2020年贵州省中考数学压轴题汇编解析:几何综合

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年全国各地中考数学压轴题汇编(贵州专版)

几何综合

参考答案与试题解析

一.选择题(共6小题)

1.(2020•贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()

A.24 B.18 C.12 D.9

解:∵E是AC中点,

∵EF∥BC,交AB于点F,

∴EF是△ABC的中位线,

∴EF=BC,

∴BC=6,

∴菱形ABCD的周长是4×6=24.

故选:A.

2.(2020•遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()

A.10 B.12 C.16 D.18

解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,

∴S

△ADC =S

△ABC

,S

△AMP

=S

△AEP

,S

△PBE

=S

△PBN

,S

△PFD

=S

△PDM

,S

△PFC

=S

△PCN

∴S

△DFP

=S△PBE=×2×8=8,

∴S

阴=8+

8=16,

故选:C.

3.(2020•贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()

A.B.1 C.D.

解:连接BC,

由网格可得AB=BC=,AC=,即AB2+BC2=AC2,

∴△ABC为等腰直角三角形,

∴∠BAC=45°,

则tan∠BAC=1,

故选:B.

4.(2020•遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

A.5 B.4 C.3D.2

解:如图,在Rt△ABC中,AB=5,BC=10,

∴AC=5

过点D作DF⊥AC于F,

∴∠AFD=∠CBA,

∵AD∥BC,

∴∠DAF=∠ACB,

∴△ADF∽△CAB,

∴,

∴,

设DF=x,则AD=x,

在Rt△ABD中,BD==,

∵∠DEF=∠DBA,∠DFE=∠DAB=90°,

∴△DEF∽△DBA,

∴,

∴,

∴x=2,

∴AD=x=2,

故选:D.

5.(2020•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()

A.2cm B.4cm C.2cm或4cm D.2cm或4cm 解:连接AC,AO,

∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,

∴AM=AB=×8=4cm,OD=OC=5cm,

当C点位置如图1所示时,

∵OA=5cm,AM=4cm,CD⊥AB,

∴OM===3cm,

∴CM=OC+OM=5+3=8cm,

∴AC===4cm;

当C点位置如图2所示时,同理可得OM=3cm,

∵OC=5cm,

∴MC=5﹣3=2cm,

在Rt△AMC中,AC===2cm.

故选:C.

6.(2020•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()

A.1cm B.3cm C.5cm或3cm D.1cm或3cm

解:当直线c在a、b之间时,

∵a、b、c是三条平行直线,

而a与b的距离为4cm,b与c的距离为1cm,

∴a与c的距离=4﹣1=3(cm);

当直线c不在a、b之间时,

∵a、b、c是三条平行直线,

而a与b的距离为4cm,b与c的距离为1cm,

∴a与c的距离=4+1=5(cm),

综上所述,a与c的距离为3cm或3cm.

故选:C.

二.填空题(共8小题)

7.(2020•贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是72度.

解:连接OA、OB、OC,

∠AOB==72°,

∵∠AOB=∠BOC,OA=OB,OB=OC,

∴∠OAB=∠OBC,

在△AOM和△BON中,

∴△AOM≌△BON,

∴∠BON=∠AOM,

∴∠MON=∠AOB=72°,

故答案为:72.

8.(2020•遵义)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37度.

解:∵AD=AC,点E是CD中点,

∴AE⊥CD,

∴∠AEC=90°,

∴∠C=90°﹣∠CAE=74°,

∵AD=AC,

∴∠ADC=∠C=74°,

∵AD=BD,

∴2∠B=∠ADC=74°,

∴∠B=37°,

故答案为37°.

9.(2020•贵阳)如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.

解:如图,作AQ⊥BC于点Q,交DG于点P,

∵四边形DEFG是矩形,

∴AQ⊥DG,GF=PQ,

设GF=PQ=x,则AP=4﹣x,

相关文档
最新文档