中考数学压轴精品--动态几何5
中考复习 动态几何型压轴题

1、解决这类问题时,要 、解决这类问题时, 理解图形运动的过程, 理解图形运动的过程, 探索运动的特点和规律, 探索运动的特点和规律, 掌握好动静的切换---“动 掌握好动静的切换 动 中求静” 中求静”。 2、多作出几个符合要求 、多作出几个符合要求 草图。 的草图。
Page 4
例题: 中考回放 例题:09中考回放
(1)当t = 2时,AP = ) 时 ,点Q到AC的距离是 到 的距离是 ; 运动的过程中, 的面积S与 的 (2)在点 从C向A运动的过程中,求△APQ的面积 与t的 )在点P从 向 运动的过程中 的面积 函数关系式;(不必写出t的取值范围 ;(不必写出 的取值范围) 函数关系式;(不必写出 的取值范围) 运动的过程中, (3)在点 从B向C运动的过程中,四边形 )在点E从 向 运动的过程中 四边形QBED能否成为 能否成为 直角梯形?若能, 的值 若不能,请说明理由; 的值. 直角梯形?若能,求t的值.若不能,请说明理由; 经过点C 请直接写出t的值 的值. (4)当DE经过点 时,请直接写出 的值. ) 经过点
解:②如图5,当PQ∥BC时,DE⊥BC, 如图 , ∥ 时 ⊥ , 四边形QBED是直角梯形. 是直角梯形. ∴四边形 是直角梯形 此时∠ 此时∠APQ =90°. ° 由△AQP ∽△ABC,得 AQ = AP , AB AC Q 即 t = 3-t ,解得t= 15 解得 3 5 8 D
A P B
解:(3)能. :( ) ①当DE∥QB时,如图 .∵DE⊥PQ, ∥ 时 如图4. ⊥ , 是直角梯形. ∴PQ⊥QB,四边形 ⊥ ,四边形QBED是直角梯形. 是直角梯形 此时∠ 此时∠AQP=90° ° AQ = AP 由△APQ ∽△ABC,得 AC AB , 9 t 即 3 = 3-t ,解得,t= 8 5
中考数学压轴题策略之动态几何问题

中考数学压轴题策略之动态几何问题
面对中考,考生对待考试需保持平常心态,复习时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最正确的解题方法,进一步提高解题能力。
下文准备了动态几何问题的解题策略的内容。
解这类问题的基本策略是:
1.动中觅静:这里的〝静〞就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:〝静〞只是〝动〞的瞬间,是运动的一种特殊形式,动静互化就是抓住〝静〞的瞬间,使一般情形转化为特殊问题,从而找到〝动〞与〝静〞的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
总之,解决动态几何问题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变。
具体做法是:
①全面阅读题目,了解运动的方式与形式,全方位考察运动中的变与变的量及其位置关系;
②应用分类讨论思想,将在运动过程中导致图形本质发生变化的各种时刻的图形分类画出,变〝动〞为〝静〞;
③在各类〝静态图形〞中运用相关的知识和方法(如方程、相似等)
进行探索,寻找各个相关几何量之间的关系,建立相应的数学模型进行求解。
另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是此题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出【答案】,更重要的是明确此题的方法和思路。
【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《动态几何 》含答案与解析

中考数学压轴大题冲刺专项训练动态几何1.在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC =6cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?2.如图,点E 是矩形ABCD 中CD 边上一点,BCE 沿BE 折叠为BFE △,点F 落在AD 上.(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.5.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .6.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A-B-C-A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.7.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.8.综合实践初步探究:如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;==.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF∠=________︒;(1)如图1,当点D是BC的中点时,则EDF(2)如图2,点D在BC上运动(不与点B,C重合).∠的大小是否发生改变,并说明理由;①判断EDF②点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.10.如图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.参考答案与试题解析1.在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?【解析】解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6﹣2t,∵AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6﹣2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合,综上所述,2秒后四边形ABQP是平行四边形.△,点F落在AD上.2.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 【解析】(1)证明:∵四边形ABCD 是矩形,∴90A D C ∠=∠=∠=︒,∵BCE 沿BE 折叠为BFE △,∴90BFE C ∠=∠=︒,∴90AFB DFE ∠+∠=︒,又∵90AFB ABF ∠+∠=︒,∴ABF DFE =∠∠.∴ABF DFE ∽△△;(2)解:在Rt DEF △中,1sin 3DE DFE EF ∠==, ∴设DE a =,3EF a =,2222DF EF DE a =+=,∵BCE 沿BE 折叠为BFE △, ∴3CE EF a ==,4CD DE CE a =+=,4AB a =,EBC EBF ∠=∠, 又∵ABF DFE ∽△△,∴22EF DF BF AB ==, ∴2tan 2EF EBF BF ∠==, 2tan tan EBC EBF ∠=∠=; (3)存在,32k =时,ABF 与BFE △相似 理由:当ABF FBE △∽△时,24∠∠=.∵45∠=∠,24590∠+∠+∠=︒,∴24530∠=∠=∠=︒,∴3cos302AB BF =︒=, ∵BC BF =,∴32AB k BC ==;②当ABF FEB ∽△△时,26∠=∠,∵4690∠+∠=︒,∴2490∠+∠=︒,这与24590∠+∠+∠=︒相矛盾,∴ABF FEB ∽△△不成立.综上所述,3k =时,ABF 与BFE △相似.3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.【解析】解:(1)过A 作AH x ⊥轴,垂足为H ,∵2OB =,∴0(2)B ,∵120AOB ∠=︒∴60AOH ∠=︒,30HAO ∠=︒.∵2OA =, ∴112OH OA ==. 在Rt AHO 中,222OH AH OA +=, ∴22213AH - ∴()13A --,∵抛物线1C :2y ax bx =+经过点A B 、,∴可得:4203 a ba b-=⎧⎪⎨-=-⎪⎩,解得:33233ab⎧=-⎪⎪⎨⎪=⎪⎩∴这条抛物线的表达式为232333y x x=-+;(2)过M作MG x⊥轴,垂足为G,∵23333y x x=-+=233(1)33x--+∴顶点M是31,3⎛⎝⎭,得3MG=设直线AM为y=kx+b,把(3A-,31,3M⎛⎫⎪⎪⎝⎭代入得33k bk b=-+=+,解得2333kb⎧=⎪⎪⎨⎪=-⎪⎩∴直线AM为233y x=令y=0,解得x=12∴直线AM 与x 轴的交点N 为1,02⎛⎫ ⎪⎝⎭∴111111××222222AOM S ON MG ON AH =⋅-⋅=+(3)∵0(2)B ,、M ⎛ ⎝⎭,∴在Rt BGM中,tan MG MBG BG ∠==, ∴30MBG ∠=︒.∴150MBF ∠=︒.由抛物线的轴对称性得:MO MB =,∴150MBO MOB ∠=∠=︒.∵120AOB ∠=︒,∴150AOM ∠=︒∴AOM MBF ∠=∠.∴当MBF 与AOM 相似时,有:=OM BM OA BF 或=OM BF OA BM即332BF =或32= ∴2BF =或23BF =. ∴0(4)F ,或803⎛⎫ ⎪⎝⎭,设向上平移后的抛物线2C 为:2y x k =++,当0(4)F ,时,3k =,∴抛物线2C 为:2y =+当803F ⎛⎫ ⎪⎝⎭,时,27k =,∴抛物线2C 为:2y x =+综上:抛物线2C 为:2y x x 333=-++或23327y x x =-++ 4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.【解析】(1)是;∵AB AC =,AD AE =∴DB=EC ,∠ADE=∠AED=∠B=∠ACB∴DE ∥BC∴∠EDC=∠DCB∵点M 、P 、N 分别为DE 、DC 、BC 的中点∴PM ∥EC ,PN ∥BD ,11,22PM EC PN BD == ∴PM PN =,∠DPM=∠DCE ,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段PM 与PN 是“等垂线段”;(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =,由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=∴90ACB ABC ∠+∠=∴90MPN ∠=∴PM 与PN 为“等垂线段”;(3)PM 与PN 的积的最大值为49;由(1)(2)知,12PM PN BD == ∴BD 最大时,PM 与PN 的积最大∴点D 在BA 的延长线上,如图所示:∴14BD AB AD =+=∴249PM PN PM •==.6.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .【解析】(1)由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==(秒), 点P 从点B 返回,运动到点A 所需时间为301522AB ==(秒), 则当56t =<时,5525PA =⨯=, 因此,点P 表示的有理数为20255-=-,故答案为:5-;(2)在点P 往左运动的过程中,5PA t =,则点P 表示的有理数为205t -,故答案为:205t -;(3)由题意,分以下两种情况:①当点P 从点A 运动到点B ,即06t ≤≤时,由(2)可知,点P 表示的有理数为205t -,则2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;②当点P 从点B 返回,运动到点A ,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-,则2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.6.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A-B-C-A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.【解析】(1)由题意根据勾股定理可得:22221086AC AB BC =--=(cm ),故答案为6;(2)如图,点P 恰好在∠ABC 的角平分线上,过P 作PD ⊥AB 于点D ,则可设PC=xcm ,此时BP=(8-x )cm ,DP=PC=xcm ,AD=AC=6cm,BD=10-6=4cm ,∴在RT △BDP 中,222BD PD BP +=,即 ()22248x x +=-,解之可得:x=3,∴BP=8-3=5cm ,∴P 运动的路程为:AB+BP=10+5=15cm , ∴t=157.52=s ; (3)可以对△ACP 的腰作出讨论得到三种情况如下:①如图,AP=AC=6cm ,此时t=632=s ;②如图,PA=PC ,此时过P 作PD ⊥AC 于点D ,则AD=3,PD=4,∴AP=5,此时t=5 2.52=s ; ③如图,PC=AC=6cm ,则BP=8-6=2cm ,则P 运动的路程为AB+BP=10+2=12cm ,此时t=1262=s , 综上所述,在运动过程中,当t 为2.5s 或3s 或6s 时,△ACP 为等腰三角形.7.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【解析】解:(1)∵ 640a b --=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上, ()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP . ∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y - ∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯= 2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3)OFC FCGOEC∠+∠∠的值不变,值为2.理由如下:∵线段OC是由线段AB平移得到,∴//,OA CB,∴∠AOB=∠OBC,又∵∠BOG=∠AOB,∴∠BOG=∠OBC,根据三角形外角性质,可得∠OGC=2∠OBC,∠OFC=∠FCG+∠OGC,,OEC FCG OBC∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC)=2∠OEC,∴22 OFC FCG OECOEC OEC∠+∠∠==∠∠;所以:OFC FCGOEC∠+∠∠的值不变,值为2.8.综合实践初步探究:如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;【解析】:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=12∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE-∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=2OC,同理:,∴;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=,,∴,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE-EG,∴OF+OG=OD+EG+OE-EG=OD+OE,∴OD+OE=3OC;(3)(1)中结论不成立,结论为:3OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=3,3,∴3,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF-OD=EG-OD,OG=OE-EG,∴OF+OG=EG-OD+OE-EG=OE-OD,∴3.(4)由(1)可得3,CD+CE=OC∴3+1)OC,故四边形CDOE的周长为(3+1)OC.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF==.(1)如图1,当点D是BC的中点时,则EDF∠=________︒;(2)如图2,点D在BC上运动(不与点B,C重合).①判断EDF∠的大小是否发生改变,并说明理由;②点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.【解析】(1)∵点D是等边△ABC的边BC的中点,∴∠DAB=∠DAC=12∠BAC=30°,∵DA=DE,∴∠AED=∠BAD=30°,∴∠ADE=180°−∠BAD−∠AED=120°,同理:∠ADF=120°,∴∠EDF=360°−∠ADE−∠ADF=120°,故答案为:120;(2)①不发生改变,理由如下:∵ABC 是等边三角形,∴60BAC ∠=︒.∵DA DE DF ==.∴点A ,E ,F 在以D 为圆,DA 长为半径的圆上,∴2120EDF BAC ∠=∠=︒.②补全图形如下:四边形BECG 为平行四边形,证明如下:由①知,120EDF ∠=︒,∵60BDE BED ∠+∠=︒,60BDE CDF ∠+∠=︒,∴BED CDF ∠=∠.在CDF 和BED 中,DCF EBD CDF DEA DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CDF BED AAS ≅△△.∴CD BE =.∵点D 和点G 关于射线AC 对称,∴CD CG =,2120DCG ACD EBD ∠=∠=︒=∠.∴BE CG =,且//BE CG .∴四边形BECG 为平行四边形.10.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.【解析】(1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13, 6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒), 故答案为:15;(2)由题意,分以下六种情况:①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -,点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去;③当点P 在BO ,点Q 在CO 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,不在BO 上,不符题设,舍去; ④当点P 、Q 相遇时,点P 、Q 均在BC 上,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,4174t t ∴-=-, 解得215t =, 此时点P 表示的数为15,点Q 表示的数为15,均符合题设; ⑤当点P 在OC ,点Q 在OB 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,点Q 表示的数为13-,均符合题设; ⑥当点P 在OC ,点Q 在BA 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为410128224t t ⎛⎫----=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()4820t t ∴-+-=,解得4t =,此时点Q 表示的数为0,不在BA 上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=, ∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.【解析】(1)如图1所示,由题意可知,当点N 落在BD 上时,因为四边形PQMN 是正方形,所以AP PN t ==,又因为在矩形ABCD 中,4AB =,3BC =,所以3DP t =-,在DPN ∆和DAB ∆中,因为PDN ADB ∠=∠,90DPN DAB ∠=∠=︒,所以DPN DAB ∆∆∽,则DP PN DA AB =, 所以334t t -=,解得127t =, 所以当点N 落在BD 上时t 的值为127. 故答案为:127t =. (2)①如图2,点O 刚落在正方形PQMN 上.因为点O 是矩形ABCD 对角线BD 的中点,所以MN 在矩形ABCD 的一条对称轴上,所以AM MB =,所以4t t =-,解得2t =.②如图3,点O 和点P 重合,此时P 点运动的距离为AD DO +,因为3AD =,4AB =,所以2222345BD AD AB =+=+=, 所以1522DO BD ==, 所以此时511322t AD DO =+=+=. 综上所述,当点O 在正方形PQMN 内部时,t 的取值位于上述两个临界位置之间,即t 的取值范围为1127t <<. 故答案为:1127t <<. (3)①由(1)可知,当1207t <≤时,正方形PQMN 和ABD ∆的重叠部分即为正方形PQMN ,所以此时2S t =.②当1237t <≤时,点P 在AD 上, 设PN 与BD 交于点G ,MN 与BD 交于点F ,此时正方形PQMN 和ABD ∆的重叠部分为五边形PGFMQ ,此时PQMN GNF S S S ∆=-.同(1),可知DPG DAB ∆∆∽,FMB DAB ∆∆∽,因为AP AM t ==,3AD =,4AB =,所以3DP t =-,4BM t =-, 所以DP PG DA AB =,FM BM DA BA=, 所以334t PG -=,434FM t -=, 所以443PG t =-,334FM t =-, 所以474433GN PN PG t t t ⎛⎫=-=--=- ⎪⎝⎭, 373344NF MN FM t t t ⎛⎫=-=--=- ⎪⎝⎭, 所以1177432234GNF S GN NF t t ∆⎛⎫⎛⎫=⋅=-- ⎪⎪⎝⎭⎝⎭,所以217743234PQMN GNF S S S t t t ∆⎛⎫⎛⎫=-=--- ⎪⎪⎝⎭⎝⎭, 整理得2257624S t t =-+-.③当1132t <≤时,点P 在DO 上, 设MN 与BD 交于点F ,则PFMQ PQB FMB S S S S ∆∆==-.因为3AD =,5BD =,所以3PD t =-,所以8PB t =-,同(1),PQB DAB ∆∆∽,所以PB QB PQ DA AB DA==, 所以8543t QB PQ -==,所以()485QB t =-,()385PQ t =-, 所以431(8)(8)(8)555MB QB QM t t t =-=---=-, 又因为FMB DAB ∆∆∽,所以FM BM DA BA =, 所以()18534t FM -=,所以()3820FM t =-, 所以11134131(8)(8)(8)(8)222552205PQB FMB S S S PQ QB FM MB t t t t ∆∆=-=⋅-⋅=⋅-⋅--⋅-⋅-, 整理得()29840S t =-. 综上所述,当1207t <≤时,2S t =;当1237t <≤时,2257624S t t =-+-;当1132t <≤时,()29840S t =-.故答案为:22212725127632479187211340552t tS t t tt t t⎧⎛⎫<⎪⎪⎝⎭⎪⎪⎛⎫=-+-<⎨ ⎪⎝⎭⎪⎪⎛⎫-+<⎪ ⎪⎝⎭⎩(4)设直线DN与BC交于点E,因为直线DN平分BCD∆的面积,∴32BE CE==.①如图7,点P在AD上,过点E作EH AD⊥于点H,则DPN DHE∆∆∽,所以DP PNDH HE=,因为AP PN t==,3DP t=-,4EH BA==,所以3324tt-=,解得2411t=.②如图8,点P在DO上,连接OE.因为E 、O 分别是BC 、BD 的中点,所以EO 是BCD ∆的一条中位线,所以//OE CD ,所以122OE CD ==,又因为//PN CD ,所以//PN OE ,所以DPN DOE ∆∆∽,所以DP PN DO OE=, 因为3DP t =-,52DO =,()385PN PQ t ==- (由(3)②知),2OE =,所以3(8)35522t t --=,解得367t =. ③如图9,P 在OC 上,设DE 与OC 交于点S ,连接OE ,交PQ 于R .同②,//OE CD ,且122OE CD ==, 所以SCD SOE ∆∆∽,所以12OS OE CS CD ==, 又因为52OC OD ==,所以15126OS OC ==+, 所以53SC =,又因为//PN OE (同②), 所以SPN SOE ∆∆∽,所以SP PN SO OE=, 因为112OP t AD OD t =--=-, 所以193SP OS OP t =-=-,所以193526t PN -=, 所以761255PN t =-, 又因为//PQ BC ,所以ORP OEC ∆∆∽, 所以OP PR OC CE =,所以1125322t PR -=,所以333510PQ t =-, 所以333339510255PQ PR RQ PR BE t t =+=+=-+=-, 又因为PQ PN =,所以7612395555t t -=-,解得173t =. 综上所述,当直线DN 平分BCD ∆的面积时,t 的值为2411或367或173. 故答案为:2411或367或173. 12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.【解析】(1)在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,∴由勾股定理得:BC=10,由折叠性质得:A 'P=AP=x , C A '=AC=6,则PB=8-x ,A 'B=4,在RtΔA 'BP 中,由勾股定理得:42+x 2=(8-x)2,解得:3x =;(2)当90AA B '∠=︒时,由折叠性质得:AC=A 'C=4,∠CAB=∠C A 'P=90º,∴CAA '∠=CA A '∠,∵A AB CAA ''∠+∠=90º,A AB A BA ''∠+∠=90º,∴CAA A BA ''∠=∠,∵CA A AA P ''∠+∠=90º,AA P PA B ''∠+∠=90º,∴CA A PA B ''∠=∠,∴A BA PA B ''∠=∠,∴A P PB '==4,则4PA PA PB '===,且PAA S '∆=PA B S '∆,由6AC =,∠CAB=90º,可求得213CP =,121313AQ A Q '∴==,81313PQ ∴=, 9613PAA S '∆∴=,9613PA B S '∆∴=; (3)①当AA A B ''=时,若P 在线段AB 上,如图1,过A '作A 'H ⊥AB 于H ,过C 作CD ⊥H A '延长线于D ,则四边形ACDH 是矩形,又AA B '∆是等腰三角形,∴4CD AH ==,6A C AC DH '===,25A D '∴=,625A H '=-,∵CA D PA H ''∠+∠=90º,CA D A CD ''∠+∠=90º, ∴A CD PA H ''∠=∠,又PHA CDA ''∠=∠=90º,∴A PH CA D ''∆~∆,∴CD A C A H A P '='', 得6625x=-,解得935x =-,若P 在AB 延长线上时,如图2,过A '作AB 的平行线,交AC 延长线与D ,过P 作PH 垂直平行线于H ,则四边形APHD 是矩形,同上方法,易求得A 'D=4,25CD =, ∴PH=AD=625+,同理可证得A PH CA D ''∆~∆,∴C AD A PH A P '''=, 得6625x=+,解得935x =+,②当8AA AB '==时,如图3,由折叠性质得: CP 垂直平分A A ',则4AQ A Q '==,∠AQP=90º,又AC=6,25CQ ∴=,∵∠ AQP=∠CAB=90º,∴由同角的余角相等得:∠ACQ=∠QAP , ∴ACQ PAQ ∆∆,∴AC CQ AP AQ =, 即625x =, 解得:1255x =;③当AB A B '=时,如图4,则P 、B 重合,8x ∴=,综上所述935x =-935x =+或1255x =或8x =.。
2020年中考数学压轴题突破之动态问题(几何)(含详解)

2020年中考数学压轴题突破之动态问题(几何)1.如图,点O是等边ABC内一点,AOB 110 , BOC .以OC为一边作等边三角形OCD,连接AC、AD .(1)若120 ,判断OB OD BD (填“,或”)(2)当150 ,试判断AOD的形状,并说明理由;(3)探究:当时,AOD是等腰三角形.(请直接写出答案)【答案】(1) 二; (2) ADO是直角三角形,证明见详解;(3) 125、110、140 .【分析】(1)根据等边三角形性质得出COD 60 ,利用?BOC a = 120。
求出BOD 180 ,所以B, 0, D三点共线,即有OB+ OD = BD ;(2)首先根据已知条件可以证明BOC ADC ,然后利用全等三角形的性质可以求出ADO的度数,由此即可判定AOD的形状;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.2 .如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A C在坐标轴上,B(18,6),将矩形沿EF折叠,使点A与点C重合.图3 G(1)求点E的坐标;(2)P O O A E2E时停止运动,设P的运动时间为t, VPCE的面积为S,求S与t的关系式,直接写出t 的取值范围;3(3)在(2)的条件下,当PA=]PE 时,在平面直角坐标系中是否存在点Q,使得以点P 、E 、G Q 为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q 的坐标.【答案】(1) E (10, 6); (2) S= -8t+54 (0<t<3)或 S=-6t+48 (3vtW8); (3)存 在,Q (14.4 , -4.8 )或(18.4 , -4.8 ). 【详解】解:(1)如图 1,矩形 ABO, B (18, 6),• .AB=18 BC=6,设 AE=x,贝U EC=x BE=18-x,Rt^EBC 中,由勾股定理得: EB"+BC 2=EC 2,(18-x) 2+62=x 2, x=10,即 AE=10,①当P 在OA 上时,0WtW3,如图 2,=18X 6-1X10(62) — - X8X6 - 1X 18X2t , 2 2 2=-8t+54 ,②当P 在AE 上时,3<t<8,如图3,S = S 矩形 OABC S △ PAE -S △ BEC -S △OPCj• •E ( 10, 6);(2)分两种情况:S=1PE?BC=1 X 6X(16-2t)=3 (16-2t ) =-6t+48 ;2 2(3)存在,由PA=3PE可知:P在AE上,如图4,过G作GHLOC于H,2•.AP+PE=10.•.AP=6 PE=4,设OF=y,则FG=y, FC=18-y,由折叠得:/ CGFW AOF=90 ,由勾股定理得:FC2=FC+CG,•. ( 18-y) 2=y2+62,y=8,•.FG=8 FC=18-8=10,1FC?GH= 1FG?CG221X10XGH= 1 X6X8,22GH=4.8,由勾股定理得:FH=J82 4 82 =6.4 ,• .OH=8+6.4=14.4,.•.G ( 14.4 , -4.8 ),•・•点P、E G Q为顶点的四边形为平行四边形,且PE=4,.•.Q ( 14.4 , -4.8 )或(18.4 , -4.8 ). k ,3.如图1,平面直角坐标系xoy中,A(-4, 3),反比例函数y —(k 0)的图象分别x交矩形ABOC勺两边AC, BC于E, F (E, F不与A重合),沿着EF将矩形ABO所叠使A, D重合.②若折叠后点 D 落在矩形ABOCrt (不包括边界),求线段CE 长度的取值范围.(2)若折叠后,△ ABD 是等腰三角形,请直接写出此时点 D 的坐标.7 . 23 3. 11 3.【答案】(1)①EC= 2;②3 CE 4; (2)点D 的坐标为(一,一)或(一,一)88 2 5 5【详解】,k k解:(1)①由题意得E(k,3) , F( 4,-), 3 4k kk 0 ,则 EC — , FB 一, 3 4AF 3 一, 417(12 k) 4 3 1 3 4(12 k) 3..由 A(-4, 3)得:AC 4, AB 3,,AC 4一 --- 一,AB 3 AE AC AF AB '又A=Z A,・ .△AE% AACB ・ •/AEF4 ACB ・ •.EF// CB如图2,连接AD 交EF 于点H ,••• AE.AE (1)①如图2,当点D 恰好在矩形 ABOC 勺对角线BC 上时,求CE 的长;②由折叠得EF 垂直平分AD,••• /AHE 90 ,则 EAH AEF又• BAD EAH BAC 90 ,BAD AEF ,・ .△AE% ABAQAE AF 口"AB AE 4--- ----- ,则 ----- ------ -,AB BD BD AF 34 3 9 BDAB - 3 - 3 4 4设 AF=x,贝U FB=3— x, FD=AF=x 在Rt^BDF 中,由勾股定理得:FB 2 BD 2 FD 2,r i图2由折叠的性质得: •••D 在 BC 上, ,AE AHEC DH 1 EC AC 2AH=DH 1,则 AE EC 2;即(3 x)2x 2 ,解得:如图,当D 落在BO 上时,: EAF ABD 90 ,B力。
最新中考数学动态几何压轴题专题练习(20200709085249)

( 3)当 t 2 时,在坐标平面内,是否存在点 M ,使以 A、 P、 Q、 M 为顶点的四边形 是平行四边形?若存在,请直接写出 M 点的坐标;若不存在,请说明理由. 解:( 1) x2 7x 12 0 解得 x1 3 , x2 4
OA OB OA 3 , OB 4 A(0,3), B(4,0)
在 Rt △ MOH 中,因为 AOB 60°,
所以 MH OM sin 60° (2 4t) 3 2
3(1 2t) ,
PA OB, OA OB OA PA OP 4 .
令 OA x , AB y ,则 y2 x2 (4 x)2 2x2 8x 16 = 2(x 2)2 8≥ 8 .
当 x 2 时, y2 有最小值 =8,从而 y 2 2 .
故 △ AOB 的周长存在最小值,其最小值是 4 2 2 . 例 2 如图,在平面直角坐标系中,已知 Rt△ AOB 的两条直角边 OA 、 OB 分别在 y 轴和
(结果取整数,参考数据: 2 =1.41, 3 1.73).
G
A
D
A
D
DF
A
F
F
B E
C
BE
C
B
E
C
参考答案
1.解:( 1)因为 A 坐标为 (1,3) ,所以 OA 2, AOB 60°
因为 OM 4t , ON 6 4t .
当 2 4t
6 4t 时,解之得 t
0,
2
6
即在甲、乙两人到达 O 点前,只有当 t
0时, △OMN ∽△ OAB ,所以 MN 与 AB 不可
能平行;
( 2)因为甲到达 O 点时间为 t
2
1 ,乙到达 O 点的时间为 t
中考数学重难点专题讲座动态几何含答案

中考数学重难点专题讲座第三讲 动态几何问题【前言】从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。
动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。
在这一讲,我们着重研究一下动态几何问题的解法,第一部分 真题精讲【例1】(2010,密云,一模)如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。
但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。
对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。
但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。
所以当题中设定MN M N t D DE AB ∥BC E ABEDABMCNED AB DE ∥AB MN ∥DE MN∥MC NC EC CD =1021035t t -=-5017t =MN NC =NF BC ⊥BC F 2MC FC =4sin 5DF C CD ∠==3cos 5C ∠=310225tt -=⨯258t =ABMCNFD MN MC =M MH CD ⊥2CN CH =()321025t t =-⨯6017t =A B MCN HD MC CN =102t t -=103t =258t =6017103MNC △423=BC x x (3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45o ,可求出AQ= CQ=4.∴ DQ=4-x , 易证△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =-, 24x CP x ∴=-+.②点D 在线段BC 延长线上运动时,∵∠BCA=45o ,可求出AQ= CQ=4,∴ DQ=4+x . 过A 作AC AG ⊥交CB 延长线于点G , 则ACF AGD ∆≅∆.∴ CF ⊥BD ,∴△AQD ∽△DCP ,∴CP CD DQ AQ = , ∴44CP x x =+, 24x CP x ∴=+.【例3】(2010,怀柔,一模)已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.GA BCDE F ADM【思路分析1】本题有一点综合题的意味,但是对二次函数要求不算太高,重点还是在考察几何方面。
最新中考数学总复习几何动态压轴题专题分类讲练(含参考答案)

最新中考数学总复习几何动态压轴题专题分类讲练考情分析几何动态综合一般以特殊平行四边形或三角形为背景,考查线段长度、角度、点的坐标、菱形或平行四边形的判定、直角或等腰三角形的存在性、与面积有关的函数关系式及最值,涉及解直角三角形、三角形的面积公式、勾股定理、二次函数的性质及最值等.题目一般有3~4问,第一问较为简单,熟练运用基础知识即可;后几问综合性较强,经常用到分类讨论、数形结合思想.类型点动型综合题例1 如图1,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A以每秒1个单位长度的速度匀速运动,同时动点Q以相同的速度从(1,0)出发在x轴正半轴上运动,当点P第一次回到A点时,两点同时停止运动,设运动的时间为t秒.(1)求正方形边长及顶点C的坐标;(2)当点P在AB上时,设△O PQ的面积为S,求S与t的函数关系式,并写出当t为何值时S最大;(3)如果点P,Q保持原速度不变,当点P沿A→B→C→D匀速运动时,O P与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.图1思路点拨 解决几何动态问题的关键是“化动为静”,找出几何图形中的自变量与时间t或线段长x的关系,并用函数关系式表示出来,再结合已知条件和图象性质求解.训练 1.如图2,Rt△ABC中,∠C=90°,BC=8 cm,AC=6 cm.点P从B出发沿BA 向A运动,速度为每秒1 cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2 cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.图2(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)当t为何值时,△AEQ为等腰三角形?2. 正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON__________(可能,不可能)过D点;(图3仅供分析)②如图4,在ON上截取O E=O A,过E点作EF垂直于直线BC,垂足为点F,EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且O G=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PK O=4S△O BG,连接GP,求四边形PKBG的最大面积.图3 图4 备用图类型线动型综合题例2 如图5,在△ABC中,AB=AC=10 cm,BD⊥AC于点D,BD=8 cm.点M从点A出发,在AC上以每秒2 cm的速度匀速向点C运动,同时直线PQ从点B出发,沿BA 的方向以每秒1 cm的速度匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接P M,设运动时间为t秒(0<t≤5).图5(1)当t为何值时,四边形PQC M是平行四边形?(2)设四边形PQC M的面积为y cm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.训练 3.如图6,在△ABC中,∠C=90°,∠A=60°,AC=2 cm.长为1 cm的线段MN 在△ABC的边AB上沿AB方向以1 cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为t s.图6(1)若△A M P的面积为y,写出y与t的函数关系式;(写出自变量t的取值范围)(2)线段MN运动过程中,四边形MN QP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?4.如图7,在△ABC中,AB=AC,∠BAC=90°,AD⊥BC于点D,BC=20 cm,AD=10 cm.点P从点B出发,在线段BC上以每秒2 cm的速度向点C匀速运动,与此同时,垂直于AD的直线l从点A沿AD出发,以每秒1 cm的速度沿AD方向匀速平移,分别交AB,AC,AD于M,N,E.当点P到达点C时,点P与直线l同时停止运动,设运动时间为t 秒(t >0).(1)在运动过程中(点P 不与B ,C 重合),连接P N ,求证:四边形M BP N 为平行四边形;(2)如图8,以MN 为边向下作正方形M FG N ,FG 交AD 于点H ,连接PF ,PG ,当0<t <时,求△PFG 的面积最大值;103(3)在整个运动过程中,观察图8,9,是否存在某一时刻t ,使△PFG 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由. 图7 图8 图9类型形动型综合题例3 已知:把Rt △ABC 和Rt △DEF 按如图10摆放(点C 与点E 重合),点B ,C (E ),F 在同一条直线上.∠ACB =∠EDF =90°,∠DEF =45°,AC =8 cm ,BC =6 cm ,EF =9 cm.如图11,△DEF 从图10的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s)(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P ,Q ,F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.图10 图11 训练 5.如图12所示,在▱ABCD中,AB=3 cm,BC=5 cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△P NM,速度为1 cm/s,同时,点Q从点C出发,沿射线CB 方向匀速运动,速度为1 cm/s,当△P NM停止平移时,点Q也停止运动,如图13所示,设运动时间为t(s)(0<t<4).(1)当t=__________时,PQ∥MN;(2)设△Q M C的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得PQ=Q M,若存在,求出t的值;若不存在,请说明理由.图12 图136.已知矩形O ABC的顶点O(0,0),A(4,0),B(4,-3).动点P从O出发,以每秒1个单位的速度,沿射线O B方向运动.设运动时间为t秒.(1)求P点的坐标;(用含t的代数式表示)(2)如图14,以P为一顶点的正方形PQ MN的边长为2,且边PQ⊥y轴.设正方形PQ MN与矩形O ABC的公共部分面积为S,当正方形PQ MN与矩形O ABC无公共部分时,运动停止.①当t<4时,求S与t之间的函数关系式;②当t>4时,设直线M Q,MN分别交矩形O ABC的边BC,AB于D,E,是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.图14参考答案例1 解:(1)如图1,过点B 作BF ⊥y 轴于F ,BE ⊥x 轴于E ,过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H ,图1∵A (0,10),∴OA =10.∵B (8,4),∴BF =8,OF =4.∴AF =10-4=6.∴AB ==10.AF 2+BF 2∵∠ABC =90°,∴∠ABF +∠CBH =90°.∵∠BAF +∠ABF =90°,∴∠BAF =∠CBH .又AB =BC ,∠AFB =∠BHC =90°,∴△ABF ≌△BCH .∴BH =AF =6,CH =BF =8.∴OG =FH =8+6=14,CG =8+4=12.∴点C 的坐标为(14,12).(2)如图1,过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N ,∴PM ∥BF .则△APM ∽△ABF ,∴==.AP AB AM AF PM BF∴==.∴AM =t ,PM =t .t 10AM 6PM 83545∴PN =OM =10-t ,ON =PM =t .3545∴S =PN ·OQ =×(1+t )=-t 2+t +5=-2+(0≤t ≤10).1212(10-35t )3104710310(t -476)8 407360∴当t =时,S 取到最大值.476(3)OP 与PQ 可以相等,根据等腰三角形的相关性质可知,相等时P 点的横坐标等于Q 点的横坐标的一半.①当P 在AB 上时,如图1,t =(t +1),t =;451253②当P 在BC 上时,如图2,图2则PB =t -10,sin ∠ABF =sin ∠BPM ==,AF AB BM PB∴=.∴BM =(t -10).610BM t -1035∴ON =BF +BM =8+(t -10)=(t +1).解得t =-15(舍去);3512③当P 在CD 上时,如图3,过点C 作CR ⊥PN 于R ,则PC =t -20,图3cos ∠PCR =cos ∠BCH ==,CH BC CR PC∴=.810CR t -20∴CR =NG =(t -20).45∴ON =OG -NG =14-(t -20)=(t +1),4512解得t =.29513综上所述,当t =或时,OP 与PQ 相等.2951353训练 1.解:(1)∵∠C =90°,BC =8 cm ,AC =6 cm ,∴AB =10 cm.∵BP =t ,AQ =2t ,∴AP =AB -BP =10-t .∵PQ ∥BC ,∴=.AP AB AQ AC∴=,解得t =.10-t 102t 63013即当t =时,PQ ∥BC .3013(2)∵S 四边形PQCB =S △ACB -S △APQ =AC ·BC -AP ·AQ ·sin A ,1212∴y =×6×8-×(10-t )·2t ·=24-t (10-t )=t 2-8t +24.12128104545即y 关于t 的函数关系式为y =t 2-8t +24.45(3)△AEQ 为等腰三角形分三种情况讨论:①如果AE =AQ ,那么10-2t =2t ,解得t =;52②如果AE =QE ,如图4,过点E 作EF ⊥AQ 于F,图4则F 为AQ 的中点,∴AF =AQ =t .12又AC ⊥BC ,∴EF ∥BC .∴sin ∠AEF =sin B ===.AF AE AC AB 610即=,解得t =;t 10-2t 6103011③如果AQ =QE ,可作QM ⊥AE 于M ,同理可得cos A ==,即=,解得t =.AM AQ AC AB 10-2t 22t 6102511故当t 为秒或秒或秒时,△AEQ 为等腰三角形.52301125112.(1)①解:不可能.【提示】若ON 过点D ,则OA >AB ,OD >CD ,∴OA 2>AD 2,OD 2>AD 2.∴OA 2+OD 2>2AD 2≠AD 2.∴∠AOD ≠90°,这与∠MON =90°矛盾,∴ON 不可能过D 点.②证明:∵EH ⊥CD ,EF ⊥BC ,∴∠EHC =∠EFC =90°,且∠HCF =90°.∴四边形EFCH 为矩形.∵∠MON =90°,∴∠EOF =90°-∠AOB .在正方形ABCD 中,∠BAO =90°-∠AOB ,∴∠EOF =∠BAO .∵∠EFO =∠B ,OE =OA ,∴△OFE ≌△ABO .∴EF =OB ,OF =AB .又OF =CF +OC =AB =BC =OB +OC =EF +OC ,∴CF =EF .∴四边形EFCH 为正方形.(2)解:如图5,∵∠POK +∠BOG =∠OGB +∠BOG =90°,图5∴∠POK =∠OGB .∵∠PKO =∠OBG ,∴△PKO ∽△OBG .∵S △PKO =4S △OBG ,∴=2=4.∴OP =2.S △PKO S △OBG (OP OG )∴S △POG =OG ·OP =×1×2=1.1212∵S 四边形PKBG =S △POG +S △PKO +S △OBG =1+5S △OBG ,∴只需求出S △OBG 的最大值.设OB =a ,BG =b ,则a 2+b 2=OG 2=1,∴b =.1-a 2∴S △OBG =ab =a =12121-a 212-a 4+a 2=.12-(a 2-12)2+14∴当a 2=时,△OBG 有最大值为,此时S △PKO =4S △OBG =1.1214∴四边形PKBG 的最大面积为1+1+=.1494例2 解:(1)若四边形PQCM 是平行四边形,则PM ∥QC ,∴AP ∶AB =AM ∶AC .∵AB =AC ,∴AP =AM ,即10-t =2t ,解得t =.103∴当t =时,四边形PQCM 是平行四边形.103(2)∵PQ ∥AC ,∴△PBQ ∽△ABC .∴△PBQ 为等腰三角形,PQ =PB =t .∴=,即=,解得BF =t .BF BD PB AB BF 8t 1045∴FD =BD -BF =8-t .45∴y =S △ABC -S △APM -S △BPQ =×10×8-×2t ×-×t ×t =t 2-8t +40.1212(8-45t )124525(3)假设存在某一时刻t ,使点M 在线段PC 的垂直平分线上,则MP =MC ,图6过M 作MH ⊥AB ,交AB 于H ,如图6所示,∵∠A =∠A ,∠AHM =∠ADB =90°,∴△AHM ∽△ADB .∴==.HM BD AH AD AM AB又AD =6,∴==.HM 8AH 62t 10∴HM =t ,AH =t .8565∴HP =10-t -t =10-t .65115在Rt △HMP 中,MP 2=2+2=t 2-44t +100,(85t )(10-115t )375又MC 2=(10-2t )2=100-40t +4t 2,MP 2=MC 2,∴t 2-44t +100=100-40t +4t 2.375解得t 1=,t 2=0(舍去).2017∴t =秒时,点M 在线段PC 的垂直平分线上.2017训练 3.解:(1)当点P 在AC 上时,∵AM =t ,∴PM =AM ·tan 60°=t .3∴y =t ·t =t 2(0<t ≤1).12332当点P 在BC 上时,PM =BM ·tan 30°=(4-t ),33∴y =t ·(4-t )=-t 2+t (1≤t <3).123336 2 33(2)∵AC =2,∴AB =4.∴BN =AB -AM -MN =4-t -1=3-t .∴QN =BN ·tan 30°=(333-t ).若要四边形MNQP 为矩形,需PM =QN ,且P ,Q 分别在AC ,BC 上.即t =(3-t ),∴t =.33334∴当t = s 时,四边形MNQP 为矩形.34(3)由(2)知,当t = s 时,34四边形MNQP 为矩形,此时PQ ∥AB ,∴△PQC ∽△ABC .除此之外,当∠CPQ =∠B =30°时,△QPC ∽△ABC ,此时=tan 30°=.CQ CP 33∵=cos 60°=,∴AP =2AM =2t .∴CP =2-2t .AM AP 12∵=cos 30°=,∴BQ ==(3-t ).BN BQ 32BN 32 2 33又BC =2 ,∴CQ =2 -(3-t )=.33 2 33 2 3t 3∴=,解得t =.2 3t32-2t 3312∴当t = s 或 s 时,以C ,P ,Q 为顶点的三角形与△ABC 相似.12344.(1)证明:∵l ⊥AD ,BC ⊥AD ,∴l ∥BC .∴=.AM AB AN AC ∵AB =AC ,∴AM =AN .∵∠BAC =90°,∴ME =NE .∴MN =2AE =2t .∵BP =2t ,∴MN =BP .∴四边形MBPN 为平行四边形.(2)解:∵四边形MFGN 是正方形,∴FG =MN =MF =2AE =2t .∵EH =MF =2t ,∴DH =AD -AH =10-3t .∴S △PFG =FG ·DH =×2t ×(10-3t )=-32+.1212(t -53)253∵-3<0,0<t <,103∴当t =时,S △PFG 最大为.53253(3)解:存在,t =或.30±10 27103【提示】如图7,过点F 作FK ⊥BC 于K ,过点G 作GL ⊥BC 于L ,图7则FK =GL =DH =10-3t ,PK =BD -BP -KD =10-3t ,PL =PD +DL =10-2t +t =10-t .利用勾股定理得:PF 2=2(10-3t )2,PG 2=(10-3t )2+(10-t )2,FG 2=(2t )2.当PF =FG 时,2(10-3t )2=(2t )2,解得t =;30±10 27当PF =PG 时,2(10-3t )2=(10-3t )2+(10-t )2,解得t =5,或t =0(舍去);当t =5时,点P 为BC 中点,而F ,P ,G 三点共线,舍去.当FG =PG 时,(2t )2=(10-3t )2+(10-t )2,解得t =,或t =10(舍去);103综上所述,t =或时,△PFG 为等腰三角形.30±10 27103例3 解:(1)∵点A 在线段PQ 的垂直平分线上,∴AP =AQ .∵∠DEF =45°,∠ACB =90°,∠DEF +∠ACB +∠EQC =180°,∴∠EQC =45°.∴∠DEF =∠EQC .∴CE =CQ .由题意知CE =t ,BP =2t ,∴CQ =t .∴AQ =8-t .在Rt △ABC 中,由勾股定理得AB =10 cm ,则AP =10-2t .∴10-2t =8-t ,解得t =2.(2)如图8,过点P 作PM ⊥BE 于M ,图8∴∠BMP =90°.∴sin B ==,即=.AC AB PM PB PM 2t 810解得PM =t .85∵BC =6 cm ,CE =t ,∴BE =6-t .∴y =S △ABC -S △BPE =×BC ×AC -×BE ×PM =×6×8-×(6-t )×t =t 2-t +24=(t -121212128545245453)2+.845∵>0,∴抛物线开口向上.45∴当t =3时,y 最小=.845(3)假设存在某一时刻t ,使点P ,Q ,F 三点在同一条直线上,如图9,过点P 作PN ⊥AC 于N,图9∴∠ANP =∠ACB =∠PNQ =90°.∵∠PAN =∠BAC ,∴△PAN ∽△BAC .∴==,即==.PN BC AP AB AN AC PN 610-2t 10AN 8解得PN =6-t ,AN =8-t .6585∵NQ =AQ -AN ,∴NQ =8-t -=t .(8-85t )35∵∠ACB =90°,B ,C (E ),F 在同一条直线上,∴∠QCF =90°,∠QCF =∠PNQ .∵∠FQC =∠PQN ,∴△QCF ∽△QNP .∴=,即=,解得t =1.PN FC NQ CQ 6-65t 9-t 35t t训练 5.解:(1);209【提示】如图10,由题意得,CQ =AP =t,图10∵AB =3,BC =5,∴AC =4.∴CP =4-t .由平移的性质可得MN ∥AB ,∵PQ ∥MN ,∴PQ ∥AB .∴=,即=,解得t =.CP AC CQ BC 4-t 4t 5209(2)如图11,过点P 作PF ⊥BC 于点F ,过点A 作AE ⊥BC 于点E,图11由S △ABC =AB ×AC =AE ×BC ,1212即×3×4=×5AE ,可得AE =.1212125∴CE ===.AC 2-AE 242-(125)2165∵PF ⊥BC ,AE ⊥BC ,∴AE ∥PF .∴△CPF ∽△CAE .∴==,即==.CP AC CF CE PF AE 4-t 4CF 165PF 125∴PF =,CF =.12-3t 516-4t 5∵PM ∥BC ,∴点M 到QC 的距离h =PF =.12-3t 5∴y =CQ ×h =×t ×=-t 2+t (0<t <4).121212-3t 531065(3)如图12,过点Q 作QK ⊥PM 于点D ,QE 交AC 于点H .图12∵PQ =MQ ,∴PK =KM =,且KQ ⊥BC .52∵∠A =∠HQC ,∠ACB =∠QCH ,∴△CQH ∽△CAB ,∴=,即=.CQ AC CH BC t 4CH 5∴CH =t .∴PH =AC -AP -CH =4-t -t =4-t .545494易证△PHK ∽△CBA ,∴=,即=,解得t =.PH BC PK AC 4-94t 5524718∴当t =时,PQ =QM .7186.解:(1)设设PN 与x 轴交于点G ,∵OA =4,AB =3,∠OAB =90°,∴OB =5.∵PG ∥AB ,∴△OPG ∽△OBA .∴==.∴==.OG OA PG AB OP OB OG 4PG 3t 5∴OG =t ,PG =.453t 5∴P 点的坐标为.(45t ,-35t )(2)①当0<t ≤时,S =t ×t =t 2;5245351225当<t ≤时,S =2×t =t ;521033565当<t <4时,S =4.103②当QM 运动到AB 位置时,恰好无公共部分,t <4+2,45即t <.152(ⅰ)当4<t <5时,∠DPE >∠DBE =90°,△PDE 不可能为直角三角形;(ⅱ)当t =5时,∠DPE =∠DBE =90°,此时△PDE 是直角三角形;(ⅲ)当5<t <时,如图13,ME =MN -NE =2-=6-t ,DM =MQ -QD =2152(45t -4)45-=5-t .(35t -3)35此时∠DPE <90°,有∠PDE =90°或∠PED =90°两种可能.若∠PDE =90°,则=,PQ QD DM ME图13可得=,235t -35-35t 6-45t 整理得9t 2-160t +675=0,解得t =,应取t =;80±5 13980-5 139若∠PED =90°,则=,PN NE ME DM可得=,245t -46-45t 5-35t 整理得8t 2-115t +425=0,注意到Δ<0,该方程无实数解.综上所述,符合条件的t 的值有两个,t =5或t =.80-5 139。
中考数学专题——动态问题(非常全面)

(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线中动形存在性一、要点分析:抛物线的解析式有下列三种形式:1、一般式:2y ax bx c =++(a ≠0);2、顶点式:y =a(x —h) 2-+k ;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2 是方程ax 2+bx+c=0的两个实根。
解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。
二、题型解析:1.抛物线中三角形例1. 如图.抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B . (1) 求此地物线的解析式;(2) 若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且 ∠MPQ=45°,设线段OP=x ,MQ=222y ,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围; (3) 在同一平面直角坐标系中,两条直线x=m ,x=n 分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,H .问四边形EFHG 能否为平行四边形? 若能,求m ,n 之间的数量关系;若不能,请说明理由.备用图解:(1) ∵拋物线y 1=ax 2-2ax +b 经过A (-1,0),C (0,23)两点,∴⎪⎩⎪⎨⎧==++2302b b a a ,∴a = -21,b =23,∴拋物线的解析式为y 1= -21x 2+x +23。
(2) 作MN ⊥AB ,垂足为N 。
由y 1= -21x 2+x +23易得M (1,2),N (1,0),A (-1,0),B (3,0),∴AB =4,MN =BN =2,MB =22, ∠MBN =45︒。
根据勾股定理有BM 2-BN 2=PM 2-PN 2。
∴(22)2-22=PM 2= -(1-x )2… ,又∠MPQ =45︒=∠MBP , P MQ A B O yxN∴△MPQ ~△MBP ,∴PM 2=MQ ⨯MB =22y 2⨯22… 。
由 、 得y 2=21x 2-x +25。
∵0≤x <3,∴y 2与x 的函数关系式为y 2=21x 2-x +25(0≤x <3)。
(3) 四边形EFHG 可以为平行四边形,m 、n 之间的数量关系是 m +n =2(0≤m ≤2,且m ≠1)。
∵点E 、G 是抛物线y 1= -21x 2+x +23 分别与直线x=m ,x=n 的交点,∴点E 、G 坐标为E (m ,-21m 2+m +23),G (n ,-21n 2+n +23)。
同理,点F 、H 坐标为F (m ,21m 2-m +25),H (n ,21n 2-n +25)。
∴EF =21m 2-m +25-(-21m 2+m +23)=m 2-2m +1,GH =21n 2-n +25-(-21n 2+n +23)=n 2-2n +1。
∵四边形EFHG 是平行四边形,EF =GH 。
∴m 2-2m +1=n 2-2n +1,∴(m +n -2)(m -n )=0。
由题意知m ≠n ,∴m +n =2 (0≤m ≤2,且m ≠1)。
因此,四边形EFHG 可以为平行四边形,m 、n 之间的数量关系是m +n =2 (0≤m ≤2,且m ≠1)。
练习1:如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90º的点P 的坐标.EO E F GH x y2.抛物线中四边形:例2.已知抛物线2y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C ,其顶点为D . (1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的31?若存在,求点Q 的坐标;若不存在,请说明理由.【答案】(1)求出:4-=b ,3=c ,抛物线的对称轴为:x=2(2) 抛物线的解析式为342+-=x x y ,易得C 点坐标为(0,3),D 点坐标为(2,-1) 设抛物线的对称轴DE 交x 轴于点F ,易得F 点坐标为(2,0),连接OD ,DB ,BE∵∆OBC 是等腰直角三角形,∆DFB 也是等腰直角三角形,E 点坐标为(2,2), ∴∠BOE= ∠OBD=45 ∴OE ∥BD∴四边形ODBE 是梯形 ………………5分 在ODF Rt ∆和EBF Rt ∆中, OD=5122222=+=+DF OF ,BE=5122222=+=+FB EF∴OD= BE∴四边形ODBE 是等腰梯形 ………………7分(3) 存在, ………………8分由题意得:29332121=⨯⨯=⋅=DE OB S ODBE 四边形 ………………9分 设点Q 坐标为(x ,y ), 由题意得:y y OB S OBQ 2321=⋅=三角形=23293131=⨯=ODBE S 四边形当y=1时,即1342=+-x x ,∴ 221+=x , 222-=x ,∴Q 点坐标为(2+2,1)或(2-2,1) ………………11分 当y=-1时,即1342-=+-x x , ∴x=2, ∴Q 点坐标为(2,-1)综上所述,抛物线上存在三点Q 1(2+2,1),Q 2 (2-2,1) ,Q 3(2,-1) 使得OBQ S 三角形=ODBE S 四边形31. ………………12分练习2: 如图,在直角坐标系xOy 中,点P 为函数214y x =在第一象限内的图象上的任一点,点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线PH交y 轴于R .(1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形;(3)除P 点外,直线PH 与抛物线214y x =有无其它公共点?并说明理由.EFQ 1 Q 3Q 2xlQC P A OB HRy3.抛物线中圆:例3、如图,在直角坐标系中,⊙C 过原点O ,交x 轴于点A (2,0),交y 轴于点B (0,23)。
⑴求圆心的坐标; ⑵抛物线y =ax 2+bx +c 过O 、A 两点,且顶点在正比例函数 y =-33x 的图象上,求抛物线的解析式; ⑶过圆心C 作平行于x 轴的直线DE ,交⊙C 于D 、E 两点,试判断D 、E 两点是否在⑵中的抛物线上; ⑷若⑵中的抛物线上存在点P (x 0,y 0),满足∠APB 为钝角,求x 0的取值范围。
解:(1)∵⊙C 经过原点O , ∴AB 为⊙C 的直径。
∴C 为AB 的中点。
过点C 作CH 垂直x 轴于点H ,则有CH =12OB =3,OH =12OA =1。
∴圆心C 的坐标为(1,3)。
(2)∵抛物线过O 、A 两点,∴抛物线的对称轴为x =1。
∵抛物线的顶点在直线y =-33x 上, ∴顶点坐标为(1,-33)把这三点的坐标代入抛物线抛物线y =ax 2+bx +c ,得 042033c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=-⎪⎩解得332330a b c ⎧=⎪⎪⎪⎪=-⎨⎪=⎪⎪⎪⎩∴抛物线的解析式为232333y x x =-。
(3)∵OA =2,OB =23,∴222(23)4AB =+=.即⊙C 的半径r =2。
∴D (3,3),E (-1,3)代入232333y x x =-检验,知点D 、E 均在抛物线上. (4)∵AB 为直径,∴当抛物线上的点P 在⊙C 的内部时,满足∠APB 为钝角。
∴-1<x 0<0,或2<x 0<3。
AB CDEF OHxy练习3:已知:如图,抛物线m x x y +-=332312与x 轴交于A 、B 两点,与y 轴交于C 点,∠ACB =90°. ⑴求m 的值及抛物线顶点坐标;⑵过A 、B 、C 的三点的⊙M 交y 轴于另一点D ,连结DM 并延长交⊙M 于点E ,过E 点的⊙M 的切线分别交x 轴、 y 轴于点F 、G ,求直线FG 的解析式;⑶在条件⑵下,设P 为上的动点(P 不与C 、D 重合),连结PA 交y 轴于点H ,问是否存在一个常数k ,始终满足AH ·AP =k ,如果存在,请写出求解过程;如果不存在,请说明理由.三、课堂小结:抛物线与几何综合探究题,综合性强,难度较大,通常都作为“压轴题”,解此类题通常需要熟练掌握抛物线与相关图形的基本知识和基本技能,求解时注意运用有关性质,进行综合、分析、探究解题思路。
四、作业训练:1. 已知抛物线b ax ax y ++-=22与x 轴的一个交点为A(-1,0),与y 轴的正半轴交于点C .⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式;⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A 、B 、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.2.在平面直角坐标系中给定以下五个17(30)(14)(03)(10)24A B C D E ⎛⎫-- ⎪⎝⎭,,,,,,,,,. (1)请从五点中任选三点,求一条以平行于y 轴的直线为对称轴的抛物线的解析式; (2)求该抛物线的顶点坐标和对称轴,并画出草图;(3)已知点1514F ⎛⎫- ⎪⎝⎭,在抛物线的对称轴上,直线174y =过点1714G ⎛⎫- ⎪⎝⎭,且垂直于对称轴.验证:以(10)E ,为圆心,EF 为半径的圆与直线174y =相切.请你进一步验证,以抛物线上的点1724D ⎛⎫ ⎪⎝⎭,为圆心DF 为半径的圆也与直线174y =相切.由此你能猜想到怎样的结论.yOx(30)A -,(03)C ,1724D ⎛⎫ ⎪⎝⎭, (10)E ,GF(14)B -,H3.如图,已知抛物线经过原点O 和x 轴上另一点A,它的对称轴x=2 与x 轴交于点C ,直线y=-2x-1经过抛物线上一点B(-2,m),且与y 轴、直线x=2分别交于点D 、E. (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB=CE ;② D 是BE 的中点;(3)若P(x ,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由ABCODExyx =24.如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.AxyB OCD。