高效液相色谱原理和操作详解

合集下载

高效液相色谱的原理

高效液相色谱的原理

高效液相色谱的原理高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种基于分子间相互作用力进行化合物分离和分析的方法。

它主要由四个部分组成:流动相,固定相,色谱柱和检测器。

其原理如下:1. 流动相:液相在常温下以高压泵的作用下通过色谱柱,它可以是有机溶剂、水或其他特定的溶剂组合。

流动相在整个过程中起到带动样品运动以及分离化合物的作用。

2. 固定相:为了实现分离,需要使用一种高表面积的固相材料将样品担持在流动相中进行分离。

固定相通常以粉末或颗粒的形式填充在色谱柱中,常见的固定相材料有硅胶、高性能液相色谱柱(如C18)等。

固定相的选择取决于目标分析化合物的特性。

3. 色谱柱:色谱柱是将固定相填充在其中的管状包层,它是高效液相色谱分离的关键部分。

色谱柱的长度、内径和填充粒径等参数会对分离效果产生影响。

较长、较细的柱内填充材料可以提高分离效率,但也会增加分析时间。

4. 检测器:在色谱柱出口处使用检测器来检测化合物的浓度。

常用的检测器包括紫外-可见吸收检测器(UV-Vis)、荧光检测器、电化学检测器等。

检测器将检测到的信号转化为可见的色谱图谱,用以分析和定量目标化合物。

在高效液相色谱分离过程中,样品溶液被注入到进样器中,经由高压泵送入色谱柱。

在色谱柱中,化合物会与固定相发生不同程度的相互作用,并在流动相的作用下逐渐分离。

分离出的化合物会依次出现在检测器中,通过检测器的信号输出,我们可以获得色谱图,并通过峰面积或峰高等参数对化合物进行定量和定性分析。

高效液相色谱的优点包括分离效率高、分析速度快、样品制备简单等,因此被广泛应用于生物医药、农药残留、环境监测等领域的化学分析。

高效液相色谱仪原理及操作步骤

高效液相色谱仪原理及操作步骤

高效液相色谱仪原理及操作步骤嘿,咱今儿个就来唠唠高效液相色谱仪这玩意儿!你可别小瞧它,它在好多领域那可都是大功臣呢!那高效液相色谱仪到底是咋工作的呢?简单来说啊,就好比是一场特别的赛跑。

不同的物质就像是不同的选手,它们在色谱柱这个“跑道”上奔跑。

由于各自的性质不同,跑的速度也就不一样啦,这样就能把它们一个一个地分开。

这就好比是一群人一起跑马拉松,跑得快的自然就先冲线啦,然后我们就能清楚地知道谁先谁后,这就是高效液相色谱仪的基本原理啦。

接下来咱说说操作步骤。

第一步呢,就像是准备比赛前要先做好热身一样,咱得把仪器调试好。

要检查各种部件是不是都正常,这可不能马虎,不然跑着跑着出问题了可咋办!然后呢,就是要把样品准备好。

这就像是给选手们准备好号码牌一样,得让它们有个“身份”呀。

样品的处理可得精心,不能有杂质啥的来捣乱。

接着就是进样啦,这就像是鸣枪起跑!把样品送进色谱柱这个“跑道”里,让它们开始“奔跑”。

在这个过程中,可别闲着呀,得时刻关注着仪器的运行状态。

就像看着比赛一样,看看选手们跑得顺不顺利。

等跑完了,数据出来了,那就像是比赛结束知道成绩了。

这时候可得好好分析分析这些数据,看看咱想要的结果在不在里面。

你说这高效液相色谱仪是不是很神奇呀?它能帮我们把那些复杂的混合物分得清清楚楚。

这要是没有它,好多实验可就没法做啦!咱再想想,生活中不也有很多类似的情况吗?就像整理东西,把乱七八糟的东西分类整理好,不就清楚多了嘛。

高效液相色谱仪不就是在微观世界里帮我们做这样的事情嘛。

所以啊,学会操作高效液相色谱仪那可太重要啦!这不仅是为了工作,也是为了能更好地探索那些我们看不见的世界呀。

你说呢?反正我觉得它真的是个了不起的家伙,能帮我们解决好多难题呢!。

高效液相色谱工作原理

高效液相色谱工作原理

高效液相色谱工作原理
高效液相色谱(HPLC)是一种在化学分析领域广泛应用的重要技术,其基本工作原理如下:
1. 产生流动相:在HPLC中,需要产生能够流动的液态相,一般为一个有机溶剂和一个缓冲液的混合物。

这些溶剂通过高压泵推进,进入色谱柱中。

2. 样品注入:将待测的样品溶解在流动相中,并通过自动进样器注入到色谱柱中。

3. 分离过程:由于不同的化学成分在柱中的亲和性不同,因此随着流动相通过柱中,不同成分将被逐渐分离。

这个过程中,需要应用不同的色谱柱及其填料,以便实现较精确的分离。

4. 检测:通过检测器检测在柱中分离物的数量和特征。

检测器的种类有很多,如紫外-可见光谱检测器、荧光检测器、质谱检测器等。

5. 数据处理:数据处理是 HPLC 分析中必不可少的一个环节,提供了在样品中找到化合物的定性和定量信息。

HPLC在化学分析领域有着广泛的应用,如分析药物、食品、水和环境化合物等。

同时,HPLC也成为许多化学方法和技术的基础,如样品前处理、样品制备和质谱分析等。

鉴于其高效、灵敏、准确和可重复性
好等优点,HPLC将继续在科学研究、工业制造和药品开发领域中发挥着重要作用。

高效液相色谱的工作原理及操作注意事项

高效液相色谱的工作原理及操作注意事项

高效液相色谱的工作原理及操作注意事项高效液相色谱的工作原理及操作注意事项一、高效液相色谱的工作原理高效液相色谱(HPLC)是一种常用的分离和分析技术,主要应用于化学、生物、医药等领域。

其工作原理是利用不同物质在固定相和移动相之间的分配平衡,实现对待测组分的高效分离。

以下是高效液相色谱的工作原理:1.流动相:高效液相色谱中的流动相也称为溶剂或载体,是携带待测组分通过色谱柱的介质。

流动相的选择应根据样品的性质、检测器的类型以及分离效果等因素进行选择。

2.固定相:高效液相色谱中的固定相是色谱柱中的填料,通常是涂布在硅胶或氧化铝等载体上的高分子聚合物。

不同物质根据其在固定相和流动相之间的分配系数进行分离。

3.洗脱过程:在高效液相色谱中,待测组分随流动相通过色谱柱,经过固定相和流动相之间的分配平衡实现分离。

分离后的组分会按照其在固定相和流动相之间的分配系数依次流出色谱柱,进入检测器进行检测。

4.检测器:高效液相色谱中使用的检测器根据待测组分的性质和检测要求进行选择,常见的有紫外-可见光检测器、荧光检测器、电导检测器等。

检测器的作用是将组分的浓度转化为可测量的电信号,以便进行记录和分析。

二、高效液相色谱的操作注意事项在使用高效液相色谱进行实验操作时,需要注意以下事项:1.样品准备:在进行高效液相色谱分析前,需要对样品进行必要的处理和制备。

应尽可能避免样品中的杂质和干扰物质对分离和分析的影响。

同时,样品的浓度应适中,以避免色谱柱过载或检测器过载。

2.流动相选择:流动相的选择对高效液相色谱的分离效果和分析结果至关重要。

应根据样品的性质、实验要求以及分离效果等因素选择合适的流动相。

同时,应注意流动相的纯度和稳定性,以保证实验结果的可靠性。

3.色谱柱选择:高效液相色谱中使用的色谱柱是分离和分析的关键元件。

应根据样品的性质、待测组分的类型以及分离要求等因素选择合适的色谱柱。

同时,应注意色谱柱的粒径、孔径和填料性质等参数,以确保达到最佳的分离效果。

高效液相色谱分析原理及流程

高效液相色谱分析原理及流程

高效液相色谱分析原理及流程高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。

通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。

所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。

这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。

而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。

高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。

近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。

世界上约有80%的有机化合物可以用HPLC来分析测定。

高效液相色谱分析原理(一)高效液相色谱分析的流程由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。

被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。

废液流入废液瓶。

遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。

这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。

(二)高效液相色谱的分离过程同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。

它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。

开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。

分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。

分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。

组分B的分配系数介于A,C之间,第二个流出色谱柱。

若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。

不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。

高效液相色谱法的原理

高效液相色谱法的原理

高效液相色谱法的原理高效液相色谱法(HPLC)是一种常用的分离和分析技术,它是在液相色谱法的基础上发展起来的,具有高效、灵敏、准确、快速等特点。

其原理是利用液相在固定填料上的分配作用,通过样品在流动相中的分配系数不同,实现对混合物中各成分的分离和检测。

HPLC的原理主要包括样品的进样、流动相的选择、填料的选择和柱温控制等几个方面。

首先是样品的进样。

样品通过进样装置进入流动相中,然后被输送到填料柱中进行分离。

在进样过程中,要求样品能够均匀、快速地进入流动相中,以保证分析结果的准确性。

其次是流动相的选择。

流动相是HPLC分离的关键,它可以是有机溶剂、水、缓冲液等。

不同的流动相对于不同的样品具有不同的适用性,因此在选择流动相时需要考虑样品的性质和分离的要求。

填料的选择也是HPLC分离的重要因素。

填料是HPLC柱中的固定相,它的种类和粒径大小直接影响到分离的效果。

常用的填料有C18、C8、SiO2等,它们具有不同的分离机理和适用范围,需要根据具体的分析要求进行选择。

此外,柱温的控制也对HPLC分离有着重要的影响。

柱温的升高可以提高分离效率和分辨率,减少分离时间,但也会增加柱的压力和流动相的挥发,因此在实际应用中需要综合考虑。

总的来说,HPLC的原理是通过样品在流动相和固定相之间的分配作用,实现对混合物中各成分的分离和检测。

在实际应用中,需要根据具体的分析要求选择合适的进样方式、流动相、填料和柱温控制,以达到最佳的分离效果。

通过对HPLC原理的深入了解,可以更好地应用HPLC技术进行分离和分析,为科研和生产提供准确、可靠的数据支持。

同时,不断探索和创新HPLC技术,将有助于提高其分离效率和应用范围,推动科学研究和工程技术的发展。

HPLC原理和操作详解

HPLC原理和操作详解

HPLC原理和操作详解HPLC,即高效液相色谱(High-Performance Liquid Chromatography),是一种高效的色谱技术,广泛应用于药学、化学、生化分析等领域。

下面将详细介绍HPLC的原理和操作步骤。

一、HPLC原理:1.进样:样品通过自动进样器或手动注射器进入色谱系统。

样品通常需先进行前处理,如固相萃取、离心沉淀等。

2.流动相输送:流动相可分为两种类型,一种是常规流动相,另一种是梯度流动相。

常规流动相的组成可能是单一溶剂或多溶剂的混合溶剂,根据需要可进行改变。

梯度流动相是指在色谱运行过程中,溶剂混合比例以一定速率进行连续改变。

3.固定相柱填充:识别需要分离的目标物的特性,并选择合适的固定相填充材料,如反相、离子交换相、尺寸排除相等。

填充材料应具有良好的化学稳定性、机械强度和化学机械平衡。

4.分离机理:样品在固定相柱填充物上发生与固体表面或固定相填充物之间的相互作用(如静电吸附、分配等),从而实现化合物的分离。

分离机理主要有单分配系数、亲水性、分子量、酸碱性等。

二、HPLC操作步骤:1.仪器准备:a.打开进样器、检测器、泵、柱箱等设备。

b.保持温度稳定,通常在恒温器中设置适当的温度。

c.准备流动相,根据需要将溶剂装入各个瓶中,并进行气体除泡和真空除泡操作。

2.进样准备:a.样品前处理,如离心沉淀、固相萃取等。

b.选用适当的进样方式(手动或自动),将样品加载到进样器中。

3.初步浓度选择:a.根据需要选择荧光、紫外、电导率检测器等。

b.根据样品性质和实验要求,选择合适的波长和浓度范围。

4.进行分离:a.根据样品的性质和需求,选择合适的固定相柱填充材料,并安装在柱箱中。

b.设置流速和梯度条件。

5.结果分析与报告:a.根据检测器的信号,得到峰的图形。

b.使用仪器自带的软件或其他数据处理软件,进行峰识别、配比和浓度计算。

c.生成分析报告。

6.仪器的维护:a.根据使用手册,进行常规的维护和保养。

高效液相工作原理及使用

高效液相工作原理及使用

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9´107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

特点1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。

一般可达150~350×105Pa。

2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。

高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。

3. 高效:近来研究出许多新型固定相,使分离效率大大提高。

4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。

如荧光检测器灵敏度可达10-11g。

另外,用样量小,一般几个微升。

5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。

而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。

对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。

据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。

高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。

用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。

其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。

高效液相色谱原理

高效液相色谱原理

高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。

由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。

特点是选择性高、分离效能高、分析速度快的特点。

高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。

高效液相色谱法与气相色谱法相比,各有所长,互相补充。

如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。

3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。

(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。

从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。

②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。

③与所用的检测器相匹配。

④应对样品有足够的溶解能力,以提高测定的灵敏度。

⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。

⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。

液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。

4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。

②固定相:极性和非极性两种。

极性固定相:硅胶、氧化镁。

高效液相色谱原理和操作详解

高效液相色谱原理和操作详解

高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论 (3)一、液相色谱理论发展简况 (3)二、HPLC的特点和优点 (4)三、色谱法分类 (5)四、色谱分离原理 (5)II.基本概念和理论 (10)一、基本概念和术语 (10)二、塔板理论 (17)三、速率理论(又称随机模型理论) (19)III.HPLC系统 (22)一、输液泵 (23)二、进样器 (27)三、色谱柱 (29)四、检测器 (35)五、数据处理和计算机控制系统 (41)六、恒温装置 (42)IV.固定相和流动相 (43)一、基质(担体) (43)二、化学键合固定相 (46)三、流动相 (49)1.流动相的性质要求 (49)2.流动相的选择 (50)3.流动相的pH值 (51)4.流动相的脱气 (52)5.流动相的滤过 (53)6.流动相的贮存 (54)7.卤代有机溶剂应特别注意的问题 (54)8.HPLC用水 (55)V.HPLC应用 (56)一、样品测定 (56)二、方法研究 (58)附件:高效液相色谱法(HPLC)复核细则 (58)一、对起草单位的要求: (58)二、对复核单位的要求: (59)I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱原理和操作详解

高效液相色谱原理和操作详解

高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论 (3)一、液相色谱理论发展简况 (3)二、HPLC的特点和优点 (4)三、色谱法分类 (5)四、色谱分离原理 (5)II.基本概念和理论 (10)一、基本概念和术语 (10)二、塔板理论 (17)三、速率理论(又称随机模型理论) (19)III.HPLC系统 (22)一、输液泵 (23)二、进样器 (27)三、色谱柱 (29)四、检测器 (35)五、数据处理和计算机控制系统 (41)六、恒温装置 (42)IV.固定相和流动相 (43)一、基质(担体) (43)二、化学键合固定相 (46)三、流动相 (49)1.流动相的性质要求 (49)2.流动相的选择 (50)3.流动相的pH值 (51)4.流动相的脱气 (52)5.流动相的滤过 (53)6.流动相的贮存 (54)7.卤代有机溶剂应特别注意的问题 (54)8.HPLC用水 (55)V.HPLC应用 (56)一、样品测定 (56)二、方法研究 (58)附件:高效液相色谱法(HPLC)复核细则 (58)一、对起草单位的要求: (58)二、对复核单位的要求: (59)I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱测定原理

高效液相色谱测定原理

高效液相色谱测定原理
高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种常用的分析方法,它基于样品在液相中的分配
行为以及在固定相上的吸附和解吸行为。

它能够对样品中的物质进行分离、定量和定性分析。

高效液相色谱的原理如下:
1. 选择性分离:高效液相色谱中,样品混合物被注入装有固定相(柱填充物)的色谱柱中。

不同物质在柱填充物上的吸附和解吸速度不同,因此可以通过调整流动相的组成、温度和流速等参数来实现对样品中物质的选择性分离。

2. 吸附-解吸过程:在高效液相色谱中,样品溶解于流动相中,与固定相表面发生相互作用。

这个过程涉及吸附和解吸,吸附过程发生在固定相表面,解吸过程发生在固定相表面和流动相中物质的分配行为。

通过控制流动相的性质和柱填充物的特性,可以实现对不同物质的选择性吸附和解吸。

3. 柱填充物:高效液相色谱柱的填充物通常是多孔性固体颗粒,如硅胶或石英。

填充物的选择与样品的性质和分离的目的有关。

柱填充物的粒径、孔径和表面性质将影响色谱分离的效果。

4. 检测器:高效液相色谱的结果通过检测器进行检测和记录。

常见的检测器包括紫外可见光检测器、荧光检测器、电化学检测器等,根据待分析物的性质和浓度选择适当的检测器。

总之,高效液相色谱是利用样品在液相中的分配和在固定相上的吸附解吸过程进行分离和定量分析的方法。

通过调整柱填充物、流动相和检测器等参数,可以实现对样品中不同物质的选择性分离和定量测定。

高效液相色谱简介及操作

高效液相色谱简介及操作

三、高效液相色谱基本操作步骤
(1)检查电源线连接是否正确后打开电源开关 (2)泵体及流路内的气泡排除
(3)正确连接色谱柱 注意流向标志,切勿反接
(4)系统平衡


第一步:先用甲醇或乙腈冲洗流路约 20分钟,平衡活化色 谱柱,并赶走管路中的杂质和水分。 第二步:平衡色谱柱 方法一:若流动相为有机相与水相的混合物,则第一 步完成后,按照分析样品的需要调节有机相与水相的比例 后冲洗流路约30分钟后,待基线走平后即可进样。 方法二:若流动相中含有缓冲盐溶液、有机/无机酸, 则第一步完成后,先用95%的去离子水冲洗流路约20分钟 后,再按照分析样品的需要调节流动相的比例,冲洗流路 约30分钟,待基线走平后即可进样。
b. 示差折光检测器 (RID) 凡具有与流动相折光率不同的样品组分,均可使用示 差折光检测器检测。目前,糖类化合物的检测大多使 用此检测系统。 原理:监测参比池和测量池中溶液的折射率之差 来测量试样浓度。 特点: 通用性检测器; 对温度变化比较敏感,要保持在±0.001℃; 灵敏度低(10-6g); 对溶剂变化敏感,不适用于梯度洗脱。
输液泵应具备如下性能:
①流量稳定; ②流量范围宽; ③输出压力高; ④液缸容积小; ⑤密封性能好,耐腐蚀。
高压泵的分类
恒压泵
分类
恒流泵
螺旋注射泵 柱塞往复泵 隔膜往复泵
往复式柱塞泵
2 进样系统
进样方式:注射器进样、阀进样、自动进样。 早期使用注射器进样,现在大都使用耐高压的六通阀进 样或自动进样。
1.色谱的演化
• 色谱:由于不同的组分与固定相作用强弱不同, 在一定的推动力下,它们在固定相中滞留的时间 长短不一,从而使它们按一定顺序从色谱柱中先 后流出。

高效液相色谱原理和操作详解之欧阳语创编

高效液相色谱原理和操作详解之欧阳语创编

高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论3一、液相色谱理论发展简况3二、HPLC的特点和优点4三、色谱法分类5四、色谱分离原理6II.基本概念和理论9一、基本概念和术语9二、塔板理论17三、速率理论(又称随机模型理论)19III.HPLC系统23一、输液泵24二、进样器29三、色谱柱31四、检测器37五、数据处理和计算机控制系统44六、恒温装置44IV.固定相和流动相45一、基质(担体)46二、化学键合固定相49三、流动相521.流动相的性质要求522.流动相的选择543.流动相的pH值554.流动相的脱气565.流动相的滤过576.流动相的贮存587.卤代有机溶剂应特别注意的问题588.HPLC用水59V.HPLC应用60一、样品测定60二、方法研究62附件:高效液相色谱法(HPLC)复核细则62一、对起草单位的要求:62二、对复核单位的要求:64I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。

HPLC原理和操作详解

HPLC原理和操作详解

HPLC原理和操作详解HPLC (High Performance Liquid Chromatography) 是一种高效液相色谱分析仪器,也是一种广泛应用于分析和制备化学领域的色谱技术。

它通过溶液的流动将混合物中的分子分离和纯化,然后通过检测器检测和定量各个组分。

下面将详细介绍HPLC的原理和操作。

HPLC的原理是基于色谱技术的理论基础,即溶液与固体(固定相)表面之间会发生物理和化学吸附等相互作用,从而使溶液中的化合物被分离。

HPLC的主要组成部分包括溶液输送系统、色谱柱、检测器和数据处理系统。

HPLC的操作步骤如下:1.样品制备:将待分析的样品溶解在适当的溶剂中,并通过滤器过滤,去除杂质和颗粒物。

2.系统预冲洗:在运行之前,先用纯溶剂进行系统预冲洗,以去除柱子内的杂质。

3.色谱柱选择:根据需要分离的化合物性质选择适当的色谱柱。

常见的色谱柱包括反相柱、离子交换柱和凝胶渗透柱等。

4.流动相选择:根据样品性质选择合适的流动相,可以是单一溶剂或者混合溶剂。

流动相的选择对分离效果有很大影响。

5.色谱条件设定:设置合适的色谱条件,包括流速、柱温、检测器的参数等。

这些参数的选择要根据样品的特性和分析目的进行优化。

6.进样:将经过预处理的样品注入HPLC系统中。

可以选择自动进样或者手动进样的方式。

7.分离:通过调节色谱柱中的移动相流动速度和梯度等参数,使样品中的组分逐渐被分离。

分离的程度取决于色谱柱、流动相和样品的性质。

8.检测:通过检测器对分离出的化合物进行检测和定量。

常见的检测器包括紫外-可见吸收检测器、荧光检测器和质谱检测器等。

9.数据处理:将检测到的信号转换为荧光检测器和质谱检测器等。

HPLC的操作常见问题和注意事项:1.质控:在实验过程中需要进行质控,包括对流速、柱温和检测器的参数进行定期检查和校准。

2.柱寿命:色谱柱使用一段时间后会失效,需要定期更换。

柱的选择要根据样品的特性和分离目的进行优化。

高效液相色谱原理和操作详解

高效液相色谱原理和操作详解

高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论 (2)一、液相色谱理论发展简况 (2)二、HPLC的特点和优点 (2)三、色谱法分类 (3)四、色谱分离原理 (3)II.基本概念和理论 (5)一、基本概念和术语 (5)二、塔板理论 (8)三、速率理论(又称随机模型理论) (9)III.HPLC系统 (10)一、输液泵 (11)二、进样器 (13)三、色谱柱 (14)四、检测器 (17)五、数据处理和计算机控制系统 (20)六、恒温装置 (20)IV.固定相和流动相 (20)一、基质(担体) (20)二、化学键合固定相 (22)三、流动相 (23)1.流动相的性质要求 (23)2.流动相的选择 (24)3.流动相的pH值 (24)4.流动相的脱气 (25)5.流动相的滤过 (25)6.流动相的贮存 (26)7.卤代有机溶剂应特别注意的问题 (26)8.HPLC用水 (26)V.HPLC应用 (27)一、样品测定 (27)二、方法研究 (27)附件:高效液相色谱法(HPLC)复核细则 (28)一、对起草单位的要求: (28)二、对复核单位的要求: (28)I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱法原理

高效液相色谱法原理

高效液相色谱法原理
高效液相色谱法(High Performance Liquid Chromatography, HPLC)是一种常用的分离和分析方法,其原理基于样品中的
化合物在液相流动载体中与固定在填料上的固定相相互作用,并因此在色谱柱上发生不同程度的分配和保留。

在高压下,样品通过色谱柱,各组分依据其与移动相和固定相的相互作用的不同,在柱中以不同速率进行分离。

高效液相色谱法的主要组成部分包括进样器、色谱柱和检测器。

样品首先通过进样器注入到移动相中,然后进入色谱柱。

色谱柱是由一种固定相填充而成的管状结构,固定相表面有一定数目的固定相基团,用于化合物的分离。

移动相则是一种液态溶剂,可以根据需要选用不同的组合,并通过高压泵以一定流速通过色谱柱。

化合物在色谱柱中与固定相发生相互作用,有选择性地被保留或分离。

不同的化合物在色谱柱中的相互作用程度不同,因此它们以不同的速率通过色谱柱。

通过控制柱温、移动相成分、流速和色谱柱填料等条件,可以调节分离效果。

最后,分离的化合物进入检测器进行检测和信号记录。

高效液相色谱法广泛应用于许多领域,包括药物分析、环境监测、食品安全等。

其优点在于对大多数化合物具有良好的分离选择性、灵敏度高、分析速度快、操作简便。

同时,该方法还可以与其他分离技术(如质谱联用)进行联用,以提高分析的灵敏度和准确性。

高效液相色谱法 原理

高效液相色谱法 原理

高效液相色谱法原理
高效液相色谱法(HPLC)是一种广泛应用于化学、生物化学
和制药等领域的分离和分析技术。

它基于样品在固定态填料上与移动相(溶液)之间存在的不同亲和力以实现分离。

HPLC的基本原理是将待分离的混合物溶解在移动相中,然后
通过高压泵将其推向色谱柱。

色谱柱是由填料构成的管状结构,填料种类多样,如疏水性、亲水性、离子交换性等。

移动相在填料中的传播速度取决于样品分子与填料的相互作用力。

相互作用力较强的样品分子会在填料中停留时间较长,相互作用力较弱的样品分子会以较快的速度通过填料。

为了获得更准确的分离结果,可以通过控制移动相的成分和流速来调节分离效果。

常用的移动相包括水、有机溶剂和缓冲溶液,通过改变它们的比例和浓度可以影响样品的保留时间和分离程度。

此外,还可以添加其他化合物作为添加剂,以提高分离选择性。

在样品通过色谱柱后,通过检测器检测各组分的浓度,并生成相应的信号。

检测器常用的有紫外(UV)检测器、荧光检测器、电化学检测器等。

这些信号可以被记录并转换为色谱图,进而进行数据分析和定量计算。

HPLC是一种精密、高灵敏度和高选择性的分析方法,广泛应
用于药物分析、环境监测、食品安全等领域。

它的优势在于样品制备简单、分离效果好、操作方便快捷。

高效液相色谱的原理及操作规程

高效液相色谱的原理及操作规程

打开软件
在桌面双击打开“Instrument Online”软件,会弹出基线窗口,最小化后可看 到操作界面,选择好实验条件后点击“On”按钮,此时便开始淋洗,直至基线 走平且提示“Ready”后,便可开始测试(注:若基线走平后并不是在0位置, 可以打开基线窗口,点击“Balance”使其调0)
高效液相色谱仪的操作过程
HPLC的图形分析
色谱图(Chromatogram) : 色谱柱流出物通过检测器时所 产生的响应信号对时间的曲线 图,其纵坐标为信号强度,横坐标 为时间
←色谱峰 响 应 值 峰宽 基线 ↓ 时间(分) 峰 高
ห้องสมุดไป่ตู้
色谱概述
分离是个物理过程
固定相(Stationary Phase) 流动相(Mobile Phase) 进样(Injection) 洗脱(Elution) 相互作用(Interaction)
色谱概述
用液体作为流动相的色谱称为液相色谱(LC) 与气相色谱法相比,高效液相色谱法具有很多优点:
1.高效液相色谱柱所用的固定相粒度很小(10µm以下),因此它的分离 效率很高。 2.高效液相色谱中的流动相可以选择不同极性的液体,由于它与固定相 都能对组分产生一定的亲和力,从而提高了分离效率。 3.高效液相色谱法可以应用于高沸点、热稳定性差、摩尔质量大的化合 物的分离分析中。 4.高效液相色谱可以在室温条件下进行分析,而气相色谱一般都要在较 高温度下进行
高效液相色谱的原理 及操作规程
色谱概述
色谱法的原理:
是利用混合物中各组份在不同的两相中溶解,分配,吸 附等化学作用性能的差异,当两相作相对运动时,使各组分 在两相中反复多次受到上述各作用力而达到相互分离 两相中有一相是固定的,叫作固定相(Stationary Phase),有一相是流动的,称为流动相(Mobile Phase),流 动相又叫洗脱剂,溶剂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。

I.概论 (2)一、液相色谱理论发展简况 (3)二、HPLC的特点和优点 (3)三、色谱法分类 (4)四、色谱分离原理 (4)II.基本概念和理论 (7)一、基本概念和术语 (7)二、塔板理论 (12)三、速率理论(又称随机模型理论) (13)III.HPLC系统 (15)一、输液泵 (16)二、进样器 (19)三、色谱柱 (21)四、检测器 (25)五、数据处理和计算机控制系统 (29)六、恒温装置 (30)IV.固定相和流动相 (30)一、基质(担体) (31)二、化学键合固定相 (33)三、流动相 (35)1.流动相的性质要求 (35)2.流动相的选择 (36)3.流动相的pH值 (37)4.流动相的脱气 (37)5.流动相的滤过 (38)6.流动相的贮存 (39)7.卤代有机溶剂应特别注意的问题 (39)8.HPLC用水 (39)V.HPLC应用 (40)一、样品测定 (40)二、方法研究 (41)附件:高效液相色谱法(HPLC)复核细则 (42)一、对起草单位的要求: (42)二、对复核单位的要求: (43)I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。

又称为色层法、层析法。

色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。

后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。

液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。

高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。

它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。

又因分析速度快而称为高速液相色谱法(High Speed Liquid Chromatography,HSLP)。

也称现代液相色谱。

二、HPLC的特点和优点HPLC有以下特点:高压——压力可达150~300 Kg/cm2。

色谱柱每米降压为75 Kg/cm2以上。

高速——流速为0.1~10.0 ml/min。

高效——可达5000塔板每米。

在一根柱中同时分离成份可达100种。

高灵敏度——紫外检测器灵敏度可达0.01ng。

同时消耗样品少。

HPLC与经典液相色谱相比有以下优点:速度快——通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成。

分辨率高——可选择固定相和流动相以达到最佳分离效果。

灵敏度高——紫外检测器可达0.01ng,荧光和电化学检测器可达0.1pg。

柱子可反复使用——用一根色谱柱可分离不同的化合物。

样品量少,容易回收——样品经过色谱柱后不被破坏,可以收集单一组分或做制备。

三、色谱法分类按两相的物理状态可分为:气相色谱法(GC)和液相色谱法(LC)。

气相色谱法适用于分离挥发性化合物。

GC根据固定相不同又可分为气固色谱法(GSC)和气液色谱法(GLC),其中以GLC应用最广。

液相色谱法适用于分离低挥发性或非挥发性、热稳定性差的物质。

LC同样可分为液固色谱法(LSC)和液液色谱法(LLC)。

此外还有超临界流体色谱法(SFC),它以超临界流体(界于气体和液体之间的一种物相)为流动相(常用CO2),因其扩散系数大,能很快达到平衡,故分析时间短,特别适用于手性化合物的拆分。

按原理分为吸附色谱法(AC)、分配色谱法(DC)、离子交换色谱法(IEC)、排阻色谱法(EC,又称分子筛、凝胶过滤(GFC)、凝胶渗透色谱法(GPC)和亲和色谱法。

(此外还有电泳。

)按操作形式可分为纸色谱法(PC)、薄层色谱法(TLC)、柱色谱法。

四、色谱分离原理高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。

1.液固色谱法使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。

分离过程是一个吸附-解吸附的平衡过程。

常用的吸附剂为硅胶或氧化铝,粒度5~10μm。

适用于分离分子量200~1000的组分,大多数用于非离子型化合物,离子型化合物易产生拖尾。

常用于分离同分异构体。

2.液液色谱法使用将特定的液态物质涂于担体表面,或化学键合于担体表面而形成的固定相,分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离。

分离过程是一个分配平衡过程。

涂布式固定相应具有良好的惰性;流动相必须预先用固定相饱和,以减少固定相从担体表面流失;温度的变化和不同批号流动相的区别常引起柱子的变化;另外在流动相中存在的固定相也使样品的分离和收集复杂化。

由于涂布式固定相很难避免固定液流失,现在已很少采用。

现在多采用的是化学键合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。

液液色谱法按固定相和流动相的极性不同可分为正相色谱法(NPC)和反相色谱法(RPC)。

正相色谱法采用极性固定相(如聚乙二醇、氨基与腈基键合相);流动相为相对非极性的疏水性溶剂(烷烃类如正已烷、环已烷),常加入乙醇、异丙醇、四氢呋喃、三氯甲烷等以调节组分的保留时间。

常用于分离中等极性和极性较强的化合物(如酚类、胺类、羰基类及氨基酸类等)。

反相色谱法一般用非极性固定相(如C18、C8);流动相为水或缓冲液,常加入甲醇、乙腈、异丙醇、丙酮、四氢呋喃等与水互溶的有机溶剂以调节保留时间。

适用于分离非极性和极性较弱的化合物。

RPC在现代液相色谱中应用最为广泛,据统计,它占整个HPLC应用的80%左右。

随着柱填料的快速发展,反相色谱法的应用范围逐渐扩大,现已应用于某些无机样品或易解离样品的分析。

为控制样品在分析过程的解离,常用缓冲液控制流动相的pH值。

但需要注意的是,C18和C8使用的pH值通常为2.5~7.5(2~8),太高的pH值会使硅胶溶解,太低的pH值会使键合的烷基脱落。

有报告新商品柱可在pH 1.5~10范围操作。

正相色谱法与反相色谱法比较表正相色谱法反相色谱法固定相极性高~中中~低流动相极性低~中中~高组分洗脱次序极性小先洗出极性大先洗出从上表可看出,当极性为中等时正相色谱法与反相色谱法没有明显的界线(如氨基键合固定相)。

3.离子交换色谱法固定相是离子交换树脂,常用苯乙烯与二乙烯交联形成的聚合物骨架,在表面未端芳环上接上羧基、磺酸基(称阳离子交换树脂)或季氨基(阴离子交换树脂)。

被分离组分在色谱柱上分离原理是树脂上可电离离子与流动相中具有相同电荷的离子及被测组分的离子进行可逆交换,根据各离子与离子交换基团具有不同的电荷吸引力而分离。

缓冲液常用作离子交换色谱的流动相。

被分离组分在离子交换柱中的保留时间除跟组分离子与树脂上的离子交换基团作用强弱有关外,它还受流动相的pH值和离子强度影响。

pH值可改变化合物的解离程度,进而影响其与固定相的作用。

流动相的盐浓度大,则离子强度高,不利于样品的解离,导致样品较快流出。

离子交换色谱法主要用于分析有机酸、氨基酸、多肽及核酸。

4.离子对色谱法又称偶离子色谱法,是液液色谱法的分支。

它是根据被测组分离子与离子对试剂离子形成中性的离子对化合物后,在非极性固定相中溶解度增大,从而使其分离效果改善。

主要用于分析离子强度大的酸碱物质。

分析碱性物质常用的离子对试剂为烷基磺酸盐,如戊烷磺酸钠、辛烷磺酸钠等。

另外高氯酸、三氟乙酸也可与多种碱性样品形成很强的离子对。

分析酸性物质常用四丁基季铵盐,如四丁基溴化铵、四丁基铵磷酸盐。

离子对色谱法常用ODS柱(即C18),流动相为甲醇-水或乙腈-水,水中加入3~10 mmol/L的离子对试剂,在一定的pH值范围内进行分离。

被测组分保时间与离子对性质、浓度、流动相组成及其pH值、离子强度有关。

5.排阻色谱法固定相是有一定孔径的多孔性填料,流动相是可以溶解样品的溶剂。

小分子量的化合物可以进入孔中,滞留时间长;大分子量的化合物不能进入孔中,直接随流动相流出。

它利用分子筛对分子量大小不同的各组分排阻能力的差异而完成分离。

常用于分离高分子化合物,如组织提取物、多肽、蛋白质、核酸等。

II.基本概念和理论一、基本概念和术语1.色谱图和峰参数色谱图(chromatogram)——样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile)。

基线(base line)——经流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。

一般应平行于时间轴。

噪音(noise)——基线信号的波动。

通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。

漂移(drift)——基线随时间的缓缓变化。

主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。

色谱峰(peak)——组分流经检测器时响应的连续信号产生的曲线。

流出曲线上的突起部分。

正常色谱峰近似于对称形正态分布曲线(高斯Gauss曲线)。

不对称色谱峰有两种:前延峰(leading peak)和拖尾峰(tailing peak)。

前者少见。

拖尾因子(tailing factor,T)——T=,用以衡量色谱峰的对称性。

也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)。

《中国药典》规定T应为0.95~1.05。

T<0.95为前延峰,T>1.05为拖尾峰。

峰底——基线上峰的起点至终点的距离。

峰高(peak height,h)——峰的最高点至峰底的距离。

峰宽(peak width,W)——峰两侧拐点处所作两条切线与基线的两个交点间的距离。

W=4σ半峰宽(peak width at half-height,W h/2)——峰高一半处的峰宽。

W h/2=2.355σ标准偏差(standard deviation,σ)——正态分布曲线x=±1时(拐点)的峰宽之半。

正常峰的拐点在峰高的0.607倍处。

标准偏差的大小说明组分在流出色谱柱过程中的分散程度。

相关文档
最新文档