《22.1 一元二次方程(一)》课件

合集下载

22.1 一元二次方程

22.1 一元二次方程

0,则k的值是( A )
(A)-1
(B)1
(C)1或-1
(D)-1或0
初中同步学习·数学
3.关于x的方程(m-2) xm2 2 +2mx-3=0是一元二次方程,则m的取值是( C ) (A)任意实数 (B)2
(C)-2
(D)±2
4.一元二次方程(1+3x)(x-3)=2x2+1化为一般形式为 x2-8x-4=0 ,二次
① ②
由①得 m2=3,m=± 3 .由②得 m≠- 3 ,所以 m= 3 .
初中同步学习·数学
一元二次方程的判断: (1)必须是整式方程; (2)化简后必须含有二次项; (3)二次项的系数是字母时,必须注明不为0.
初中同步学习·数学
探究点二:一元二次方程的解 【例2】 关于x的一元二次方程(a-2)x2+x+a2-4=0的一个根是0,求a的值. 【导学探究】 1.把x= 0 代入原方程,求出a的值. 2.二次项系数a-2 ≠ 0.
解:(1)长方形的长为x cm,则宽为(20-x) cm,则x(20-x)=64. 化为一般形式为-x2+20x-64=0. (2)二次项系数是-1,一次项系数是20,常数项是-64. (3)把x=3代入原方程,左边≠右边, 所以x=3不是方程的根; 把x=4代入原方程,左边=右边,所以x=4是方程的根.
解:把x=0,代入(a-2)x2+x+a2-4=0, 可得a2-4=0,解得a=±2. 因为(a-2)x2+x+a2-4=0是关于x的一元二次方程ቤተ መጻሕፍቲ ባይዱ 所以a-2≠0,即a≠2,所以a=-2.
初中同步学习·数学
已知一元二次方程的解 (1)代入:把方程的解代入原方程; (2)计算:解方程求出相关字母的值; (3)判断:舍掉二次项系数为0的值.

22.1一元二次方程(一)PPT课件(共24张)

22.1一元二次方程(一)PPT课件(共24张)

(x个-1队) 各赛1
场,
由于甲队对乙队的比赛和乙队对甲队的比赛
是同一场比赛,所以全部比赛共
场.

第4页,共24页。
方程① ② ③有什么(shén me)特点?
x2+2x-4=0 ① x2-75x+350=0 ②

(1)这些方程的两边都是整式
(2)方程中只含有一个未知数
(3)未知数的最高次数是2.
第20页,共24页。
P28 2. 7.
1.根据下列问题(wèntí)列方程,并将其化成一元二次 方程的一般形式:
(1)一个圆的面积是6.28m2 ,求半径(≈3.14)
(2)一个直角三角形的两条直角边相差3cm,面积 是9cm2 ,求较长的直角边的长。
(3)参加聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
第24页,共24页。
第21页,共24页。
P28 1
• 3. 将下列方程化为一般形式,并分别指 出它们的二次项、一次项和常数(chángshù)项 及它们的系数:
⑴ 3x2 1 6x
⑵ (x 2)(x 3) 8
⑶ (2 3 x)(2 3 x) (x 3)2
?
第22页,共24页。
1.一元二次方程的概念(gàiniàn)
(1)x3-2x2+5=0;
(2)
(3)2x(12x+11x)2=32(x+01);
(4)x2-2x=x2+1; (5)ax2+bx+c=0
第11页,共24页。
一般地,任何一个关于x的一元二次方程,经过整 理,都能化成如下形式
这种形式叫做一元二次方程的一般形式.其 中(qízhōng)ax2是二次项,a是二次项系数;bx是一次

一元二次方程(1)PPT课件

一元二次方程(1)PPT课件
义务教育课程标准实验教科书 浙江版《数学》八年级下册
2.1 一元二次方程
合作学习:
已列出下列问题中关于未知数x的方程: (1)把面积为4平方米的一张纸分割成如图所示的正方形
和 设长正方方形形两 的个 边部 长分 为,x求,可正列方出形方的程边为长_._x__2____3_x_____4
x
x
x
3
(2)据国家统计局公布的数据,浙江省2001年全省实现生
例1:把下列方程化成一元二次方程的一般形式,并写 出它的二次项系数,一次项系数和常数项.
(1)9x2 5 4x
(2)3 y2 1 2 3 y (3)4x2 5 பைடு நூலகம்4)(2 x)(3x 4) 3
说能出你这节课的收获和体验让大家 与你分享吗?
产总值6700亿元,2003年生产总值达9200亿元,求浙江省
这两年实现生产总值的年平均增长率. 设年平均增长率为x,可列出方程为__6_7_0_0_(_1___x_)2___9200
观察上面所列方程,说出这些方程与一元一次方程的相同 与不同之处.
两边都是整式,只含有一个未知数且未知数的最高次数 是2次,这样的方程叫做一元二次方程. 能使一元二次方程两边相等的未知数的值叫一元二次 方程的解(或根)
做一做:判断下列方程是否为一元二次方程.
(1)10x2 9 (3)2x2 3x 1 0
(2)2( x 1) 3x 12
(4) x2 x 0
一般地,任何一个关于x的一元二次方程都可以化为
ax2 bx c 0 ,的形式,我们把它称为一元二
次方程的一般形式. a,b,c分别称为二次项系数,一次项系数和常数项.

一元二次方程(第1课时) 教案 说课稿 课件 教学反思

一元二次方程(第1课时) 教案 说课稿 课件 教学反思

22.1 一元二次方程(第1课时)保太中学高勇【教学任务分析】【教学环节安排】自主探究合作交流【问题3】综合以上两个方程思考:(1)方程两边是否都是整式.(2)方程中有几个未知数?(3)未知数的最高次数是几次?【问题4】总结一元二次方程的概念.一元二次方程的一般形式:ax2+bx+c=0(a≠0)其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【问题5】指出下列一元二次方程中的各项并说出一次项和二次项的系数.1.3t2+12t-2=02.-2y2-y-2=03.7x-3x2-2=0学生认真观察方程①②看有何特点.讨论交流并得出结论.教师指导学生总结一元二次方程的概念.(概念的几个要点:1、是整式方程2、只含有一个未知数3、未知数的最高次数是一次)学生看课本弄清一元二次方程的一般形式并思考:为什么规定a≠0?学生可适当讨论,交流.学生练习,教师指名回答.尝试应用例1.将方程3(1)5(2)x x x-=+化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.【分析】把一元二次方程化成一元二次方程的一般形式时,经常要利用去括号、移项、合并同类项等步骤,同时注意项与项的系数.例2.若关于x的方程2(3)10k x kx+-+=是一元二次方程,求k的取值范围.练习1.下列方程是一元二次方程的是:(只填序号)2(1)481x=(6)40xy+=2(7)0ax bx c++=让学生尝试着利用去括号、移项、合并同类项等步骤完成例1.一名学生到黑板板书过程.在例2的学习中,主要考查一元二次方程的定义,可让学生说说自己的体会.学生回答并说出不是的理由,可适当让学生讨论.【当堂达标自测题】一、填空题1.一元二次方程x x 3122=-的二次项系数是 ,一次项系数是 ,常数项是 .2.已知关于x 的一元二次方程012)1(2=-++x x m ,则m 应满足 .3.一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为 ,一次项系数为 ,常数项为 .二、选择题1.下列方程中,是一元二次方程的是( )A 13722+=-y x B 02652=--y xC x x x +=-25372 D 05)3(2=++-+c x b ax 2.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A 10,3,1- B 10,7,1- C 12,5,1- D 2,3,1三、解答题1.将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数和常数项. (1)x 2+5x+7=3x+11 (2)x(2x-5)=4x-10(3)(2x-1)2=(3-x)2(4)12)3)(31(2+=-+x x x2.根据下列问题列方程,并将它化成一元二次方程的一般形式.(1)一张桌子的桌面长为6米,宽为4米.台布面积是桌面面积的2倍.如果将台布铺在桌子上各边垂下的长度相同,求这块台布的长和宽.(2)足协组织部分足球队比赛,按照比赛规则,要求每两个队都要在自己的主场踢一场,最后按积分排名次,结果本次比赛共踢了30场,问有几个队参加了比赛?。

22.1一元二次方程(共2课时)

22.1一元二次方程(共2课时)

22.1 一元二次方程(共2课时)第一课时:探索一元二次方程的定义及其相关概念.一、教学目的1.使学生理解并能够掌握整式方程的定义.2.使学生理解并能够掌握一元二次方程的定义.3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.二、教学重点、难点重点:一元二次方程的定义.难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.三、教学过程一、复习提问,引入新知1.什么叫做方程?什么叫做一元一次方程?二、探究新知为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?(课件:制作盒子)学生通过分析设出合适的未知数,列出方程.方法一:等量关系是底面的长×宽等于底面积,设切去的正方形的边长是x cm,则有方程(100-2x)(50-2x)=3 600;角度二:等量关系是底面积等于大长方形的面积减去四个小正方形的面积,再减去四个长方形的面积,同样设正方形的长是x cm,则有方程通过整理得到方程.问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应该邀请多少个队参赛?(课件:探索比赛场次)分析,全部比赛共28场,若设邀请x个队参赛,每个队要与其他(x-1)个队各赛一场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共场,于是得到方程,经过整理得到方程.探究二、1.你能通过观察下列方程得到它们的共同特点吗?分组合作、小组讨论,(1)2753500-+=;x x(2)2560--=;x x(3)1(1)x x-=28.2特点是两边都是整式,且整式的最高次数是2次.在学生交流看法的基础上,引导学生归纳:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫作一元二次方程;一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式20(0)ax bx c a++=≠这种形式叫作一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;b x是一次项,b是一次项系数;c是常数项.此时让学生指出上述方程中前两个方程的各项系数.学生自主解决问题,通过去括号、移项等步骤把方程化为一般形式,然后指出各项系数.(注意系数的符号)2.将方程3(1)5(2)-=+化成一元二次方程的一般形式,并指出各项系x x x数.〔解答〕去括号得2-=+,x x x33510移项,合并同类项,得一元二次方程的一般形式238100--=.x x其中二次项系数是3,一次项系数是-8,常数项是-10.三、课堂练习:把方程5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.四、小结:1、谈谈你的收获2、找系数应该注意什么五、作业27页练习第二课时:一元二次方程的根探究.猜测方程2560--=的解是什么?x x学生可以采取多种方法得到方程的解,比如可以用尝试的方法取x=1、2、3、4、5等,发现x=8时等号成立,于是x=8是方程的一个解,如此等等.教师引导学生自主探索,多种途径寻找方程的解,在此基础上让学生进行总结:使一元二次方程等号两边相等的未知数的取值叫作一元二次方程的解(又叫作根).探究二(1)下列哪些数是方程260--=的根?从中你能体会根的作用吗?x x-4,-3,-2,-1,0,1,2,3,4.根据根的概念,学生独立解决上述问题.只要是使方程中等号两边相等的未知数的取值,都是方程的根,于是经过试验可以发现-2和3都是方程的根.方程的根可以起到检验的作用——检验一个数是否是方程的根.(2)若x=2是方程2450+-=的一个根,你能求出a的值吗?从中你能体ax x会方程的根的作用吗?根据根的定义可以知道,若一个数是方程的根,那么把这个数代入方程后,等号必定成立,于是可以构造出关于a的一元一次方程,进而解即可.最后总结根的另一个作用——代入方程使等号成立.〔解答〕因为x=2是方程2450+-=的一个根,所以ax x4850a+-=,解之得a=3-.4巩固练习、归纳总结、布置作业.巩固练习:1.你能根据所学过的知识解出下列方程的解吗?(1)2360x-=.490x-=;(2)2学生在思考的基础上进行交流发现2360x-=若进行移项变为236x=,即已知一个数的平方是36,求这个数,显然是求36的平方根,容易得到x=±6;同样的方法处理(2).2.有人解这样一个方程7-+xx.(=)1)(5解:x+5=1或x-1 = 7,所以x1=-4,x2 =8,你的看法如何?三、归纳总结:本节课你学到了什么知识?从中得到了什么启发?四、作业26页练习。

22 一元二次方程

22 一元二次方程

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,- 1 -x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= . 8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:- 2 -用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= .b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;- 3 -- 4 -(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= . b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3) 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________.2.完成下面的解题过程:用因式分解法解方程:x2解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2. 22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:3x2-x-4=0;解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得 .a= ,b= ,c= .b2-4ac== >0.=_________,x1= ,x2= .(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;- 5 -(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)- 6 -22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.- 7 -解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.- 8 -- 9 -=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.。

部编人教版九年级上册数学22-1-1二次函数PPT课件

部编人教版九年级上册数学22-1-1二次函数PPT课件

(2)若生产第x档次的产品一天的总利润为1120元,求 该产品的质量档次.
解:由题意可得 -10x2+180x+400=1120,
整理得
x2-18x+72=0,
解得
x1=6,x2=12(舍去).
所以,该产品的质量档次为第6档.
【方法总结】解决此类问题的关键是要吃透题意, 确定变量,建立函数模型.
思考: 1.已知二次函数y=-10x2+180x+400 ,自变量x的取值 范围是什么?
(2)设销售单价为每千克x元,月销售利润为y元,求y 与x的函数关系式(不必写出自变量x的取值范围)
y x 40500 x 5010
10x2 1400x 40000
8.矩形的周长为16cm,它的一边长为x(cm),面积为y (cm2).求 (1)y与x之间的函数解析式及自变量x的取值范围; (2)当x=3时矩形的面积.
2.在例3中,所得出y关于x的函数关系式y=-10x2+ 180x+400,其自变量x的取值范围与1中相同吗?
【总结】二次函数自变量的取值范围一般是全体实数, 但是在实际问题中,自变量的取值范围应使实际问题 有意义.
三 二次函数的值
例4 一个二次函数 y (k 1)xk23k4 2x 1 . (1)求k的值. (2)当x=0.5时,y的值是多少?
数叫做一次函数.当b=0 时,一次函数y=kx就叫做正 比例函数.
3.一元二次方程的一般形式是什么? ax2+bx+c=0 (a≠0)
讲授新课
一 二次函数的定义
探究归纳
问题1 正方体六个面是全等的正方形,设正方体棱长为 x,表面积为 y,则 y 关于x 的关系式为 y=6x2 .
此式表示了正方 体表面积y与正方体棱 长x之间的关系,对于 x的每一个值,y都有 唯一的一个对应值, 即y是x的函数.

华师大九年级数学上册《一元二次方程》课件(共12张PPT)

华师大九年级数学上册《一元二次方程》课件(共12张PPT)

3.(3分)方程5x2=6x-8化为一元二次方程的一般形式后,二次项系
数、一次项系数、常数项分别为( C
)
A.5,6,-8
B.5,-6,-8
C.5,-6,8
D.6,5,-8
4 . (3 分 ) 将 方 程 3x(x - 1) = 2(x + 2) + 8 化 成 一 般 形 式 为 ____3_x_2_-__5_x_-__1_2_=__0_____.
解:8y2+6y-13=0;8,6,-13
(3)(x-3)2-9=0; 解:x1=6,x2=0
(4)(2t-1)2=9. 解:t1=2,t2=-1
7.(3分)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个
根,则m的值是( B )
A.1
B.-1
C.0
D.无法确定
8.(3分)已知方程ax2+bx+c=0,满足a-b+c=0,则方程必然有
18.(10分)已知关于x的方程2x2-kx+1=0的一个解与21x-+x1=4的解相同, 求k的值. 解:∵21x-+x1=4,∴2x+1=4-4x.∴6x=3,x=12.∴2×(12)2-12k+1=0. ∴k=3 19.(12分)如图,用一根长为22 cm的铁丝分段围成一个面积为10 cm2的
5.(3分)若一元二次方程2x2+(k+8)x-(2k-3)=0的二次项系数、一 次项系数、常数项之和为5,则k=___8____.
6.(6分)将下列一元二次方程化成一般形式,并写出其中的二次项系 数、一次项系数以及常数项.
(1)3x2-2=x; 解:3x2-x-2=0;3,-1,-2
(2)2y(4y+3)=13.
D.x(x+10)=200
13.(2014·菏泽)已知关于x的一元二次方程x2+ax+b=0有一个非零

数学:22.1《一元二次方程》课件(人教版九年级上)(新编教材)

数学:22.1《一元二次方程》课件(人教版九年级上)(新编教材)

; 棋牌游戏 手机棋牌游戏 网络棋牌游戏 棋牌游戏网 网络真钱棋牌 网络现钱棋牌 游戏下载棋牌 ;
赞曰 穷九丹之秘术 习相远 朝议选能距捍疆场者 虽器量不及安 泓有其分 帝以詹为都督前锋军事 则允合典谟 入新安山中 圣人之教 遗书告之 前修贻训 便说甘卓 令术劝群酒 而谦虚爱士 实欲因此以避贤路 寻而骠骑将军何充辅政 为贼所败 霈然垂恕 于时郗愔及弟昙奉天师道 贱经尚道 子泰 无所修尚 西藩骚动 彝若降者 历衡阳 转散骑常侍 时更营新庙 《书》云宁致人 怿字叔预 不受虚让 兼苦自疗 辅嗣妙思通微 都督可课佃二十顷 永和二年卒 苏峻之乱 职思其忧也 乃心王室 今杜弢蚁聚湘川 举贤良 黩武之众易动 与张玄相遇 而不周乎时变 姥又持扇来 上延亡叔臣 安 帝幸温峤舟 王职不恤 导从驾在石头 谓曰 当归南 但终日书空 不免作中书令 中原有菽 虽遣诸不经事少年 因发疾 相谓曰 不令微臣衔恨泉壤 将及社稷 臣死之日 苻方等至颍口 宝至宣营 填沟壑 此自一切之法 寻以峤参世子东中郎军事 此韩卢 复图再举 吾以寡乏 仍委以军政 故出其 言善 事泄 此为施一恩于今 秘以本官监梁益二州征讨军事 后与王珣俱被桓温辟为掾 赠礼有同异之议 以十三为半丁 鼓行而前 以忠谨清慎为元帝所拔 无子者少 不满千户 卒以忠勇垂名 弟操之 一饮连月不醒 孝武帝诏冲为中军将军 国除 乃槛收下吏 降龄何促 故当居要害之地 旁收雄俊 金柜将离 尚书郎 以愉置坛所 浮泛江海 惧死罪之刑 百姓嗟怨 遂以谦恭称 既葬 司空 因斩之 将改元为建元 吾死 疆场日骇 会弢已平 汪少孤贫 二千石有居职修明者 没无鼎足之名 迟速唯宜 无益毗佐 何准等击之 无复日矣 既而辞去 躬吐握求贤之义 众溃而走 曰 久之 又以平蜀贼袭高 之功 上舒监浙江东五郡军事 璞既好卜筮 何者 许昌 何能复出 荀令则 王导 乃转守南门 转州别驾 上左光禄大夫 殿省

华师大九年级数学上册《一元二次方程》课件(14张PPT)

华师大九年级数学上册《一元二次方程》课件(14张PPT)

14.(2014·菏泽)已知关于x的一元二次方程x2+ax+b=0有一
个非零根-b,则a-b的值为( A)
A.1
B.-1
C.0
D.-2
15.在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条 相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要 使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么 x满足的方程是( B )
谢谢观赏
You made my day!
我们,还在路上……
11.根据下列问题,列出关于x的方程,并将其化为一般形式. (1)正方体的表面积为36,求正方体的边长x; (2)两个相邻偶数的积为328,求其中较小的偶数x.
解:(1)6x2=36,一般形式为:6x2-36=0
(2)x(x+2)=328,一般形式为x2+2x-328=0
12.若方程(m-1)x2+ mx=1 是关于 x 的一元二次方程,则 m 的取值范围是(C )
知识点1:一元二次方程的概念
1.下列方程中是关于 x 的一元二次方程的是(C )
A.x2+2x=1
B.ax2+bx+c=0
C.(x-1)(x+2)=5
D.x(2x-1)+3=2x2
2.方程(m-2)x2+mx+1=0 是关于 x 的一元二次方程,则 m 的值为( C)
A.任何实数
B.m≠0
C.m≠2
A.m≠1
B.m≥0
C.m≥0 且 m≠1 D.m 为任意正实数
13.目前我国已建立了比较完善的经济困难学生资助体系,某 校去年上半年发放给每个经济困难学生389元,今年上半年发放 了438元.设每半年发放的资助金额的平均增长率为x,则下面列 出的方程中正确的是( B ) A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389

华东师大版九年级数学上册第22 章《一元二次方程》PPT课件

华东师大版九年级数学上册第22 章《一元二次方程》PPT课件

2. 解方程:x2-5x+6=0 解: 把方程左边分解因式,得
(x-2)(x-3)=0 因此x-2 =0或x-3=0.
∴x1=2,x2=3
当堂练习
1.用因式分解法解下列方程: (1)4x2=12x; (2)(x -2)(2x -3)=6; (3)x2+9=-6x ; (4)9x2=(x-1)2
解 :(1)移项得4x2-12x=0,即x2-3x=0, x(x-3)=0,得x1=0,x2=3;
当堂练习
1.用配方法解下列方程: (1) x2+12x =-9; (2) -x2+4x-3=0. 解:(1) 两边同时加上36,得x2+12x+36 =-9+36,
配方得(x+6)2=27, 解得 x1 6 3 3, x2 6 3 3. (2)原方程可变形为x2-4x+3=0, 配方得(x-1)(x-3)=0, x1=1,x2=3.
方程 2x2 18 的根是
方程 (2x 1)2 9 的根是
x1=0.5,x2=-0.5 x1=3, x2=-3 x1=2, x2=-1
2.用直接开平方法解下列方程:
(1)3x2-27=0; (2)(2x-3)2=9.
x1=3, x2=-3
x1=0, x2=3
二 用因式分解法解一元二次方程
问题引导
x2-2x=0
3.已知关于x的一元二次方程x2+ax+a=0的一个根是3,求a 的值.
解:由题意得 把x=3代入方程x2+ax+a=0,得
32+3a+a=0
9+4a=0
4a=-9
a 9 4
4. 已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1,

第22章 22.1 一元二次方程

第22章 22.1 一元二次方程

A.x(x-10)=200
B.2x+2(x-10)=200
C.2x+2(x+10)=200
D.x(x+10)=200
7.若关于 x 的一元二次方程 ax2+bx+5=0(a≠0)的解是 x=1,则 2015-a
-b 的值是( A )
A.2020
B.2010
C.2014
D.2016
8.方程 2x-4=0 的解也是关于 x 的方程 x2+mx+2=0 的一个解,则 m 的 值为 -3 . 9.如图,在一块长为 22 米,宽为 17 米的矩形地面上,要修建同样宽的两条 互相垂直的道路(两条道路分别与矩形的一条边平行),剩余部分种上草坪,使 草坪面积为 300 平方米.设道路宽为 x 米,根据题意可列出的方程为 x2-39x+74=0 .
第22章 一元二次方程
22.1 一元二次方程
会识别一元二次方程. 【例 1】当 m 为何值时,关于 x 的方程(m-1)x|m|+1+2x-5=0 是一元二次方 程. 【思路分析】一元二次方程含有的未知数的最高次数是 2,且二次项的系数 不为 0,所以只有当|m|+1=2 且 m-1≠0 时,方程才是一元二次方程. 【规范解答】由题意,得|mm-|+11≠=02. , 解得 m=-1.所以当 m=-1 时,该 方程为一元二次方程.
解:(1)设其中一个数为 x,则另一个数为 7-x,依题意,得 x(7-x)=6 (2)设这次会议到会人数为 x 人,依题意,得21x(x-1)=66 (3)设全班共有 x 名学生,依题意,得 x(x-1)=2550
14.设 a 是二次项系数,b 是一次项系数,c 是常数项,且满足 a-1+(b- 2)2+|a+b+c|=0.求满足条件的一元二次方程.
【方法归纳】(1)求二次项系数、一次项系数、常数项时,必须先把一元二次 方程化为一般形式; (2)一元二次方程的一般形式不是唯一的,因此其二次项系数、一次项系数、 常数项也不唯一,通常所说的一般形式是指最简单、最实用、最方便的一种, 一般把各系数化为整数,且二次项系数为正.

22.1.1二次函数课件(第一课时)

22.1.1二次函数课件(第一课时)

问题1:
y=6x2

问题2 n个球队参加比赛,每两队之间进行 一场比赛。比赛的场次数 m 与球队 数n有什么关系?
1 1 2 1 m n(n 1) n n 2 2 2
问题3:某工厂一种产品现在的产量是20
件,计划今后两年增加产量。如果每年都 比上一年的产量增加x倍,那么两年后这种 产品的产量y将随计划所定的x的值而确定, y与x之间的关系应怎样表示?
注意: (1)等号左边是变量y,右边是关于自变量 x的 整式。
(2)a,b,c为常数,且
a≠0.
(3 )等式的右边最高次数为 2 ,可以没有 一次项和常数项,但不能没有二次项。 (4)x的取值范围是任意实数。
(5) 函数的右边是一个 整 式
二次函数的一般形式:
y=ax2+bx+c
(其中a、b、c是常数,a≠0)
x m
y
m2
x m
定义:一般地,形如y=ax² +bx+c(a,b,c是常数,a≠ 0) 的函数叫做二次函数。其中x是自变量,a为二次项 系数,ax2叫做二次项,b为一次项系数,bx叫做一 次项,c为常数项。
注意: (1)等号左边是变量y,右边是关于自变量 x的 整式。
(2)a,b,c为常数,且源自a≠0.现在我们学习过的函数有: 一次函数y=kx+b (k ≠0),其中包括正比例函数 y=kx(k≠0), 二次函数y=ax2+bx+c(a≠0)。 可以发现,这些函数的名称都形象地反映了函 数表达式与自变量的关系。
想一想
函数y ax bx c(其中a, b, c是常数),
2
当a, b,c满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数 ?

一元二次方程(一)精选教学PPT课件

一元二次方程(一)精选教学PPT课件
是关于x的一元二次方程.
将下列方程化为一般形式,并分别指 出它们的二次项、一次项和常数项及它 们的系数:
⑴ 6y2 y
⑵ (x 2)(x 3) 8
⑶ (2 3 x)(2 3 x) (x 3)2
?
1.一元二次方程的概念
只含有一个未知数,并且未知数的最高次数是2的整 式方程叫做一元二次方程。
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形?
解:
设切去的正方形的边长为xcm,
cm .
x
根据方盒的底面积为3600cm2,
得 (100 2x)(50 2x) 3600
例题1
下列方程中哪些是一元二次方程?
(1)x 2x2 5 0 (2)4x2 3 y 1 0
(3)ax2 bx c 0 (4)x( x 1) 2 0
(5)a2 1 0 a
(6)(m 2)2 1
是一元二次方程的有:(1) (4) (6)
一元二次方程的一般形式
解:当a≠2时是一元二次方程;当a =2,b≠0时是一元一次方程;
1.下列方程中,无论a为何值,总是关于x的一元
二次方程的是( D )
A.(2x-1)(x2+3)=2x2-a B.ax2+2x+4=0 C.ax2+x=x2-1 D.(a2+1)x2=0 2.当m为何值时,方程
(m 1) x 4m 2 27mx 5 0
一般地,任何一个关于x 的一元二次方程
都可以化为 ax2 bx的形c 式 0,我们把
ax2 bx(a,bc,c为 0常数,a≠0)称为一元二次方
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

只含有一个未知数,并且未知数的最高次数是2的整 式方程叫做一元二次方程。
2、一元二次方程的一般形式
一般地,任何一个关于x 的一元二次方程都可以 2 化为 ax 2 bx的形式,我们把 c 0 ax bx c 0 (a,b,c为常数,a≠0)称为一元二次方程的一般形式。
ቤተ መጻሕፍቲ ባይዱ
作业:P28-29 2、5、6、7
二次项系数
一次项系数
例题2
将方程(3x-2)(x+1)=8x-3 化为一 元二次方程的一般形式,并写出二次项 系数、一次项系数及常数项。 解:去括号,得 3x2+3x-2x-2=8x-3 移项,合并同类项得 3x2-7x+1=0
例题讲解 例题3
方程(2a—4)x2 —2bx+a=0, 在什么 条件下此方程为一元二次方程?在什么 条件下此方程为一元一次方程?
解:当a≠2时是一元二次方程;当a =2,b≠0时是一元一次方程;
1.下列方程中,无论a为何值,总是关于x的一 元二次方程的是( D ) A.(2x-1)(x2+3)=2x2-a B.ax2+2x+4=0 C.ax2+x=x2-1 D.(a2+1)x2=0 2.当m为何值时,方程
(m 1) x
一元二次方程的一般形式 一般地,任何一个关于x 的一元二次方程都可以 2 2 化为 ax bx c 0 的形式,我们把 ax bx c 0 (a,b,c为常数,a≠0)称为一元二次方程的一般形 式。 想一想 为什么要限制a≠0,b,c可以 为零吗?
a x 2 + b x + c = 0 (a ≠ 0)
x 2x 4 0 2 75 x 350 0 x 2 x 56 x
2
一元二次方程的概念 像这样的等号两边都是整式, 只含有一 个未知数(一元),并且未知数的最高次 数是2(二次)的方程叫做一元二次方程
(quadratic equation in one unknown)
4m
2
27mx 5 0
是关于x的一元二次方程.
3. 将下列方程化为一般形式,并分别指 出它们的二次项、一次项和常数项及它 们的系数: ⑴ 6y y
2
⑵ ⑶
( x 2)(x 3) 8
(2 3 x)(2 3 x) ( x 3)
2
练习:
P27 1、2
1.一元二次方程的概念
1 10 x 900 0是一元二次方程吗? 2 x
例题1
下列方程中哪些是一元二次方程?
(1) x 2 x 5 0 (2)4 x 3 y 1 0
2
2
(3)ax bx c 0
2
2
(4) x( x 1) 2 0
1 2 (6)(m 2) 1 (5)a 0 a (1 是一元二次方程的有: ) (4) (6)
设切去的正方形的边长为xcm, 则盒底的长为 (100-2x)cm 宽为 (50-2x)cm x 根据方盒的底面积为3600cm2, 得 (100 2 x)(50 2 x) 3600 即
3600
100㎝
50㎝
x2 75 x 350 0
问题(3) 要组织一次排球邀请赛,参赛的每两队 之间都要比赛一场,根据场地和时间等条件,赛程 计划安排7天,每天安排4场比赛,比赛组织者应邀 请多少个队参加比赛? 分析: 全部比赛共 4×7=28场 设应邀请x个队参赛,每个队要与其他 (x-1) 个队
一.复习
1.什么叫方程?我们学过那些方程? 2.什么叫一元一次方程? 3.什么叫分式方程?
问题(1)要设计一座高2m的人体雕像,使雕像的上 部(腰以上)与下部(腰以下)的高度比,等于下部 与全部的高度比,求雕像的下部应设计为高多少 A 米? 2-x 分析: 雕像上部的高度AC,下部的高度BC
应有如下关系:
C
AC BC 2 2 AC 即 BC BC 2 设雕像下部高xm,于是得方程 2 2( 2 x) x 整理得 x2 2 x 4 0
x
B
问题(2) 有一块矩形铁皮,长100㎝,宽50㎝,在
它的四角各切去一个正方形,然后将四周突出部 分折起,就能制作一个无盖方盒,如果要制作的方 盒的底面积为3600平方厘米,那么铁皮各角应切 去多大的正方形? 分析:
各赛1场, 由于甲队对乙队的比赛和乙队对甲队的比赛
1 是同一场比赛,所以全部比赛共 x( x 1) 28 场。 2

x x 56
2
这三个方程都不是一元一次方程.那么这两个 方程与一元一次方程的区别在哪里?它们有什么 共同特点呢? 特点: ①都是整式方程; ②只含一个未知数; ③未知数的最高次数是2.
相关文档
最新文档