支座砂型铸造工艺设计

合集下载

支座铸造工艺设计.

支座铸造工艺设计.

热加工工艺课程设计支座铸造工艺设计院系:工学院机械系专业:机械设计制造及其自动化班级:机电n班姓名:欢迎学弟学妹咨询学号:qq********指导老师:***时间:2012年6月2日黄河科技学院课程设计任务书工学院机械系机械设计制造及其自动化专业2011级班学号姓名指导教师刘万福设计题目: 支座铸造工艺设计课程名称:热加工工艺课程设计课程设计时间:5 月26 日至6 月 2 日共 2 周课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页)1、已知技术参数:图1 支座零件图2、设计任务与要求:(1)设计任务1 选择零件的铸型种类,并选择零件的材料牌号。

2 分析零件的结构,找出几种分型方案,并分别用符号标出。

3 从保证质量和简化工艺两方面进行分析比较,选出最佳分型方案,标出浇注位置和造型方法。

4 画出零件的铸造工艺图(图上标出最佳浇注位置与分型面位置、画出机加工余量、起模斜度、铸造圆角、型芯及型芯头,图下注明收缩量)5 绘制出铸件图。

(2)设计要求1设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。

2 按所设计内容及相应顺序要求,认真编写说明书(不少于3000字)。

3、工作计划熟悉设计题目,查阅资料,做准备工作1天确定铸造工艺方案1天工艺设计和工艺计算2天绘制铸件铸造工艺图1天确定铸件铸造工艺步骤2天编写设计说明书3天答辩 1天4.主要参考资料《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》系主任审批意见:审批人签名:时间:2012年月日黄河科技学院课程设计说明书第1页摘要热加工技术是机械类个专业一门重要的综合性技术学科。

在机械制造过程中,由于加工过程十分复杂,加工工序繁多,工艺过程不仅有铸造成型,锻压成形,焊接成形,还有非金属的模压成形,挤压成形等。

因此选着合适的工艺是保证产品质量的重要依据。

本次课程设计,将进行铸造工艺的总结和学习。

砂型铸造及铸造工艺设计

砂型铸造及铸造工艺设计

砂型铸造及铸造工艺设计砂型铸造是一种常见的铸造工艺,它通过制作砂型并在其中注入熔化金属,使金属在砂型中凝固成型。

砂型铸造具有成本低、生产周期短、适用于各种金属材料等优点,因此在工业生产中得到广泛应用。

砂型铸造的工艺设计主要包括以下几个方面:模型制作、砂型制备、浇注系统设计、砂型充填与密实、凝固与固化、砂型剥离与修整等。

首先是模型制作。

模型是铸造过程中的主要参照物,它决定了最终铸件的形状和尺寸。

模型可以采用实物模型、木模、塑料模等材料制作。

在模型制作过程中,需要考虑到模型的缩短率,即模型尺寸与最终铸件尺寸之间的比例关系。

其次是砂型制备。

砂型是砂型铸造的核心部分,它承担着承载和固定熔化金属的功能。

砂型制备的关键在于砂型材料的选择和配比。

常用的砂型材料有硅砂、水玻璃、氯化钠等。

在制备砂型的过程中,需要考虑到砂型的强度、耐火性以及砂型表面的光洁度等因素。

浇注系统设计是保证铸件质量的重要环节。

浇注系统包括浇注口、浇注道和浇注杯等部分。

浇注系统的设计应考虑到金属液体的流动和凝固过程,以确保金属能够充分填充砂型,并且避免气体和杂质的混入。

砂型充填与密实是决定铸件质量的关键步骤。

在砂型充填过程中,需要确保熔化金属能够均匀地填充砂型,并且避免产生气孔和缩孔等缺陷。

砂型密实的方法包括振动、压实等。

振动可以提高砂型的密实度,压实则可以增加砂型的抗压强度。

凝固与固化是铸造过程中不可或缺的环节。

在凝固过程中,金属由液态逐渐转变为固态,并在这个过程中释放出大量的热量。

凝固过程的控制将直接影响到铸件的组织结构和性能。

固化过程的目的是使砂型的结构稳定,以便后续的剥离和修整。

最后是砂型剥离与修整。

在铸件凝固后,需要将砂型从铸件上剥离,并对铸件进行修整和清理。

砂型剥离的方法包括机械剥离、化学剥离等。

修整的目的是去除铸件上的毛刺、气孔等缺陷,使铸件达到设计要求的形状和尺寸。

总之,砂型铸造工艺设计的关键在于模型制作、砂型制备、浇注系统设计、砂型充填与密实、凝固与固化、砂型剥离与修整等方面的考虑。

支座铸造工艺设计

支座铸造工艺设计

支座铸造工艺设计1. 引言支座是一种常见的结构零件,广泛应用于桥梁、建筑物和机械设备等领域。

支座的质量和性能对于保证结构的稳定性和安全性至关重要。

支座的制造过程中的铸造工艺设计是确保支座质量的重要环节之一。

本文将就支座铸造工艺设计进行详细介绍,并探讨其关键步骤。

2. 材料选型支座通常是由钢铁材料铸造而成。

选择合适的材料对于支座的性能和寿命具有重要影响。

常用的支座材料有碳钢、合金钢和不锈钢等。

在材料选型上,需要考虑支座的使用环境、承载能力和使用寿命等因素。

材料的选用需要满足相关标准和规范的要求。

3. 铸造工艺设计铸造工艺设计是支座制造过程中至关重要的一环,它直接影响支座的质量和性能。

铸造工艺设计包括模具设计、熔炼、浇注、冷却和清理等多个步骤。

3.1 模具设计模具设计是支座铸造工艺设计的第一步。

模具的设计应满足支座形状和尺寸的要求,同时要考虑到铸造过程中的收缩和变形。

模具的设计需要考虑到易于制造和使用,并能保证支座的精度和表面质量。

常用的模具材料有铁、铝和砂等。

3.2 熔炼熔炼是将所选材料加热至熔点,使其转化为液态的关键过程。

在支座铸造工艺中,通常采用电炉或高频感应炉进行熔炼。

熔炼过程中需要控制炉温、保持合适的熔化时间,并添加合适的熔剂和熔化助剂,以提高铸件的熔化质量和纯度。

3.3 浇注浇注是将熔融金属倒入模具中的步骤。

在支座铸造过程中,浇注需要控制浇注速度和温度,以避免产生气孔和夹渣等缺陷。

浇注过程中需要确保熔融金属能够充分填满模具腔体,并尽量避免产生温度梯度,以减少应力和变形。

3.4 冷却铸造完成后,支座需要进行冷却过程。

冷却速度的控制对于支座的组织结构和性能具有重要影响。

较快的冷却速度可能导致铸件硬化过深,影响其力学性能;而较慢的冷却速度可能会产生过大的晶粒,导致铸件的强度下降。

因此,需要通过合理控制冷却速度来获得理想的支座性能。

3.5 清理清理是支座铸造工艺中的最后一个步骤。

在清理过程中,需要将模具和浇注系统中的残留物清除,以及对铸件的表面进行抛光和清洗。

支座铸造工艺毕业论文

支座铸造工艺毕业论文

支座铸造工艺毕业论文本文介绍了支座铸造工艺的相关背景和应用,详细阐述了支座铸造工艺流程和方法,探讨了支座铸造工艺中的材料选择和质量控制。

最后,提出了支座铸造工艺存在的问题和改进措施。

一、背景介绍支座是一种常见的机械零件,用于支撑设备或组件。

支座广泛应用于化工、制药、食品等行业,该领域的发展为支座铸造工艺的提升和创新提供了机会。

支座铸造工艺是通过铸造技术来生产该零件,其生产成本低、生产效率高,具有广泛的应用前景。

二、支座铸造工艺流程1.模具制备支座铸造的第一步是模具制备。

选择具有合适形状和尺寸的铸造模具,并将其涂抹上脱模剂,以便后续的模具脱模。

2.熔炼原材料将铸造材料,如铸铁、铸钢、铜、铝等材料,加入熔炉中进行熔炼,并添加合适的合金元素,以达到所需的材料化学成分。

3.铸造过程将熔融的金属注入模具中,然后静置,直到铸造材料凝固成型。

在铸造过程中,必须控制合金的温度、流动速度和氧化状态,以保证铸造质量。

4.去毛刺将成型支座从模具中取出,并进行去毛刺和砂型清洗。

5.表面处理进行表面处理,包括砂喷、抛光和涂漆等过程。

6.质量检验进行质量检验,以确保支座强度、硬度和尺寸精度符合设计要求。

三、材料选择和质量控制1.材料选择支座铸造工艺的材料选择将影响产品的性能和成本。

常见的支座材料有灰铸铁、球墨铸铁、铸钢、红铜和铝合金等。

根据具体应用场景,选择合适的支座材料,满足强度要求的同时尽可能降低成本。

2.质量控制支座铸造工艺的质量控制是确保支座产品性能和外观质量的关键。

对铸造温度、流速、浇注位置和氧化情况等参数进行严格控制,以确保产品成型质量。

此外,对于成型后的支座产品,进行温度处理、去毛刺和表面处理等工艺,以确保最终产品质量。

四、存在问题及改进措施1.存在问题支座铸造工艺存在生产效率低、产量不稳定、质量难以保证等问题。

2.改进措施为了缓解上述问题,可以采取以下改进措施:(1)优化生产流程,确保生产效率。

(2)引入智能化设备,提高产量稳定性。

第四章砂型铸造工艺设计

第四章砂型铸造工艺设计

第四章砂型铸造工艺设计1.引言砂型铸造是一种常见的金属成型工艺,广泛应用于各种金属件的生产。

本章将介绍砂型铸造工艺的设计过程,包括模具设计、砂型制备、铸造工艺参数的确定等。

2.模具设计模具设计是砂型铸造工艺的基础,直接影响到铸件的质量和生产效率。

在模具设计中,需要考虑以下几个方面的因素:2.1铸件结构首先需要根据铸件的结构确定模具的形状和尺寸。

一般情况下,模具应该尽量符合铸件的外形,并考虑到铸件的收缩率和加工余量。

2.2浇注系统浇注系统是指从熔融金属到铸件腔室的流动路径。

浇注系统应该保证金属液能够均匀地填充整个铸件腔室,并避免产生气孔和夹杂物。

一般情况下,浇注系统包括浇口、浇杯、导流槽等。

2.3排气系统排气系统是指从砂型中排出空气和燃烧产物的通道。

排气系统应该保证空气能够顺利地从砂型中排出,避免产生气孔和夹杂物。

一般情况下,排气系统包括排气槽、排气孔等。

2.4垫块和芯垫块和芯是为了形成复杂形状的内部空间而使用的辅助构件。

垫块和芯应该和模具保持一定的间隙,并考虑到铸件的收缩率和加工余量。

3.砂型制备砂型制备是砂型铸造工艺的核心环节,直接影响到铸件的表面质量和尺寸精度。

在砂型制备中,需要注意以下几个方面的问题:3.1砂料的选择砂料的选择应该根据铸件的材质和尺寸来确定。

一般情况下,砂料应该具有一定的粘结力和抗压强度,并且易于流动和散落。

3.2砂型的填充砂型的填充应该保证砂料能够均匀地填充整个模具腔室,并且能够与铸件的表面接触紧密。

填充过程中需要注意控制填充速度和压实度,避免产生气孔和夹杂物。

3.3砂型的硬化砂型的硬化是指将填充好的砂料固化成为坚硬的砂型。

硬化过程中需要注意控制硬化时间和硬化温度,避免产生裂纹和变形。

4.铸造工艺参数的确定铸造工艺参数的确定是砂型铸造工艺的重要环节,直接影响到铸件的质量和生产效率。

在确定铸造工艺参数时,需要考虑以下几个方面的因素:4.1浇注温度浇注温度应该根据铸件的材质和尺寸来确定。

砂型铸造工艺及工装设计

砂型铸造工艺及工装设计

砂型铸造工艺及工装设计一、工艺流程设计砂型铸造的工艺流程设计是整个工艺的基础,包括以下步骤:设计铸造模具:根据产品需求和工艺要求,设计铸造模具的结构和尺寸。

制作砂型:根据模具和产品需求,制作符合要求的砂型。

浇注:将熔融的金属液体注入砂型,填充模具的型腔。

冷却:让金属液体冷却凝固,形成铸件。

脱模:将凝固的铸件从砂型中脱出,完成整个铸造过程。

二、铸造模具设计铸造模具的设计是整个工艺的核心,直接影响产品的质量和工艺的效率。

设计时需考虑以下几点:模具材料选择:根据产品需求和工艺要求,选择合适的模具材料。

模具结构确定:根据产品形状和尺寸,设计模具的结构和形状。

模具尺寸精度:根据产品要求和工艺条件,确定模具的尺寸精度。

浇口设计:浇口是金属液体注入模具的通道,设计时需考虑浇口的尺寸、位置和形式。

排气口设计:排气口是排除模具内的空气和挥发物的通道,设计时需考虑排气口的位置和大小。

三、砂型制作工艺设计砂型制作是整个工艺的重要环节,其质量直接影响产品的质量和工艺的效率。

设计时需考虑以下几点:砂型材料选择:选择符合要求的砂型材料,如黄沙、石英砂等。

砂型紧实度控制:控制砂型的紧实度,以保证砂型的强度和稳定性。

砂型透气性控制:控制砂型的透气性,以保证浇注过程中金属液体能够顺利填充模具的型腔。

砂型表面处理:对砂型的表面进行处理,以提高产品的表面质量。

四、浇注系统设计浇注系统是金属液体注入模具的通道,其设计直接影响到金属液体的流动和填充效果。

设计时需考虑以下几点:浇注系统结构形式:根据产品要求和工艺条件,选择合适的浇注系统结构形式。

浇注系统尺寸精度:根据产品要求和工艺条件,确定浇注系统的尺寸精度。

浇注速度控制:控制浇注速度,以保证金属液体能够平稳、充足地填充模具的型腔。

浇口位置选择:根据产品形状和模具结构,选择合适的浇口位置。

溢流槽设计:溢流槽是收集多余金属液体的结构,设计时需考虑溢流槽的位置和大小。

过滤网设置:过滤网是过滤金属液体中的杂质和气泡的结构,设计时需考虑过滤网的形式和材料。

砂型铸造工艺设计

砂型铸造工艺设计

砂型铸造工艺设计砂型铸造是一种常用的金属铸造工艺,适用于生产各种大中小型铸件。

砂型铸造工艺设计的主要目的是确保铸件形状、尺寸和质量的准确性,同时提高生产效率和降低生产成本。

下面是一个砂型铸造工艺设计的示例。

首先,确定铸件的形状和尺寸。

这是工艺设计的基础,涉及到铸件的几何形状、尺寸和重量等参数。

根据铸件的设计图纸,确定铸件的准确尺寸。

然后,选择适当的砂型材料。

砂型材料是砂型铸造中非常重要的因素之一,直接影响到铸件表面质量和精度。

根据铸件的材料和需求,选择适当的砂型材料,如石英砂、粘土砂等。

接下来,设计合适的砂型。

砂型的设计涉及到铸件和模具的结构设计。

首先,根据铸件的形状、尺寸和结构特点,确定合适的砂型结构,包括上、下模、型芯等。

然后,结合砂型材料的特性,设计合理的砂型壁厚和腔型,以保证铸件表面的光洁度和尺寸精度。

在设计砂型的同时,需要考虑到浇注系统的设计。

浇注系统是指将熔化金属引导到砂型腔内的通道系统,包括浇杯、溢流槽、导流槽等。

合理设计浇注系统可以保证金属的顺利流入砂型腔,并且能够避免金属中的气体和杂质混入铸件中。

最后,进行铸造工艺参数的选择和优化。

包括浇注温度、浇注速度、浇注时间、浇注压力等。

通过合理选择和优化这些参数,可以在保证铸件质量的前提下提高生产效率,降低生产成本。

总之,砂型铸造工艺设计是铸造工艺中至关重要的一步,它直接影响到铸件的质量和生产效率。

只有通过科学合理地设计砂型铸造工艺,才能生产出满足要求的铸件。

砂型铸造工艺设计是铸造生产中重要的环节之一,对于确保铸件的质量、做工的精细度以及生产效率的提高具有重要意义。

在砂型铸造工艺设计过程中,不仅需要考虑铸件的形状尺寸和材料特性,还需要合理选择砂型材料、设计适当的砂型结构和浇注系统,优化铸造工艺参数等。

首先,砂型铸造工艺设计的第一步是确定铸件的形状和尺寸。

根据产品的设计图纸和要求,确定铸件的几何形状、尺寸和重量等参数。

这些参数的准确确定是工艺设计的基础,直接影响到最终铸件的形状和尺寸精度。

支座铸造设

支座铸造设

河南机电高等专科学校毕业论文毕业论文题目:支座铸造工艺设计系部:材料工程系专业: 材料成形于控制技术班级:材料成形于控制技术121班学生姓名:***学号:*********指导教师:***2015年4 月 10日支座铸造工艺设计摘要:本支座为一小型铸件,铸件材质 HT200,结构简单,无复杂的型腔和阻碍起模的凸起。

铸件的外形尺寸为 200mm× 110mm× 120mm,主要壁厚为 15m m,壁厚均匀。

支座采用 HT200 是一种较高强度铸铁,基体为珠光体,强度、耐磨性、耐热性均较好,减振性也良好,铸造性能较好。

从支座的整体结构特点出发,进行铸造工艺设计分析,确定铸造方案,并进行铸造工艺参数和砂芯的设计,在此基础上再根据铸件的材质重量和浇注系统性能设计补缩系统。

采用粘土砂手工造型、制芯、金属摸样和半封闭加注系统,设计时应综合考虑各方面因素,浇注系统不是简单地金属液流动通道,用 proe 三维造型后,采用华铸 CAE 软件对设计方案进行浇注、凝固模拟计算。

结果显示,浇注系统设计合理,但凝固时铸件上表面有明显的缩孔缩松,经仔细观察此缩孔在铸件刚开始凝固时都已经产生,分析原因是因为铸件为湿型,开始凝固时吸收较多的热量,使上表面先凝固下沉,产生凹坑阻碍金属液补缩,为了避免此缺陷的产生减少热量散失浇筑前铸件进行预热,改进工艺后再次运用华铸 CAE 模拟铸件无明显缺陷。

由于铸件模数较小 M=1.5cm,HT200 凝固时伴随着石墨的析出与膨胀,铸件以层状-糊状方式凝固,其共晶膨胀压力小,加之石墨片尖端伸向铁液的生长方式,使其有很好的“自补”能力,需要的补缩金属液较少,件工艺出品率为 75%。

关键词:支座;工艺设计;华铸 CAESupport casting process designAbstract: This bearing is a small-sized castings, casting material HT200, structure is simple, no complicated cavity and hinder the draw. The shape of the casting size for 200 mmx110mmx120mm, main wall thickness is 15 mm, wall thickness uniformity. Bearing adopts HT200 is a kind of high strength cast iron, for pearlite matrix, and the strength, abrasion resistance and heat resistance are good, vibration is also good; Casting performance is good. Starting from the overall structure of the bearing characteristics, analysis of casting process design, casting solution is determined, and the casting process parameters and the design of sand core, on this basis, according to the material weight of casting and pouring system and feeding system design performance. Using clay sand handmade molding and core making, metal touch kind and semi-closed charging system, gating system design should be considered when factors not simply metal fluid flow channels, after using proe 3 d modelling, the China casting CAE software is adopted to design plans for pouring and solidification simulation. , according to the results of gating system design is reasonable, but the casting surface has obvious shrinkage on the shrinkage, carefully observe the shrinkage in casting solidification have been produced at first, analysis the reason is because the casting for wet and solidifies when absorbs more heat, making the surface solidification down first, the pits producing metal liquid feeding, in order to avoid the defect of reduce the heat lost preheated before pouring casting, improve the process after casting CAE simulation casting again using China has no obvious defects. Due to casting modulus of 1.5 cm, smaller HT200 with graphite precipitation and solidification of casting, solidification in layered - paste way, its eutectic expansion pressure is small, and flake graphite tip to the growth of iron liquid, so that it is a very good ability to "repair", and need less feeding metal, pieces of craft production rate was 75%.Key words: Support; process planning; Hua Zhu CAE目录毕业论文 (1)1 绪论 (5)1.1国内铸造现状及发展趋势 (5)1.1.1国内铸造的现状 (5)2设计任务 (7)2.1 铸造方案的确定 (8)2.2支座结构的铸造工艺性分析 (8)2.3造型造芯方法的选择 (10)2.4浇注位置的选择 (10)2.5支座分型面的选择 (11)2.6砂箱中铸件数目的确定 (14)3 铸造工艺参数的确定 (15)3.1 铸件的尺寸公差 (15)3.2 机械加工余量 (15)3.3 铸件收缩率 (15)3.4 起模斜度 (15)3.5 最小铸出的孔和槽 (16)3.6 工艺补正量 (16)3.7 浇注温度和铸件在铸型中的冷却时间 (16)4 砂芯的设计 (17)4.1 芯头的设计 (17)4.2 砂芯的定位结构 (17)4.3 压环、防压环和集砂槽的尺寸 (18)4.4 芯骨 (18)4.5 芯撑 (18)4.6 砂芯的排气 (18)5 浇注系统及冒口、冷铁、出气孔的设计 (19)5.1 浇注系统类型的选择 (19)5.2 浇注时间的计算 (19)5.3 阻流元截面积的计算及各阻流原件的比例关系的确定 (20)5.4.确定内浇道的截面积 (20)5.5 确定横浇道截面积 (21)5.6 确定直浇道的截面积 (21)5.7直浇道窝的设计 (22)5.8 浇口杯的设计 (22)5.9 冒口的设计 (23)5.10 冷铁的设计 (23)5.11 出气孔的设计 (23)6 支座浇注、凝固过程模拟分析 (24)6.1 华铸 CAE 简介 (24)6.2 华铸 CAE 模拟分析的步骤 (24)6.3 华铸 CAE 模拟支座浇注、凝固过程分析报告 (24)7 铸造工艺装备的设计 (27)7.1 模板的设计 (27)7.2 芯盒的设计 (27)8 总结 (28)8.1 铸造工艺图 (28)8.2 铸造工艺卡 (28)9 结论 (29)10 致谢 (30)参考文献 (31)1 绪论铸造行业是制造也的重要组成本部分,对国民经济发展起着重要的作用。

精选砂型铸造工艺设计概述

精选砂型铸造工艺设计概述
K=[(L模-L件)/L件]×100% 式中: K为铸造收缩率;L模为模样尺寸;L件为铸件尺寸。
铸造收缩率主要取决于合金的种类,同时与铸件的结构、 大小、壁厚及收缩时受阻碍情况有关。对于一些要求较高的 铸件,如果收缩率选择不当,将影响铸件尺寸精度,使某些 部位偏移,影响切削加工和装配。
通常灰铸铁为0.7~1.0%,铸造碳钢为1.3~2.0%,铝硅
浇注系统的组成
(1)外浇口
其作用是容纳注入的金属液并缓解液态金属对砂型的冲击。 小型铸件通常为漏斗状(称浇口杯),较大型铸件为盆状(称 浇口盆)。
(2)直浇道
是连接外浇口与横浇道的垂直通道,改变直浇道的高度可以 改变型腔内金属液的静压力从而改善液态金属的充型能力。
(3)横浇道
横浇道是将直浇道的金属液引入内浇道的水平通道,一般 开在砂型的分型面上。横浇道的主要作用是分配金属液入内 浇道和隔渣。
合金为0.8~1.2%,锡青铜为1.2~1.4%。
第三节 砂芯设计
一、型芯的作用 形成铸件的内腔、孔洞和形状复杂阻碍起 模部分的外形。
二.型芯的数量及分块 ★型芯的数量取决于铸件的形状 ★大型复杂型芯根据需要分块制作
三.型芯的形式 常用的型芯有水平型芯、垂直型芯、
悬臂型芯、悬吊型芯、引申型芯(便于起 模)、外型芯(使三箱造型变为两箱造型) 等六种。






第二节 铸造工艺参数的确定
一、机械加工余量和最小铸孔
灰铸铁的机械加工余量
铸件最大 尺寸 (㎜)
浇注时 位置
<50
<120
顶面 3.5~4.5 底、侧面 2.5~3.5
120~260
顶面 4.0~5.0 底、侧面 3.0~4.0

砂型铸造工艺设计

砂型铸造工艺设计

砂型铸造工艺设计适用于各种生产 批量,各种大、中、 小铸件主要用于单件、小批量生产具有两 个分型面的铸件第二节 砂型铸造砂型铸造是传统的铸造方法,它适用于各种形状、大小及各种 常见合金铸件的生产。

一、砂型铸造造型(造芯)方法制造砂型的工艺过程称为造型。

造型是砂型铸造最基本的工 序,一般分为手工造型和机器造型两大类。

(一)手工造型手工造型特点:操作方便灵活、适应性强,模样生产准备时间 短。

但生产率低,劳动强度大,铸件质量不易保证。

只适用于单件 小批量生产。

各种常见手工造型方法的特点及其适用范围见表1-5。

表1-5 常见手工造型方法的特点和应用范围铸型由上型和下型组成,造型、 起模、修型等操作方便铸型由上、中、下三部分组成 中型的高度须与铸件两个分型面的 间距相适应。

三箱造型费工,应尽 量避免使用造型方法主要特点适用范围建饪療抚ar 蟄芯通按模样特征区分#4AT(二)机器造型在车间地坑内造型,用地坑代替下砂箱,只要一个上砂箱,可减少砂箱的投资。

但造型费工,而且要求操作者的技术水平较高铸型合型后,将砂箱脱出,重新用于造型。

浇注前,须用型砂将脱箱后的砂型周围填紧,也可在砂型上加套箱模样是整体的,多数情况下,型腔全部在下半型内,上半型无型腔。

造型简单,铸件不会产生错型缺陷模样是整体的,但铸件的分型面是曲面。

为了起模方便,造型时用手工挖去阻碍起模的型砂。

每造一件,就挖砂一次,费工、生产率低为了克服挖砂造型的缺点,先将模样放在一个预先作好的假箱上,然后放在假箱上造下型,省去挖砂操作。

操作简便,分型面整齐将模样沿最大截面处分为两半型腔分别位于上、下两个半型内。

造型简单,节省工时铸件上有妨碍起模的小凸台、肋条等。

制模时将此部分作成活块,在主体模样起岀后,从侧面取岀活块。

造型费工,要求操作者的技术水平较高用刮板代替模样造型。

可大大降低模样成本,节约木材,缩短生产周期。

但生产率低,要求操作者的技术水平较高常见于砂箱数量不足,制造批量不大的大、中型铸件主要用在生产小铸件,砂箱尺寸较小适用于一端为最大截面,且为平面的铸件用于单件或小批量生产分型面不是平面的铸件用于成批生产分型面不是平面的铸件常见于最大截面在中部的铸件主要用于单件、小批量生产带有突出部分、难以起模的铸件主要用于有等截面的或回转体的大、中型铸件的单件或小批量生产机器造型特点:大批量生产砂型的主要方法,能够显著提高劳动生产率,改进劳动条件,并提高铸件的尺寸精度、表面质量,使加工余量减小。

砂型铸造工艺设计

砂型铸造工艺设计

三、砂型铸造工艺设计简介1. 铸造工艺图(1)浇注位置的确定(2)分型面的确定 (3)工艺参数的确定 (4)铸造工艺图绘制举例本节其它知识点:铸件图铸造工艺设计铸造工艺设计是根据铸件结构特点、技术要求、生产批量、生产条件等,确定铸造方案和工艺参数,绘制图标和标注符号、编制工艺和工艺规程等。

它是进行生产、管理、铸件验收和经济核算的依据。

铸造工艺设计主要内容是绘制铸造工艺图和铸件图。

1.铸造工艺图铸造工艺图是表示铸型分型面、浇冒系统、浇注位置、型芯结构尺寸、控制凝固措施(冷 铁、保温衬板)等内容的图样。

(1)浇注位置的确定浇注位置是浇注时铸件在铸型中所处的位置。

由于浇注时气体、熔渣、砂粒等杂质会上浮,使铸件上部易出现气孔、夹渣、夹砂等缺陷,而铸件下部质量较好。

确定浇注位置应遵循“三下一上”的原则。

1)主要工作面和重要面应朝下或置于侧壁。

床身的导轨面要求组织致密,耐磨,所以导轨面朝下是合理的。

气缸套要求质量均匀一致,浇注时应使其圆周表面处于侧壁2)宽大平面朝下大平面长时间受到金属液的烘烤容易掉砂,在平面上易产生夹砂、砂眼、气孔等缺陷,故铸件的大平面应尽量朝下,如划线平台的平面应朝下。

3)薄壁面朝下铸件薄壁处铸型型腔窄,冷速快,充型能力差,容易出现浇不到和冷隔的缺陷。

如电机端盖薄壁部位朝下,避免冷隔、浇不到等缺陷。

4)厚壁朝上将厚大部分放于上部,可使金属液按自下而上的顺序凝固,在最后凝固部分便于采用冒口补缩,以防止缩孔的产生。

如将缸头的较厚部位置于顶部,便于设置冒口补缩。

1)尽可能使铸件全部或主要部分置于同一砂箱中,以避免错型而造成尺寸偏差。

如左图所示:(a)不合理,铸件分别处于两个砂箱中。

(b)合理,铸件处于同一个砂箱中,既便于合型,又可避免错型。

2)尽可能使分型面为一平面。

如左图所示:(a)若采用俯视图弯曲对称面作为分型面,则需要采用挖砂或假箱造型,使铸造工艺复杂化。

(b)起重臂按图中所示分型面为一平面,可用分模造型、起模方便。

砂型铸造工艺设计步骤

砂型铸造工艺设计步骤

砂型铸造工艺设计步骤1、设计铸件图根据零件图及相关技术要求设计铸件图,设计时涉及技术内容依次为零件铸造工艺性、铸件尺寸公差、机械加工余量、工艺肋、铸件最小铸出孔和槽。

2、设计铸造工艺图(1)铸造毛坯三维成形利用现代计算机辅助设计手段可以根据二维零件图绘制三维铸件实体,如果设计部门给出三维零件图,可在三维零件图基础上直接绘制三维铸件实体图。

通过三维实体图绘制,可以得到准确的铸造毛坯重量。

铸件形状复杂时,三维实体绘制显得更有必要。

(2)毛坯形体解析目的是多角度分析铸造毛坯空间形状和结构特点,发现铸件厚大断面和热节位置分布,计算毛坯分体几何模数(若工艺设计需要),为后续的铸造方案确定和工艺参数设计做准备。

(3)工艺方案和参数确定目的是确定铸件浇注位置、分型面、铸件线收缩率与模样放大率、起模斜度、非加工壁厚负余量、反变形量、工艺补正量、分型负数、浇冒口切割余量、铸件在砂型内冷却时间以及压铁重量计算和去压铁时间选择、起吊重量计算和铸件吊轴设计。

(4)砂芯设计目的是形成铸件内腔或复杂外轮廓形状,包括砂芯设置、砂芯固定、砂芯定位、芯头尺寸和间隙、砂芯负数、芯撑、芯骨以及砂芯排气、拼合与预装配设计。

(5)补缩系统设计目的是补充铸件凝固过程中的液态收缩,使铸造毛坯内部致密。

包括冒口配置、冒口补缩距离设计、补贴设计、冷铁设计以及冒口尺寸计算。

(6)出气孔设计目的是使铸件充型时型腔内气体(空气或铸型受热后产生的气体等)顺利排出,避免铸件内产生气孔缺陷。

(7)浇注系统设计目的是设计出合理的液态金属进入铸型型腔的通道。

(8)生成铸造工艺图(9)设计铸型装配图在成批生产的铸件或重要的单件上使用。

3、铸造工装设计在造型线上成批生产重要铸件时采用。

内容包括模样、模板、芯盒、砂箱以及其他工艺装备设计。

4、铸造工艺卡根据前述步骤产生的设计结果填写铸造工艺卡,用于指导工艺实施。

HT200轴承支座的铸造工艺设计

HT200轴承支座的铸造工艺设计

HT200轴承支座的铸造工艺设计摘要本工艺方案的设计准则是:在保证铸件质量的前提下,尽量提高方案的经济性和可实施性。

在设计工艺方案过程中,我们结合铸件的实际情况,并从权威文献查找标准,将理论与实际相结合。

同时,用UG软件进行三维造型,用CAE软件进行模拟分析,在不断的尝试、改进中完善本方案。

在设计浇注系统和补缩系统中,考虑到铸件属于中大型铸钢件,容易产生缺陷。

所以为保证充型过程的平稳和铸件成品的质量,我们采用了开放式浇注系统,确保金属液稳定流动和充型。

同时,使用冒口和冷铁控制铸件自远离冒口的末端区向着冒口方向实现明显的“顺序凝固”。

然后我们使用CAE软件进行网格的剖分,充型、凝固的模拟。

在经历多次的方案优化后,我们最终成功消除铸件中的所有缩孔,并使缩松极少量的残存,使铸件达到合格的标准,最终我们的工艺出品率为80.5%。

关键词:HT200轴承支座顺序凝固设计和优化AbstractThe design criterion of this process scheme is to improve the economy and practicability of the scheme as far as possible on the premise of ensuring the casting quality. In the process of designing process plan, we combine the theory with practice by combining the actual situation of casting and searching standard from authoritative literature. At the same time, UG software was used for 3d modeling, and CAE software was used for simulation analysis, so as to improve the scheme through continuous attempts and improvements.In the design of casting system and feeding system, considering that the casting belongs to medium and large steel castings, it is easy to produce defects. Therefore, in order to ensure the smooth filling process and the quality of the casting products, we adopted an open casting system to ensure the stable flow of liquid metal and filling. At the same time, the riser and chill are used to control the casting from the end area away from the riser to the direction of the riser to achieve obvious "sequential solidification". Then we use CAE software for mesh subdivision, filling, solidification simulation. After several times of program optimization, we finally succeeded in eliminating all shrinkage holes in the casting and making a very small amount of residual shrinkage porosity, so that the casting reached the qualified standard, and the final production rate of our process was 80.5%.Keywords: sequential solidification design and optimization of bearing support目录摘要 (4)1 铸钢件初步分析 (5)1.1 基本信息 (5)1.2 实用性分析 (5)2可铸性分析 (4)2.1材料的化学成分及铸造性能 (7)2.2 最小壁厚 (7)2.3 临界壁厚 (8)2.4 铸件壁的过渡和连接 (8)2.5 加强肋分析 (9)3 铸造工艺方案的设计 (10)3.1 造型方法和材料选取 (10)3.1.1 呋喃树脂砂成分的选择 (10)3.1.2 铸造涂料的选择 (10)3.2 铸造工艺参数的确定 (11)3.2.1 铸件尺寸公差 (11)3.2.2 机械加工余量 (11)3.2.3 铸件收缩率 (12)3.2.4 起模斜度 (13)3.2.5 最小铸出孔和槽 (13)3.2.6 补充说明 (13)3.3 摆放位置与分型面 (13)3.3.1 摆放位置的确定 (13)3.3.2 分型面的确定 (14)3.4 浇注系统设计 (15)3.4.1 设计原则 (15)3.4.2 确定浇注位置 (16)3.4.3 各浇道截面计算 (17)3.4.4 浇口杯的选择 (19)3.5 冒口和冷铁设计 (20)3.5.1冒口的设计 (20)3.5.2冷铁的设计 (22)4 工艺方案优化 (23)4.1 铸件缺陷分析 (23)4.2缺陷改进 (25)5 砂芯及芯盒的设计 (27)5.1 制芯方法的确定 (27)5.2 芯头的定位和间隙 (27)5.3 芯骨的设计 (28)5.4 砂芯的排气 (28)5.5芯盒的设计 (29)6 铸造工艺工艺装备设计 (30)6.1 砂箱的选择与设计 (30)6.1.1 砂箱及其附件的材料 (30)6.1.2 砂箱各部分的机构和尺寸 (30)6.2 模样的设计 (36)6.3 铸型造型 (36)7熔炼和后处理 (37)7.1 铸钢的熔炼 (37)7.1.1 配料 (37)7.1.2 熔炼过程的技术要求 (37)7.2 铸件的清理 (40)7.2.1 铸件的落砂除芯 (40)7.2.2 浇冒口和毛刺的去除 (40)7.2.3 铸件的表面清理 (40)7.2.4 铸件的热处理 (40)7.3 气孔缺陷的防治 (41)8 参考文献 (42)1 铸钢件初步分析1.1 基本信息零件名称:HT200轴承支座材质:ZG310-570外形尺寸:1430mm×1160mm×810mm零件重量:2600Kg 生产规模:批量生产技术要求:(1)锐角倒钝。

《砂型铸造工艺设计》

《砂型铸造工艺设计》
要求较高的铸件。
整理课件
4、内浇道与铸件型腔连接位置的选择原则
• ①应使内浇道中的金属液畅通无阻地进入型腔,不正面 冲击铸型壁、砂芯或型腔中薄弱的突出部分。
• ②内浇道不应妨碍铸件收缩。如图4—16所示的圆环铸 件,其四个内浇道做成曲线形状,就不会阻碍铸件向中心 的收缩,避免了铸件的变形和裂纹。
• ③内浇道尽量不开设在铸件的重要部位。因内浇道附近 易局部过热而造成铸件晶粒粗大,并可能出现疏松,进而 影响铸件品质。
整理课件
(2) 分型面(中间)注入式浇注系统
内浇道开设在分型面上
优点:内浇道开设在分型面上,能方便地按需要进行布置, 有利于控制金属液的流量分布和铸型热量的分布。
应用:应用普遍,适用于中等质量、高度和壁厚的铸件。
整理课件
(3) 底注式浇注系统
内浇道开设在型腔底部
优点:金属液充型平稳,避免了金属液冲击型芯、飞溅和 氧化及由此引起的铸件缺陷;型内气体易于逐渐排出,整 个浇注系统充满较快,利于横浇道撇渣。 缺点:型腔底部金属液温度较高,而上部液面温度较低, 不利于冒口的补缩。
30~50 50
注: 若孔很深,孔径很小,一般不铸出; 不加工的特形孔,原则上应铸出; 非铁金属铸件上的孔,应尽量铸出。
整理课件
2.起模斜度
在造型和造芯时,为了顺利起模而不致损坏砂型和 砂芯,应该在模样或芯盒的起模方向上带有一定的斜度, 这个斜度称为起模斜度。
若铸件本身没有足够的结构斜度,就要在铸造工 艺设计时给出铸件的起模斜度。
整理课件
注:L-冒口的相对长度(相对延续率) 沿铸件长度方向各个冒口根部长度的总和与铸件被补缩 部分长度之比的百分数。
整理课件
第四节 液态成形工艺设计实例

第四节砂型铸造工艺设计

第四节砂型铸造工艺设计
第四节砂型铸造工艺设计
第四节砂型铸造工艺设计
第四节砂型铸造工艺设计
第四节砂型铸造工艺设计
第四节砂型铸造工艺设计
铸铁冶炼生产过程
第四节砂型铸造工艺设计
冲天炉是最普遍应 用的铸铁熔炼设备。 它用焦炭作燃料, 焦炭燃烧产生的热 量直接用来熔化炉 料和提高铁液温度, 在能量消耗方面比 电孤炉和其它熔炉 节省。而且设备比 较简单,大小工厂 皆可采用。但冲天 炉的缺点,主要是 由于铁液直接与焦 炭接触,故在熔炼 过程中会发生铁液 增碳和增硫的过程。
灰口
白口
主要取决于铸型材 料的导热性和铸件 壁厚。
第四节砂型铸造工艺设计
用途
机床床身、机座等。
第四节砂型铸造工艺设计
孕育处理
浇注前铁水中加入Si-Fe合金孕 育剂。促进石墨化,晶粒细化,降低 冷速敏感性。
第四节砂型铸造工艺设计
灰铸铁的牌号
➢ 灰铸铁的牌号由HT+三位数字组成: ➢ 其中HT是灰铁的汉语拼音缩写;数字代
蠕墨铸铁是在一定成分的铁水中加入适量 的蠕化剂而炼成的,其方法与程序与球墨铸铁 基本相同。蠕化剂目前主要采用镁钛合金、稀 土镁钛合金或稀土镁钙合金等。
第四节砂型铸造工艺设计
牌号与应用
RuT300、RuT420 蠕墨铸铁牌号、性能以“RuT”表示, 其后的数字表示最低抗拉强度。 蠕墨铸铁已成功地用于高层建筑中高 压热交换器。内燃机、汽缸和缸盖、汽 缸套、钢锭模、液压阀等铸件。
2、球化处理 球墨铸铁的的球化处理必须伴随着孕育处
理,通常是在铁水中同时加入一定量的球化 剂和孕育剂。我国普遍使用稀土镁球化剂。 镁是强烈阻碍石墨化的元素,为了避免白口, 并使石墨球细小、均匀分布、一定要加入孕 育剂。常用的孕育剂为75%硅铁和硅钙合金等。

砂型铸造工艺设计

砂型铸造工艺设计

数字化转型
利用计算机技术实现铸 造过程的数字化控制, 提高生产效率和产品质
量。
环保节能
采用环保材料和节能技 术,降低铸造过程中的
能耗和污染排放。
智能化制造
结合物联网、大数据等 技术,实现铸造生产线 的智能化管理,提高生
产效率。
定制化生产
满足个性化需求,实现 定制化生产,提高产品 附加值和市场竞争力。
工艺流程
主要包括模具制作、型砂 配置、模具填充、金属浇 注、冷却和脱模等步骤。
砂型铸造工艺的重要性
应用广泛
砂型铸造工艺适用于各种 金属材料和复杂形状铸件 的生产,具有较高的灵活 性和适应性。
成本较低
砂型铸造工艺相对其他铸 造方法成本较低,能够降 低生产成本,提高经济效 益。
高效生产
砂型铸造工艺具有较高的 生产效率和规模化生产能 力,能够满足大规模生产 的需求。
砂型铸造工艺设计
contents
目录
• 引言 • 砂型铸造工艺流程 • 砂型铸造材料选择 • 砂型铸造工艺优化 • 砂型铸造工艺应用与发展
01 引言
砂型铸造工艺简介
01
02
03
定义
砂型铸造是一种使用砂型 模具进行金属铸件生产的 工艺。
历史
砂型铸造工艺起源于古代, 随着技术的发展不断改进, 至今仍广泛应用于工业生 产。
未来砂型铸造工艺展望
创新材料应用
探索新型铸造材料,提高产品 性能和降低成本。
智能检测与质量控制
利用先进检测技术实现铸造过 程的实时监控和质量控制。
绿色铸造
推动环保法规的实施,实现铸 造行业的绿色可持续发展。
国际化合作与交流
加强国际合作与交流,引进先 进技术和管理经验,提升我国

支座砂型铸造工艺设计说明书( 33页)

支座砂型铸造工艺设计说明书( 33页)

支座砂型铸造工艺设计说明书第一章简介中华文明大致经历了石器时代、铜器时代和铁器时代三个历史阶段,这三种材质的工具和技术的创造创造,随着人类的繁衍,不断推动人类文明向高级阶段开展,金属的应用使人类文明产生了根本性的飞跃,而铸造技术的运用和金属的开展紧密联系在一起。

对古代很多务农的人来说,铸造技术是一门手艺。

据历史考证,我国铸造技术开始于夏朝初期,迄今已有5000多年。

到了晚商和西周初期,青铜的铸造技术得到了蓬勃开展,形成了灿烂的青铜文化,遗留到今天的有一批铸造工艺水平较高的铸造产品。

中国古代的铸造方法有:石型即用石头或石膏制作铸型;泥型古称“陶范〞;金属型古称“铁范〞;失蜡型有出蜡法、走蜡法、脱蜡法或刻蜡法;砂型这种方法是伴随泥型一起产生的。

中国古代铸造中的精品有:沧州铁狮,司母戊方鼎,四羊方尊,曾侯乙尊盘,永乐大铜钟,大型铜编钟,铜车马仪仗队等。

尽管近年来我国铸造行业取得迅速的开展,但仍然存在许多问题。

第一,专业化程度不高,生产规模小。

我国每年每厂的平均生产量是815t,远远低于美国的4606t和日本的4878t。

第二,技术含量及附加值低。

我国高精度、高性能铸件比例比日本低约20个百分点。

第三,产学研结合不够紧密、铸造技术根底薄弱。

第四,管理水平不高,有些企业尽管引进了国外的先进的设备和技术,但却无法生产出高质量铸件,究其原因就是管理水平较低。

第五,材料损耗及能耗高污染严重。

中国铸铁件能耗比美国、日本高70%~120%。

第六,研发投入低、企业技术自主创新体系尚未形成。

兴旺国家总体上铸造技术先进、产品质量好、生产效率高、环境污染少、原辅材料已形成商品化系列化供给,如在欧洲已建立跨国效劳系统。

生产普遍实现机械化、自动化、智能化〔计算机控制、机器人操作〕。

在大批量中小铸件的生产中,大多采用微机控制的高密度静压、射压或气冲造型机械化、自动化高效流水线湿型砂造型工艺。

砂处理采用高效连续混砂机、人工智能型砂在线控制专家系统, 制芯工艺普遍采用树脂砂热、温芯盒法和冷芯盒法。

材料成形技术1-3.砂型铸造工艺设计_OK

材料成形技术1-3.砂型铸造工艺设计_OK
1-3 砂型铸造工艺设计
1
一、浇注位置和分型面的选择
1、浇注位置的选择 (1)重要加工面和主要工作面应朝下或侧面
2
(2)大平面朝下
3
(3)薄壁朝下或侧面、厚大部位朝上或侧面
4
(4)形成缩孔的铸件厚部朝上
5
(5)尽量减少型芯数量,便于安放
6
2、分型面的选择
保证质量的前提下简化工艺! (1)便于起模,简化造型工艺 1)分型面选在最大截面处 2)尽量减少型芯、活块数量。 3)分型面尽量平直。 4)尽量减少分型面。
(0.5°~5°)
➢垂直壁的高度 ➢造型方法 ➢标注方法见图
17
5、铸造圆角
——铸件上壁与壁的交角应做成圆弧过渡, 以防止在该处产生缩孔和裂纹。 铸造圆角半径一般为两相交壁平均厚 度的1/3~1/2。
18
三、铸造工艺图
19
C6140车床进给箱体铸造工艺
材料:HT200,单件小批或大批量生产
20
21
方案Ⅰ
分型面在轴孔中心线上,凸台A距分型面 较近,又处于上箱,若采用活块,型砂 易脱落,可采用型芯成型,槽C可用型芯 或活块制出。
适于铸出轴孔,铸后轴孔飞边少,便于 清理。下芯头尺寸较大,稳定性好。
基准面D朝上,使该面较易产生缺陷,且 型芯数量较多。
22
方案Ⅱ
从基准面D分型,铸件绝大部分位于下箱, 凸台A不妨碍起模,凸台E和C妨碍起模, 可用活块或型芯来克服。
7
8
9
(2)重要加工面、加工基准面放 同一沙箱内
10
(3)使型腔和主要型芯位于下箱
11
二、工艺参数的确定
• 收缩余量 • 加工余量 • 铸出孔 • 起模斜度 • 铸造圆角121 Nhomakorabea收缩余量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章简介1.1中国古代铸造技术发展中华文明大致经历了石器时代、铜器时代和铁器时代三个历史阶段,这三种材质的工具和技术的创造发明,随着人类的繁衍,不断推动人类文明向高级阶段发展,金属的应用使人类文明产生了根本性的飞跃,而铸造技术的运用和金属的发展紧密联系在一起。

对古代很多务农的人来说,铸造技术是一门手艺。

据历史考证,我国铸造技术开始于夏朝初期,迄今已有5000多年。

到了晚商和西周初期,青铜的铸造技术得到了蓬勃发展,形成了灿烂的青铜文化,遗留到今天的有一批铸造工艺水平较高的铸造产品。

中国古代的铸造方法有:石型即用石头或石膏制作铸型;泥型古称“陶范”;金属型古称“铁范”;失蜡型有出蜡法、走蜡法、脱蜡法或刻蜡法;砂型这种方法是伴随泥型一起产生的。

中国古代铸造中的精品有:沧州铁狮,司母戊方鼎,四羊方尊,曾侯乙尊盘,永乐大铜钟,大型铜编钟,铜车马仪仗队等。

1.2中国铸造技术发展现状尽管近年来我国铸造行业取得迅速的发展,但仍然存在许多问题。

第一,专业化程度不高,生产规模小。

我国每年每厂的平均生产量是815t,远远低于美国的4606t和日本的4878t。

第二,技术含量及附加值低。

我国高精度、高性能铸件比例比日本低约20个百分点。

第三,产学研结合不够紧密、铸造技术基础薄弱。

第四,管理水平不高,有些企业尽管引进了国外的先进的设备和技术,但却无法生产出高质量铸件,究其原因就是管理水平较低。

第五,材料损耗及能耗高污染严重。

中国铸铁件能耗比美国、日本高70%~120%。

第六,研发投入低、企业技术自主创新体系尚未形成。

1.3发达国家铸造技术发展现状发达国家总体上铸造技术先进、产品质量好、生产效率高、环境污染少、原辅材料已形成商品化系列化供应,如在欧洲已建立跨国服务系统。

生产普遍实现机械化、自动化、智能化(计算机控制、机器人操作)。

在大批量中小铸件的生产中,大多采用微机控制的高密度静压、射压或气冲造型机械化、自动化高效流水线湿型砂造型工艺。

砂处理采用高效连续混砂机、人工智能型砂在线控制专家系统, 制芯工艺普遍采用树脂砂热、温芯盒法和冷芯盒法。

熔模铸造普遍用硅溶胶和硅酸乙酯做粘结剂的制壳工艺。

铸造生产全过程主动、从严执行技术标准,铸件废品率仅2%-5%;标准更新快(标龄4-5年);普遍进行ISO9000、ISO14000等认证。

重视开发使用互联网技术,纷纷建立自己的主页、站点。

铸造业的电子商务、远程设计与制造、虚拟铸造工厂等飞速发展。

1.4我国铸造未来发展趋势自中国加入WTO以来,我国铸造行业面临机遇与挑战。

其未来发展将集中在以下几方面。

第一,鼓励企业重组发展专业化生产,包括铸件大型化和轻量化生产。

第二,加大科技投入切实推动自主创新,实现铸件的精确化生产和数字化铸造。

第三,培养专业人才加强职工技术培训。

第四,大力降低能耗抓好环境保护,实现清洁化铸造。

1.5蠕墨铸铁蠕墨铸铁是在铸铁材料方面介于球墨铸铁与灰铸铁之间的一种材科。

蠕虫状石墨是介于球伏与片状之间的一种过渡型石墨,因而使这种铸铁的材质性能也介于球墨铸铁与灰铸铁之间。

简要地说,蠕墨铸铁具有接近于球墨铸铁的强度、刚性,一定的韧性,良好的耐磨性;另一方面,它又具有接近于灰铸铁的铸造性能和热传导性能,因此这种铸铁材料愈来愈引起人们的注意,并且巳开始在生产上获得了应用。

它具有独特的性能,在汽车发动机、排气管、玻璃模具、柴油机缸盖、制动零、件刹车盘等方面应用取得了良好的效果。

第二章铸造工艺方案的确定2.1支座的生产条件、结构及技术要求●产品生产性质——大批量生产●零件材质——RuT300●零件的外型示意图如图2.1所示,支座的零件图如图2.2所示,支座的外形轮廓尺寸为160mm*135mm*100mm,主要壁厚18mm,最大壁厚20mm,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。

图2.1 支座外型示意图图2.2 支座零件图2.2支座结构的铸造工艺性零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降低成本。

审查、分析应考虑如下几个方面:1.铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。

2.铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角铸件薄厚壁的相接拐弯等厚度的壁与壁的各种交接,都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应力集中导致裂纹缺陷。

3.铸件内壁应薄于外壁铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻内应力和防止裂纹。

4.壁厚力求均匀,减少肥厚部分,防止形成热节。

5.利于补缩和实现顺序凝固。

6.防止铸件翘曲变形。

7.避免浇注位置上有水平的大平面结构。

对于支座的铸造工艺性审查、分析如下:支座的轮廓尺寸为160mm*135mm*100mm。

砂型铸造条件下该轮廓尺寸允许的最小壁厚查《铸造工艺学》表3-2-1得:最小允许壁厚为3~4 mm。

而设计支座的最小壁厚为10mm。

符合要求。

支座设计壁厚较为均匀,两壁相连初采用了加强肋,可以有效构成热节,不易产生热烈。

2. 3造型,造芯方法的选择支座的轮廓尺寸为160mm*135mm*100mm,铸件尺寸较小,属于中小型零件且要大批量生产。

采用湿型粘土砂造型灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等,还可延长砂箱使用寿命。

因此,采用湿型粘土砂机器造型,模样采用金属模是合理的。

在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。

在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。

选择使用射芯工艺生产砂芯。

采用热芯盒制芯工艺热芯盒法制芯,是用液态固性树脂粘结剂和催化剂制成的一种芯砂,填入加热到一定的芯盒内,贴近芯盒表面的砂芯受热,其粘结剂在很短的时间内硬化。

而且只要砂芯表层有数毫米的硬壳即可自芯取出,中心部分的砂芯利用余热可自行硬化。

2. 4浇注位置的确定铸件的浇注位置是指浇注时铸件在型内所处的状态和位置。

确定浇注位置是铸造工艺设计中重要的环节,关系到铸件的内在质量,铸件的尺寸精度及造型工艺过程的难易程度。

初步对支座对浇注位置的确定有:方案一如图2.3、方案二图2.4图2.3 浇注位置确定方案一图2.4 浇注位置确定方案二确定浇注位置应注意以下原则:1.铸件的重要部分应尽量置于下部2.重要加工面应朝下或直立状态3.使铸件的答平面朝下,避免夹砂结疤内缺陷4.应保证铸件能充满5.应有利于铸件的补缩6.避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验对于方案一如图2.3进行综合分析如下:1.铸件的A面(如图2.3所示)为重要加工面,朝上放置容易产生气孔、非金属夹杂物等缺陷。

2.铸件的重要部分也没能全部置于下部。

对于方案二如图2.4进行综合分析如下:1.铸件的重要部分全部置于下部,这样置于下部的重要部分可以得到上部金属的静压力作用下凝固并得到补缩,组织致密。

2.铸件的重要加工面A面、B面(如图2.4所示)位于侧立面,比较光洁,产生气孔、非金属夹杂物等缺陷的可能性小。

综合比较,方案二更加科学可行。

2. 5分型面的确定分型面是指两半铸型相互接触的表面。

分型面的优劣在很大程度上影响铸件的尺寸精度、成本和生产率。

初步对支座进行分型有:方案一如图2.5、方案二图2.6、方案三图2.7图2.5 分型面确定方案一图2.6 分型面确定方案二图2.7 分型面确定方案三而选择分型面时应注意一下原则:1.应使铸件全部或大部分置于同一半型内2.应尽量减少分型面的数目3.分型面应尽量选用平面4.便于下芯、合箱和检测5.不使砂箱过高6.受力件的分型面的选择不应削弱铸件结构强度7.注意减轻铸件清理和机械加工量对方案一如图2.5进行综合分析如下:1.铸件没有能尽可能的位于同一半型内,这样会因为合箱对准误差使铸件产生偏错。

也有可能因为合箱不严在垂直面上增加铸件尺寸。

2.砂芯不能全部位于下半型内。

3.上箱难于取出模样。

对方案二如图2.6进行综合分析如下:铸件没有能尽可能的位于同一半型内,这样会因为合箱对准误差使铸件产生偏错。

也有可能因为合箱不严在垂直面上增加铸件尺寸。

对方案三如图2.7进行综合分析如下:此方案较之方案一与方案二更加科学可行。

2. 6砂箱中铸件数量及排列方式确定支座轮廓尺寸为160mm*135mm*100mm,单件质量约为4kg,因此看铸件为小型简单件。

如果一箱一件生产则工艺出品率会较低,如此生产成本较高。

所以采用一箱四件生产。

这样工艺出品率大幅提高,生产成本也大大降低。

初步选取砂箱尺寸由《铸造实用手册》查表1.5-45得:上箱为450*350*200mm 下箱为450*350*200mm由《铸造实用手册》查表1.5-44得:a>20 e>30 f>30铸件在砂箱中排列最好均匀对称,这样金属液作用于上砂型的抬芯力均匀,也有利于浇注系统安排,在结合已经确定分型面及浇注位置以及砂箱尺寸,基本确定铸件在砂箱内的排列如图2.8所示,其中模样的吃砂量基本确定为:a1=30 a2=40 e1=70 e2=70 f=35图2.8 砂箱中铸件排列示意图第三章铸造工艺参数及砂芯设计3. 1 工艺设计参数确定铸造工艺设计参数通常是指铸型工艺设计时需要确定的某些数据,这些工艺数据一般都与模样及芯盒尺寸有关,及与铸件的精度有密切关系,同时也与造型、制芯、下芯及合箱的工艺过程有关。

这些工艺数据主要是指加工余量、起模斜度、铸造收缩率、最小铸出孔、型芯头尺寸、铸造圆角等。

工艺参数选取的准确、合适,才能保证铸件尺寸精确,使造型、制芯、下芯及合箱方便,提高生产率,降低成本。

3.1.1铸件尺寸公差铸件尺寸公差是指铸件公称尺寸的两个允许的极限尺寸之差。

在两个允许极限尺寸之内,铸件可满足机械加工,装配,和使用要求。

支座为砂型铸造机器造型大批量生产,由《铸造工艺设计》查表1-10得:支座的尺寸公差为CT8~12级,取CT9级。

支座的轮廓尺寸为160mm*135mm*100mm,由《铸造工艺设计》查表1-9得:支座尺寸公差数值为2.5mm。

3.1.2机械加工余量机械加工余量是铸件为了保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度。

支座为砂型铸造机器造型大批量生产,由《铸造工艺设计》查表1-13得:支座的加工余量为E~G级,取G级。

支座的轮廓尺寸为160mm*135mm*100mm,由《铸造工艺设计》查表1-12得:支座加工余量数值为2.2mm,取2mm。

相关文档
最新文档