第一章质点运动学
第1章 质点运动学
100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z
大学物理第1章质点运动学
则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0
第1章-质点运动学
位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率
大学物理——第1章-质点运动学
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
大学物理第一章质点运动学
∫ d x = ∫ (2t −t )dt
2 0 0
t
质点的运动方程
13 x = t − t (m) ) 3
2
(3) 质点在前三秒内经历的路程
s = ∫ vdt = ∫ 2t − t 2 dt
0 0
3
3
令 v =2t-t 2 =0 ,得 t =2
8 s = ∫ (2t − t )dt + ∫ (t − 2t)dt = m 0 2 3
初始条件为x 初始条件为 0=0, v0=0 质点在第一秒末的速度;(2)运动方程;(3)质点在前三秒内 运动方程; 质点在前三秒内 运动方程 求 (1) 质点在第一秒末的速度 运动的路程。 运动的路程。 解 (1) 求质点在任意时刻的速度 dv dv a= = 2 − 2t 由 dt dv = (2 − 2t) dt 分离变量 两边积分
y
P点在 系和 '系的空间坐标 、 点在K系和 系的空间坐标、 点在 系和K 时间坐标的对应关系为: 时间坐标的对应关系为:
y'
r v
P
}
r r
o z
r r′
o' x x'
r R
z'
伽利略坐标变换式
2. 速度变换 r r vK、vK′ 分别表示质点在两个坐标系中的速度 r r r d r ′ d(r − vt) r r r vK′ = = = vK − v dr′ r dt t r 即 vK′ = vK − v r r r vK = vK′ + v 伽利略速度变换
dv = g − Bv dt 分离变量并两边积分
t dv ∫0 g - Bv = ∫0 dt v
g v = (1− e−Bt ) B
第一章 质点运动学
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学
解
y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j
第一章_质点运动学
dv − 1 ) t dt , ( − 1 .0 s − 1 ) t = (−1.0s ∫0 v = v0e ∫v0 v
dy ( −1.0 s −1 ) t v= = v0 e dt
dv a= = ( − 1.0s −1 ) v dt
o
v0
∫0 d y = v 0 ∫0 e
y t
(-1.0s ) t
(2) 运动方程 )
x ( t ) = (1m ⋅ s ) t + 2m
y (t ) = ( 1 m ⋅ s −2 )t 2 + 2 m 4
1 -1 2 y = ( m ) x − x + 3m 4
y/m
6
−1
由运动方程消去参数 t 可得轨迹方程为
轨迹图
t = − 4s
t = 4s
t = − 2s 4
位移的物理意义 A) 确切反映物体在空间位置的变化 与路径无关, 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置. 只决定于质点的始末位置 B)反映了运动的矢量性和叠加性 )反映了运动的矢量性和叠加性. 了运动的矢量性和叠加性
第一章
质点运动学
∆ r = ∆ xi + ∆ yj + ∆ zk
z
2
r
r= r = x +y +z
第一章
质点运动学
位矢
r 的方向余弦
cos α = x r cos β = y r cos γ = z r
y
β
P
r
P
α , β , γ 分别是
r
o
和Ox轴, Ox轴
z
γ
α
x
Oy轴和Oz轴之间的夹角。 Oy轴和Oz轴之间的夹角。 轴和Oz轴之间的夹角
第1章 质点运动学共48页文档
(2) 位矢法 以O点为参考点
r
x(
t
)i
y(
t
)j
R
cos
t
i
R
sin
t
j
(3) 自然法
以O’点为参考点,逆时为正。
S R t
第一章 质点运动学
7
§1-2 质点的位移、速度和加速度
一、位移 描述质点位置变化的物理量
S
几何描述: 数学描述:
PrQ
r(
t
t
)
r(
t
)
r( t ) r( t t )
2、联系 从数学上看是微分与积分的关系
微分法 r a 积分法
微分法
积分法
ar ra
第一类问题(微分法) 第二类问题(积分法)
第一章 质点运动学
14
例:直杆AB两端可以分别在两固定而 相互垂直的直线导槽上滑动,已知杆 的倾角按φ=ωt 随时间变化,试求杆 上M点的运动规律。(运动方程、轨 迹、速度、加速度)
直角坐标系
j
i
k
i jk
分别是x、y、z方 向的单位矢量
在直角坐标系中可写成:
r xi yj zk
a
x i y axi ay
j
z
k
j azk
(A)
大小
2 x
2 y
2 z
a
ax2
a
2 y
az2
第一章 质点运动学
12
由基本关系式
有:
dx
i
dy
j
dz
k
dt dt dt
a
dx
b
2
sin
t
第1章质点运动学
2.几种典型的坐标系 几种典型的坐标系 (1).直角坐标系 直角坐标系
z P
r 直角坐标系中, 直角坐标系中,任意矢量 A 可表示为 r r r r A= A i + Ay j + A k x z
矢量的大小或模 矢量的大小或模表示为
x
γ
O
A
α
β
y
A = A2 + A2 + A2 x y z
方向余弦满足关系
cos2 α +cos2 β +cos2 γ =1
r dk =0 dt
直角坐标系中,坐标轴的单位矢量是常矢量, 直角坐标系中,坐标轴的单位矢量是常矢量,满足
r di =0 dt
r dj =0 dt
3
(2).自然坐标系 自然坐标系 为坐标原点, 在已知运动轨迹上任取一点O为坐标原点,用质点距离原点的轨 来确定质点任意时刻的位置, 道长度s来确定质点任意时刻的位置,以轨迹切向和法向的单位 矢量( 作为其独立的坐标方向,这样的坐标系,称为自然坐 矢量(τ、n)作为其独立的坐标方向,这样的坐标系,称为自然坐 称为自然坐标 自然坐标。 标系 s 称为自然坐标。
在第6章 狭义相对论中讲授 在第6
10
§1.3.2 描述一般曲线运动的线参量
线参量: 线参量: 位置矢量、位移矢量、 位置矢量、位移矢量、 速度矢量和加速度矢量
z P(x,y,z)
γ α
r
z
β
1.位置矢量与运动方程 1.位置矢量与运动方程
x x
o
y y
(1).位置矢量: 由坐标原点指向质点的有向线段。 (1).位置矢量:时刻t,由坐标原点指向质点的有向线段。 位置矢量
β
第一章 质点 运动学
rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt
R
s
A
角加速度:
t 0
O
x
lim
t 0
t
d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。
质
点
研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。
第1章 质点运动学
第1章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.解:(1)质点在第1s 末的位移大小为x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位移大小为x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0, 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意]第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+.并由上述数据求出量值.证:依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t ------- (1) 根据速度与位移的关系式 v t 2 = v o 2 + 2as , 得a = (n 2 – 1)v o 2/2s ------- (2) (1}平方之后除以 (2)式证得22(1)(1)n sa n t -=+.计算得加速度为22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角?解:方法一:分步法.(1)夹角用θ表示,人和车(他)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当他达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式v t 2 - v 02 = 2a s , 可得上升的最大高度为h 1 = v y 02/2g = 30.94(m).他从最高点开始再做自由落体运动,下落的高度为h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为图1.32t =. 因此他飞越的时间为t = t 1 + t 2 = 6.98(s).他飞越的水平速度为v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得他落地的竖直速度大小为v y = gt = 69.8(m·s -1), 落地速度为v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上的方向为正,他在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得0(sin t v g θ=. 这里y = -70m ,根号项就是他落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为t = 6.98(s). 由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k=+. 证:(1)分离变量得2d d vk t v=-, 积分020d d vtv vk t v =-⎰⎰, 可得 011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分 00001d d(1)(1)xtx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕. [讨论] 当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma .由于a = d 2x /d t 2,而 d x /d t = v ,所以 a = d v /d t ,分离变量得方程 d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-,积分得ln v = -kt + C . 当t = 0时,v = v 0,所以C = ln v 0,因此ln v/v 0 = -kt ,得速度为 v = v 0e -kt .而d v = v 0e -kt d t ,积分得0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此 0(1-e )ktv x k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-.当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-, 读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值?解:(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =2r r ω=, 即22(12)24t = 解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2,即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a =m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? 解:建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ,v 0y = v 0sin θ.加速度的大小为a x = a cos α,a y = a sin α.运动方程为2012x x x v t a t =+,2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,例如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.解:圆盘边缘的切向加速度大小等于物体A 下落加速度. 由于212t h a t =∆,所以a t = 2h /Δt 2 = 0.2(m·s -2). 物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算: (1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+; 螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t =.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程 h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.证:(1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为1222l l vlt v u v u v u=+=+-- 022222/1/1/t l v u v u v ==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.AAB vv + uv - uABvu uvv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?解:雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h . 方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+, 即 12(sin cos )lv v hθθ=+.方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t ,h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.图1.101h l α。
大学物理学(上册)第1章 质点运动学
须在参考系上固连某种坐标系,这样,物体在某时刻的位置
即可用一组坐标表示.可见坐标系不仅在性质上具有参考系
的作用,而且还具有数学抽象作用.最常用的坐标系有:直角
坐标、球坐标、极坐标、柱坐标、自然坐标等.对物体运动
的描述决定于参考系而不是坐标系.
y
A
K
y
O
x
z
z
x 直角坐标系
K
r θ
A
O
x
极坐标系
O
y
o法向 sz
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s' s p1 r
p2
刻质点的位置,是个状态量. (2)位移与路程
r(t1) r (t2 )
P1P2 两点间的路程 s是不唯一的,可 O
2)轨道方程表示为 x2 y2 r 2
1.2.2 位移与路程
y
A r B
rA
rB
y
yB A r
r y A A
rB
B
yB yA
o
x
o
xA
xB x
xB xA
1.位移 经过时间间隔 t 后,质点位置矢量发生变化,由始
点A指向终点B 的有向线段AB称为点A到B 的位移矢量 r.位
因为 v(t) v(t dt)
所以 dv 0 dt
而 a a 0 所以
v(t)
O
dv
v(t dt)
a dv dt
例 设质点的运动方程为
r t xti y t j
第一章质点运动学
3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m
第1章-质点运动学
动力学:
以牛顿运动定律为基础,研究物 体运动状态发生变化时所遵循规律的 学科。
§1-1 质点、参考 系、坐标系
1-1-1 质点
质点(particle) :具有一定质量的几何点 两种可以把物体看作质点来处理的情况:
• 作平动的物体,可 以被看作质点。 • 两相互作用着的物 体,如果它们之间的 距 离远大于本身的线度, 可以把这两物体看作质 点。
z
v r1 v r2
v v1 v v2
y
o
v v v ∆v = v2 − v1
x
v v1 v v2
平均加速度
v v ∆v −1 a= m ⋅s ∆t
v ∆v
结论:平均加速度的方向与速度增量的方向一致 结论:
当∆t→0时,平均加速度的极限即为瞬时加速度。
v v ∆v dv d 2 r v = = 2 瞬时加速度: a = lim dt dt ∆t → 0 ∆ t
v v v v v = v x i + v y j + vz k
速度的三个坐标分量:
dx dy dz vx = , vy = , vz = dt dt dt
速度的大小:
v 2 2 2 v = v = vx + v y + vz
• 速率
在∆t时间内,质点所经过路程∆s对时间的变化率
平均速率:
∆s −1 v= m ⋅s ∆t
v ∆θ e t (t )
Q ∆θ =
∆s
ρ
O
∆θ
v et (t + ∆t )
大学物理 第一章 质点运动学
是否等于瞬时速率? t 时刻位矢
瞬时速度的大小是否
r
等于瞬时速率?
A
r
r1
B t 时间内位移
x
t +t 时刻位矢
平面直角坐标系中的瞬时速度(简称速度)
v lim r dr
t0 t
dt
r(t) x(t)i y(t) j
v d r
dx
i
d
y
j
y
vy
v
dt dt dt
vx
vxi vy j
力 学
§1-1 参照系 &坐标系 质点 §1-2 位移、速度和加速度 §1-3 圆周运动 §1-5 牛顿运动定律 §1-6 牛顿运动定律的应用举例
1. 运动的绝对性 绝对静止的物体是没有的
地球自转 太阳表面的运动
太阳随银河系运动
为了确定一个物体的位置和描述一个物体的机
械运动,必须另选一个物体或内部无相对运动的物
3. 坐标系 为了定量地描述物体相对于参考系的 运动情况,要在参考系上选择一个固定的坐标系
坐标系选定后,运动物体A 中任一点 P 的位置
就可以用它在此坐标系中的坐标来描述
运动物体
运动参考系
y
A P(x,y,z)
运动物体
O
z 参考系
x
地面参考系
常用坐标系: 平面直角坐标系和自然坐标系
一、质点 一般情况下,运动物体的形状和大小都可能变化
y
y z koj
r
i
x
*P
x
方向的单位矢量.
z
位矢r 的值为
r
xi
yj
zk
r r x2 y2 z2
位矢 r 的方向余弦
第1章 质点运动学
第1章 质点运动学
1.1 质点运动的描述
一、几个基本概念
运动是绝对的,对运动的描述是相对的。
1. 参考系 为了描述物体的运动而被选作参考的 物体叫做参考系.
任何实物物体均可被选作参考系;场不能作为参考系。
2. 坐标系 为了定量的描述物体的运动,在选定的参考 系上建立的带有标尺的数学坐标,简称坐标系。 坐标系是固结于参考系上的一个数学抽象。
?
即:
v v lim lim ? t 0 t t 0 t
v
vB
A
v
v v dv dv dt dt
第1章 质点运动学
总结:
描述对象 位置
描述质点运动的基本物理量
物理量 位矢 定义
r , r (t )
中心
位置变化
位移
v v0
a (t )
,如何求解
即
dv a dt
t dv adt
t0
同理:
r
r0
t dr v dt
t0
积分上、 下限!
第1章 质点运动学 例: 质量为5kg可视为质点的物体从原点开始运动, 其加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
rB
r
r r
第1章 质点运动学
讨论: 比较位移和路程
r AB
s AB
s
A
B
r
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关 直线(直进)运动 r s 何时取等号? 曲线运动 t 0时, dr ds
第1章_质点运动学
加速度为速度对时间的
一阶导数
13
1-2 质点运动的描述
由于
v vxi vy j
a
dv
dvx
i
dv
y
j
axi
ay
j
dt dt dt
ax
dvx dt
ay
dv y dt
为加速度在 x、y 方向的分量。
a
加速度方向为速度变化的方
向,指向运动轨迹的凹的一侧。
3、质量的国际单位是千克(kg): 保存在巴黎国际计量局的铂铱圆 柱体质量为1千克。
7
1-1 质点运动的描述
二、参考系
运动是绝对的。同一物体的运动,由于我们选
取的参照系不同,对它的运动的描述就不同,这称 为运动描述的相对性。因此,描述运动必须指出参 照标准。
参考系:描写物体运动选择的标准物。
y
P (x, y, z)
18
1-2 质点运动的描述
四、圆周运动的描述 1、角量描述
角位置 质点的位置矢量与参考
方向的夹角。
角速度 d
dt
y v2 r B v1 A
x
角加速度
d
dt
d2
dt 2
若一个质点做圆周运动的角速度为恒定值,称
为匀速圆周运动,否则为变速圆周运动。
19
1-2 质点运动的描述
1-1 物理基准 1-2 质点运动的描述 1-3 相对运动 1-4 牛顿运动定律 1-5 动量 1-6 能量
6
1-1 物理基准
一、长度、时间和质量标准
物体运动相关的单位有三个——长度、时间和质量。 1、长度的国际单位是米(m):一米等于光在真空 中传播1/299,792,458秒所走的距离。 2、时间的国际单位是秒(s):一秒是从铯原子中放射 出9,192,631,770次光振动所需要的时间。
第1章 质点运动学
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别
∫
∫
第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三. 加 速 度
在平面直角坐标系中
大小: 方向:
2 2 a ax a y
ay
a
tan
ay ax
ax
三. 加 速 度
当质点运动的加速度为常矢量时,一般 选直角坐标系; 当质点作平面运动的加速度指向空间某 一固定点时,一般选平面极坐标系; 当质点运动的轨迹固定或已知时,一般 选自然坐标系; 坐标系的选择总是以处理问题方便为原 则。
1.机械运动的相对性和绝对性 * 运动本身的绝对性 * 运动描述的相对性 2.参照系:描述运动时被选作参考的物体或物体系 *选择参照系的标准:方便原则 3. 坐标系:为了从数量上确切的描述物体相对于参 考系的位置和运动情况,就必须再选一坐标系.
一、基本概念
(二)时间和时刻:单方向性 SI 单位:秒(s)
度
3.平均速率与瞬时速率:
定义:
s v t
思考: 与平均速度的区别 定义:
s v lim t o t
它等于瞬时速度的大小
例2: 在下雨天,一列客车以速度 v1 行驶在平直的 铁路 上. 雨 滴以速度 v2 竖直向下落. 假设没有风, 问旅客看 到雨 滴的速度如何(用图表示). 已知: v车 对 地 v1 , v2雨 对 地 v2 解:根据加利略速度合成定理, 得
c)位移和位置矢径的区别
一.位移和路程
2. 路程(Travel Path):
一段时间内, 质点在其轨迹上经过 的路程总长度,它是正值标量。
注意:位移是矢量,路程是标量,大小 也不一定相等。 长度单位:米。 思考: dr 与ds 的区别?
例
1
题
例1: 船在河中行驶时,t 时间内船相对于岸位移为 r船 对 岸,船上旗子在 t 时间内相对于船竖直向上升 起的位移为 r旗 对 船 . 则岸上的人看,旗子相对于岸的 位移为多少? 解:取旗为研究对象(A),船为B参照系,由分析 可知,旗相对于岸(C参照系)向斜上方运动 由位移合成法则,得
一、基本概念
(五)运动方程和轨道方程
矢量式 分量式 直线运动
1. 运动方程──位置矢径 r随时间t 的变化关系
r (t ) x (t )i y (t ) j z(t ) k
r (t )
x=x(t), y=y(t), z=z(t)
r xi
, x=x(t), y=0, z=0
y
v
x
r
o R
t
例
4
题
(3)求速度
dr dx dy v i j dt dt dt R sin ti R costj v x R sin t
y
v
x
v y R cost
v
2 2 v x v y R
在直角坐标系中
dv x dv y dv z d 2 x d 2 y d 2 z a i j k 2 i 2 j 2 k dt dt dt dt dt dt a x i a y j az k
大小:
2 2 2 a ax a y az
v
x
a x R cost
2
r
o R
a y R sin t
2
2 2 a a x a y R 2
一、直线运动
§1-3 用直角坐标系描述直线 运动和抛体运动
一、直线运动
直线运动是一维运 动,可以用一个变 量描述它的运动规 律.
三. 加 速 度
加速度的特性:
a) 矢量性
b) 瞬时性
c) 相对性
a AC a AB aBC
注意:加速率的方向是速度变化的方向,不代 表质点的运动; 速度的方向才代表运动的方向.
例
4
题
例4: 一质点在 xy平面内运动, 其运动函数为 x R cost , y R sin t , 其中R 和 为正值常量.求质点的轨道方程以及任 一时刻的位矢,速度矢量和加速度矢量的表示式.
例
3
题
所以
v机对地 cos 45 0
0 v机对地 sin 45 v地对空
v机对空
y
v地对空
v机对空
y
[(100
2 2 2 ) (100 15) 2 ]1/ 2 92 m/s y 2 2
tanθ
100
2 15 2 0.79 2 100 2
r
o R
以β表示速度方向与x 轴之间的夹角,则
tan vy vx cost cott sin t
t
π π 2 2
例
4
题
(4)求加速度
2 a ( R costi R sin tj ) 2 r
y
dv 2 2 a R costi R sin tj dt
质点运动学
4. 掌握切向加速度和法向加速度,理解直角坐标 系和自然坐标系中各物理量之间的相互关系
5.学会处理两类运动学问题:(1)求解物体的运动 方程并求其速度和加速度;(2)由加速度或速度 和初始条件求速度和运动方程.
6.了解相对运动
质点运动学
§1-1 质点位置的确定方法 一、基本概念 (一)参照系(Reference frames)平面运动 r xi yj
, z=0
2. 轨道方程──运动质点在空间所经过的路径
从运动方程中消去时间
t
得轨迹方程
二、质点位置的确定方法
二、质点位置的确定方法
y
1. 坐标法P(x,y,z)
y
² Î ÕÕ Ï µ
P(x,y,z)
z z
o
x x
二、质点位置的确定方法
2. 位置矢径(position vector)
a. 大小:
dr v v dt
— 即瞬时速率
b. 速度的方向沿轨道的切方向
二.速
度
c. 直角坐标系中的分解式:
dr dx (t ) dy (t ) dz (t ) v i j k dt dt dt dt
vx 方向: cos v vy cos v vz cos v
r r x2 y2 z2
• 方向:
x y z cos , cos , cos r r r
二、质点位置的确定方法
b.相对性:
空间中某一点的位置,用不 同的坐标系或参照系来描写, 结果是不同的。
rpo' rpo roo'
rAC rAB rBC
即
r旗 对 岸 r旗 对 船 r船 对 岸 rAC rAB rBC
例
1
题
r旗 对 船
r旗 对 岸
建立坐标系 如果已知 则
r船 对 岸
r船 对 岸 10i
r旗 对 船 3 j
2 2 r旗 对 岸 10 3 10 .4 m
r x 2 y 2 z 2
大小:
注意:
r r , r r2 r1 , r r2 r1
一.位移和路程
b)相对性
r船对岸 r船对水 r水对岸
rAC rAB rBC
• 这就是变换参照系时的 位移变换 法则,也叫做 位移合成定理。
§1-2 质点的位移、速度和加速度
一.位移和路程
1.位移: 位移是描述质点 空间位置变化的物 理量。它是后一时 刻的位置矢径减去 前一时刻的位置矢 径,即
r rB rA
一.位移和路程
a)矢量性 :
r rB rA r (t t ) r (t ) xi yj zk
例
2
题
v雨对车 v雨对地 v地对车
v雨对地 (v车对地 ) v2 v1
例
3
题
例3
一飞机以 100m/s的速度向东北航行,同时
有速度为54Km/hr的南风,求飞机相对于空气流的 速度。 已知: v空 对 地 54 k m/ hr 15 m/ s
y
解 (1)求质点的轨道方程:
v
x2 y 2 R2
x
r
o R
例
4
题
(2)求质点在任一时刻的位矢:
r xi yj R costi R sin tj
r x 2 y 2 R, y sin t tan tan t x cost
38.4
0
o x
三. 加 速 度
三.加速度
1.平均加速度 定义: 意义: • 其大小由
v v B v A a t t
v t
确定,方向与 v 相同
• 反映 t 内速度的平均变化率
三. 加 速 度
2. 瞬时加速度
定义:
2 v dv d r a lim 2 t 0 t dt dt
v x i v y j vz k
vx dx dt
即
dy vy dt
vz
dz dt
大小: v v 2 v 2 v 2 x y z
二.速
度
d. 矢量性 e. 瞬时性 f. 相对性
v AC v AB vBC
这一关系叫加利略速度合成定理
二.速
1. 时刻(瞬间): 与质点所在某一位置相对应。 应选定计时起点, t 可大于零,也可小于零。 2. 时间(时间间隔): 一般与质点一段路程相对应