0或t ≤﹣4.∴“t ≥0”是“函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A . 【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的零点等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S 1、S 2、S 3分别表示△ABC 、△ACD 、△ABD 的面积,则S 1+S 2+S 3的最大值是( )A.B.2C.4D.8【考点】平面向量数量积的性质及其运算;棱柱、棱锥的体积.【分析】由题意可知,三棱锥的顶点的三条直线AB ,AC ,AD 两两垂直,可以扩展为长方体,对角线为球的直径,设出三边,表示出面积关系式,然后利用基本不等式,求出最大值.【解答】解:设AB=a ,AC=b ,AD=c ,因为AB ,AC ,AD 两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a 2+b 2+c 2=4R 2=4 所以S △ABC +S △ACD +S △ADB =(ab+ac+bc )≤(a 2+b 2+c 2)=2即最大值为:2故选:B .【点评】本题是基础题,考查球的内接多面体,基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解题的关键. 三、解答题17.如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开. (1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域; (2)怎样围才能使得场地的面积最大?最大面积是多少?【考点】基本不等式及其应用.【分析】(1)由题意设长方形场地的宽为x ,则长为l ﹣3x ,表示出面积y ;由x >0,且l ﹣3x >0,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的面积最大值,从而求解. 【解答】解:(1)设平行于墙的边长为a ,则篱笆总长3l x a =+,即3a l x =-,所以场地面积(3)y x l x =-,(0,)3lx ∈(2)222(3)33()612ll y x l x x lx x =-=-+=--+,(0,)3l x ∈,所以当且仅当6l x =时,2max 12l y = 综上,当场地垂直于墙的边长x 为6l 时,最大面积为212l【点评】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.18.如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【考点】旋转体(圆柱、圆锥);异面直线及其所成的角.【分析】(1)推导出BS=5,从而SO=4,由此能求出圆锥的体积.(2)取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角,由此能求出异面直线SO与PA所成角.解:(1)由题意,π•OA•SB=15π,解得BS=5,故从而体积πππ.(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,在Rt△APH中,∠AHP=90 O,,…则∠,∴异面直线SO与PA所成角的大小.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【考点】集合的包含关系判断及应用;函数奇偶性的性质与判断.【分析】(1)由对数的真数大于0,可得集合A,再由集合的包含关系,可得a的不等式组,解不等式即可得到所求范围;(2)求得f(x)的定义域,计算f(﹣x)与f(x)比较,即可得到所求结论.【解答】解:(1)令>,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.【点评】本题考查函数的定义域和集合的包含关系,考查函数的奇偶性的判断,注意运用定义法,考查运算能力,属于基础题.20.设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【考点】直线与抛物线的综合.【分析】(1)根据题意,由抛物线的方程分析可得p的值,即可得答案;(2)根据题意,设直线的方程为x=my+b,分m=0与m≠0两种情况讨论,分析m的取值,综合可得m可取的值,将m的值代入直线的方程即可得答案;(3)设直线AB:x=my+b,将直线的方程与抛物线方程联立,结合OQ⊥AB,由根与系数的关系分析可得答案.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b,当m=0时,x=1和x=9符合题意;当m≠0时,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m),因为k AB•k CM=﹣1,,所以,得b=3﹣2m2 ,所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2,△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以,,(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=0【点评】本题考查直线与抛物线的位置关系,(2)中注意设出直线的方程,并讨论m的值.21.若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,,,,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【考点】数列与不等式的综合.【分析】(1)根据“U﹣数列”的定义可得:x=1时,>>;x=2时,>>;x≥3时,>>,解出即可得出.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n ﹣1,令b i=a i+1﹣a i,可得b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,利用裂项求和方法可得b i≥i﹣1.(2≤i≤n﹣1).即b i≥i ﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥,即,解得n≤65.另一方面,取b i=i﹣1(1≤i≤64),可得对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,进而得出.(3)M的最小值为,分析如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:a1+a2m﹣(a m+a m+1)≥m(m﹣1),即(a1+a2m)≥(a m+a m+1)+m(m﹣1)可得M≥.又,可得,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且a1=a m﹣(b1+b2+…+b m﹣1)=m(m﹣1)+1.此时.即可得出.【解答】解:(1)x=1时,>>,所以y=2或3;x=2时,>>,所以y=4;x≥3时,>>,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得︸个(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故,因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,,此时.综上,M的最小值为.【点评】本题考查了新定义、等差数列的通项公式与求和公式、裂项求和方法、不等式的性质,考查了推理能力与计算能力,属于难题2018年松江区高三一模试题分析一、填空题1.计算:∞= .【考点】极限及其运算.【分析】∞=∞,当n→∞,→0,即可求得∞=.【解答】解:∞=∞=,故答案为:【点评】本题考查极限的运算,考查计算转化思想,属于基础题.2.已知集合A={x|0<x<3},B={x|x2≥4},则A∩B= {x|2≤x<3} .【考点】交集及其运算.【分析】根据题意,B为一元二次不等式的解集,解不等式可得集合B;又由交集的性质,计算可得答案.【解答】解:由已知得:B={x|x≤﹣2或x≥2},∵A={ x|0<x<3},∴A∩B={x|0<x<3}∩{ x|x≤﹣2或x≥2}={x|2≤x<3}为所求.故答案为:{x|2≤x<3}.【点评】本题考查交集的运算,解题的关键在于认清集合的意义,正确求解不等式.3.已知{a n}为等差数列,S n为其前n项和.若a1+a9=18,a4=7,则S10= 100 .【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a9=18,a4=7,∴,解得d=2,a1=1.则S10=10+=100.故答案为:100.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.4.已知函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,则实数a= 3 .【考点】反函数.【分析】直接利用反函数值域和定义域的关系求出结果.【解答】解:函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,解得:a=3.故答案为:3.【点评】本题考查的知识要点:反函数的应用.5.已知角α的终边与单位圆x2+y2=1交于,,则cos2α等于﹣.【考点】二倍角的三角函数.【分析】由角α的终边与单位圆x2+y2=1交于,,可得:r=1,cosα=,从而可求cos2α=2cos2α﹣1=2×﹣1=﹣.【解答】解:∵角α的终边与单位圆x2+y2=1交于,,∴可得:r=1,cosα=,∴cos2α=2cos2α﹣1=2×﹣1=﹣.故答案为:﹣.【点评】本题主要考察了三角函数的定义,二倍角的余弦公式的应用,属于基本知识的考查.6.如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果是 2 .【考点】循环结构.【分析】x=8>0,不满足条件x≤0,则执行循环体,依此类推,当x=﹣1<0,满足条件,退出循环体,从而求出最后的y值即可.【解答】解:x=8>0,执行循环体,x=x﹣3=5﹣3=2>0,继续执行循环体,x=x﹣3=2﹣3=﹣1<0,满足条件,退出循环体,故输出y=0.5﹣1=2.故答案为:2【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.7.函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是 4 .【考点】正弦函数的图象;余弦函数的图象.【分析】直接利用三角方程求出结果.【解答】解:由于函数y=sin2x与y=cosx有交点,则:sin2x=cosx,整理得:sinx=或cosx=0所以:在[0,2π]范围内,x=π,π,π,π,故答案为:4.【点评】本题考查的知识要点:正弦函数的图象和余弦图象的应用.8.设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A、B两点,且弦AB的长为2,则a= 0 .【考点】直线与圆的位置关系.【分析】由弦长公式可得圆心到直线的距离为,再由点到直线的距离公式可得=1,由此求得a的值.【解答】解:由于圆(x﹣1)2+(y﹣2)2=4的圆心C(1,2),半径等于2,且圆截直线所得的弦AB的长为2ax﹣y+3=0的距离为,即=1,解得a=0,故答案为 0.【点评】本题主要考查直线和圆的位置关系,弦长公式、点到直线的距离公式的应用,属于中档题. 9.在△ABC 中,∠A=90°,△ABC 的面积为1,若=,=4,则的最小值为.【考点】平面向量数量积的性质及其运算.【分析】通过建系设出B ,C 坐标,化简的表达式,利用三角形面积求解表达式的最小值. 【解答】解:如图,建立直角坐标系,设B (10x ,0),C (0,10y ),若 = , =4, 则M (5x ,5y ),N (2x ,8y ),由题意△ABC 的面积为1,可得50xy=1,=10x 2+40y 2≥2 xy=,当且仅当x=2y=时取等号.故答案为:.【点评】本题考查向量的数量积的应用,考查转化思想以及计算能力.10.已知函数f (x )=x|2x ﹣a|﹣1有三个零点,则实数a 的取值范围为 (2 ,+∞) . 【考点】函数的零点与方程根的关系;研究曲线上某点切线方程. 【分析】转化方程的根为两个函数的图象的交点,利用数形结合. 【解答】分类讨论,设()|2|g x x x a =-,可以看作()g x 与1y =有三个交点,当0a <,()g x 图像如图所示,易知与1y =只有1个交点,不符;当0a>,()g x 图像如图所示,要与1y =有3个交点,需满足()14af >,即a >解法二:根据题意,可以看作()|2|g x x a =-与1()h x x=有三个交点,结合图像可知,当2ax >时,()g x 与()h x恒有一个交点,∴当2ax <时,()g x 与()h x 有两个不同交点,即12a xx-=在(0,)x∈+∞有两个解,2210x ax-+=,280a∆=->,且0a>,∴a>【点评】本题考查函数的零点的判断,考查数形结合的应用,是中档题.11.定义,>,已知函数f(x)、g(x)的定义域都是R,则下列四个命题中为真命题的是②③④(写出所有真命题的序号)①若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))为奇函数;②若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数;③若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数;④若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数.【考点】函数单调性的性质与判断;函数奇偶性的性质与判断.【分析】由已知中:,>,结合具有奇偶性及单调性的图象特征,可得答案.【解答】解:,>,若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))不一定是奇函数,如y=x与y=x3,故①是假命题;若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数,故②是真命题;若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数,故③是真命题;若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数,故④是真命题.故答案为:②③④.【点评】本题考查的知识点是函数奇偶性的性质,函数单调性的判断与证明,难度中档.12.已知数列{a n}的通项公式为a n=2q n+q(q<0,n∈N*),若对任意m,n∈N*都有,,则实数q的取值范围为(﹣,0).【考点】数列递推式.【分析】由a n=2q n+q,a1=3q<0,由,,则a n<0,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最大值及最小值分别为和,即可求q的取值范围.【解答】解:由a n=2q n+q(q<0,n∈N*),因为a1=3q<0,且对任意n∈N*,∈(,6)故a n<0,特别地2q2+q<0,于是q∈(﹣,0),此时对任意n∈N*,a n≠0.当﹣<q<0时,a2n=2|q|2n+q>q,a2n﹣1=﹣2|q|2n﹣1+q<q,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最小值及最大值分别为=和=.由>及<6,解得﹣<q<0.综上所述,q的取值范围为(﹣,0),故答案为:(﹣,0).【点评】本题考查等差数列以及等比数列的综合应用,数列与函数关系,考查计算能力、转化思想,属于中档题.二、选择题13.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为( )A.﹣5B.5C.﹣3D.3【考点】复数的运算.【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数的关系求解.【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.【点评】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题.14.已知f(x)是R上的偶函数,则“x1+x2=0”是“f(x1)﹣f(x2)=0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件.【分析】“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”,由此能求出结果.【解答】解:∵f(x)是R上的偶函数,∴“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”或者其他情况,∴“x1+x2=0”是“f(x1)﹣f(x2)=0”的充分而不必要条件.故选:A.【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的奇偶性等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.15.若存在x∈[0,+∞)使<成立,则实数m的取值范围是( )A.(﹣∞,1)B.(﹣1,+∞)C.(﹣∞,﹣1]D.[1,+∞)【考点】存在量词和特称命题.【分析】推导出2x•m>2x•x﹣1,从而m>x﹣,再由x∈[0,+∞),能求出实数m的取值范围.【解答】解:存在x∈[0,+∞)使<成立,∴2x•x﹣2x•m<1,∴2x•m>2x•x﹣1,∴m>x﹣,∵x∈[0,+∞),∴2x≥1,∴m>x﹣≥﹣1.∴实数m的取值范围是(﹣1,+∞).故选:B.【点评】本题考查实数值的取值范围的求法,考查二阶行列式、不等式、指数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.已知曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则实数λ的取值范围是( )A .(﹣∞,﹣1]∪[0,1)B .(﹣1,1]C .[﹣1,1)D .[﹣1,0]∪(1,+∞) 【考点】双曲线的性质.【分析】利用绝对值的几何意义,由x=|y|﹣2可得,y ≥0时,x=y ﹣2;y <0时,x=﹣y ﹣2,函数x=|y|﹣2的图象与方程y 2+λx 2=4的曲线必相交于(0,±2),为了使曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点,则两曲线无其它交点.x=y ﹣2代入方程y 2+λx 2=4,整理可得(1+λ)y 2﹣4λy+4λ﹣4=0,分类讨论,可得结论,根据对称性,同理可得y <0时的情形. 【解答】解:由x=|y|﹣2可得,y ≥0时,x=y ﹣2;y <0时,x=﹣y ﹣2, ∴函数x=|y|﹣2的图象与方程y 2+λx 2=4的曲线必相交于(0,±2), 所以为了使曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点, 则将x=y ﹣2代入方程y 2+λx 2=4,整理可得(1+λ)y 2﹣4λy+4λ﹣4=0,当λ=﹣1时,y=2满足题意,∵曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点, ∴△>0,2是方程的根,∴λ λ<0,即﹣1<λ<1时,方程两根异号,满足题意;综上知,实数λ的取值范围是[﹣1,1).故选:C .【点评】本题考查曲线的交点,考查学生分析解决问题的能力,考查分类讨论的数学思想,属于中档题. 三、解答题17.在△ABC 中,AB=6,AC=3 ,=﹣18. (1)求BC 边的长;(2)求△ABC 的面积. 【考点】三角形中的几何计算.【分析】(1)直接利用向量的数量积和余弦定理求出BC 的长. (2)进一步利用余弦定理和三角形的面积公式求出结果.【解答】解:(1)=﹣18,由于:AB=6,AC=3 , 所以:BC 2=AB 2+AC 2﹣2AB •ACcosA ,解得:BC=3 (2)在△ABC 中,BA=6,AC=3 ,BC=3 ,则:cosA==﹣,所以:sinA=,则:11sin 6922ABCSAB AC A ∆=⋅⋅=⋅⋅【点评】本题考查的知识要点:向量的数量积的应用,余弦定理的应用,三角形面积公式的应用. 18.已知函数(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)当a >0时,研究函数f (x )在x ∈(0,+∞)内的单调性. 【考点】函数单调性的性质与判断;函数奇偶性的性质与判断.【分析】(1)根据函数奇偶性定义,可得当a=0时,函数f (x )为偶函数;当a ≠0时,函数f (x )为非奇非偶函数;(2)当a >0时,f (x )在(0,a )上为减函数,在(a ,+∞)上为增函数; 【解答】解:(1)当a=0时,函数f (x )=1(x ≠0),满足f (﹣x )=f (x ), 此时f (x )为偶函数;当a ≠0时,函数f (a )=0,f (﹣a )=2,不满足f (﹣x )=f (x ),也不满足f (﹣x )=﹣f (x ),此时f (x )为非奇非偶函数;(2)当a >0时,若x ∈(0,a ),则> ,为减函数;若x ∈[a ,+∞],则< ,为增函数;故f (x )在(0,a )上为减函数,在[a ,+∞)上为增函数;【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度中档. 19.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10﹣t )的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p (t ). (1)求p (t )的表达式,并求当发车时间间隔为6分钟时,电车的载客量; (2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?【考点】根据实际问题选择函数类型.【分析】(1)由题意知,p (t )= , < , (k 为常数),结合p (2)=272求得k=2,则p (t )的表达式可求,进一步求得p (6);(2)写出分段函数Q=, <,,利用基本不等式及函数的单调性分段求出最大值,取两者中的最大者得答案.【解答】解:(1)由题意知,p (t )= , < , (k 为常数),∵p(2)=400﹣k(10﹣2)2=272,∴k=2.∴24002(10)210()4001020t t p t t ⎧--≤<=⎨≤≤⎩. ∴p(6)=400﹣2(10﹣6)2=368(人);(2)由,可得Q=, <,,当2≤t <10时,Q=180﹣(12t+),当且仅当t=5时等号成立;当10≤t ≤20时,Q=﹣60+≤﹣60+90=30,当t=10时等号成立.∴当发车时间间隔为5分钟时,该线路每分钟的净收益最大,最大为60元.【点评】本题考查函数模型的性质及应用,考查简单的数学建模思想方法,是中档题.20.已知椭圆E:=1(a>b>0)经过点,,其左焦点为,,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;(2)过点F且与l垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为,求直线l的方程;(3)设,,求证:λ1+λ2为定值.【考点】椭圆的性质.【分析】(1)由c=,由a2=b2+c2=b2+3,将点代入椭圆方程,即可求得a和b的值,即可求得椭圆方程;(2)设直线l的方程,代入椭圆方程,利用韦达定理及弦长公式求得|AB|及|CD|,则四边形ACBD的面积S=×|AB||CD|=,即可求得k的值,求得直线l的方程;(3)由向量的坐标运算,表示出λ1和λ2,有(2)即可求得λ1+λ2为定值.【解答】解:(1)由题意可得:c=,则a2=b2+c2=b2+3,将,代入椭圆方程:,解得:b2=1,a2=4,∴椭圆的E的方程:;(2)设直线l:y=k(x+),A(x1,y1),B(x2,y2),C(x0,y0),则D(x1,﹣y1),联立,整理得:(1+4k2)x2+8k2x+12k2﹣4=0,∴x1+x2=﹣,x1x2=,|AB|==,由直线CD的斜率为﹣,将k转化成﹣,同理|CD|=,∴四边形ACBD的面积S=×|AB||CD|==,∴2k4﹣5k2+2=0,解得:k2=2,k2=,∴k=±或k=±,由k>0,∴k=或k=,∴直线AB的方程为x﹣y+=0或x﹣y+=0;(3)λ,λ,得x1=λ1(﹣﹣x1),x2=λ2(﹣﹣x2),∴λ1=,λ2=,λ1+λ2=﹣(+)=﹣=﹣8,λ1+λ2为定值,定值为﹣8.。

2018届上海市松江区高考数学一模(附答案)

2018届上海市松江区高考数学一模(附答案)

(3) 1 2 8 过程:方法一: (2)设直线 AB 的倾斜角为 ,则 AB 方程: 同时直线 CD 的倾斜角为 或 ;
2
x 3 t cos y t sin



2
将 AB 参数方程代入椭圆方程,整理得: 1 3sin 2 t 2 2 3 cos t 1 0 ,
2 2
1
x ,且 f 1 2 1 ,则实数 a ____________

5. 已知角 的终边与单位圆 x y 1交于点 P , y0 ,则 cos 2 __________ 6. 右图是一个算法的程序框图,当输入值 x 为 8 时,则其输出的结果是 ____________ 7. 函数 y sin 2 x 的图像与 y cos x 的图像在区间 0, 2 上交点的个数是 ____________ 8. 若直线 ax y 3 0 与圆 x 1 y 2 4 相交于 A 、 B 两点,且
第 5 页
∴ CD
4 4 , 1 3cos 2 2 1 3sin 2
1 2
∴ S ABCD AB CD ∴ tan
1 3sin 1 3cos
2 2
8

6 3 4 ,解得 sin 或 sin 3 3 3
2
A. 5
B. 5
C. 3
D. 3
14. 已知 f x 是 R 上的偶函数,则“ x1 x2 0 ”是“ f x1 f x2 0 ”的( ) A. 充分而不必要条件 C. 充分必要条件 15. 若存在 x 0, 使 A. B. 必要而不充分条件 D. 既不充分也不必要条件

(11套)2018年上海市 含所有区 高考数学一模试卷 汇总(打包下载)

(11套)2018年上海市 含所有区 高考数学一模试卷 汇总(打包下载)

(11套)2018年上海市含所有区高考数学一模试卷汇总2018年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=.2.(4分)抛物线y2=4x的焦点坐标为.3.(4分)不等式<0的解是.4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是.(用数字作答)6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为cm2.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=.S11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.2018年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=3.【解答】解:∵集合A={1,2,5},B={2,a},A∪B={1,2,3,5},∴a=3.故答案为:3.2.(4分)抛物线y2=4x的焦点坐标为(1,0).【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=1﹣i.【解答】解:由iz=1+i,得z==1﹣i故答案为:1﹣i.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是21.(用数字作答)【解答】解:(x﹣)7的展开式的通项为=,由7﹣3r=1,得r=2,∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=2.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.【解答】解:若函数f(x)=x a的反函数的图象经过点(,),则:(,)满足f(x)=xα,所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为18πcm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm,则圆柱体的体积为V=πa2•a=27π,解得a=3cm;∴该圆柱的侧面积为S=2π×3×3=18πcm2.故答案为:18π.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=﹣.【解答】解:∵函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,∴x>0时,﹣f(x)=2﹣x﹣a(﹣x),∴f(x)=﹣2﹣x﹣ax,∵f(2)=2,∴f(2)=﹣2﹣2﹣2a=2,解得a=﹣.故答案为:﹣.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=2.S【解答】解:无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,=a,且S可得=a,即有=a,即为2a2﹣5a+2=0,解得a=2或,由题意可得0<|q|<1,即有0<|a﹣|<1,检验a=2成立;a=不成立.故答案为:2.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有780种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论:①、选出志愿者服务队的4人中有1名女生,有C53C31=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C52C32=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C51C33=5种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法,则一共有360+360+60=780;故答案为:780.12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=4.【解答】解:建立平面直角坐标系如图所示,设B(﹣a,0),C(a,0),E(0,b),∠ABC=α,由||=2,知A(﹣a+2cosα,2sinα),∴=(a﹣2cosα,b﹣2sinα),=(2a,0),∴•=2a(a﹣2cosα)+0=2a2﹣4acosα=6,∴a2﹣2acosα=3;又=(2a﹣2cosα,﹣2sinα),∴=(2a﹣2cosα)2+(﹣2sinα)2=4a2﹣8acosα+4=4(a2﹣2acosα)+4=4×3+4=16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选:D.15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2【解答】解:双曲线﹣y2=1的渐近线为:y=±x.把x=2代入上述方程可得:y=±1.不妨取A(2,1),B(2,﹣1).=a+b=(2a+2b,a﹣b).代入双曲线方程可得:﹣(a﹣b)2=1,化为ab=.∴=ab,化为:|a+b|≥1.故选:C.三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.【解答】解:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.2018年上海市虹口区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为.2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则=.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=.5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是.7.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC 的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=.11.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣115.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+12018年上海市虹口区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为(﹣∞,2).【解答】解:要使函数有意义,可得2﹣x>0,即x<2.函数f(x)=lg(2﹣x)定义域为:(﹣∞,2).故答案为:(﹣∞,2).2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=0.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣1)=﹣f(1),f(0)=0,即f(﹣1)+f(0)+f(1)=0,故答案为:0.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则= 1.【解答】解:根据题意,等比数列{a n}的首项和公比均为,则其前n项和S n==1﹣()n,则=1;故答案为:1.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=﹣.【解答】解:因为a:b:c=2:3:4,所以设a=2k,b=3k,c=4k,则根据余弦定理得:cosC===﹣.故答案为:﹣5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是[,] .【解答】解:∵z=a+bi(a,b∈R),且|z|=1,∴,即a2+b2=1,令a=cosθ,b=sinθ,则ab=cosθ•sinθ=,∴ab∈[,].故答案为:.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是18.【解答】解:根据题意,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,分2种情况讨论:①、从物理、化学、生物这三门中选1门,政治、历史、地理这三门选2门,有C31C32=9种选法,②、从物理、化学、生物这三门中选2门,政治、历史、地理这三门选1门,有C31C32=9种选法,则一共有9+9=18种选法;故答案为:187.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.【解答】解:如图,设三棱锥P﹣ABC的底面积为S,高为h,∵M是AB的中点,∴,∵N是PC的中点,∴三棱锥N﹣MBC的高为,则,,∴=.故答案为:.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.【解答】解:根据题意,抛物线y2=12x的焦点为(3,0),若双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的顶点坐标为(±3,0),则有a2=9,则双曲线的方程为:﹣y2=1,双曲线的焦点在x轴上,则其渐近线方程为故答案为:9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.【解答】解:由题意正余弦函数的图象可得:y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC是等腰三角形,∵底边长为一个周期T=2π,高为,∴△ABC的面积=2=,故答案为:.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=4.【解答】解:∵椭圆+的左右焦点分别为F1,F2,a=2,过焦点F1的直线交椭圆于M(x1,y1),N(x2,y2)两点,△MNF2的内切圆的面积为π,∴△MNF2内切圆半径r=1.∴△MNF2面积S=×1×(MN+MF2+MF2)=2a=4,故答案为:411.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.【解答】解:如图所示,∵D是BC的中点,∴=+=+,又=+,,∴+=+a n(+),)+,化为:=(1﹣a n﹣a n+1∵点列P n(n∈N*)在线段AC上,+=1,∴1﹣a n﹣a n+1化为:a n=﹣,又a1=1,+1则数列{a n}是等比数列,首项为1,公比为﹣.∴a n=.故答案为:.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为(0,0)或(1,0).【解答】解:根据题意,函数y=f(x)的零点为方程x2+2a•x+b•2x=0的根,如果函数y=f(x)与函数y=f(f(x))的零点完全相同,则有f(x)=x,即x2+2a•x+b•2x=x,方程x2+2a•x+b•2x=x的根就是函数y=f(x)与函数y=f(f(x))的零点,则有,解可得x=0,即x2+2a•x+b•2x=0的1个根为x=0,分析可得b=0,则f(x)=x2+2a•x,解可得x1=0或x2=﹣2a,f(f(x))=(x2+2a•x)2+2a(x2+2a•x),若函数y=f(x)与函数y=f(f(x))的零点完全相同,分析可得a=0或a=1,则(a,b)为(0,0)或(1,0);故答案为(0,0)或(1,0).二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]【解答】解:∵异面直线a和b所成的角为θ,∴θ的范围是(0,].故选:C.14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣1【解答】解:命题:“若x2=1,则x=1”的逆否命题为“若x≠1,则x2≠1”;即“若x≠1,则x≠1且x≠﹣1”.故选:C.15.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.【解答】解:∵函数,∴f(1)+f(2)+f(3)+…+f(2017)=1009×f(﹣1)+1008×f(0)=1009×2﹣1+1008×20=.故选:D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.【解答】解:以AB,AC为坐标轴建立坐标系,则B(4,0),C(0,6),∵||=2,∴M的轨迹是以A为圆心,以2为半径的圆.∵,∴N是MC的中点.设M(2cosα,2sinα),则N(cosα,sinα+3),∴=(cosα﹣4,sinα+3),∴||2=(cosα﹣4)2+(sinα+3)2=6sinα﹣8cosα+26=10sin(α﹣φ)+26,∴当sin(α﹣φ)=﹣1时,||取得最小值=4,当sin(α﹣φ)=1时,||取得最大值=6.故选B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.【解答】证明:(1)在三棱锥P﹣ABC中,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.∴PM⊥AC,AB⊥平面PAC,∴PM⊥AB,∵AB∩AC=A,∴PM⊥平面ABC.解:(2)连结BM,∵PM⊥平面ABC,∴∠PBM是直线PB和平面ABC所成的角,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点,∴PM==,BM===,∴tan∠PBM===,∴.∴直线PB和平面ABC所成的角为arctan.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.【解答】解:函数=sinωx+cosωx=2sin (ωx),(1)∵函数的最小正周期等于π.即∴ω=2.可得f(x)=2sin(2x),由2x,k∈Z得:≤x≤故得函数的单调递增区间为[,],k∈Z(2)∵f(x)=2sin(2x),当,(2x)∈[]∴当2x=时,函数f(x)取得最大值为2.当2x=时,函数f(x)取得最小值为﹣1.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.【解答】解:(1)设AQ=x,则由得:即AP=故S==(x>1);(2)由(1)得:S′=(x>1);当x∈(1,2)时,S′<0,当x∈(2,+∞)时,S′>0,故x=2时,S min=4.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.【解答】解:(1)如图,以FK的中点为坐标原点O,FK所在的直线为x轴,过O的垂线为y轴建立直角坐标系,即有F(,0),直线l:x=﹣,动圆M过点F且与直线l相切,可得|AE|=|AF|,由抛物线的定义可得曲线C的轨迹为F为焦点、直线l为准线的抛物线,可得方程为y2=2px;(2)点A到直线l的距离为d,可得|AE|=|AF|=d,且,设A(x0,y0),可得y02=2px0,即有d=x0+,则x0=d﹣,即有|EF|2=p2+y02=p2+2p(d﹣)=2pd,在△EAF中,cos∠EAF==1﹣,可得﹣≤cos∠EAF≤,可得arccos≤π﹣arccos,则∠EAF的取值范围是[arccos];(3)∠EAF的平分线所在的直线与曲线的交点个数为1.设A(x0,y0),可得y02=2px0,当A与O重合时,显然一个交点;当A不与O重合,由∠EAF的平分线交x轴于M,连接EM,可得∠AMF=∠MAF,即有|MF|=|AF|=d,四边形AEMF为菱形,EF垂直平分AM,可得∠AMF+∠EFM=90°,tan∠AMF=cot∠EFM==,可设y0>0,则直线AM的方程为y﹣y0=(x﹣x0),则y0y﹣y02=px﹣px0,化为y0y=px+px0,代入抛物线的方程y2=2px,消去x可得,y2﹣2y0y+2px0=0,即为(y﹣y0)2=0,可得y=y0,x=x0,即∠EAF的平分线所在的直线与曲线的交点个数为1.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+1【解答】解:(1)∵无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.a2=2,且对于一切正整数n,均有,∴==1,=,由此猜想=23﹣n.再利用数学归纳法证明:①当n=1时,=4,成立.②假设n=k时,成立,即,则a k+1====2(6﹣2k)﹣(4﹣k)=22﹣k=23﹣(k+1).由①②得,∴{a n}是首项为4,公比为的等比数列,∴S n==8(1﹣).(2)∵对于一切正整数n,均有a n•a n+1=S n,∴S n=a n a n+1,S n﹣1=a n﹣1a n,∴a n=a n(a n+1﹣a n﹣1),∴a n+1﹣a n﹣1=1.a1=4,由a n•a n+1=S n,得a2=1,a3=5,a4=3,…∴当n为偶数时,+===.当n为奇数时,S n=++==.证明:(3)∵对于一切正整数n,均有a n+a n+1=3S n,∴a n+a n+1=3S n,a n﹣1+a n=3S n﹣1,∴a n+1﹣a n﹣1=3a n,a1+a2=3a1,a2=2a1=8,能被8整除,a3﹣a1=3a2,a3=28,假设a3k﹣1=8m,m∈N*.=3a2k+1+a3k=3(3a3k+a3k﹣1)+a3k则a3k+2=10a3k+a3k﹣1=40p+24q,p,q∈N*能被8整除,综上,a3n能被8整除.﹣12018年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分36分.其中第1~6题每题满分36分,第7~12题每题满分36分)1.(3分)已知全集U=R,集合,则(∁U B)∩A=.2.(3分)函数的定义域是.3.(3分)若复数z满足(i为虚数单位),则z=.4.(3分)已知sin(α+)=,α∈(﹣,0),则tanα=.5.(3分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.6.(3分)若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=.7.(3分)已知向量=(x,y)(x,y∈R),=(1,2),若x2+y2=1,则|﹣|的最小值为.8.(3分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=.9.(3分)已知m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是(用符号“<“连接起来).10.(3分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.11.(3分)已知x∈R,定义:A(x)表示不小于x的最小整数.如,A(﹣1.1)=﹣1.若A(2x•A(x))=5,则正实数x的取值范围是.12.(3分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.二、选择题(本大题共有4题,满分12分.)13.(3分)若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(3分)已知向量,则下列能使成立的一组向量是()A.B.C.D.15.(3分)一个算法的程序框图如图所示,则该程序运行后输出的值是()A.4 B.5 C.6 D.716.(3分)已知a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,若线段l1,l2,l3,l4的长分别为a1,a2,a3,a4,则()A.对任意的d,均存在以l1,l2,l3为三边的三角形B.对任意的d,均不存在以为l1,l2,l3三边的三角形C.对任意的d,均存在以l2,l3,l4为三边的三角形D.对任意的d,均不存在以l2,l3,l4为三边的三角形三、解答题(本大题共有5题,满分74分.)17.(12分)在长方体ABCD﹣A1B1C1D1中,AB=AA1=4,BC=3,E,F分别是所在棱AB,BC的中点,点P是棱A1B1上的动点,联结EF,AC1.如图所示.(1)求异面直线EF,AC1所成角的大小(用反三角函数值表示);(2)求以E,F,A,P为顶点的三棱锥的体积.18.(12分)如图,已知点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,将OA绕坐标原点逆时针旋转至OB.(1)用α表示A,B两点的坐标;(2)M为x轴上异于O的点,若MA⊥MB,求点M横坐标的取值范围.19.(14分)已知函数g(x)=,x∈R,函数y=f(x)是函数y=g(x)的反函数.(1)求函数y=f(x)的解析式,并写出定义域D;(2)设h(x)=,若函数y=h(x)在区间(0,1)内的图象是不间断的光滑曲线,求证:函数y=h(x)在区间(﹣1,0)内必有唯一的零点(假设为t),且﹣1.20.(18分)(理科)定义:若各项为正实数的数列{a n}满足,则称数列{a n}为“算术平方根递推数列”.,x n)在二次函数f(x)=2x2+2x 已知数列{x n}满足,且,点(x n+1的图象上.(1)试判断数列{2x n+1}(n∈N*)是否为算术平方根递推数列?若是,请说明你的理由;(2)记y n=lg(2x n+1)(n∈N*),求证:数列{y n}是等比数列,并求出通项公式y n;}中依据某种顺序自左至右取出其中的项,(3)从数列{y把这些项重新组成一个新数列{z n}:.若数列{z n}是首项为、公比为的无穷等比数列,且数列{z n}各项的和为,求正整数k、m的值.21.(18分)已知椭圆Γ:+=1(a>b>0),过原点的两条直线l1和l2分别与Γ交于点A、B和C、D,得到平行四边形ACBD.(1)当ACBD为正方形时,求该正方形的面积S;(2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值.(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.2018年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分36分.其中第1~6题每题满分36分,第7~12题每题满分36分)1.(3分)已知全集U=R,集合,则(∁U B)∩A= {x|﹣1<x≤} .【解答】解:A={x|﹣1<x<1},∁U B={x|x≤},则(∁U B)∩A={x|﹣1<x≤},故答案为:{x|﹣1<x≤},2.(3分)函数的定义域是(1,+∞).【解答】解:要使函数有意义,需满足解得x>1故答案为:(1,+∞)3.(3分)若复数z满足(i为虚数单位),则z=1+2i.【解答】解:由,得z=1+2i.故答案为:1+2i.4.(3分)已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.(3分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.【解答】解:设数列中的任意一项为a,由无穷等比数列中的每一项都等于它后面所有各项的和,得a=,即1﹣q=q∴q=.故答案为:.6.(3分)若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=1.【解答】解:作函数y=sinx在区间[π,2π]上的图象如下,,结合图象可知,若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a﹣1=0,故a=1;故答案为:1.7.(3分)已知向量=(x,y)(x,y∈R),=(1,2),若x2+y2=1,则|﹣|的最小值为﹣1.【解答】解:设O(0,0),P(1,2),∴|﹣|=≥||﹣1=﹣1=﹣1,∴|﹣|的最小值为﹣18.(3分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=﹣7.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.(3分)已知m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是α<m<n <β(用符号“<“连接起来).【解答】解:∵α、β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,∴α、β是函数y=2(x﹣m)(x﹣n)与函数y=7的交点的横坐标,且m、n是函数y=2(x﹣m)(x﹣n)与x轴的交点的横坐标,故由二次函数的图象可知,α<m<n<β;故答案为:α<m<n<β.10.(3分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.11.(3分)已知x∈R,定义:A(x)表示不小于x的最小整数.如,A(﹣1.1)=﹣1.若A(2x•A(x))=5,则正实数x的取值范围是(1,] .【解答】解:当A(x)=1时,0<x≤1,可得4<2x≤5,得2<x≤,矛盾,故A(x)≠1,当A(x)=2时,1<x≤2,可得4<4x≤5,得1<x≤,符合题意,故A(x)=2,当A(x)=3时,2<x≤3,可得4<6x≤5,得<x≤,矛盾,故A(x)≠3,由此可知,当A(x)≥4时也不合题意,故A(x)=2∴正实数x的取值范围是(1,]故答案为:(1,]12.(3分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.【解答】解:由题意可知:F(1,0),由抛物线定义可知A(x1,y1),可知B(x2,y2),∵=2,可得:2(x2﹣1,y2)=(1﹣x1,﹣y1),可得y2=﹣,x2=,,解得x1=2,y1=±2.||=||,。

2018年上海市松江区高考数学一模试卷

2018年上海市松江区高考数学一模试卷

2018年上海市松江区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. (4分)计算:= ______ •□十co 3门一12. (4 分)已知集合A={x|0v X V3} , B={x| 4},则A G B ______ .3. _______________________________________________________________ (4分)已知{a n}为等差数列,S n为其前n项和•若a1+a9=18,a4=7,则$o= ______ .4. (4分)已知函数f (x)=log2 (x+a)的反函数为y=「(x),且厂1(2)=1,则实数a= ______ .5. (4分)已知角a的终边与单位圆x2+y2=1交于円y Q),贝U COS2 a等于______ .6. (4分)如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果是______ .7. (5分)函数y=sin2x的图象与y=cosx的图象在区间[0,2 n上交点的个数是______ .8. (5分)设直线ax- y+3=0与圆(x- 1)2+ (y-2)2=4相交于A、B两点,且弦AB的长为2二,则a= ______ .若飯駆,丽二旋,贝面石9 (5分)在厶ABC中,/ A=90°,△ ABC的面积为1,的最小值为_______ .10. _____ (5分)已知函数f (x) =x|2x-a| - 1有三个零点,则实数a的取值范围为_______ .11. (5分)定义巧I已知函数f(x)、g(x)的定义域都是R,lb则下列四个命题中为真命题的是________ (写出所有真命题的序号)①若f (x)、g (x)都是奇函数,则函数F (f (x), g (x))为奇函数;②若f (x)、g (x)都是偶函数,则函数F (f (x), g (x))为偶函数;③若f (x)、g (x)都是增函数,则函数F (f (x), g (x))为增函数;④若f (x)、g (x)都是减函数,则函数F (f (x),g (x))为减函数.12. (5分)已知数列{a n}的通项公式为a n=2q n+q (qv0,n € N*),若对任意m,n € N*都有乞F「匕6),贝U实数q的取值范围为二•选择题(本大题共4题,每题5分,共20分)13. (5分)若2- i是关于x的方程V+px+qrO的一个根(其中i为虚数单位,p,q€ R),则q的值为( )A.- 5B. 5C. - 3D. 314. (5分)已知f (x)是R上的偶函数,贝U “X X2=O”是“f(X1)- f (X2)=0”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15. ( 5分)若存在x€ [0,+x)使朮芸<1成立,则实数m的取值范围是( )ni IA. (-x, 1)B. (- 1, +x)C. (-x,- 1]D. [ 1, +x)16. (5分)已知曲线C1: |y| - x=2与曲线C2:入X y2=4恰好有两个不同的公共点,则实数入的取值范围是( )A. (-x,- 1] U [0, 1)B. (- 1, 1]C. [ - 1, 1)D. [ - 1, 0] U( 1,+ x•解答题(本大题共5题,共14+14+14+16+18=76分)17. (14分)在厶ABC中,AB=6, AC=3. 1,「八’二-18.(1)求BC边的长;(2)求厶ABC的面积.18. (14分)已知函数貞述二|迸1(X M 0,常数a€ R).(1)讨论函数f (x)的奇偶性,并说明理由;(2)当a>0时,研究函数f (x)在x€( 0, +x)内的单调性.19. (14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2<t < 20,经市场调研测算,电车载客量与发车时间间隔t相关,当10< t<20时电车为满载状态,载客量为400人,当2<t V 10时,载客量会减少,减少的人数与(10- t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p (t).(1)求p (t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为0二6小1;15叽_旳(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?20. (16分)已知椭圆E: 1,「=1 (a>b>0)经过点二 / ,其左焦点为过F点的直线I交椭圆于A、B两点,交y轴的正半轴于点M .(1)求椭圆E的方程;(2)过点F且与I垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为二,求直线I的方程;(3)设• i",」〕,求证:刀+尼为定值.21. (18分)已知有穷数列{刘共有m项(m>2, m€ N*), < n W m - 1 , n € N*).(1)若m=5, a i=1, a5=3,试写出一个满足条件的数列{a n};(2)若m=64,a1=2,求证:数列{a n}为递增数列的充要条件是(3)若a1=0,则a m所有可能的取值共有多少个?请说明理由.且| a n+1- a n| =n(1 a64=2018;2018年上海市松江区高考数学一模试卷参考答案与试题解析.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)2. (4 分)已知集合A={x|0v X V3} , B={x| 4},则A H B= {x|2<x<3} 【解答】解:由已知得:B=(x|x<- 2或x>2},T A={ x| 0<x< 3},••• A H B={x| 0<x< 3} H { x|x<- 2 或x>2}={x| 2< x< 3}为所求.故答案为:{x| 2< x< 3}.3. (4分)已知{a n}为等差数列,S n为其前n项和.若a1+a)=18, 84=7,则$0= 100 .【解答】解:设等差数列{a n}的公差为d,T 81+89=18,84=7,『也乍18•订,解得d=2,a1=1.31+3 d=7L丄则$0=10+^^ 二=100.故答案为:100.4. (4 分)已知函数f (x) =log2 (x+a)的反函数为y=f 1(x),且f 1(2) =1,则实数a= 3 .【解答】解:函数f (x) =log2 (x+a)的反函数为y=f1(x),且f1(2) =1,则:2=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市松江区高考数学一模试卷■填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)2. (4 分)已知集合A={x|0v x v3} , B={x| x2>4},则A H B _________3. (4分)已知{a n}为等差数列,S n为其前n项和•若a i+a g=18, a4=7,则S io=4. (4分)已知函数f (x)=log2 (x+a)的反函数为y=fT (x),且厂1(2)=1,则实数a ______ .5. (4分)已知角a的终边与单位圆x2+y2=1交于.V .,则COS2 a等于6. (4分)如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果结束7. (5分)函数y=sin2x的图象与y=cosx的图象在区间[0,2 n上交点的个数是_______ .8. (5分)设直线ax- y+3=0与圆(x- 1)2+ (y-2)2=4相交于A、B两点,且弦AB的长为2二,则a= ______ .9. (5分)在厶ABC中,/ A=90°,△ ABC的面积为1,若* ;=卜:訂=4「,则…汕lim,rtf 82n>T.5‘的最小值为_______ .10. (5分)已知函数f (x) =x|2x-a| - 1有三个零点,则实数a的取值范围为_______ .11. ( 5分)定义F(並3=( 乙,已知函数f (x)、g(x)的定义域都是R,b a^b则下列四个命题中为真命题的是________ (写出所有真命题的序号)①若f (x)、g (x)都是奇函数,则函数F (f (x), g (x))为奇函数;②若f (x)、g (x)都是偶函数,则函数F (f (x), g (x))为偶函数;③若f (x)、g (x)都是增函数,则函数F (f (x),g (x))为增函数;④若f (x)、g (x)都是减函数,则函数F (f (x),g (x))为减函数.12. (5分)已知数列{a n}的通项公式为a n=2q n+q (q v0,n € N*),若对任意m,n€ N*都有—-■- : •,贝U实数q的取值范围为a n &二■选择题(本大题共4题,每题5分,共20分)13. (5分)若2- i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q€ R),则q的值为( )A.- 5B. 5C. - 3D. 314. (5分)已知f (x)是R上的偶函数,贝U “X X2=0”是“f(X1)- f (X2) =0”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15. (5分)若存在x€ [0,+x)使$ 2<1成立,则实数m的取值范围是( )A. (-X, 1)B. (- 1, +x)C. (-X,- 1]D. [ 1, +x)16. (5分)已知曲线C1:|y| - x=2与曲线C2:xX y2=4恰好有两个不同的公共点,则实数入的取值范围是( )A. (-^,- 1] U [0, 1)B. (- 1, 1]C. [ - 1, 1)D. [ - 1, 0] U( 1,+x)三■解答题(本大题共5题,共14+14+14+16+18=76分)17. (14分)在厶 ABC中,AB=6, AC=3「,’:18.(1)求BC边的长;(2)求厶ABC的面积.18. (14分)已知函数-. - (X M0,常数a€ R).(1)讨论函数f (X)的奇偶性,并说明理由;(2)当a>0时,研究函数f (x)在x€( 0,+X)内的单调性.19. (14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2<t< 20,经市场调研测算,电车载客量与发车时间间隔t相关,当10< t<20时电车为满载状态,载客量为400人,当2<t V 10时,载客量会减少,减少的人数与(10- t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p (t).(1)求p (t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为;(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?2 2 f~20. (16分)已知椭圆E: J=1 (a>b>0)经过点.,,其左焦点为八山,过F点的直线I交椭圆于A、B两点,交y轴的正半轴于点M .(1)求椭圆E的方程;(2)过点F且与I垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为',3求直线I的方程;(3)设二 =|亍,兀:I .了,求证:Zh为定值.21. (18分)已知有穷数列{an}共有m项(m>2, m€ N*), < n W m - 1 , n € N*).(1) 若m=5,斫1, 35=3,试写出一个满足条件的数列{a n};(2) 若m=64,a1=2,求证:数列{a n}为递增数列的充要条件是(3) 若31=0,则a m所有可能的取值共有多少个?请说明理由.且| 3n +1 —3n| =n ( 1 a64=2018;2018年上海市松江区高考数学一模试卷参考答案与试题解析一 ■填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1- (3 4分)计算:I'=一…一-【解答】解:—丄二=亠厶=[,口f co$□一丄 n ->co ^2- 』n故答案为:_,32. (4 分)已知集合 A={x|0v x v 3} , B={x| x 2>4},则 A G B= {x|2<x <3} 【解答】解:由已知得:B=(x|x <- 2或x >2},T A={ x| 0<x < 3},••• A H B={x| 0<x < 3} n { x|x <- 2 或 x >2}={x| 2< x < 3}为所求. 故答案为:{x| 2< x < 3}. 则 5 : :,00 故答案为:100.3 (4分)已知{a n }为等差数列,S n 为其前n 项和.若 印+隹=18,比=7,则S io = 100【解答】解:设等差数列{a n }的公差为d ,v a i +a g =18, a 4=7,4 (4 分)已知函数 f (x ) =log 2 (x+a )的反函数为 y=f -1 (x ),且 f -1 (2) =1, 则实数a= 3 .【解答】解:函数f (x ) =log 2 (x+a )的反函数为y=f 1 (x ),且f 1 (2) =1, 则:2= U …2a 1+8d=18 a|+3d=7解得d=2, a i =1.解得:a=3. 故答案为:3.5. (4分)已知角a 的终边与单位圆x 2+y=1交于:■!;—. v .,则C0S2 a 等于 z1 .【解答】解:•••角a 的终边与单位圆x 2+y 2=1交于:?:, 可得:r=1, cos a=,2cos2 a =2c0a - 1=2 X — — 1 =—.4 2 故答案为:-I .26. (4分)如图是一个算法的程序框图,当输入的值 是 2.【解答】解:x=8>0,执行循环体,x=x-3=5- 3=2>0,继续执行循环体,—d1x=x- 3=2 — 3=— 1 <0,满足条件,退出循环体,故输出 y=0.5 =(=)-仁2. 故答案为:2x 为8时,则其输出的结果7. (5分)函数y=sin2x 的图象与y=cosx 的图象在区间[0, 2 n 上交点的个数是 4 .【解答】解:由于函数y=sin2x 与y=cosx 有交点, 则:sin2x=cosx整理得:sinx= 或 cosx=02所以:在[o , 2n 范围内,x= —",匕 6 乂 J 故答案为:4.8. (5分)设直线ax- y+3=0与圆(x - 1) 2+ (y -2) 2=4相交于A 、B 两点,且 弦AB 的长为2「,则a= 0.【解答】解:由于圆(x - 1) 2+ (y -2) 2=4的圆心C (1, 2),半径等于2,且 圆截直线所得的弦AB 的长为2「,故圆心到直线ax - y+3=0的距离为 「=1,即 I — =1 ,解得a=0, 故答案为0.9. ( 5分)在厶ABC 中,/ A=90°, △ ABC 的面积为1 ,的最小值为 "【解答】解:如图,建立直角坐标系,设 B (10x , 0), C (0, 10y ),则 M (5x , 5y ), N (2x , 8y ),由题意△ ABC 的面积为1,可得50xy=1,'N=10x 2 +40y 2>2 .「门xy=「,当且仅当x=2y= 时取等号. 5 10 故答案为:15d —* —* —* —* —*若*',【1=4';,则冷•山 若 r=r.‘,*I =4T ',10. (5分)已知函数f(x)=x|2x- a| - 1有三个零点,则实数a的取值范围为(2 匚,+x).【解答】解:函数f (x)=x| 2x- a| - 1有三个零点,就是x| 2x- a| =1,即| 2x- a| =丄有三个解,f令y=| 2x- a|,y—,可知y=x a-2x TyJ,y'=【=-2,解得x=L,x=-H (舍去),此时切点坐标(二,「), X y Z Z Z代入y=a-2x可得,a=_.:、」.:=2 ':,函数f (x)=x| 2x- a| - 1有三个零点, 则实数a的取值范围为(2二,+x).,画出两个函数的图象,题. 故答案为:12. (5分)已知数列{a n }的通项公式为a n =2q n +q (q v 0, n € N *),若对任意m , n € N *都有:■ 「则实数q 的取值范围为—',0).【解答】解:由an=2q n +q (q v 0, n € N *),因为agq v 0,且对任意n € N *, _l€(百,6)故 a n v 0,特别地2q 2+q v 0,于是q € (-吉,0),此时对任意n € N*, a.^ 0. 当—q v 0 时,a 2n =|q|2n +q > q , a 2n -1=- 2| q| 2n 「1+q v q ,由指数函数的单调性知,{a n }的最大值为a 2=2q 2+q ,最小值为a 1 =3q ,11. (5 分)定义 F (a s b )二 则下列四个命题中为真命题的是电P ,已知函数f (X )、g (x )的定义域都是R,b a^b ②③④(写出所有真命题的序号)①若f (X )、 (x ) 都是奇函数, 则函数 (f (X ),(X)) 为奇函数; ②若f (X )、 (X ) 都是偶函数, 则函数 (f (X ),(X)) 为偶函数; ③若f (X )、 (X ) 则函数 ④若f (X )、 (X ) 【解答】解:都是增函数, 都是减函数, a Kbb n>b'则函数 则函数 (f (f b)二若f ( X )、g (X )都是奇函数,与y=x 3,故①是假命题;(X )、 (x )都是偶函数, 则函数 (X ),(X ), (X)) (X)) F (f (X ), g (x))不(f (X ), (X)) 为增函数; 为减函数.定是奇函数,如y=x为偶函数,故②是真命题;若f (X )、 (X )都是增函数, 则函数 (f (X ), (X)) 为增函数,故③是真命题;若f (X )、 (X )都是减函数, 则函数 (f (X ), (X)) 为减函数,故④是真命由题意,丄的最大值及最小值分别为二=厂和—=——•a 】 3 勺 2q+l 由 m » 及一< 6,解得--< qv 0.3 6 2q+l4 综上所述,q 的取值范围为(-1, 0),4 故答案为:(-1 , 0).4二■选择题(本大题共4题,每题5分,共20分)13. (5分)若2- i 是关于x 的方程x 2+px+q=0的一个根(其中i 为虚数单位,p , q € R ),则q 的值为( )A .- 5 B. 5 C. - 3 D . 3【解答】解:••• 2 - i 是关于x 的实系数方程/+px+q=0的一个根, ••• 2+i 是关于x 的实系数方程x 2+px+q=0的另一个根, 则 q= (2- i ) (2+i ) =|2 - i|2=5. 故选:B.14. (5分)已知f (x )是R 上的偶函数,贝U “X X 2=0”是f(x i )- f (X 2)=0”的 ( ) A .充分而不必要条件 B.必要而不充分条件C.充分必要条件D .既不充分也不必要条件【解答】解::f (x )是R 上的偶函数, • “X X 2=0”? “f(x i )- f (X 2)=0”,“f(x i) - f (X 2)=0”? “X X 2=0”或 “X X 2”,• “X X 2=0”是“f(x i )- f (X 2)=0”的充分而不必要条件. 故选:A .【解答】解:存在x € [0, +x )使E成立,9'15. (5分)若存在x € [0,+x)使乙2<1成立,则实数m 的取值范围是(A . (-X, 1) B. (- 1, +x) C . ( — X,— 1] D . [ 1, +x)...2依—2x?m< 1 ,••• 2x?m> 2x?x- 1 ,.m>x —2X••• x€ [0, +x)2x> 1,m> x —^》一1 .2X.实数m的取值范围是(-1, +x).故选:B.16. (5分)已知曲线C1:|y| —x=2与曲线G: kX y2=4恰好有两个不同的公共点,则实数入的取值范围是()A. (-X,—1] u [0, 1)B. (—1, 1]C. [ —1, 1)D. [ —1, 0] U(1, +x)【解答】解:由x=| y| —2可得,y》0时,x=y- 2;y<0 时,x=—y —2,.函数x=| y| —2的图象与方程y2+ X x4的曲线必相交于(0,± 2), 所以为了使曲线G: |y| —x=2与曲线C2:X x+y2=4恰好有两个不同的公共点,则将x=y—2代入方程y2+ X x4,整理可得(1 + X y2—4 X+4 X— 4=0,当X= 1时,y=2满足题意,•••曲线C1 :| y| —x=2与曲线C2:X x+y2=4恰好有两个不同的公共点,•••△> 0, 2是方程的根,•••'」;「<0,即-1< < 1时,方程两根异号,满足题意;综上知,实数X的取值范围是[-1, 1).故选:C.三■解答题(本大题共5题,共14+14+14+16+18=76分)17. (14分)在厶ABC中,AB=6, AC=3「,’ I「「二-18.(1)求BC边的长;(2)求厶ABC的面积.【解答】解:(1)…丁一J |」I 一工-18,由于:AB=6, AC=3 匚,所以:BC?=A B2+A C2 - 2AB?ACcosA解得:BC=3.〒.(2)在厶ABC 中,BA=6, AC=3 匚,BC=3.〒, 则:cosA="」'=-;2AB*AC 2所以:sinA=,2jf—则:;打一"'.丁w ・-「18. (14分)已知函数[一一亠―」(X M0,常数a€ R).X(1)讨论函数f (X)的奇偶性,并说明理由;(2)当a>0时,研究函数f (x)在x€( 0, +X)内的单调性.【解答】解:(1)当a=0时,函数f (X) =1 (X M0) 满足 f (- X) =f ( X), 此时f (x)为偶函数;当a M0 时,函数 f (a) =0, f (- a) =2,不满足 f (- X) =f (X),也不满足 f (- X) =- f (X), 此时f (x)为非奇非偶函数;(2)当a>0 时,若x€(0, a),则.1 ,. 为减函数;x x若x€(a , +x), 则•二,•・:为增函数;x x故f (乂)在(0 , a)上为减函数,在(a , +x)上为增函数;19. (14分)松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2<t< 20,经市场调研测算,电车载客量与发车时间间隔t相关,当10< t<20时电车为满载状态,载客量为400人,当2<t V 10时,载客量会减少,减少的人数与(10- t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p (t)(1)求p (t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?【解答】解:(1)由题意知,p( t) J 400-k(10-t)2, 2< t<10 (k为常数),400, 10<t<20••• p (2) =400- k (10-2) 2=272,A k=2.•p (t)」40Q-k(10-t) J 2<t<10•p (6) =400- 2 (10-6) 2=368;(2)由,:,可得-(-12 t2+180t-300), 2<t<KQ= 1 ,丄(-60t+900L 10<t<20t当2< t V 10 时,Q=180—( 12t+乎)一一丨_ i,当且仅当t=5时等号成立;当10< t <20 时,Q=- 60+' W -60+90=30,当t=10时等号成立.•当发车时间间隔为5分钟时,该线路每分钟的净收益最大,最大为60元.2 21厂20. (16分)已知椭圆E: —■二=1 (a>b>0)经过点「,其左焦点为子L 2丁―;,过F点的直线I交椭圆于A、B两点,交y轴的正半轴于点M .(1) 求椭圆E的方程;(2) 过点F且与I垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为…,求直线I 的方程;(3) 设…求证:入+&为定值.【解答】解:(1)由题意可得:c="则a 2=b 2+c 2=b 2+3, 将..代入椭圆方程: -------- -- ,解得:b 2=1, a 2=4, 2 b 2+3 4b z2 “•••椭圆的E 的方程:亍 -;(2)设直线 I : y=k (x+诉),A (x i , y i ), B ((X , y ?), C (x °, y ),贝 U D (X i , -y i ),r2 2联立 J +灯二4,整理得:(1+4k 2) x 2+8T5k 2x+12k 2- 4=0, y=k(x+V3) •- X 1 +X 2= ---- , X 1 x 2 = --- l+4k^ l+4k2化成-二同理I CD =4d+叮2 ,k 1+k 2 2 2 •四边形 ACBD 的面积S丄X |AB| CD _严1十* 厂旦,2(k 2+4)(l+4k 2) 3• 2k 4- 5k 2+2=0,解得:k 2=2, k 2=] , • k=± 匚或 k=± -, 由 k >0,.°. k=「或 k= •,•直线 AB 的方程为 x -「]y+ '=0 或:x - y+、;fi1=0; (3). .. ■ , .I :-',—",得禺=入(--;-X1), X2=& (- ■: - X2),I ,将k 转kl+4k zl+4k zkf 为定值,定值为-8.21. (18分)已知有穷数列{&}共有m 项(m >2, m € N *),< n W m - 1 , n € N *).(1) 若m=5, a i =1, a 5=3,试写出一个满足条件的数列{a n }; (2) 若m=64, a 1=2,求证:数列{a n }为递增数列的充要条件是(3) 若a 1=0,则a m 所有可能的取值共有多少个?请说明理由. 【解答】解:(1)有穷数列{a n }共有m 项(m > 2, m € N *),< n W m - 1 , n € N *).m=5, a 1=1, a 5=3,则满足条件的数列{a n }有:1, 2, 4, 7, 3和1, 0, 2, - 1, 证明:(2)必要性 若{a n }为递增数列,由题意得:a 2 — a 1=1, a 3 — a 2 =2,…,a 64 — a 63=63, ••• a 64-a h 「— ^=2016, -a 1=2,. • a 64=2018. 充分性由题意 | a n +1 - a n | = n , 1W n W 63, n € N *, a 2 - a 1 W 1, a 3 - a 2W 2,…,a 64 - a 63W 63, 二 a 64- a 1 W 2016,.°. a 64W 2018, ••• a s4=2018,• a n +1 - a n =n , 1W n W 63, n € N , • {a n }是增数列,A i + 尢=V3+i22^! K 2+V3 (x t + XjX 2+V3 & ] + 七)+ 32X12k 2-4,2 l+4k zSV3k 2 :? J l+4k z =-8,综上,数列{an }为递增数列的充要条件是a 64=2018.解:(3)由题意得 a 2- a i =± 1, a s - a 2=±2,…,a m - a m -1=±( m - 1), 假设 a m =b i +b 2+b 3+・・+b m -1,其中,b j € { - i , i} , (j € N *, 1< i <m - 1), 则(a m )min =- 1 - 2——(m - 1)二-血D .若a n 中有k 项.,• ,!.,…,.取负值,S L宜 fSe S k贝U 有 a m = ( a m ) max -( b + 和 +b +°°+b ), (* )S ■■ S n哲>E S i丄座 J £•••a m 的所有可能值与(a m ) max 的差必为偶数,下面用数学归纳法证明an 可以取到-「丫」与」1之间相差2的所有整数,2 2 由(* )知,只需从1, 2, 3,…,m - 1中任取一项或若干项相加,可以得到 2 从1到厂:厂|的所有整数值即可,2当m=2时,成立,当m=3时,从1, 2中任取一项或两项相加,可以得到从 1 , 2, 3中任取一项或 若干项相加,可以得到从1到3的所有整数,结论成立,②假设m=k (k >3, k € N *)结论成立,即从1, 2, 3,…,k - 1中任取一项或若干项相加,可以得到从 1至1的所 有整数值,则当m=k+1时,由假设,从1, 2, 3,…,k - 1中任取一项或若干项相加, 可以得到从1至1的所有整数值,用k 取代1, 2, 3,…,k - 1中的k ,可2 得「•-,用k 取代1, 2, 3,…,k - 1中的k - 2,可得:'— 将1, 2, 3,…,k - 1, k 全部相加,可得「 故命题成立,2• a m 所有可能的取值共有_ ■' ■'•个.且 | a n +1 — a n | =n (1a 64=2018;且 | a n +1 - a n =n (13.。

相关文档
最新文档