高中数学人教b版必修3学案:2.3 变量的相关性 含解析

合集下载

高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

高中数学第二章统计2.3变量的相关性2.3.1-2.3.2变量间的相关关系两个变量的线性相关教学案新人教B版必修3

2.3.1 & 2.3.2 变量间的相关关系 两个变量的线性相关习课本P73~78,思考并完成以下问题预(1)相关关系是函数关系吗?(2)什么是正相关、负相关?与散点图有什么关系?(3)回归直线方程是什么?如何求回归系数?(4)如何判断两个变量之间是否具备相关关系?[新知初探]1.两个变量的关系分类函数关系相关关系 特征两变量关系确定两变量关系带有随机性2.散点图将样本中n 个数据点(x i ,y i )(i =1,2,…,n )描在平面直角坐标系中得到的图形. 3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.4.最小二乘法设x ,Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =i =1n(y i -a-bx i)2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.5.回归直线方程的系数计算公式回归直线方程回归系数系数a^的计算公式方程或公式y^=a^+b^x b^=∑i=1nxiyi-n x-y-∑i=1nx2i-n x2a^=y-b^x-上方加记号“^ ”的意义区分y的估计值y^与实际值ya,b上方加“^ ”表示由观察值按最小二乘法求得的估计值[小试身手]1.下列命题正确的是( )①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进行研究.A.①③④B.②③④C.③④⑤D.②④⑤解析:选C ①显然不对,②是函数关系,③④⑤正确.v,u;对变量1,得散点图图10),…,1,2=i)(iy,ix(有观测数据y,x.对变量2)(由这两个散点图可以判断2.,得散点图图10),…,1,2=i)(iv,iu(有观测数据A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关解析:选C 由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关.80,当施肥量为250+x 5=y ^归方程为的线性回(kg)y 与水稻产量(kg)x .若施肥量3kg 时,预计水稻产量约为________kg..650(kg)=250+5×80=y ^代入回归方程可得其预测值80=x 解析:把 答案:6504.对具有线性相关关系的变量x 和y ,测得一组数据如下表所示.x 2 4 5 6 8y 30 40 60 50 70若已求得它们的回直线的方程为______________________.,5=2+4+5+6+85=x 解析:由题意可知 y50.=30+40+60+50+705=即样本中心为(5,50).,a ^+x 6.5=y ^设回归直线方程为 ,)y ,x (回归直线过样本中心∵ ,7.51=a ^,即a ^+6.5×5=50∴ 17.5+x 6.5=y ^回归直线方程为∴ 17.5+x 6.5=y ^答案:相关关系的判断[典例] (1) ①正方形的边长与面积之间的关系; ②农作物的产量与施肥量之间的关系; ③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. (2)某个男孩的年龄与身高的统计数据如下表所示.年龄x (岁)123456身高y (cm)78 87 98 108 115 120①画出散点图;②判断y 与x 是否具有线性相关关系.[解析] (1)在①中,正方形的边长与面积之间的关系是函数关系;在②中,农作物的产量与施肥量之间不具有严格的函数关系,但具有相关关系;在③中,人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;在④中,降雪量与交通事故的发生率之间具有相关关系.答案:②④(2)解:①散点图如图所示.②由图知,所有数据点接近一条直线排列,因此,认为y 与x 具有线性相关关系.两个变量是否相关的两种判断方法(1)根据实际经验:借助积累的经验进行分析判断.(2)利用散点图:通过散点图,观察它们的分布是否存在一定的规律,直观地进行判断.[活学活用]如图所示的两个变量不具有相关关系的是________(填序号).解析:①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.答案:①④求回归方程[典例] (1)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x +2.3B.y ^=2x -2.4C.y ^=-2x +9.5 D.y ^=-0.3x +4.4(2)一台机器按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点的零件的多少随机器的运转的速度的变化而变化,下表为抽样试验的结果:转速x (转/秒)16 14 12 8 每小时生产有缺点的零件数y (件)11985①画出散点图;②如果y 对x 有线性相关关系,请画出一条直线近似地表示这种线性关系; ③在实际生产中,若它们的近似方程为y =5170x -67,允许每小时生产的产品中有缺点的零件最多为10件,那么机器的运转速度应控制在什么范围内?[解析] (1)依题意知,相应的回归直线的斜率应为正,排除C 、D.且直线必过点(3,3.5),代入A 、B 得A 正确.答案:A(2)解:①散点图如图所示:②近似直线如图所示:秒/转14,所以机器的运转速度应控制在≤14.9x ,解得≤1067-x 5170得≤10y 由③内.求回归直线方程的步骤.)数据一般由题目给出)(n ,…,1,2=i )(i y ,i x (收集样本数据,设为(1) (2)作出散点图,确定x ,y 具有线性相关关系..i y i x ,2i x ,i y ,i x 把数据制成表格(3).iy i ∑i =1nx ,2i ∑i =1n x ,y ,x 计算(4) ⎩⎪⎨⎪⎧b ^=∑i =1nxiyi -n x y ∑i =1n x2i -n x 2,a ^=y -b ^ x .,公式为a ^,b ^代入公式计算(5).a ^+x b ^=y ^写出回归直线方程(6) [活学活用]已知变量x ,y 有如下对应数据:x 1 2 3 4 y1345(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 解:(1)散点图如图所示.,52=1+2+3+44=x (2) y ,134=1+3+4+54=∑i=14x 39.=20+12+6+1=i y i ∑i =14x 2i ,30=16+9+4+1= b^,1310=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=a^,0=52×1310-134= .为所求的回归直线方程x 1310=y ^所以 利用线性回归方程对总体进行估计[典例x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y 关于x 的回归直线方程y ^=b ^x +a ^;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归直线方程,预测生产100吨甲产品的生产能耗比技改前降低了多少吨标准煤?[解] (1)散点图如图:,3.5=2.5+3+4+4.54=y ,4.5=3+4+5+64=x (2) ∑i=14x ,66.5=6×4.5+5×4+4×3+3×2.5=i y i ∑i=14x 2i ,86=26+25+24+23= ∑i =14xiyi -4xy∑i =14x2i -4x 2=b ^所以 ,0.7=66.5-4×4.5×3.586-4×4.52=a ^0.35.=0.7×4.5-3.5=x b ^-y = 0.35.+x 0.7=y ^所以所求的线性回归方程为 ,)吨标准煤70.35(=0.35+0.7×100=y ^时,100=x 当(3) 90-70.35=19.65(吨标准煤).即生产100吨甲产品的生产能耗比技改前降低了19.65吨标准煤.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.[活学活用](重庆高考)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;(2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款. 解:(1)列表计算如下:it iy it 2it i y i1 1 5 1 52 2 6 4 123 3 7 9 214 4 8 16 325 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1n y i =365=7.2.又∑i =1nt2i -n t -2=55-5×32=10,i =1n t i y i -n t-y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可预测该地区2015年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元).[层级一 学业水平达标]1.下列变量具有相关关系的是( )A .人的体重与视力B .圆心角的大小与所对的圆弧长C .收入水平与购买能力D .人的年龄与体重解析:选C B 为确定性关系;A ,D 不具有相关关系,故选C.2.已知变量x ,y 之间具有线性相关关系,其散点图如图所示,则其回归方程可能为2+x 1.5=y ^A. 2+x 1.5=-y ^B. 2-x 1.5=y ^C. 2-x 1.5=-y ^D. 之间负相关,回归直线y ,x ,由散点图可知变量a ^+x b ^=y ^设回归方程为 B 解析:选 2.+x 1.5=-y ^,因此方程可能为>0a ^,<0b ^轴上的截距为正数,所以y 在 个样本点,n 的y 和x 是变量)n y ,n x (,…,)2y ,2x (,)1y ,1x (设3.直线l 是由这些样本点通过最小二乘法得到的线性回归直线如图所示,则以下结论正确的是( ))y ,x (过点l .直线A B .回归直线必通过散点图中的多个点C .直线l 的斜率必在(0,1)D .当n 为偶数时,分布在l 两侧的样本点的个数一定相同解析:选A A 是正确的;回归直线可以不经过散点图中的任何点,故B 错误;回归直线的斜率不确定,故C 错误;分布在l 两侧的样本点的个数不一定相同,故D 错误. 4.一项关于16艘轮船的研究中,船的吨位区间为[192,3 246](单位:吨),船员的,x 0.006 2+9.5=y ^的回归方程为x 关于吨位y 人,船员人数32~5人数 (1)若两艘船的吨位相差1 000,求船员平均相差的人数;(2)估计吨位最大的船和最小的船的船员人数.,则2x ,1x 设两艘船的吨位分别为(1)解: y^)2x 6 20.00+(9.5-1x 0.006 2+9.5=2y ^-1 =0.006 2×1 000≈6, 即船员平均相差6人.,0.006 2×192≈11+9.5=y ^时,192=x 当(2) 0.006 2×3 246≈30.+9.5=y ^时,3 246=x 当 即估计吨位最大和最小的船的船员数分别为30人和11人.[层级二 应试能力达标]1.一个口袋中有大小不等的红、黄、蓝三种颜色的小球若干个(大于5个),从中取5次,那么取出红球的次数和口袋中红球的数量是( ) A .确定性关系 B .相关关系 C .函数关系D .无任何关系 解析:选 B 每次从袋中取球取出的球是不是红球,除了和红球的个数有关外,还与球的大小等有关系,所以取出红球的次数和口袋中红球的数量是一种相关关系.,下x 80+50=y ^变化的回归直线方程为)千元(x 依劳动生产率)元(y .农民工月工资2列判断正确的是( )A .劳动生产率为1 000元时,工资为130元B .劳动生产率提高1 000元时,工资水平提高80元C .劳动生产率提高1 000元时,工资水平提高130元D .当月工资为210元时,劳动生产率为2 000元的单x ,但要注意80增加y ,1每增加x 知,x 80+50=y ^由回归直线方程 B 解析:选位是千元,y 的单位是元.3.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下:则y 对x 的线性回归方程为( )A .y =x -1B .y =x +1x 12+88=y .C176=y .D =y ,176=174+176+176+176+1785=x 计算得, C 解析:选符合.C 检验知,)y ,x (,根据回归直线经过样本中心176=175+175+176+177+17754.已知x 与y 之间的几组数据如下表:,若某同学根据上表中的前两组a ^+x b ^=y ^假设根据上表数据所得线性回归直线方程为数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )′a <a ^,′b >y ^′ B.a >a ^,′b >b ^A. ′a <a ^,′b <y ^′ D.a >a ^,′b <b ^C. 解析:选C 由(1,0),(2,2)求b ′,a ′.2.=-2×1-0=′a ,2=2-02-1=′b ,58=24+15+12+3+4+0=i y i ∑i =16x 时,a ^,b ^求 x ,136=y ,3.5= ∑i=16x 2i ,91=36+25+16+9+4+1= ,57=58-6×3.5×13691-6×3.52=b ^∴ a^,13=-52-136=×3.557-136= ′.a >a ^,′b <b ^∴ =y ^的回归方程为(cm)x 对身高(kg)y 岁的人,体重38岁到18.正常情况下,年龄在50.72x -58.2,张红同学(20岁)身高为178 cm ,她的体重应该在________ kg 左右. =y ^时,178=x 的人的体重进行预测,当178 cm 解析:用回归方程对身高为0.72×178-58.2=69.96(kg).答案:69.966.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:________.=a ,则a +x 4=-y 由表中数据,求得线性回归方程为 ,132=4+5+6+7+8+96=x 解析: y,80=92+82+80+80+78+686=)y ,x (由回归方程过样本中心点 .a ^+1324×=-80得 106.=1324×+80=a ^即 答案:1067.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润y 的统计分析知x ,y ,估计该台机器最为划算的使用年限为x 1.3-10.47=y ^具备线性相关关系,回归方程为________年.解析:当年利润小于或等于零时应该报废该机器,当y =0时,令10.47-1.3x =0,解得x ≈8,故估计该台机器最为划算的使用年限为8年.答案:88.某个体服装店经营某种服装在某周内所获纯利y (元)与该周每天销售这种服装的件数x (件)之间有一组数据如下表:;y ,x 求(1) (2)若纯利y 与每天销售这种服装的件数x 之间是线性相关的,求回归直线方程; (3)若该店每周至少要获纯利200元,请你预测该店每天至少要销售这种服装多少件?3 487)=i y i ∑i =17x ,45 309=2i ∑i =17y ,280=2i ∑i =17x 提示:( ,6=3+4+5+6+7+8+97=x (1)解: y≈79.86.66+69+73+81+89+90+917= ,≈4.753 487-7×6×79.86280-7×62=b ^∵(2) a^,51.36=4.75×6-79.86= .x 4.75+51.36=y ^之间的回归直线方程为x 纯利与每天销售件数∴ ≈31.29.x ,所以651.3+x 4.75=200时,200=y ^当(3) 因此若该店每周至少要获纯利200元,则该店每天至少要销售这种服装32件.9.2016年元旦前夕,某市统计局统计了该市2015年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元)2 4 4 6 6 6 7 7 8 10年饮食 支出y(万元)0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3(2)若某家庭年收入为9万元,预测其年饮食支出.406)=2i ∑i =110x ,117.7=i y i ∑i =110x 参考数据:( 解:依题意可计算得:x,10.98=y x ,36=2x ,1.83=y ,6= ,406=2i ∑i =110x ,117.7=i y i ∑i =110x ∵又,≈0.17∑i=110xiyi -10x y ∑i =110x2i -10x 2=b ^∴ a^0.81.+x 0.17=y ^∴,0.81=x b ^-y = 1.0.8+x 0.17=y ^所求的回归方程为∴ .)万元2.34(=0.81+0.17×9=y ^时,9=x 当(2) 可估计年收入为9万元的家庭每年饮食支出约为2.34万元.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列三个抽样:①一个城市有210家某商品的代理商,其中大型代理商有20家,中型代理商有40家,小型代理商有150家,为了掌握该商品的销售情况,要从中抽取一个容量为21的样本;②在某公司的50名工人中,依次抽取工号为5,10,15,20,25,30,35,40,45,50的10名工人进行健康检查;③某市质量检查人员从一食品生产企业生产的两箱(每箱12盒)牛奶中抽取4盒进行质量检查.则应采用的抽样方法依次为( )A .简单随机抽样;分层抽样;系统抽样B .分层抽样;简单随机抽样;系统抽样C .分层抽样;系统抽样;简单随机抽样D .系统抽样;分层抽样;简单随机抽样解析:选 C ①中商店的规模不同,所以应利用分层抽样;②中抽取的学号具有等距性,所以应是系统抽样;③中总体没有差异性,容量较小,样本容量也较小,所以应采用简单随机抽样.故选C.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20 解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190 192.=n ,求得80=n200+1 200+1 0001 000× B 解析:选 4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )200+x 10=y ^200 B.+x 10=-y ^A. 200-x 10=y ^200 D.-x 10=-y ^C. 解析:选A 由于销售量y 与销售价格x 成负相关,故排除B ,D.又因为销售价格x >0,则C 中销售量全小于0,不符合题意,故选A.,则y 和x ,它们的平均数分别是n y ,…,2y ,1y 与n x ,…,2x ,1x .设有两组数据5)(的平均数是1+n y 3-n x 2,…,1+2y 3-2x 1,2+1y 3-1x 2新的一组数据 y 3-x 2.A 1+y 3-x 2.By 9-x 4.C1+y 9-x 4.D ,)n ,…,1,2=i 1(+i y 3-i x 2=i z 设 B 解析:选 =⎝ ⎛⎭⎪⎫1+1+…+1n +)n y +…+2y +1y (3n -)n x +…+2x +1x (2n =)n z +…+2z +1z (1n =z 则 1.+y 3-x 2 6.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12[35.5,39.5) 7 [39.5,43.5) 3则总体中大于或等于31.5的数据所占比例约为( )211A.13B. 12C.23D. 解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本个数为12+7.13=2266的数据约占31.5,故总体中大于或等于22=3+ 7.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90 解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,87.=75)+80+85×4+90×2+95+(100110平均数为 8.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得到了他们某月交通违章次数的数据,结果制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3 1.8.=5×0+20×1+10×2+10×3+5×450B 解析:选 9.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据月份x 1 2 3 4用水量y 4.5 4 3 2.5的a ,则a +x 0.7=-y 之间具有线性相关关系,其线性回归方程为x 与月份y 用水量值为( )A .5.25B .5C .2.5D .3.5 解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25.10.如图是在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.2D .85,4 +5+6+3+(515+80,平均数为77,去掉一个最低分95去掉一个最高分 C 解析:选,因此1.2=]286)-(85+285)-(85+286)-(85+283)-(85+285)-[(8515,方差为85=6)选C.,…,2+2x 2,3+1x 3,则2s ,方差是x 的平均数是n x ,…,3x ,2x ,1x .如果数据11)(的平均数和方差分别是2+n x 32s 和x A.2s 9和x 3.B2s 9和2+x 3.C4+2s 12和2+x 3.D nx …,2x ,1x ,由于数据2+x 3的平均数是2+n x 3,…,2+2x 2,3+1x 3 C 解析:选.2s 9的方差为2+n x 3,…,2+2x 2,3+1x 3,所以2s 的方差为 12.如图是某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图,已知甲的成绩的极差为31,乙的成绩的平均值为24,则下列结论错误的是( ) A .x =9 B .y =8C .乙的成绩的中位数为26D .乙的成绩的方差小于甲的成绩的方差解析:选B 因为甲的成绩的极差为31,所以其最高成绩为39,所以x =9;因为乙的成绩的平均值为24,所以y =24×5-(12+25+26+31)-20=6;由茎叶图知乙的成绩的中位数为26;对比甲、乙的成绩分布发现,乙的成绩比较集中,故其方差较小. 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为________.∴,2;又方差为20=y +x ,则10=159)×+11+10+y +x (,得10解析:由平均数为=xy 208,2=2y +2x ,得2=15]×210)-(9+210)-(11+210)-(10+210)-y (+210)-x [( 4.=x2+y2-2xy =x -y 2=|y -x |∴,192 答案:414.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.12.=×482148+36解析:抽取的男运动员的人数为 答案:1215.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:________,________,________,________,________.(下面摘取了随机数表第7行至第9行)59408 66368 36016 26247 25965 49487 26968 86021 77681 83458 21540 62651 69424 78197 20643 67297 76413 66306 51671 54964 87683 30372 39469 97434解析:以3开始向右读,每次读取三位,重复和不在范围内的不读,依次为368,360,162,494,021.答案:368,360,162,494,02116.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1,∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,10.=z ,20=y 同理,30.=x ,解得0.030×10=x100则3.=×181030+20+10的学生中选取的人数为[140,150]故从 答案:0.030 3三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) ,应如何110名学生中抽取50为调查某班学生的平均身高,从)分10本小题满分(.17抽样?若知道男生、女生的身高显著不同(男生30人,女生20人),应如何抽样? 抽签法或随机数(人,采用简单随机抽样法5,即抽取110名学生中抽取50解:从法).若知道男生、女生的身高显著不同,则采用分层抽样法,按照男生与女生的人数比为30∶20=3∶2进行抽样,则男生抽取3人,女生抽取2人.18.(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?22.=1326=17+19+20+21+25+306样本均值为1)(解: 4=1312×名工人中有12,故推断该车间13=26知样本中优秀工人所占比例为(1)由(2)名优秀工人.19.(本小题满分12分)2016年春节前,有超过20万名广西、四川等省籍的外出务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾乘人员休息站,让返乡过年的摩托车驾乘人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行一次省籍询问,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5人,则四川籍的应抽取几人?解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样法.(2)从题图可知,被询问了省籍的驾驶人员广西籍的有5+20+25+20+30=100(人);四川籍的有15+10+5+5+5=40(人).2,即四川籍的应抽取2=x ,解得x40=5100人,依题意得x 设四川籍的驾驶人员应抽取人.20.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110.(1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.,100=99)+98+103+98+99+101+(10217=甲x (2) x,100=110)+115+75+85+90+115+(11017=乙 ,1)≈3.43+4+9+4+1+1+(417=2甲s ,228.57=100)+225+625+225+100+225+(10017=2乙s ,故甲车间产品比较稳定.2乙s <2甲s ∴ 21.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:分组频数 频率[10,15) 10 0.25[15,20) 25n [20,25) mp[25,30] 20.05 合计M1(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数.解:(1)由分组[10,15)的频数是10, 40.=M ,所以0.25=10M知,0.25频率是 因为频数之和为40,所以10+25+m +2=40,解得m =3.0.075.=340=p 故 因为a 是对应分组[15,20)的频率与组距的商,125.0.=2540×5=a 所以 (2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.22.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入iy i ∑i =110x ,20=i ∑i =110y ,80=i ∑i =110x 的数据资料,算得)单位:千元(i y 与月储蓄)单位:千元(i x 720.=2i ∑i =110x ,184= ;a ^+xb ^=y ^的线性回归方程x 对月收入y 求家庭的月储蓄(1) (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.,8=8010=i ∑i =1n x 1n =x ,10=n 由题意知(1)解: y ,2=2010=i ∑i =1n y 1n = ,80=210×8-720=2x 10-2i ∑i =110x 又 ∑i=110x ,24=10×8×2-184=y x 10-i y i ,0.3=2480=∑i =110xiyi -10x y∑i =110x2i -10x 2=b ^由此得 a^,0.4=-0.3×8-2=x b ^-y = 0.4.-x 0.3=y ^故所求回归方程为 (2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7千元.。

高中数学第二章统计2.3变量的相关性教案新人教B版必修3

高中数学第二章统计2.3变量的相关性教案新人教B版必修3

2.3 变量的相关性课堂探究1.函数关系与相关关系的区别和联系剖析:函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系.然而学会新词并不能使儿童马上长高,而是涉及第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高,而且由于长大身高也会高些.两种关系之间的联系.两类关系在一定条件下可以相互转化,如正方形面积S与其边长x之间虽然是确定性关系,但在每次测量面积时,由于测量误差等原因,其数值大小表现为一种随机性.而对于具有线性关系的两个变量来说,在求得其回归直线之后,又可以用一种确定性的关系来对这两种变量间的关系进行估计.在现实生活中,相关关系大量存在.从某种意义上说,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可以使我们对函数关系的认识上升到一个新的高度.2.散点图的重要作用剖析:散点图对于探究两种事物、两种现象之间的关系起着重要的作用.它是用平面直角坐标系上点的散布图形来表示两种事物之间的相关性及联系的模式,例如:为研究小学生的身高与体重之间的关系,研究人员分别以每个学生的身高、体重为横、纵坐标,在平面直角坐标系内画出相应的点,这些点便组成了相关的散点图.散点图直观地反映了两个事物对应的观测值之间是否存在相关性,至于什么样的相关,就要看研究的角度.温馨提示求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有意义,否则,求出的回归直线方程毫无意义.3.教材中的“思考与讨论”图2-10和图2-11中画出直线的标准合理吗?怎样判别拟合的优劣程度呢?解答:将线性相关的数据画成散点图,图中的数据点大致分布在一条直线的附近,根据不同的标准可以画出不同的直线来近似表示这种线性相关关系,能够最贴近已知数据点的直线叫做最优拟合直线.因此,教材两图画出直线的标准不合理.判断拟合的优劣程度就是判断找出的这条直线“是否最贴近”已知的数据点.题型一相关关系的判断【例1】下列两个变量之间的关系为相关关系的是( )A.角度和它的正弦值B.圆的半径和圆的面积C.正n边形的边数和内角之和 D.人的年龄和身高解析:角与它的正弦值是函数关系;圆的半径r与面积S=πr2,正n边形的边数与内角之和h(n)=(n-2)·180°都是函数关系.而人的年龄和身高则具有相关关系.答案:D反思此问题为非数据型两个变量的相关性判断,要根据两个变量之间是否具有确定性关系及因素关系来判断.题型二利用回归直线对总体进行估计【例2】炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉熔化完毕到出钢的时间)的一列数据,如下表所示:(2)求回归直线方程.(3)预测当钢水含碳量为160时,应冶炼多少分钟?分析:画出散点图,看两者是否具有相关关系,然后利用最小二乘法可求出回归直线方程.最后利用方程计算含碳量为160时,应冶炼多长时间.解:(1)以x轴表示含碳量,y轴表示冶炼时间,可作散点图如图所示.从图中可以看出,各点散布在一条直线附近,即它们线性相关.(2)列出下表,并用科学计算器进行计算:设所求的回归直线方程为y =b x +a ,b ^=∑i =110x i y i -10xy∑i =110x 2i -10x 2≈1.267,a ^=y -b ^x ≈-30.47,即所求的回归直线方程为y ^=1.267x -30.47.(3)当x =160时,y ^=1.267×160-30.47≈172(min),即大约应冶炼172 min . 最小二乘法是求回归直线方程的常用方法,可以通过本题的解答体会最小二乘法的优越性.为了便于计算,通常将有关数据列成表格,然后借助于计算器算出各个量. 题型三 易错辨析【例3】 由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到回归直线方程y ^=b ^x +a ^,那么下面说法中不正确的是( )A .直线y ^=b ^x +a ^必经过点(x ,y )B .直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y ^=b ^x +a ^的斜率为b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2D .直线y ^=b ^x +a ^和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的总离差∑i =1n [y i -(b ^x i +a ^)]2是该坐标平面上所有直线与这些点的总离差中最小的直线错解:A错因分析:选A 是因为没有抓住回归直线y ^=b ^x +a ^中a ^,b ^的取值及意义,事实上,因为b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a ^=y -b ^x ,所以直线y ^=b ^x +a ^必过定点(x ,y ),A ,C 项显然正确,由回归直线方程的推导知D 项也正确,只有B 项不能确定,可能直线y ^=b ^x +a ^经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的许多点,也可能都经过或都不经过.答案:B。

高一数学人教b版必修3学案:2.3 变量的相关性(数理化网 为您收集整理)

高一数学人教b版必修3学案:2.3 变量的相关性(数理化网 为您收集整理)

2.3变量的相关性自主学习学习目标1.通过收集现实问题中两个有关联变量的数据,作出散点图,并利用散点图直观认识变量间的相关关系.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.自学导引1.两个变量间的相互关系变量与变量之间的关系常见的有两类:一类是确定性的________关系,另一类是带有随机性的________关系.2.相关关系的分类(1)正相关:如果一个变量的值由小变大时,另一个变量的值也____________,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值____________,这种相关称为负相关.3.散点图在一个统计数表中,为了更清楚地看出x 和y 是否具有相关关系,常将x 的取值作为________,将y 的相应取值作为________,在直角坐标中描点____________________,这样的图形叫散点图.4.回归直线方程一般地,设x 和y 是具有相关关系的两个变量,且对应于n 个观测值的n 个点大致分布在一条直线的附近,若所求的直线方程y ^=a ^+b ^x ,则⎩⎪⎨⎪⎧b ^= ,a ^= .我们将这个方程叫做y 对x 的________________,b ^叫做____________,相应的直线叫做回归直线.5.最小二乘法设x 、y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx ,当x 取值x i (i =1,2,…,n )时,y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =________________作为总离差,并使之达到________.这样,回归直线就是所有直线中Q 取________的那一条,由于平方又叫二乘方,所以这种使“____________________”的方法,叫最小二乘法.对点讲练知识点一 相关关系的判断例1根据你的生活经验及掌握的知识,将下列所有你认为正确的结论填入题空中.①一般的,学生的数学成绩与物理成绩之间是正相关的;②一般的,学生的数学成绩与英语成绩是负相关的;③一块农田的水稻产量与施肥量之间是相关关系;④对于在校儿童,脚的大小与阅读能力有很强的相关关系.以上正确的结论是________.变式迁移1下列两变量中具有相关关系的是()A.角度和它的余弦值B.正方形的边长和面积C.人的年龄与身高D.人的身高和体重知识点二散点图的应用例2某地农业技术指导站的技术员,经过在7块并排大小相同的试验田上进行施化肥量对水稻产量影响的试验,得到如下表所示的一组数据:(施化肥15202530354045量x水稻产330345365405445450455量y变式迁移25学生学科 A B C D E数学8075706560物理7066686462知识点三回归直线方程及应用例3 随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并使用年限x 2 3 4 5 6 总费用y 2.2 3.8 5.5 6.5 7.0若由资料,知(1)线性回归方程y ^=b ^x +a ^的回归系数a ^、b ^;(2)估计使用年限为10年时,车的使用总费用是多少?变式迁移3 某厂某产品的产量x (单位:千件)与单位成本y (单位:万元/千件)的对应数据如下:x 29 28 28.5 29.5 30 31 30 29 y 500 510 504 494 493485 492 498(2)若y 与x 具有线性相关关系,求回归直线方程; (3)预测产量x =25千件时的单位成本.1.相关关系与函数关系(1)相同点:两者均是指两个变量的关系. (2)不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系.②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系. 2.用回归直线进行拟合两变量关系的线性相关的一般步骤为: (1)作出散点图,判断散点是否在一条直线附近;(2)如果散点在一条直线附近,用公式求出a ^、b ^,并写出线性回归方程.3.在回归直线方程y ^=b ^x +a ^中b ^的含义容易理解成增加的单位数,而实际上,它代表x 每增加一个单位,y 平均增加的单位数.一般地说,当回归系数b ^>0时,说明两个变量呈正相关关系,它的意义是:当x 每增加一个单位时y 就增加b ^个单位;当b ^<0时,说明两个变量呈负相关关系,它的意义是:当x 每增加一个单位时,y 就减少|b ^|个单位.课时作业一、选择题1.下列两变量中不属于相关关系的是( ) A .产品的成本与产量 B .家庭的收入与支出 C .球的表面积与体积 D .吸烟与健康2.下列有关线性回归的说法,不正确的是( )A .变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C .回归直线方程最能代表观测值x 、y 之间的线性关系D .任何一组观测值都能得到具有代表意义的回归直线方程 3.设一个回归方程为y ^=3-1.2x ,则变量x 增加一个单位时( ) A .y 平均增加1.2个单位 B .y 平均增加3个单位 C .y 平均减少1.2个单位 D .y 平均减小3个单位4.2003年春季,我国部分地区SARS 流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下表是某同学记载的5月1日至5月12日每天北京市SARS 病患治愈者日期 5.1 5.2 5.3 5.4 5.5 5.6 人数 100 109 115 118 121 134 日期 5.7 5.8 5.9 5.10 5.11 5.12 人数 141 152 168 175 186 203下列说法:①根据此散点图,可以判断日期与人数具有线性相关关系; ②根据此散点图,可以判断日期与人数具有一次函数关系; ③后三天治愈出院的人数占这12天治愈出院人数的30%;④后三天中每天治愈出院的人数均超过这12天内北京市SARS 病患治愈者总人数的10%.其中正确的个数是( )A .1B .2C .3D .45.回归方程为y ^=1.5x -15,则( ) A.y =1.5x -15B .15是回归系数a ^C .1.5是回归系数a ^D .x =10时,y =0 二、填空题6.命题:①路程与时间、速度的关系是相关关系;②同一物体的加速度与作用力是函数关系;③产品的成本与产量之间的关系是函数关系;④圆的周长与面积的关系是相关关系;⑤广告费用与销售量之间的关系是相关关系.其中正确的命题序号是________.7.已知回归直线方程为y ^=0.50x -0.81,则x =25时,y 的估计值为________.8.在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下:温度x (℃) 0 10 20 50 70 溶解度y 66.7 76.0 85.0 112.3 128.0三、解答题9.一般来说,一个人的身高越高,他的手就越大,为调查这一问题,对某校10名高一男生的身高与右手长度进行测量得到如下数据(单位:cm):身高 168 170 171 172 174 176 178 178 180 181 右手长度19.0 20.0 21.0 21.5 21.0 22.0 24.0 23.0 22.5 23.0(2)如果具有线性相关关系,求回归方程;(3)如果一名同学身高为185 cm ,估计他的右手长.(精确到小数点后一位)§2.3 变量的相关性自学导引1.函数 相关2.(1)由小变大 (2)由大变小3.横坐标 纵坐标 (x i ,y i )(i =1,2,…,n)4.∑ni =1x i y i -n x y∑ni =1x 2i -n x2y -b ^x 回归直线方程 回归系数5.∑ni =1 (y i -a -bx i )2 最小 最小值 离差平方和为最小 对点讲练例1①③④解析①由于数学是自然科学的基础,数学成绩好,往往有利于学好与之相关联的学科,特别是物理,实际统计情况也是如此.所以①是正确的.②在时间有限的情况下,数学学习投入多,英语学习投入就少,反之亦然.于是就断定二者成绩是负相关的.这种主观臆断是错误的.因为实际情况是:有不少学生数学成绩与英语成绩都好或者是都不好.所以②是错误的.③一般情况下,一块农田的水稻产量与施肥量之间是相关的.④有很强的相关关系.这是因为在校儿童随着年龄的增长阅读能力在变强,而年龄增长了,脚也在长大.脚的大小和阅读能力之间无因果关系,而是通过第三个因素“年龄”沟通起来的.变式迁移1D[A、B具有确定性的函数关系.C无相关关系.一般地,身高越高,体重越重,是相关的.]例2解作出散点图进行分析.散点图如下:从散点图可以看出施化肥量x和水稻产量y的确存在一定相关关系,大体上随着施化肥量的增加,水稻的产量也在增加.可见散点图能直观形象地反映两个变量的相关程度.变式迁移2解以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如图所示:由散点图可知,两者之间具有相关关系.例3i 12 3 4 5 x i 2 3 4 5 6 y i 2.2 3.8 5.5 6.5 7.0 x i y i 4.4 11.4 22.0 32.5 42.0 x 2i4916 25 36 x =4,y =5,∑i =15x 2i =90,∑i =15x i y i =112.3于是b ^=112.3-5×4×590-5×42=12.310=1.23; a ^=y -b ^x =5-1.23×4=0.08. (2)线性回归直线方程是y ^=1.23x +0.08,当x =10(年)时,y ^=1.23×10+0.08=12.38(万元), 即估计使用10年时,支出总费用是12.38万元. 变式迁移3 解 (1)散点图如下:(2)x =29.375,y =497,∑8i =1x 2i =6 909.5,∑8i =1y 2i =1 976 494, ∑8i =1x i y i =116 744.∴b ^=∑8i =1x i y i -8x y ∑8i =1x 2i -8x2=-516.375=-8, a ^=497-(-8)×29.375=732, ∴y ^=-8x +732.(3)当x =25时,y ^=-8×25+732=532(万元/千件). 课时作业1.C [球的表面积与体积是函数关系.] 2.D 3.C 4.B 5.A 6.②⑤ 7.11.69 8.0.880 9解析 x =30,y =93.6,∑5i =1x 2i =7 900, ∑5i =1x i y i =17 035,所以回归直线的斜率 b ^=∑5i =1x i y i -5x y ∑5i =1x 2i -5x 2=17 035-5×30×93.67 900-4 500≈0.880 9.9.解 (1)散点图如下图所示:可见,身高与右手长之间的总体趋势成一条直线,即它们线性相关. (2)设回归直线方程是y ^=a ^+b ^x. 根据以上数据可由计算器计算得 x =174.8,y =21.7, ∑10i =1x 2i =305 730,∑10i =1x i y i =37 986. ∴b ^ =∑10i =1x i y i -10x y ∑10i =1x 2i-10x2=37 986-10×174.8×21.7305 730-10×174.82≈0.303,a ^=y -b ^x ≈-31.264.∴回归直线方程为y ^=0.303x -31.264. (3)当x =185时,y ^ =0.303×185-31.264 =24.791.故该同学的右手长可估测为24.8 cm .。

高中数学新人教版B版精品教案《人教版B高中数学必修3 2.3.1 变量间的相关关系》0

高中数学新人教版B版精品教案《人教版B高中数学必修3 2.3.1 变量间的相关关系》0

变量间的相关关系——陈世亮教学目标:1通过收集现实问题中两个变量的数据,探究变量间的关系;2通过散点图直观判断两变量间的相关关系;3通过收集、整理、分析数据,培养学生解决问题的能力。

教学重点:通过收集现实问题中两个有关联变量的数据,利用散点图直观认识并判断变量间的相关关系。

教学难点:变量间相关关系的理解,回归分析思想的理解。

教学用具:电教平台。

教学方法:类比、观察、交流、讨论、迁移。

教学过程:一情景引入问题1:现实生活中存在许多变量,请判断下列几组变量之间是否存在关系?是的话,是什么关系?1人的身高与视力;2正方形边长与面积;3商品销售收入与广告支出经费;4粮食产量与施肥量;5人体内的脂肪含量与年龄学生通过类比、观察、交流、讨论,得出结论,并由两名学生回答问题。

老师点评并得出:小结一1函数关系:当自变量取值一定时,因变量的取值由它唯一确定,是一种确定的关系。

2相关关系:当自变量取值一定时,因变量的取值带有一定的随机性,是一种不确定的关系。

3相关关系与函数关系的异同点与联系:函数关系相关关系相同点 均是指两个变量的关系不同点1确定关系;2是因果关系,有这样的因,必有 那样的果。

1非确定的关系;2不一定是因果关系,可能是伴随关 系。

联系在一定条件下可相互转化对具有相关关系的两个变量进行统计分析的方法叫回归分析。

练习一1下列两个变量之间的关系是相关关系的是 A 正方体的棱长和体积 B 学生的身高与数学成绩 C 圆的半径与圆的周长 D 日照时间与水稻的亩产量 2下列关系中,属于相关关系的是 填序号. ①人的身高与体重的关系;②做自由落体运动的物体的质量与落地时间的关系; ③降雪量与交通事故的发生率之间的关系.学生思考,并回答问题。

老师点评并引导学生得出:要分析这些变量之间相关程度的强弱, 一是凭经验粗略估计; 二是可发挥统计知识的作用, 用一些有说服力的数据来确定变量之间的相关关系二探究新知问题2:为了研究人体脂肪含量和年龄关系,研究人员获得了一组样本数据:思考1:观察上表中的数据,人体的脂肪含量与年龄之间有怎样的关系? 思考2:以轴表示年龄,轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?50494541392723年龄28.226.327.525.921.217.89.5脂肪61605857565453年龄34.635.233.530.831.430.229.6脂肪学生思考,并上黑板画出图形。

高中数学变量的相关性教案 新课标 人教版 必修3(B)

高中数学变量的相关性教案 新课标 人教版 必修3(B)

变量的相关性教学目标:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学重点:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学过程:案例分析:一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。

为了对这个问题进行调查,我们收集了北京市某中学2020年高三年级96名学生的身高与右手一拃长的数据如下表。

(1)根据上表中的数据,制成散点图。

你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。

(3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下。

从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的。

那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)二点确定一条直线。

同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同。

同学3:多取几组点对,确定几条直线方程。

再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距。

同学4:我从左端点开始,取两条直线,如下图。

再取这两条直线的“中间位置”作一条直线。

同学5:我先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使1015202530150155160165170175180185190195同学6:我先将所有的点分成两部分,一部分是身高在170 cm 以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线。

人教B版高中数学必修三《第二章 统计 2.3 变量的相关性 2.3.1 变量间的相关关系》_2

人教B版高中数学必修三《第二章 统计 2.3 变量的相关性 2.3.1 变量间的相关关系》_2

《变量间的相关关系》一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。

教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。

为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。

结合教材特点及学情,特制定三维教学目标如下:二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及2回归方程系数公式的推导过程,利用电子表格求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。

②通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。

3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。

利用计算机让学生动手操作,合作交流激发学生的学习兴趣。

三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。

教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。

四、教学媒体设计本节课涉及大量数据计算及分析,用传统方法很难突破,故我主要采用电子表格和几何画板,通过学生动手操作、教师动画演示、师生合作交流来突出重点、突破难点。

学生学习效果有明显提高。

五、教学设计(具体如下表)(一)、创设情境导入新课1、相关关系的理解师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?让学生举例,教师总结如:生:不是。

数学人教B版必修3课堂探究:2.3变量的相关性 Word版含解析

数学人教B版必修3课堂探究:2.3变量的相关性 Word版含解析

课堂探究1.函数关系与相关关系的区别和联系剖析:函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系.然而学会新词并不能使儿童马上长高,而是涉及第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高,而且由于长大身高也会高些.两种关系之间的联系.两类关系在一定条件下可以相互转化,如正方形面积S与其边长x之间虽然是确定性关系,但在每次测量面积时,由于测量误差等原因,其数值大小表现为一种随机性.而对于具有线性关系的两个变量来说,在求得其回归直线之后,又可以用一种确定性的关系来对这两种变量间的关系进行估计.在现实生活中,相关关系大量存在.从某种意义上说,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可以使我们对函数关系的认识上升到一个新的高度.2.散点图的重要作用剖析:散点图对于探究两种事物、两种现象之间的关系起着重要的作用.它是用平面直角坐标系上点的散布图形来表示两种事物之间的相关性及联系的模式,例如:为研究小学生的身高与体重之间的关系,研究人员分别以每个学生的身高、体重为横、纵坐标,在平面直角坐标系内画出相应的点,这些点便组成了相关的散点图.散点图直观地反映了两个事物对应的观测值之间是否存在相关性,至于什么样的相关,就要看研究的角度.温馨提示求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有意义,否则,求出的回归直线方程毫无意义.3.教材中的“思考与讨论”图2-10和图2-11中画出直线的标准合理吗?怎样判别拟合的优劣程度呢?解答:将线性相关的数据画成散点图,图中的数据点大致分布在一条直线的附近,根据不同的标准可以画出不同的直线来近似表示这种线性相关关系,能够最贴近已知数据点的直线叫做最优拟合直线.因此,教材两图画出直线的标准不合理.判断拟合的优劣程度就是判断找出的这条直线“是否最贴近”已知的数据点.题型一相关关系的判断【例1】下列两个变量之间的关系为相关关系的是()A.角度和它的正弦值B.圆的半径和圆的面积C.正n边形的边数和内角之和 D.人的年龄和身高解析:角与它的正弦值是函数关系;圆的半径r与面积S=πr2,正n边形的边数与内角之和h(n)=(n-2)·180°都是函数关系.而人的年龄和身高则具有相关关系.答案:D反思此问题为非数据型两个变量的相关性判断,要根据两个变量之间是否具有确定性关系及因素关系来判断.题型二利用回归直线对总体进行估计【例2】炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水的含碳量x与冶炼时间y(从炉熔化完毕到出钢的时间)的一列数据,如下表所示:(2)求回归直线方程.(3)预测当钢水含碳量为160时,应冶炼多少分钟?分析:画出散点图,看两者是否具有相关关系,然后利用最小二乘法可求出回归直线方程.最后利用方程计算含碳量为160时,应冶炼多长时间.解:(1)以x轴表示含碳量,y轴表示冶炼时间,可作散点图如图所示.从图中可以看出,各点散布在一条直线附近,即它们线性相关. (2)列出下表,并用科学计算器进行计算:设所求的回归直线方程为y =b x +a ,b ^=∑i =110x i y i -10x y∑i =110x 2i -10x2≈1.267,a ^=y -b ^x ≈-30.47,即所求的回归直线方程为y ^=1.267x -30.47.(3)当x =160时,y ^=1.267×160-30.47≈172(min),即大约应冶炼172 min . 最小二乘法是求回归直线方程的常用方法,可以通过本题的解答体会最小二乘法的优越性.为了便于计算,通常将有关数据列成表格,然后借助于计算器算出各个量. 题型三 易错辨析【例3】 由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到回归直线方程y ^=b ^x +a ^,那么下面说法中不正确的是( )A .直线y ^=b ^x +a ^必经过点(x ,y )B .直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y ^=b ^x +a ^的斜率为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2D .直线y ^=b ^x +a ^和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的总离差∑i =1n[y i -(b ^x i +a ^)]2是该坐标平面上所有直线与这些点的总离差中最小的直线错解:A错因分析:选A 是因为没有抓住回归直线y ^=b ^x +a ^中a ^,b ^的取值及意义,事实上,因为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x ,所以直线y ^=b ^x +a ^必过定点(x ,y ),A ,C 项显然正确,由回归直线方程的推导知D 项也正确,只有B 项不能确定,可能直线y ^=b ^x +a ^经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的许多点,也可能都经过或都不经过.答案:B。

人教B版高中数学必修3-2.3《变量间的相关关系》参考教案

人教B版高中数学必修3-2.3《变量间的相关关系》参考教案

2.3.2变量间的相关关系教学目标1.明确事物间的相互联系。

认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。

2.通过TI技术探究用不同的估算方法描述两个变量的线性相关关系的过程,学会用数学的有关变量来描述现实关系。

3.知道最小二乘法思想,了解其公式的推导。

会用TI图形计算器来求回归方程,相关系数。

教学用具学生每人一台TI图形计算器、多媒体展示台、幻灯教学实践情况一、问题引出:请同学们如实填写下表(在空格中打“√”)然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。

”对你来说,是这样吗?同意这种说法的同学请举手。

根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。

(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。

)教师总结如下:物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。

数学成绩的高低对物理成绩的高低是有一定影响的。

但决非唯一因素,还有其它因素,如图所示(幻灯片给出):(影响你的物理成绩的关系图)因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。

但这两个变量是有一定关系的,它们之间是一种不确定性的关系。

如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。

二、引出相关关系的概念教师提问:“像刚才这种情况在现实生活中是否还有?”学生甲:粮食产量与施肥用量的关系;学生乙:人的体重与食肉数量的关系。

从而得出:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。

当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。

相关关系是一种非确定性关系。

数学知识点人教B版必修3高中数学2.2.3《变量的相关关系》word学案-总结

数学知识点人教B版必修3高中数学2.2.3《变量的相关关系》word学案-总结

2.2.3变量的相关关系一、【使用说明】1、课前完成导学案,牢记基础知识,掌握基本题型;2、认真限时完成,规范书写;课上小组合作探究,答疑解惑。

二、学习目标:了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握 回归直线方程的求解方法。

三、学法指导:①求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.②求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.③回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识. 四、【自主学习】1.相关关系的概念在实际问题中,变量之间的常见关系有两类:一类是确定性函数关系,变量之间的关系可以用函数表示。

例如正方形的面积S 与其边长x 之间的函数关系2x S (确定关系);一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达。

例如一块农田的水稻产量与施肥量的关系(非确定关系)相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。

相关关系与函数关系的异同点—— 相同点:均是指两个变量的关系。

不同点:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。

2.求回归直线方程的思想方法观察散点图的特征,发现各点大致分布在一条直线的附近,思考:类似图中的直线可画几条? 最能代表变量x 与y 之间关系的直线的特征:即n 个偏差的平方和最小,其过程简要分析如下:设所求的直线方程为ˆybx a =+,其中a 、b 是待定系数。

人教B版必修3高中数学2.3《变量的相关性》ppt同步课件

人教B版必修3高中数学2.3《变量的相关性》ppt同步课件
答案 B
例4 从某居民区随机抽取10个家庭,获得第i个家庭的月 收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得
10
10
10
10
xi=80, yi=20, xiyi=184, xi2=720.
i=1
i=1
i=1
i=1
(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a; (2)判断变量x与y之间是正相关还是负相关; (3)若该居民区某家庭月收入为7千元,预测该家庭的月储 蓄.
2.在求回归直线方程的系数时,如何减少出错的可能? 提示 通过列表,逐一求系数公式中的各个数据,可以有 效地减少出错的可能.
课前热身
1.下列各量之间的关系中:①正方体的体积与棱长间的关
系;②一块农田的小麦产量与施肥量的关系;③儿童的身高与
年龄;④家庭的收入与支出;⑤某户家庭用电量与水价间的关
系.
第二章 统 计
§2.3 变量的相关性
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.会作散点图,并对变量间的正相关或负相关关系作出直 观判断. 2.了解最小二乘法的含义,知道最小二乘法的思想,能 根据给出的线性回归方程系数公式建立线性回归方程. 3.会用线性回归方程进行预测.
4.求回归直线方程的步骤
(1)分别计算
x

y
n
n
,x2i ,xiyi,其中
i=1
i=1
x
=1ni=n1xi,
y
=1n
n
yi.
i=1
n
xiyi-n x y
i=1
(2)分别计算b^=
,a^= y -b^ x .

人教版高中数学数学必修三2.3+变量的相关性+教案

人教版高中数学数学必修三2.3+变量的相关性+教案

第二学期高一数学教案精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

高中数学人教B版必修3学案:2.3 变量的相关性

高中数学人教B版必修3学案:2.3 变量的相关性

2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关1.理解两个变量的相关关系的概念.(难点)2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点)3.会求回归直线方程.(重点)4.相关关系与函数关系.(易混点)[基础·初探]教材整理1变量间的相关关系阅读教材P73,完成下列问题.1.两个变量的关系将样本中n个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形.3.正相关与负相关(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.图2-3-1所示的两个变量不具有相关关系的有________.图2-3-1【解析】 ①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.【答案】 ①④教材整理2 两个变量的线性相关 阅读教材P 74~P 76,完成下列问题. 1.最小二乘法设x 、Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx .当x 取值x i (i =1,2,…,n )时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n )刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用离差的平方和,即Q =∑i =1n(y i -a -bx i )2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.2.回归直线方程的系数计算公式1.判断(正确的打“√”,错误的打“×”)(1)回归方程中,由x的值得出的y值是准确值.()(2)回归方程一定过样本点的中心.()(3)回归方程一定过样本中的某一个点.()(4)选取一组数据中的部分点得到的回归方程与由整组数据得到的回归方程是同一个方程.()【答案】(1)×(2)√(3)×(4) ×2.过(3,10),(7,20),(11,24)三点的回归直线方程是()A.y^=1.75+5.75xB.y^=-1.75+5.75xC.y^=5.75+1.75xD.y^=5.75-1.75x【解析】求过三点的回归直线方程,目的在于训练求解回归系数的方法,这样既可以训练计算,又可以体会解题思路,关键是能套用公式.代入系数公式^=1.75,a^=5.75.代入直线方程,求得y^=5.75+1.75x.故选C.得b【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:_________________________________________________________ 疑问2:_________________________________________________________ 解惑:_________________________________________________________ 疑问3:_________________________________________________________ 解惑:_________________________________________________________[小组合作型](1)下列两个变量之间的关系,哪个不是函数关系()A.正方体的棱长和体积B.圆半径和圆的面积C.正n边形的边数和内角度数之和D.人的年龄和身高(2)对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图②.由这两个散点图可以判断()图2-3-2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关【精彩点拨】结合相关关系,函数关系的定义及正负相关的定义分别对四个选项作出判断.【尝试解答】(1)A、B、C都是函数关系,对于A,V=a3;对于B,S=πr2;对于C,g(n)=(n-2)π.而对于年龄确定的不同的人可以有不同的身高,∴选D.(2)由图象知,变量x与y呈负相关关系;u与v呈正相关关系.【答案】(1)D(2)C判断两个变量x和y间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.[再练一题]1.某公司2009~2014年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:B.利润中位数是18,x与y有负线性相关关系C.利润中位数是17,x与y有正线性相关关系D.利润中位数是17,x与y有负线性相关关系【解析】由表知,利润中位数是12(16+18)=17,且y随x的增大而增大,故选C.【答案】 C一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:(2)如果y 与x 具有线性相关关系,求y 关于x 的回归直线方程. 【精彩点拨】【尝试解答】 (1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算:b^=∑i =110x i y i -10x y∑i =110x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668,a^=y -b ^x =91.7-0.668×55=54.96. 即所求的回归直线方程为:y ^=0.668x +54.96.用公式求回归方程的一般步骤: (1)列表x i ,y i ,x i y i ;(3)代入公式计算b ^、a ^的值;(4)写出回归方程.[再练一题]2.已知变量x ,y 有如下对应数据:(1)作出散点图;(2)用最小二乘法求关于x ,y 的回归直线方程. 【解】 (1)散点图如图所示:(2)x =1+2+3+44=52, y =1+3+4+54=134,∑i =14x i y i =1+6+12+20=39.∑i =14x 2i =1+4+9+16=30,b^=39-4×52×13430-4×⎝ ⎛⎭⎪⎫522=1310,a ^=134-1310×52=0,所以y ^=1310x 为所求回归直线方程.下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(1)(2)请根据上表提供的数据,用最小二乘法求出回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【导学号:25440039】【精彩点拨】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ^,a ^的值;(3)实际上就是求当x =100时,对应的v 的值.【尝试解答】 (1)散点图,如图所示:(2)由题意,得 i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5, y =2.5+3+4+4.54=3.5,i =14x 2i =32+42+52+62=86,∴b^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a^=y -b ^x =3.5-0.7×4.5=0.35,故线性回归方程为y ^=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨)标准煤.回归分析的三个步骤:(1)判断两个变量是否线性相关:可以利用经验,也可以画散点图; (2)求线性回归方程,注意运算的正确性;(3)根据回归直线进行预测估计:估计值不是实际值,两者会有一定的误差.[再练一题]3.某种产品的广告费支出y (百万元)与销售额x (百万元)之间的关系如下表所示.(1)假定y 与x . (2)若广告费支出不少于60百万元,则实际销售额应不少于多少? 【解】 (1)设回归直线方程为y ^=bx +a ,则b ^=438-412.5660-625=25.535=5170,a ^=y-b ^x =5+8+9+114-5170×8+12+14+164=334-5170×252=-67,则所求回归直线方程为y ^=5170x -67.(2)由y ^=5170x -67≥60,得x ≥4 26051≈84,所以实际销售额不少于84百万元.[探究共研型]探究1变量之间的关系?【提示】任意两个统计数据均可以作出散点图,对于作出的散点图,如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.特别地,若所有的样本点都落在某一直线附近,变量之间就具有线性相关关系;如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系;如果散点图中的点的分布几乎没有什么规则,则这两个变量之间不具有相关关系.探究2【提示】(1)建立直角坐标系,两轴的长度单位可以不一致.(2)将n个数据点描在平面直角坐标系中.(3)画回归直线时,一定要画在多数点经过的区域,可以先观察有哪两个点在直线上.^的含义是什么?探究3回归系数b^代表x每增加一个单位,y的平均增加单位数,而不是增加【提示】(1)b单位数.(2)当b^>0时,两个变量呈正相关关系,含义为:x每增加一个单位,y平均^个单位数;增加b^<0时,两个变量呈负相关关系,含义为:x每增加一个单位,y平均减当b^个单位数.少b探究4回归直线方程与直线方程的区别是什么?【提示】线性回归直线方程中y的上方加记号“^ ”是与实际值y相区别,^”的值是通过统计大量数据所得到的一个预测值,它因为线性回归方程中的“y具有随机性,因而对于每一个具体的实际值而言,y ^的值只是比较接近,但存在一定的误差,即y =y ^+e (其中e 为随机变量),预测值y ^与实际值y 的接近程度由随机变量e 的标准差决定.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y =bx +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b^>b ′,a ^>a ′B.b^>b ′,a ^<a ′ C.b^<b ′,a ^>a ′ D.b^<b ′,a ^<a ′ 【精彩点拨】 先由已知条件分别求出b ′,a ′的值,再由b ^,a ^的计算公式分别求解b^,a ^的值,即可作出比较.【尝试解答】 根据所给数据求出直线方程y =b ′x +a ′和回归直线方程的系数,并比较大小.由(1,0),(2,2)求b ′,a ′. b ′=2-02-1=2, a ′=0-2×1=-2. 求b^,a ^时, ∑i =16x i y i =0+4+3+12+15+24=58,x =3.5,y =136,∑i =16x 2i =1+4+9+16+25+36=91,∴b^=58-6×3.5×13691-6×3.52=57,a ^=136-57×3.5=136-52=-13, ∴b^<b ′,a ^>a ′. 【答案】 C求回归直线方程时应注意的问题:(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,即使求出回归方程也是毫无意义的.(2)用公式计算a ^、b ^的值时,要先算出b ^,然后才能算出a ^,由a ^=y ^-b ^x 知回归直线必经过点(x ,y ).(3)利用回归方程,我们可以进行估计和预测.若回归直线方程为y ^=bx +a ,则x =x 0处的估计值为y ^=bx 0+a .[再练一题]4.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系.根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg【解析】 b^为正数,所以两变量具有正的线性相关关系,故A 正确;B ,C 显然正确;若该大学某女生身高为170 cm ,则可估计其体重为58.79 kg.【答案】 D1.设一个回归方程y^=3+1.2x,则变量x增加一个单位时()A.y平均增加1.2个单位B.y平均增加3个单位C.y平均减少1.2个单位D.y平均减少3个单位【解析】由b=1.2>0,故选A.【答案】 A2.下列有关线性回归的说法,不正确的是()A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C.回归方程最能代表观测值x、y之间的线性关系D.任何一组观测值都能得到具有代表意义的回归直线【解析】只有数据点整体上分布在一条直线附近时,才能得到具有代表意义的回归直线.【答案】 D3.(2014·重庆高考)已知变量x与y正相关,且由观测数据算得样本平均数x =3,y=3.5,则由该观测数据算得的线性回归方程可能是()A.y^=0.4x+2.3B.y^=2x-2.4C.y^=-2x+9.5D.y^=-0.3x+4.4【解析】因为变量x和y正相关,则回归直线的斜率为正,故可以排除选项C和D.因为样本点的中心在回归直线上,把点(3,3.5)的坐标分别代入选项A 和B中的直线方程进行检验,可以排除B,故选A.【答案】 A4.对具有线性相关关系的变量x和y,测得一组数据如下表所示.________.【导学号:25440040】【解析】由题意可知x=2+4+5+6+85=5,y=30+40+60+50+705=50.即样本中心为(5,50),设回归直线方程为y^=6.5x+b,∵回归直线过样本中心(5,50),∴50=6.5×5+b^,即b^=17.5,∴回归直线方程为y^=6.5x+17.5.【答案】y^=6.5x+17.5我还有这些不足:(1)_________________________________________________________(2)_________________________________________________________ 我的课下提升方案:(1)_________________________________________________________(2)_________________________________________________________。

人教B版必修三2.3.1变量相关性

人教B版必修三2.3.1变量相关性
设x,Y的一组观察值为 (xi,yi) (i=1,2
ˆ bx a „,n) 且回归直线的方程为 y
当变量x取xi (i=1,2,„,n)时,可以 得到: y ˆi bxi a (i=1,2,„,n), 它与实际收集到的yi之间的偏差是:
ˆi yi (bxi a) (i=1,2,„,n), yi y
2、散点图
一个变量由小变大时另一个变量也由小变大,这种相关称为正相关 一个变量由小变大时另一个变量由大变小,这种相关叫做负相关
一、相关关系的判断
例1:5个学生的数学和物理成绩如下表:
A 数学 80 B 75 C 70 D 65 E 60 62
ห้องสมุดไป่ตู้
70 66 68 64 物理 画出散点图,并判断它们是否有相关关系。
C. 1.5是回归系数a
D. x=10时,y=0
(x, y) 5.线性回归方程^ y=bx+a过定点________. ^=4.4x+838.19,则可估 6.已知回归方程y 5 计x与y的增长速度之比约为________. 22
Q ( yi bxi a) (∑为连加符号)
2 i 1
n
上式展开后,是一个关于a,b的二次多 项式,应用配方法,可求使Q取得最小值 时a、b的值.
这样,回归直线就是所有直线中Q取最 小值的那一条。由于平方又叫做二乘方, 所以这种使“离差平方和为最小”的方法, 叫做“最小二乘法”。
用最小二乘法求回归直线方程中a,b 有下面的公式:
n n ( xi x )( yi y ) xi yi nx y i 1 ˆ i 1 b , n n 2 2 2 ( x x ) x nx i i i 1 i 1 ˆ . ˆ y bx a

人教B版高中数学必修三232两个变量的线性相关学案

人教B版高中数学必修三232两个变量的线性相关学案

2.3.2两个变量的线性相关教学目标:1.明确事物间的相互联系。

认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。

2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程.教学重点:1.利用散点图直观认识两个变量之间的线性关系.2.根据给出的线性回归方程的系数公式建立线性回归方程.教学难点:1.作散点图和理解两个变量的正相关和负相关。

2.理解最小二乘法的思想教学过程:一、复习准备:1. 人的身高和体重之间的关系?2. 学生设计一个统计问题,并指出问题涉及的总体是什么,所涉及的变量是什么.二、讲授新课:1. 教学散点图①出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:据的图形,这样的图形叫做散点图。

正相关与负相关概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关。

如果散点图中的点散布在从左上角到右下角的区域内,称为负相关。

④讨论:你能举出一些生活中的变量成正相关或负相关的例子吗?⑤练习:一个工厂为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次调查,收集数据如下:2. 指出是正相关还是负相关。

3. 关于加工零件的个数与加工时间,你能得出什么结论? ⑥ 小结:1.散点图的画法。

2.正相关与负相关的概念。

三、回归方程1. 教学回归直线概念:① 从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线。

如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这这两个变量之间具有线形相关关系,直线叫回归直线。

②提问:从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线。

那么,怎样确定这条直线呢? 2. 教学最小二乘法:①求回归方程的关键是如何用数学的方法刻画“从整体上看,各点与此直线的距离最小”.如果直线的方程为αβ+=x y ,用()i ,,βαρ表示第i 个样本点()i i y x ,与直线之间的距离,则从总体上看各点与此直线的距离可以用所有样本点与回归直线的距离来表示,即用下面的公式()()∑==ni i Q 1,,,βαρβα来表示.注意到上面的等式对于任何实数α和β都有定义,因此可把()βα,Q 看成二元函数.这样,“从整体上看,各点与此直线的距离最小”的含义是回归方程的截距a 和斜率b 构成的点()b a ,应该是函数()βα,Q 的最小值点.特别地,当()()2,,i i i x y i αββαρ--=时,()b a ,应该使函数()()()()2222211,αβαβαββα--++--+--=n n x y x y x y Q 达到极小值,即a 和b 由公式①给出。

新人教B版必修3高中数学变量间的相关关系

新人教B版必修3高中数学变量间的相关关系

变量之间的相关关系一.教学任务分析:(1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.(2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.(3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用.二.教学重点与难点:教学重点:利用散点图直观认识变量间的相关关系.教学难点:理解变量间的相关关系.三.教学基本流程:四.1.创设情景,揭示课题客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说,事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度,所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.生活中存在着许多相关关系的问题:问题1:商品销售收入与广告支出之间的关系.问题2:粮食产量和施肥量之间的关系.问题3:人体内的脂肪含量与年龄之间的关系.由上述问题我们知道,两个变量之间的关系,可能是确定关系或非确定关系.当自变量取值一定时,因变量的取值带有一定的随机性时,两个变量之间的关系称为相关关系.相关关系是一种非确定性关系,函数关系是一种确定性的关系.2.两个变量的线性相关问题4: 在一次对人体的脂肪含量和年龄关系的研究中,研究人员获得了一组样本关.问题5:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6学生活动:为了了解热茶销量与气温的大致关系,我们以横坐标x表示气温,纵坐标y表示热茶销量,建立直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到下图,从散点图可以看出,各散点在从左上角到右下角的区域里,因此,随着气温的升高, 热茶销售量逐步减少,图中点的趋势表明两个变量之间存在一定的关系.这种相关关系称为负相关.3. 两个变量的线性相关性的判断例题1:下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,说明理由.有线性相关关系.正相关.4.练习:(1)下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值 B.正方形边长和面积C.正n边形的边数和它的内角和 D.人的年龄和身高(5. 课外作业:作业本配套练习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 变量的相关性 2.
3.1 变量间的相关关系 2.3.2 两个变量的线性相关
1.理解两个变量的相关关系的概念.(难点)
2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点)
3.会求回归直线方程.(重点)
4.相关关系与函数关系.(易混点)
[基础·初探]
教材整理1 变量间的相关关系 阅读教材P 73,完成下列问题. 1.两个变量的关系
将样本中n 个数据点(x i ,y i )(i =1,2,…,n)描在平面直角坐标系中得到的图形.
3.正相关与负相关
(1)正相关:如果一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.
(2)负相关:如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.
图2-3-1所示的两个变量不具有相关关系的有________.
图2-3-1
【解析】 ①是确定的函数关系;②中的点大都分布在一条曲线周围;③中的点大都分布在一条直线周围;④中点的分布没有任何规律可言,x ,y 不具有相关关系.
【答案】 ①④
教材整理2 两个变量的线性相关 阅读教材P 74~P 76,完成下列问题. 1.最小二乘法
设x 、Y 的一组观察值为(x i ,y i ),i =1,2,…,n ,且回归直线方程为y ^=a +bx.当x 取值x i (i =1,2,…,n)时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n)刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,通常是用
离差的平方和,即Q =∑i =1
n
(y i -a -bx i )2作为总离差,并使之达到最小.这样,回
归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.
2.回归直线方程的系数计算公式
1.判断(正确的打“√”,错误的打“×”)
(1)回归方程中,由x 的值得出的y 值是准确值.( ) (2)回归方程一定过样本点的中心.( ) (3)回归方程一定过样本中的某一个点.( )
(4)选取一组数据中的部分点得到的回归方程与由整组数据得到的回归方程是同一个方程.( )
【答案】 (1)× (2)√ (3)× (4) ×
2.过(3,10),(7,20),(11,24)三点的回归直线方程是( ) A.y
^=1.75+5.75x B.y
^=-1.75+5.75x C.y
^=5.75+1.75x D.y
^=5.75-1.75x 【解析】 求过三点的回归直线方程,目的在于训练求解回归系数的方法,这样既可以训练计算,又可以体会解题思路,关键是能套用公式.代入系数公式得b ^=1.75,a ^=5.75.代入直线方程,求得y ^=5.75+1.75x.故选C.
【答案】 C [质疑·手记]
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:
疑问1:_________________________________________________________ 解惑:_________________________________________________________ 疑问2:_________________________________________________________ 解惑:_________________________________________________________ 疑问3:_________________________________________________________ 解惑:_________________________________________________________。

相关文档
最新文档