高效液相色谱分析原理及流程
高效液相色谱简介及操作
HPLC和经典液相色谱法的比较
3.高效液相色谱法的分类
• 通常将液相色谱法按分离机理分成吸附色谱法、分配色谱法、离子色 谱法和凝胶色谱法四大类。
4.如何阅读色谱图??
tR:保留时间;tM:死时间; :调整保留时间; W:峰宽
• 定性分析:在同一色谱系统中相同物质具 有相同的保留值 • 定量分析:组分含量与其响应值(峰高或 面积)成正比
2 色谱柱使用的注意事项
• 色谱柱在任何情况下不能碰撞、弯曲或强烈震动。 • 当分析柱长期不使用,应用适当有机溶剂保存(一般 为甲醇)。 • 每天工作结束后用适当的溶剂来清洗柱。
3 其他注意事项
• 未经提取净化的蛋白样品、血样、生物样品绝对禁 止直接进样分析。 • 要注意流动相的脱气。 • 避免使用高粘度的溶剂作为流动相。 • 使用新鲜配制的流动相,特别是水溶剂或缓冲液建 议不超过两天,最好每天更换。
(5)色谱柱平衡后,打开检测器(开灯) (6)测定样品 (7)清洗仪器
色谱柱及流路清洗 进样阀清洗 进样针清洗
四、主要注意事项
1 泵使用的注意事项
•
• •
• •
防止任何固体微粒进入泵体(用0.22 um或0.45 um 的微孔滤膜过滤) 流动相不应含有任何腐蚀性物质,含有缓冲盐的流 动相不应保留在泵内更不允许留在柱内。 泵工作时防止溶剂瓶内的流动相用完,否则空泵运 转一是会使大量空气进入柱内柱床崩塌、也会磨损柱塞、 密封圈,最终产生漏液。 输液泵的工作压力决不要超过规定的最高压力。 流动相应先脱气,以免在泵内产生气泡,影响流量 的稳定性和分析结果。
c. 荧光检测器 (FLD) 只适用于具有荧光的有机化合物(如多环芳烃、氨基 酸、胺类、维生素和某些蛋白质等)的测定。
高效液相色谱仪的原理及应用
高效液相色谱仪的原理及应用
高效液相色谱仪(High-Performance Liquid Chromatography,HPLC)是一种常用的分析仪器,根据物质在固定相和流动相
间的相互作用差异来实现物质分离和测定的方法。
高效液相色谱的主要原理如下:
1. 样品进样:样品通过进样器注入到流动相中。
2. 流动相泵:流动相泵将流动相以一定的压力送入进样阀。
3. 进样阀:进样阀控制样品的进入量,并通过连接固定相柱。
4. 固定相柱:固定相在柱中,对流动相和待分离的样品进行分离。
5. 检测器:根据样品的特性和分离程度选择合适的检测器进行检测。
6. 数据处理器:将检测的信号转化为柱温度、流量和检测器信号等数据。
高效液相色谱仪的主要应用包括:
1. 分析化学:用于定性和定量分析化学样品中的成分。
2. 生物化学:用于分析蛋白质、核酸、多肽等生物大分子。
3. 药学:用于分析药物中的活性成分、控制药品的质量。
4. 环境分析:用于监测环境中的有机污染物和无机物质。
5. 食品分析:用于检测食品中的添加剂、残留农药和毒性物质。
高效液相色谱仪的优点包括分离效率高、分析速度快、样品容量小、样品制备简单等。
然而,高效液相色谱仪的操作要求严格,仪器费用较高,且需要使用高纯度的溶剂和试剂。
高效液相色谱仪原理及操作步骤
高效液相色谱仪原理及操作步骤嘿,咱今儿个就来唠唠高效液相色谱仪这玩意儿!你可别小瞧它,它在好多领域那可都是大功臣呢!那高效液相色谱仪到底是咋工作的呢?简单来说啊,就好比是一场特别的赛跑。
不同的物质就像是不同的选手,它们在色谱柱这个“跑道”上奔跑。
由于各自的性质不同,跑的速度也就不一样啦,这样就能把它们一个一个地分开。
这就好比是一群人一起跑马拉松,跑得快的自然就先冲线啦,然后我们就能清楚地知道谁先谁后,这就是高效液相色谱仪的基本原理啦。
接下来咱说说操作步骤。
第一步呢,就像是准备比赛前要先做好热身一样,咱得把仪器调试好。
要检查各种部件是不是都正常,这可不能马虎,不然跑着跑着出问题了可咋办!然后呢,就是要把样品准备好。
这就像是给选手们准备好号码牌一样,得让它们有个“身份”呀。
样品的处理可得精心,不能有杂质啥的来捣乱。
接着就是进样啦,这就像是鸣枪起跑!把样品送进色谱柱这个“跑道”里,让它们开始“奔跑”。
在这个过程中,可别闲着呀,得时刻关注着仪器的运行状态。
就像看着比赛一样,看看选手们跑得顺不顺利。
等跑完了,数据出来了,那就像是比赛结束知道成绩了。
这时候可得好好分析分析这些数据,看看咱想要的结果在不在里面。
你说这高效液相色谱仪是不是很神奇呀?它能帮我们把那些复杂的混合物分得清清楚楚。
这要是没有它,好多实验可就没法做啦!咱再想想,生活中不也有很多类似的情况吗?就像整理东西,把乱七八糟的东西分类整理好,不就清楚多了嘛。
高效液相色谱仪不就是在微观世界里帮我们做这样的事情嘛。
所以啊,学会操作高效液相色谱仪那可太重要啦!这不仅是为了工作,也是为了能更好地探索那些我们看不见的世界呀。
你说呢?反正我觉得它真的是个了不起的家伙,能帮我们解决好多难题呢!。
高效液相色谱的工作流程
高效液相色谱的工作流程高效液相色谱(High-Performance Liquid Chromatography,HPLC)是一种实验室中常用的分离技术,具有分离能力强、灵敏度高、速度快等优点。
它可以用来分离溶液中的微量有机物质或有机物质,并对其进行浓度分析及含量测定。
高效液相色谱的工作流程主要包括样品准备、色谱仪设置、样品注射、分离扩散、检测和数据处理等步骤。
(1)样品准备:在进行高效液相色谱分析之前,需要准备好含有待测物质的样品,并将其溶于溶剂中作为分析液,以准备进行色谱分析。
此外,样品的浓度也需要有一定的控制,以便保证分析结果的准确性。
(2)色谱仪设置:色谱仪是高效液相色谱实验中的重要设备,它的设置非常关键。
首先,要根据实验需要,选择合适的样品容器、溶剂体系以及色谱塔,以确保实验的准确性和精确性。
然后,要调整检测器的设置,使其能够准确检测到样品中的待测物质。
最后,要调整色谱柱的温度、流速和梯度,以确定最佳的色谱条件。
(3)样品注射:当色谱仪设置完毕后,样品就可以进行注射了。
一般情况下,样品分析时会使用自动样品注射器,将样品以恒定量(如10μL)注入分析柱中,以保证分析结果的准确性。
(4)分离扩散:在注射后,待测物质将随着溶剂的流动进入塔中,在塔中,待测物质将随着溶剂的渗透而慢慢地向上移动,并被色谱塔中的活性材料吸附,以不同程度地分离,最后被检测器检测。
(5)检测:在分离扩散过程中,待测物质会一点点地向上移动,并被色谱塔中的活性材料吸附,最终被检测器检测。
检测器可以通过检测反应物质的吸光度、荧光度或者离子离子等方式,从而测定样品中待测物质的含量及其他特性。
(6)数据处理:在实验完成后,将检测到的数据输入到计算机中,通过合适的软件进行处理和分析,从而得出结论。
通过对检测数据的处理和分析,可以对样品中待测物质的浓度、含量等进行准确地测定,并进行科学地分析。
以上就是高效液相色谱的工作流程,它包括样品准备、色谱仪设置、样品注射、分离扩散、检测和数据处理等步骤,经过这些步骤,可以对样品中待测物质的浓度、含量等进行准确地测定,并进行科学地分析。
高效液相色谱的工作原理及操作注意事项
高效液相色谱的工作原理及操作注意事项高效液相色谱的工作原理及操作注意事项一、高效液相色谱的工作原理高效液相色谱(HPLC)是一种常用的分离和分析技术,主要应用于化学、生物、医药等领域。
其工作原理是利用不同物质在固定相和移动相之间的分配平衡,实现对待测组分的高效分离。
以下是高效液相色谱的工作原理:1.流动相:高效液相色谱中的流动相也称为溶剂或载体,是携带待测组分通过色谱柱的介质。
流动相的选择应根据样品的性质、检测器的类型以及分离效果等因素进行选择。
2.固定相:高效液相色谱中的固定相是色谱柱中的填料,通常是涂布在硅胶或氧化铝等载体上的高分子聚合物。
不同物质根据其在固定相和流动相之间的分配系数进行分离。
3.洗脱过程:在高效液相色谱中,待测组分随流动相通过色谱柱,经过固定相和流动相之间的分配平衡实现分离。
分离后的组分会按照其在固定相和流动相之间的分配系数依次流出色谱柱,进入检测器进行检测。
4.检测器:高效液相色谱中使用的检测器根据待测组分的性质和检测要求进行选择,常见的有紫外-可见光检测器、荧光检测器、电导检测器等。
检测器的作用是将组分的浓度转化为可测量的电信号,以便进行记录和分析。
二、高效液相色谱的操作注意事项在使用高效液相色谱进行实验操作时,需要注意以下事项:1.样品准备:在进行高效液相色谱分析前,需要对样品进行必要的处理和制备。
应尽可能避免样品中的杂质和干扰物质对分离和分析的影响。
同时,样品的浓度应适中,以避免色谱柱过载或检测器过载。
2.流动相选择:流动相的选择对高效液相色谱的分离效果和分析结果至关重要。
应根据样品的性质、实验要求以及分离效果等因素选择合适的流动相。
同时,应注意流动相的纯度和稳定性,以保证实验结果的可靠性。
3.色谱柱选择:高效液相色谱中使用的色谱柱是分离和分析的关键元件。
应根据样品的性质、待测组分的类型以及分离要求等因素选择合适的色谱柱。
同时,应注意色谱柱的粒径、孔径和填料性质等参数,以确保达到最佳的分离效果。
高效液相色谱原理
高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。
HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。
由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。
特点是选择性高、分离效能高、分析速度快的特点。
高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。
高效液相色谱法与气相色谱法相比,各有所长,互相补充。
如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。
3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。
(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。
从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。
②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。
③与所用的检测器相匹配。
④应对样品有足够的溶解能力,以提高测定的灵敏度。
⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。
⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。
液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。
4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。
②固定相:极性和非极性两种。
极性固定相:硅胶、氧化镁。
高效液相色谱实验报告
高效液相色谱实验报告一、实验目的。
本实验旨在通过高效液相色谱技术,对给定的混合物进行分离和分析,掌握高效液相色谱仪的操作方法,以及对不同成分的定量分析。
二、实验原理。
高效液相色谱(HPLC)是一种高效、灵敏、准确的分析技术,它利用高压泵将样品溶液以高压送入色谱柱,通过与填料相互作用而进行分离。
在色谱柱中,不同成分将因其在填料中的亲和力不同而被分离开来。
通过检测器检测各个组分的峰面积或峰高,从而进行定量分析。
三、实验步骤。
1. 样品制备,将待分析的混合物溶解于适当的溶剂中,并进行过滤处理。
2. 色谱柱准备,连接色谱柱,并进行平衡处理。
3. 仪器调试,将色谱仪的流动相、检测器等参数进行调试。
4. 样品进样,将处理好的样品通过自动进样器送入色谱柱。
5. 数据采集,通过色谱仪软件进行数据采集和记录。
6. 数据分析,根据色谱图进行各组分的峰识别和定量分析。
四、实验结果。
通过本次实验,我们成功地对给定的混合物进行了分离和定量分析。
得到了混合物中各组分的峰面积和峰高,并通过标准曲线进行了定量分析。
实验结果表明,本实验的色谱分离效果良好,各组分分离度高,定量分析结果准确可靠。
五、实验总结。
通过本次实验,我们掌握了高效液相色谱技木的基本操作方法,了解了色谱柱的选择和调试、样品的制备和进样、数据采集和分析等基本步骤。
同时,我们也认识到了高效液相色谱技术在化学分析中的重要性和广泛应用性。
希望通过今后的实验操作,能够进一步提高我们的操作技术和分析能力。
六、参考文献。
1. Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis. Cengage Learning.2. Snyder, L. R., Kirkland, J. J., & Glajch, J. L. (2011). Practical HPLC method development. John Wiley & Sons.以上就是本次高效液相色谱实验的全部内容,希望对大家有所帮助。
(干货)液相色谱基础知识大全
一、基本原理高效液相色谱(HPLC)法是以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。
高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。
在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。
高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。
二、高效液相色谱分析原理(1)、高效液相色谱分析的流程:由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。
被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。
废液流入废液瓶。
遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。
这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。
(2)、高效液相色谱的分离过程:同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。
它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。
开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。
分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。
分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。
组分B的分配系数介于A,C之间,第二个流出色谱柱。
若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。
不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。
其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。
图1高效液相色谱仪的系统流程图原理
液相色谱- 质谱连用技术受到普遍重视, 如分析氨基甲酸酯 农药和多核芳烃等; 液相色谱- 红外光谱连用也发展很快,如在环 境污染分析测定水中的烃类, 海水中的不挥发烃类, 使环境污染 分析得到新的发展。
高效液相色谱仪的应用
高效液相色谱法只要求样品能制成溶液, 不受样品挥发性的 限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离 热不稳定和非挥发性的、离解的和非离解的以及各种分子量范 围的物质。
与试样预处理技术相配合,HPLC 所达到的高分辨率和高灵 敏度, 使分离和同时测定性质上十分相近的物质成为可能,能够 分离复杂相体中的微量成分。随着固定相的发展, 有可能在充分 保持生化物质活性的条件下完成其分离。
(2)高压输液泵容易出现的问题是:①压力升不上去:检查一下桌面上是否 有漏下的液滴,如果有拧紧漏液处即可。②压力过高:看一下抽取流动相的 塑料管里是否有气泡,如果有,则按一下Stop,这时候千万别抽气泡,等压 力降下来,最好到0Psi,这时候抽出气泡。如果在过高的压力下抽气泡,后 果会非常严重,流通池会被鼓破,无法分析样品,并且会给你带来很多困 惑,当然如果有经验的话会及时发现,因为流通池破了后会流出蓝色的墨水 样的液体。
高速——流速为0.1~10.0 mL/min。 高效——塔板数可达5000/米。在一根柱中同时分离成份可达 100种。 高灵敏度——紫外检测器灵敏度可达0.01ng。同时消耗样品 少。 HPLC与经典液相色谱相比有以下优点:
速度快——通常分析一个样品在15~30 min,有些样品甚至在 5 min内即可完成。
高效液相色谱HPLC简介.ppt
种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不
同而引起的排阻作用的差别使不同溶质得以分离。
2
操作过程图示
3
色谱分离的机理
分离是一个 物理的过程。
固定相(Stationary Phase) 流动相(Mobile Phase) 样品 (溶解于流动相中的溶质)
4
项目 进样方式 流动相 分离原理 检测器
14
液-液分配色谱
固定相与流动相均为液体(互不相溶); 基本原理:组分在固定相和流动相上的分配; 流动相:对于亲水性固定液,采用疏水性流动相,即流动相的极性小于固定 液的极性(正相 normal phase),反之,流动相的极性大于固定液的极性 (反相 reverse phase)。正相与反相的出峰顺序相反; 固定相:早期涂渍固定液,固定液流失,较少采用; 化学键合固定相:将各种不同基团通过化学反应键合到硅胶(担体)表面的 游离羟基上。反相键合相色谱柱最常用的就是ODS柱,也就是C18柱。
15
液相色谱类型
• 正相色谱:固定相为极性,流动相为非极性。 • 反相色谱:固定相为非极性,流动相为极性。用的最多,约占60~70%。
16
色谱柱简介
• 正相柱------固定相通常为硅胶以及其他具有极性官能团胺基团,如(NH2) 和氰基团(CN)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离 的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色 谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷,氯仿,二氯 甲烷等。
9
检测器简介(二)
◆ 电导检测器(ECD) 原理:监测溶液的电导率变化的检测器。 特点:选择性检测器、测量时要求恒温、对流动相的组成变化有明显响应、 灵敏度低(10-3g)。适用于离子型化合物。
高效液相色谱原理和操作详解
高效液相色谱我国药典收载高效液相色谱法项目和数量比较表:鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。
I.概论 (3)一、液相色谱理论发展简况 (3)二、HPLC的特点和优点 (4)三、色谱法分类 (5)四、色谱分离原理 (5)II.基本概念和理论 (10)一、基本概念和术语 (10)二、塔板理论 (17)三、速率理论(又称随机模型理论) (19)III.HPLC系统 (22)一、输液泵 (23)二、进样器 (27)三、色谱柱 (29)四、检测器 (35)五、数据处理和计算机控制系统 (41)六、恒温装置 (42)IV.固定相和流动相 (43)一、基质(担体) (43)二、化学键合固定相 (46)三、流动相 (49)1.流动相的性质要求 (49)2.流动相的选择 (50)3.流动相的pH值 (51)4.流动相的脱气 (52)5.流动相的滤过 (53)6.流动相的贮存 (54)7.卤代有机溶剂应特别注意的问题 (54)8.HPLC用水 (55)V.HPLC应用 (56)一、样品测定 (56)二、方法研究 (58)附件:高效液相色谱法(HPLC)复核细则 (58)一、对起草单位的要求: (58)二、对复核单位的要求: (59)I.概论一、液相色谱理论发展简况色谱法的分离原理是:溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。
又称为色层法、层析法。
色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。
后来在此基础上发展出纸色谱法、薄层色谱法、气相色谱法、液相色谱法。
液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。
高效液相色谱法的原理
高效液相色谱法的原理高效液相色谱法(High Performance Liquid Chromatography, HPLC)是一种在液相中进行分离和分析化合物的技术。
它是一种高效、灵敏、准确的分析方法,广泛应用于化学、生物化学、环境监测、药物分析等领域。
高效液相色谱法的原理主要包括样品的注射、色谱柱的分离、检测器的检测和数据处理等步骤。
首先,样品通过注射器被注入到色谱柱中。
色谱柱是高效液相色谱法的核心部件,它通常由填料和固定相组成。
填料是一种多孔的固体材料,具有大量的表面积,用于吸附和分离样品中的化合物。
固定相是填料表面的化学物质,它与待分离的化合物发生相互作用,使化合物在填料中发生分离。
样品在色谱柱中被分离成不同的组分,这是高效液相色谱法的第一步。
接下来,分离后的化合物通过色谱柱被逐一洗脱出来,并进入检测器进行检测。
常用的检测器包括紫外-可见光谱检测器、荧光检测器、电化学检测器等。
这些检测器可以根据化合物的特性,如吸收、荧光、电化学活性等,对化合物进行定量或定性分析。
检测器检测到的信号将被转化成电信号,并传输到数据处理系统中进行处理和分析。
最后,数据处理系统对检测到的信号进行处理和分析,得到色谱图谱和化合物的峰面积。
色谱图谱是根据化合物在色谱柱中的保留时间和检测器的信号强度绘制的图形,可以直观地显示出化合物的分离情况。
峰面积则可以用来计算化合物的浓度或纯度,实现对样品的定量分析。
总的来说,高效液相色谱法的原理是基于化合物在色谱柱中的分离和检测,通过样品的注射、色谱柱的分离、检测器的检测和数据处理等步骤,实现对化合物的分析和定量。
这种方法具有分离效率高、分析速度快、灵敏度高、准确性好等优点,因此在科学研究和工业生产中得到了广泛的应用。
高效液相色谱的原理和应用
高效液相色谱的原理和应用高效液相色谱(High Performance Liquid Chromatography,HPLC)是一种常用的分离技术,广泛应用于化学、制药、食品科学、环境监测等领域。
本文将介绍高效液相色谱的原理、仪器组成、常见模式、样品制备及其应用。
一、高效液相色谱原理高效液相色谱的原理是利用液相在不同固相填料上的吸附和分配现象,将化合物在不同填充柱中发生分离和纯化。
通常,HPLC 固定相含有一些化学基团,如反相和离子交换基团,可与样品中的化合物进行吸附和分配。
液相进样、柱温及流动相的组成等因素均会影响HPLC分离效果。
二、高效液相色谱仪器组成高效液相色谱仪的组成一般包括进样器、色谱柱、泵、检测器和处理系统等部分。
进样器将样品喷射到柱口,色谱柱用于灌流梳理样品,其中固定填料用于分离和分析所需的化合物。
泵用于将流动相推动柱中的样品,检测器观察所需分析的化合物是否沿着柱流动。
高效液相色谱不仅提供精确且迅速的色谱分离,而且对各种检测器兼容,可选择性地检测各种目标物。
三、高效液相色谱常见模式高效液相色谱常见的模式有反相、离子交换、正相等。
其中,反相色谱在所有柱中应用最广,其固定相通常是羟基烷基硅胶(C18)。
反相色谱的原理在于样品溶解于亲水性较低的溶剂中排出;在色谱柱中遇到亲水性较高的固定相时,由于样品亲水性性质,样品在固定相上发生反相互相作用来获得分离。
离子交换色谱是通过离子交换基团分离化合物中的阴阳离子的;正相色谱固定相仅仅地与正离子发生斥力作用,使分离物在某些环境下进行发生分离和净化,通常情况下正相色谱的相相反色谱。
不过在实际操作过程中,某些离子需要离子交换色谱柱才能实现的很好地分离。
四、样品制备高效液相色谱之前样品制备可能是个需要重视的选项,由于HPLC是在溶液环境中进行的,所以所需的样品必须适合在液相中溶解。
当涉及到样品之前显微技巧之后有必要进行物质氨基酸或肽的酸性或碱性水解,用于小分子化合物的样品溶剂通常为方法文献所标示的洗涤剂和/或过滤剂; 在使用纯度高的离子液体进行样品溶解和/或抑制和保护剂。
高效液相色谱的原理及操作规程
色谱概述
分离是个物理过程
固定相(Stationary Phase) 流动相(Mobile Phase) 进样(Injection) 洗脱(Elution) 相互作用(Interaction)
色谱概述
用液体作为流动相的色谱称为液相色谱(LC) 与气相色谱法相比,高效液相色谱法具有很多优点:
1.高效液相色谱柱所用的固定相粒度很小(10µm以下),因此它的分离 效率很高。 2.高效液相色谱中的流动相可以选择不同极性的液体,由于它与固定相 都能对组分产生一定的亲和力,从而提高了分离效率。 3.高效液相色谱法可以应用于高沸点、热稳定性差、摩尔质量大的化合 物的分离分析中。 4.高效液相色谱可以在室温条件下进行分析,而气相色谱一般都要在较 高温度下进行
高效液相色谱的原理 及操作规程
色谱概述
色谱法的原理:
是利用混合物中各组份在不同的两相中溶解,分配,吸 附等化学作用性能的差异,当两相作相对运动时,使各组分 在两相中反复多次受到上述各作用力而达到相互分离 两相中有一相是固定的,叫作固定相(Stationary Phase),有一相是流动的,称为流动相(Mobile Phase),流 动相又叫洗脱剂,溶剂
配制样品
样品浓度要适中,不然可能导致测试结果不理想,一般对于液态的样 品可以用小烧杯装半杯溶剂,再滴加3-5滴样品搅拌均匀即可,固态 样品视溶解度情况决定
பைடு நூலகம்
洗针及取样
先用配制样品的溶剂洗针,然后再用配制好的样品洗针,最后再取样, 一般来说洗针次数最好不要少于15次
进样测试
将进样阀扳到下面,进样后再把进样阀扳回去,测试开始
HPLC的图形分析
色谱图(Chromatogram) : 色谱柱流出物通过检测器时所 产生的响应信号对时间的曲线 图,其纵坐标为信号强度,横坐标 为时间
高效液相色谱分析(主要分离类型与原理)课件
• 高效液相色谱分析简介 • 高效液相色谱的主要分离类型 • 高效液相色谱的分离原理 • 高效液相色谱分析实验操作与注意事项 • 高效液相色谱分析的应用实例
目录
Part
01
高效液相色谱分析简介
高效液相色谱分析的定义
高效液相色谱分析(HPLC)是一种分离和检测复杂样品中各种组分的方法。它利用不同 物质在固定相和流动相之间的分配平衡来实现分离。
THANKS
感谢您的观看
ቤተ መጻሕፍቲ ባይዱ
Part
03
高效液相色谱的分离原理
高效液相色谱的固定相与流动相
固定相
是色谱柱中的填充物,用于吸附 和固定样品中的组分。常见的固 定相包括硅胶、氧化铝、活性炭 等。
流动相
是携带样品通过色谱柱的液体或 气体,与固定相相互作用,使各 组分得以分离。
高效液相色谱的分离过程
样品在流动相中溶解并被 带入色谱柱。
实验操作前的准备
实验器材与试剂准备
确保所需的色谱柱、检测器、流动相 、样品等都已准备好,并确保试剂的 质量和纯度。
实验条件设定
仪器校准与维护
确保色谱仪器的准确性和稳定性,进 行必要的校准和日常维护。
根据实验需求,设定合适的流动相比 例、流速、检测波长等参数。
实验操作步骤与要点
样品处理
根据实验要求,对样品进 1
Part
02
高效液相色谱的主要分离类型
吸附色谱
STEP 01
原理
STEP 02
应用
利用固定相吸附剂对不同 组分的吸附能力差异实现 分离。
STEP 03
特点
固定相的吸附能力可以通 过改变流动相的组成进行 调节。
完整的高效液相色谱方案
完整的高效液相色谱方案一、基本原理HPLC的基本原理是将混合物中的化合物通过不同的分配系数分离出来。
在HPLC系统中,样品经过样品制备后被注入到流动相中,然后经过色谱柱的分离,最终通过检测器进行检测。
色谱柱是HPLC系统中最重要的组成部分,其选择决定了分离效率和选择性。
检测器根据化合物的特性和检测方法进行选择,如紫外可见光谱检测、电化学检测等。
二、仪器和色谱柱的选择HPLC系统由进样器、泵、色谱柱、检测器和数据处理系统组成。
首先需要选择适合的HPLC仪器,包括进样器、泵和检测器等。
进样器的选择需要考虑样品的性质和体积,以及进样的方式和精度。
泵的选择需要考虑流速、稳定性和准确性等因素。
检测器的选择需要根据分析方法和检测要求进行选择。
典型的检测器包括紫外可见光谱检测器、荧光检测器和质谱检测器等。
色谱柱是HPLC系统中最重要的组成部分,其选择决定了分离效率和选择性。
色谱柱根据填料材料和填充方式进行选择。
常用的填料材料包括正相、反相、离子交换、大小分离等。
填充方式包括开放式填充柱和闭环填充柱等。
选择色谱柱需要考虑样品的性质、分离目标和分析方法等因素。
典型的色谱柱包括C18柱、硅胶柱、离子交换柱和分子筛柱等。
三、操作流程HPLC系统的操作流程包括样品制备、进样、分离、检测和数据处理等步骤。
首先需要对样品进行制备,包括溶解、过滤和稀释等步骤。
然后将样品注入到进样器中,通过泵将样品送入色谱柱进行分离,最终通过检测器进行检测。
数据处理包括数据采集、数据处理和结果分析等步骤。
操作人员需要掌握HPLC仪器的操作方法和常见故障处理方法,以确保分析的准确性和可靠性。
四、样品准备样品准备是HPLC分析过程中至关重要的一步,其质量直接影响分析结果的准确性和可靠性。
样品制备包括溶解、过滤、稀释和去离子等步骤。
溶解是将样品溶解于适当的溶剂中,以便于进样和分离。
过滤是通过滤膜将杂质和颗粒去除,以减少色谱柱堵塞和检测器干扰。
稀释是将浓缩样品稀释到适当的浓度,以便于分离和检测。
高效液相色谱原理
高效液相色谱法(HPLC)一、方法原理1、液相色谱法概述高效液相色谱分析法其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。
HPLC仪器的基本结构2、高效液相色谱法的特点(HPLC)与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分配系数、离子交换作用或分子尺寸大小的差异来进行分离。
由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。
特点是选择性高、分离效能高、分析速度快的特点。
高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。
高效液相色谱法与气相色谱法相比,各有所长,互相补充。
如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。
3、高效液相色谱法的固定相和流动相(1)固定相表面多孔型和全多孔型两大类。
(2)流动相(淋洗液)流动相的选择对改善分离效果产生重要的辅助效应。
从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求:①与固定相互不相溶,并能保持色谱柱的稳定性。
②高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。
③与所用的检测器相匹配。
④应对样品有足够的溶解能力,以提高测定的灵敏度。
⑤具有低的黏度(可减少溶质的传质阻力,提高柱效)和适当低的沸点。
⑥应避免使用具有显著毒性的溶剂,以保证工作人员的安全。
液相色谱法中常用的流动相有正己烷、正庚烷、甲醇、乙腈等。
4、高效液相色谱法的主要类型(1)液—固吸附色谱法①分离原理:基于各组分吸附能力的差异来进行混合物分离的。
②固定相:极性和非极性两种。
极性固定相:硅胶、氧化镁。
高效液相色谱法的原理
高效液相色谱法的原理高效液相色谱法(High Performance Liquid Chromatography,HPLC)是一种分离和分析化学物质的常用技术。
它基于样品在流动相中的相互作用,利用不同化学物质在固定相上的差异来实现分离。
HPLC的原理可以分为以下几个步骤:1. 流动相选择:HPLC中的流动相由溶剂组成,根据分析物性质的不同,可以选择不同的流动相。
溶剂的选择应使得分析物在流动相中有适当的溶解度,并且不与固定相发生显著的反应。
2. 固定相选择:HPLC中的固定相通常是一种多孔的固体材料,它具有较大的比表面积以增加分离效果。
常用的固定相有疏水性相、亲水性相、离子交换相等。
固定相的选择应根据分析物的化学特性和分离要求进行。
3. 样品处理:样品需要经过预处理,通常包括提取、浓缩、净化等步骤。
样品处理的目的是去除杂质和提高分离效果。
4. 进样:样品通过进样器引入色谱柱。
进样时要保证样品量的准确控制,以确保分析结果的准确性。
5. 色谱柱:样品在色谱柱中进行分离。
色谱柱是由固定相填充的管状结构,样品在固定相中的相互作用与时间有关,这将导致样品分离。
分离的准确性和效率取决于固定相的性能和色谱柱的尺寸。
6. 检测器:色谱柱输出的混合物被送入检测器进行检测。
常见的检测器包括紫外可见光检测器、荧光检测器、质谱检测器等。
检测器将染料信号转化为电信号,通过数据处理系统得到分析结果。
7. 数据处理:色谱仪将检测到的信号传输到计算机上进行数据处理和结果分析。
数据处理的步骤包括峰面积和峰高计算,峰的定性和定量分析等。
通过以上步骤,HPLC可以实现对复杂混合物的高效分离和定量分析。
它在制药、环境监测、食品分析等领域被广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效液相色谱分析原理及流程
高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。
通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。
所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。
这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。
而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。
高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。
近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。
世界上约有80%的有机化合物可以用HPLC来分析测定。
高效液相色谱分析原理
(一)高效液相色谱分析的流程
由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。
被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。
废液流入废液瓶。
遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。
这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。
(二)高效液相色谱的分离过程
同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。
它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。
开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。
分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。
分配系数大的组分C 在固定相上滞留时间长,较晚流出色谱柱。
组分B的分配系数介于A,C之间,第二个流出色谱柱。
若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。
不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。
其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等
有关。
所以分离最终效果则是热力学与动力学两方面的综合效益。
高效液相色谱的类型
(一)吸附色谱
在吸附色谱中,样品的极性官能团牢固地保留在填料的吸附活性中心上,非极性烃基几乎不予保留。
所以,要清楚地辨别极性功能团的种类、数量和位置。
通常,样品能用吸附色谱分离的应是能溶解于有机溶剂并是非离子型的,强离子样品是不适宜的。
吸附色谱所使用的流动相以正己烷、三氯甲烷、二氯甲烷作为基础,按照样品的极性加上乙醇,然而,最好是使所加入醇的浓度为10%或更少一些。
如有可能,可进一步减小百分数。
因为高浓度的醇会减少填料的吸附活性,减弱吸附能力,并使重现困难。
(二)分配色谱
1.正相分配色谱
正相分配色谱适用于不溶于水而溶于有机溶剂且带有极性基团的样品,但正相分配色谱不适合于离子型物质。
2.反相分配色谱
这种方法目前应用非常广泛,应用的范围也很广,在反相分配色谱中,样品的非极性部分起保留作用。
通过使用的流动相是水—甲醇和水—乙腈,通过加入甲醇或乙腈的量的不同来调节分离,但如果样品带有离子型基团,需要在流动相中加入盐或调节流动相的PH值,例如,如果样品有一个—COOH基团,使流动相的PH值是偏向酸性的,由于抑制了—COOH基团的电离而加强了保留。
这个方法叫离子抑止法,如果样品有强离子基,有时候采用在流动相中加入适当抗衡离子以形成离子对的离子对法。
在调节PH值中,保持PH值在填料说明书手册中所规定的范围内,大多数化学键式的二氧化硅使用在PH=2-9,然而,当加入盐以后,最好使其PH=7.5-8或更小的,多孔聚合物填料能应用非常广泛的PH
值。
(三)离子交换色谱
这个方法是用填料的固定相的离子交换基团和样品的离子基团之间的离子交换来分离样品组分的,按照所交换的离子分成阳离子交换和阴离子交换。
离子交换色谱使用于能溶于水的离子型物质。
在离子交换色谱中,流动相的盐的浓度、PH及盐的种类等都对保留值有很大的影响。
在高效液相色谱的离子交换中所用的盐有磷酸盐、醋酸盐和硼酸盐。
因为氯化物会腐蚀不锈钢仪器,在高效液相色谱中不能使用NaCI或其他的氯化物盐类。
根据测量波长有些盐也不能使用,例如,醋酸吸收大约在210nm,当检测处在短波端的时候,用醋酸作流动相是不合适的。
(四)凝胶色谱
凝胶色谱不同于以上三种分离方法。
凝胶色谱是根据分子大小用分子筛效应来分离样品组分的。
这个方法也叫排阻色谱或粒度排阻色谱。
具有一定孔径的多孔性合成聚合物经常用作填料。
因为在样品中,小尺寸的分子深深地渗透到微孔中,所以迟流出,而大尺寸的分子没有渗透到微孔中,就很快流出。
通常合成树脂的分离使用有机溶剂作流动相,叫做凝胶渗透色谱。
凝胶色谱依样品的性质又可分为凝胶渗透和凝胶过滤。
1.凝胶渗透色谱
凝胶渗透色谱(GelPermeationChromatography),简称GPC。
此一类的色谱,使用于有机性溶媒的样品中,如PVC,PS,ABS等等,而所用的洗脱液有THF,Chloroform等等。
2.凝胶过滤色谱
凝胶过滤色谱(GelFiltrarionChromatography),简称GFC。
此一种类的层析法,使用于水溶媒的试剂中,如蛋白质、淀粉及水性合成高分子等等,而所用的溶液有水、缓冲液等等。
凝胶的种类很多,按其原料来源可分为有机胶和无机胶。
按其制备的方法又可分为均匀、半均匀和
非均匀三种凝胶。
而根据凝胶的强度又可分为软胶、半硬胶和硬胶三大类。
根据它对溶剂的适用范围又可分为亲水性、亲油性和两性凝胶等等。
本文由广州深华实验室仪器设备整合发布
Welcome 欢迎您的下载,资料仅供参考!。