北师大版九年级数学一元二次方程练习题
2022-2023学年北师大版数学九年级上册第2章一元二次方程 单元测试题含答案
2022-2023学年北师大版九年级数学上册《第2章一元二次方程》单元测试题(附答案)一.选择题(共8小题,满分40分)1.一元二次方程2x2+x﹣3=0中一次项系数、常数项分别是()A.2,﹣3B.0,﹣3C.1,﹣3D.1,02.已知关于x的一元二次方程x2+mx﹣3=0有一个根为1,则m的值为()A.﹣1B.1C.﹣2D.23.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.下列配方正确的是()A.x2+2x+5=(x+1)2+6B.x2+3x=(x+)2﹣C.3x2+6x+1=3(x+1)2﹣2D.x2﹣5.观察下列表格,一元二次方程x2﹣x=1.1的一个解x所在的范围是()x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9x2﹣x0.110.240.390.560.750.96 1.19 1.44 1.71 A.1.5<x<1.6B.1.6<x<1.7C.1.7<x<1.8D.1.8<x<1.9 6.若(a2+b2)(a2+b2﹣3)=4,则a2+b2的值为()A.4B.﹣4C.﹣1D.4或﹣17.若国家对某种药品分两次降价,该药品的原价是25元,降价后的价格是16元,平均每次降价的百分率均为x,则可列方程为()A.25(1﹣x)2=16B.25(1+x)2=16C.16(1﹣x)2=25D.16(1+x)2=258.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=600二.填空题(共7小题,满分35分)9.已知关于x的方程(m﹣1)x+2x﹣3=0是一元二次方程,则m的值为.10.已知m是方程x2﹣3x﹣2020=0的根,则代数式1+3m﹣m2的值为.11.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+1)*3=0的解为.12.已知一菱形的两条对角线长分别是方程x2﹣9x+20=0的两根,则菱形的面积是.13.若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x23﹣4x12+17的值为.14.已知α、β是一元二次方程x2﹣2021x+2020=0的两实根,则代数式(α﹣2021)(β﹣2021)=.15.已知等腰△ABC的三条边长都是方程x2﹣9x+18=0的根,则△ABC的周长为.三.解答题(共6小题,满分45分)16.解方程:(1)x2﹣4x﹣3=0;(2)(x﹣3)2=2(3﹣x).17.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.18.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.19.小明遇到下面的问题:求代数式x2﹣2x﹣3的最小值并写出取到最小值时的x值.经过观察式子结构特征,小明联想到可以用解一元二次方程中的配方法来解决问题,具体分析过程如下:x2﹣2x﹣3=x2﹣2x+1﹣3﹣1=(x﹣1)2﹣4所以,当x=1时,代数式有最小值是﹣4.(1)请你用上面小明思考问题的方法解决下面问题.①x2﹣2x的最小值是②x2﹣4x+y2+2y+5的最小值是.(2)小明受到上面问题的启发,自己设计了一个问题,并给出解题过程及结论如下:问题:当x为实数时,求x4+2x2+7的最小值.解:∵x4+2x2+7=x4+2x2+1+6=(x2+1)2+6∴原式有最小值是6请你判断小明的结论是否正确,并简要说明理由.20.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为19m,墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长34m,围成长方形的养鸡场除门之外四周不能有空隙.(1)若要围成养鸡场的面积为160m2,则养鸡场的长和宽各为多少m?(2)围成养鸡场的面积能否达到180m2?请说明理由.21.全球疫情暴发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万个,若能,应该增加几条生产线?若不能,请说明理由.参考答案一.选择题(共8小题,满分40分)1.解:2x2+x﹣3=0中,一次项系数为1,常数项为﹣3,故选:C.2.解:把x=1代入方程x2+mx﹣3=0得1+m﹣3=0,解得m=2.故选:D.3.解:∵x2﹣3x+6=0,Δ=(﹣3)2﹣4×1×6=﹣6<0,∴方程没有实数根,即一元二次方程x2﹣3x+6=0的根的情况为没有实数根,故选:D.4.解:A选项,(x2+2x+1)+4=(x+1)2+4;故A不符合题意;B选项,(x2+2×x+()2)﹣()2=(x+)2﹣()2,故B不符合题意;C选项,3x2+6x+1=3(x2+2x+1)﹣2=3(x+1)2﹣2,故C符合题意;D选项,x2﹣x+=[x2﹣2×x+()2]﹣()2+=(x﹣)2+,故D不符合题意;故选:C.5.解:x2﹣x=1.1,x2﹣x﹣1.1=0,Δ=(﹣1)2﹣4×1×(﹣1.1)=5.4,x=,x1=,x2=,∵2.2<<2.4,∴3.2<1+<3.4,∴1.6<<1.7,即一元二次方程x2﹣x=1.1的一个解x所在的范围是1.6<x<1.7.故选:B.6.解:设y=a2+b2(y≥0),则由原方程得到y(y﹣3)=4.整理,得(y﹣4)(y+1)=0.解得y=4或y=﹣1(舍去).即a2+b2的值为4.故选:A.7.解:设平均每次降价的百分率为x,根据题意列方程得25(1﹣x)2=16.故选:A.8.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.二.填空题(共7小题,满分35分)9.解:由一元二次方程的定义得:m2+1=2,且m﹣1≠0,解得:m=﹣1.故答案为:﹣1.10.解:∵m是方程x2﹣3x﹣2020=0的根,∴m2﹣3m﹣2020=0,∴m2﹣3m=2020,∴1+3m﹣m2=1﹣(m2﹣3m)=1﹣2020=﹣2019.故答案为:﹣2019.11.解:∵(x+1)*3=0,∴(x+1)2﹣32=0,∴(x+1)2=9,x+1=±3,所以x1=2,x2=﹣4.故答案为x1=2,x2=﹣4.12.解:解方程x2﹣9x+20=0得:x=4或5,即菱形的两条对角线的长为4和,所以菱形的面积为=10,故答案为:10.13.解:∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x12+x1﹣3=0,x22+x2﹣3=0.∴x12=3﹣x1,x22=3﹣x2.由一元二次方程的根与系数的关系得到:x1+x2=﹣1.∴x23﹣4x12+17=x2•x22﹣4x12+17=x2•(3﹣x2)﹣4(3﹣x1)+17=3x2﹣x22﹣12+4x1+17=3x2﹣(3﹣x2)﹣12+4x1+17=4x2+4x1+2=4(x1+x2)+2=﹣4+2=﹣2.故答案是:﹣2.14.解:∵α、β是一元二次方程x2﹣2021x+2020=0的两实根,∴α+β=2021,αβ=2020,∴(α﹣2021)(β﹣2021)=αβ﹣2021(α+β)+20212=2020﹣2021×2021+20212=2020.故答案为:2020.15.解:∵x2﹣9x+18=0,∴(x﹣3)(x﹣6)=0,∴x1=3,x2=6,∵等腰△ABC的两边长都是方程x2﹣9x+18=0的根,∴等腰△ABC的三边为3、3、3或6、6、6或6、6、3或3、3、6(不符合),∴△ABC的周长为9或18或15.故答案为:9或18或15.三.解答题(共6小题,满分45分)16.解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4=4+3,∴(x﹣2)2=7,∴x﹣2=±;∴,;(2)∵(x﹣3)2=2(3﹣x),∴(x﹣3)2﹣2(3﹣x)=0,∴(x﹣3)(x﹣3+2)=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=3.17.解:(1)因为一元二次方程x2+2x+2m=0有两个不相等的实数根,所以Δ=4﹣8m>0,解得:m<.故m的取值范围为m<.(2)根据根与系数的关系得:x1+x2=﹣2,x1•x2=2m,∵x12+x22=(x1+x2)2﹣2x1x2=4﹣4m=8,所以m=﹣1验证当m=﹣1时Δ>0.故m的值为m=﹣1.18.解:(1)△ABC是等腰三角形,理由是:∵把x=1代入方程(a+c)x2﹣2bx+(a﹣c)=0得:a+c﹣2b+a﹣c=0,∴2a=2b,∴a=b,∴△ABC的形状是等腰三角形;(2)∵△ABC是等边三角形,∴a=b=c,∵(a+c)x2﹣2bx+(a﹣c)=0,∴(a+a)x2﹣2ax+a﹣a=0,即x2﹣x=0,解得:x1=0,x2=1,即这个一元二次方程的根是x1=0,x2=1.19.解:(1)①x2﹣2x=x2﹣2x+1﹣1=(x﹣1)2﹣1,∴当x=1时,代数式x2﹣2x有最小值是﹣1;②x2﹣4x+y2+2y+5=x2﹣4x+4+y2+2y+1=(x﹣2)2+(y+1)2,∴当x=2,y=﹣1时,代数式x2﹣4x+y2+2y+5有最小值是0,故答案为:①﹣1,②0;(2)小明的结论错误,理由:∵x2+1=0时,x无解,∴(x2+1)2+6最小值不是6,∵x2≥0,∴当x2=0时,(x2+1)2+6最小值是7.20.解:(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(34+2﹣2x)米.根据题意,得:(34+2﹣2x)x=160,整理得:x2﹣18x+80=0,解得:x1=8,x2=10,当x1=8时,34+2﹣2x=36﹣2×8=20>19,不符合题意,舍去,当x2=10时,34+2﹣2x=36﹣2×10=16<19,符合题意,答:养鸡场的长为16米,宽为10米.(2)围成养鸡场的面积不能达到180m2.理由如下:设垂直于墙的一边长为x米,则平行于墙的一边长为(34+2﹣2x)米.根据题意,得:(34+2﹣2x)x=180,整理得:x2﹣18x+90=0,Δ=b2﹣4ac=(﹣18)2﹣4×1×90<0.∴方程无实数根.答:围成养鸡场的面积不能达到180m2.21.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万个/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万个/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万个.。
北师大版九年级上册数学第二章一元二次方程(解析版)
第二章一元二次方程一、单选题1.下列各方程中,一定是关于X的一元二次方程的是()A. 2x2+3=2x (5+x)B, ax2+c=0C.(a+1)炉+6升1=0D. (^2+l) x2- 3x+l=0【答案】D【解析】4.*+3=M5+、)整理得,10x-3=0,故不是一元二次方程;B.当a=0时,。
炉+。
=0不是一元二次方程:C.当a=-l时,(什1濡+6升1=0不是一元二次方程:D. aa2>0,二届+1 翔,匚d+lM -3x+l = 0 是一元二次方程:故选D.2.关于工的一元二次方程(。
-1)/+»/_] = 0的一个根是0,则。
值为()A. 1B. -1C. 1 或—1D. i【答案】B【解析】把0代入原方程,再根据原方程是一元二次方程,得到关于a的方程及不等式,解之即可.解:根据题意得:解得:a=-\.故选:B.3.下列说法不正确的是()A.方程工2=%有一根为0B.方程/一1=0的两根互为相反数C.方程(x-l)2-l = 0的两根互为相反数D.方程N—x + 2 = 0无实数根【答案】C【解析】解:A./=x,移项得:x2—x = 0,因式分解得:x(x-l)=0,解得x=0或x=l,所以有一根为0,此选项正确;B. ?-1 = 0,移项得:W=i,宜接开方得:x=l或x=-l,所以此方程的两根互为相反数,此选项正确:C. *-1)2-1 = 0,移项得:(X -1>=1,直接开方得:x-l=l或解得x=2或x=0,两根不互为相反数,此选项错误:D./ 7+2 = 0,找出a=l, b=-l, c=2,则二=l-8=-7V0,所以此方程无实数根,此选项正确.所以说法错误的选项是C.故选C.4.用配方法解一元二次方程2/—3x —1=0,配方正确的是().A. 3 工一一4)1716B.3丫X- -4J【答案】A【解析】按照配方法的步骤进行求解即可得答案.解:2X 2-3X -1 = 0移项得2/—3x = l ,,3 1二次项系数化1的厂--A = 一,3 配方得Y-二X + 2 1716故选:A本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边:(2)把二次项的 系数化为1:(3)等式两边同时加上一次项系数一半的平方.5 .关于x 的一元二次方程(m-l )x?-2mx + m+l = 0,下列说法正确的是().【答案】C【解析】根据一元二次方程判别式的性质分析,即可得到答案.(m-l )x 2 - 2mx+ m + l = O 的判别式为: X —— 13 7=-+ 3 4;A.方程无实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根无法确定△二(一2〃。
北师大版九年级数学上册单元测试卷:第二章 《一元二次方程》(含答案)
单元测试卷:第二章《一元二次方程》时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,692.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是()A.k≥5 B.k≥5且k≠1 C.k≤5且k≠1 D.k≤53.下列方程中,是关于x的一元二次方程的是()A.+x=3 B.x2+2x﹣3=0C.4x+3=x D.x2+x+1=x2﹣2x4.已知m、n是一元二次方程x2﹣3x﹣1=0的两个实数根,则=()A.3 B.﹣3 C.D.﹣5.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A.5000(1+2x)=7500B.5000×2(1+x)=7500C.5000(1+x)2=7500D.5000+5000(1+x)+5000(1+x)2=75006.若a是方程x2﹣x﹣1=0的一个根,则﹣a3+2a+2020的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根8.若x 1x 2=2,+=,则以x 1,x 2为根的一元二次方程是( )A .x 2+3x ﹣2=0B .x 2﹣3x +2=0C .x 2+3x +2=0D .x 2﹣3x ﹣2=0 9.若关于x 的一元二次方程x 2+2x +c =0有实数根,则c 的取值可能为( )A .4B .3C .2D .110.设a 、b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2018B .2018C .2020D .2022二.填空题(每题4分,共20分)11.已知一元二次方程x 2+2x +m =0的一个根是﹣1,则m 的值为 .12.若关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,则一次函数y =mx +m 的图象不经过第 象限.13.已知x 为实数,且满足(2x 2+3)2+2(2x 2+3)﹣15=0,则2x 2+3的值为 . 14.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜 场.15.已知一元二次方程x 2+2x ﹣8=0的两根为x 1、x 2,则+2x 1x 2+= .三.解答题(每题10分,共50分)16.解下列方程.(1)x 2+2x ﹣35=0(2)4x (2x ﹣1)=1﹣2x17.某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?18.某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?19.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?20.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.参考答案一.选择题1.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.2.解:①当该方程是关于x的一元一次方程时,k﹣1=0即k=1,此时x=﹣,符合题意;②当该方程是关于x的一元二次方程时,k﹣1≠0即k≠1,此时△=16﹣4(k﹣1)≥0.解得k≤5;综上所述,k的取值范围是k≤5.故选:D.3.解:A、因为方程是分式方程,不是整式方程,所以方程不是一元二次方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;D、因为方程是一元一次方程,所以方程不是一元二次方程,故本选项不符合题意;故选:B.4.解:根据题意得m+n=3,mn=﹣1,所以=.故选:B.5.解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.6.解:∵a是方程x2﹣x﹣1=0的一个根,∴a2﹣a﹣1=0,∴a 2﹣1=a ,﹣a 2+a =﹣1,∴﹣a 3+2a +2020=﹣a (a 2﹣1)+a +2020=﹣a 2+a +2020=2019.故选:C .7.解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =3,解出其中一个根是x =﹣1,∴(﹣1)2﹣3+c =0,解得:c =2,故原方程中c =4,则b 2﹣4ac =9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A .8.解:∵+=,∴x 1+x 2=x 1x 2,∵x 1x 2=2,∴x 1+x 2=3,∴以x 1,x 2为根的一元二次方程是x 2﹣3x +2=0.故选:B .9.解:根据题意得△=22﹣4c ≥0,解得c ≤1.故选:D .10.解:∵a 、b 是方程x 2+x ﹣2020=0的两个实数根,∴a +b =﹣1,ab =﹣2020,则原式=ab ﹣a ﹣b +1=ab ﹣(a +b )+1=﹣2020+1+1=﹣2018.故选:A .二.填空题(共5小题)11.解:把x =﹣1代入方程得1﹣2+m =0,解得m =1,故答案为1.12.解:∵关于x 的一元二次方程mx 2﹣2x ﹣1=0无实数根,∴m ≠0且△=(﹣2)2﹣4m (﹣1)<0,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.13.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:314.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.15.解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,∴x1+x2=﹣2,x1•x2=﹣8,∴+2x1x 2 +=2x1x 2 +=2×(﹣8)+=﹣16+=﹣,故答案为:﹣.三.解答题(共5小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,12(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)(60﹣40)×[100﹣(60﹣50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100﹣2(x﹣50)]件,依题意,得:(x﹣40)[100﹣2(x﹣50)]=1350,整理,得:x2﹣140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.18.解:(1)设BC=xm,则AB=(33﹣3x)m,依题意,得:x(33﹣3x)=90,解得:x1=6,x2=5.当x=6时,33﹣3x=15,符合题意,当x=5时,33﹣3x=18,18>18,不合题意,舍去.答:鸡场的长(AB)为15m,宽(BC)为6m.(2)不能,理由如下:设BC=ym,则AB=(33﹣3y)m,依题意,得:y(33﹣3y)=100,整理,得:3y2﹣33y+100=0.∵△=(﹣33)2﹣4×3×100=﹣111<0,∴该方程无解,即该扶贫单位不能建成一个100m2的矩形养鸡场.19.(1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.20.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.。
北师大版九年级上册数学解一元二次方程专项练习
北师大版九年级上册数学解一元二次方程专项练习百度文库-让每个人平等地提升自我本文为解一元二次方程专项练题。
以下是题目及答案:1、用配方法解下列方程:12x+25=2x+4x=10x+2211(4)x-2x-4=(3)x-6x=22答案:1) x=3/2 or x=-4/32) x=3 or x=-1/73) x=5/6 or x=-4/34) x=3 or x=-22、用配方法解下列方程:1) 6x^2-7x+1=03) 4x^2-3x=52答案:1) x=1/2 or x=4/33) x=4 or x=-13/23、用公式法解下列方程:1) 2x^2-9x+8=02) 5x^2-18=9x3) 16x^2+8x=34) 5x^2=4-2x答案:1) x=1 or x=4/22) x=3 or x=-3/53) x=1/4 or x=-1/24) x=2/5 or x=-14、运用公式法解下列方程:1=(2)x+6x+9=7(1)5x+2x-3) 5x+2=3x4) (x-2)(3x-5)=12答案:1) x=-3 or x=-22) x=-3/2 or x=1/33) x=2/3 or x=-54) x=2 or x=3/55、用分解因式法解下列方程:1) 9x^2+6x+1=03) (2x+3)^2=4(2x+3)答案:1) x=-1/3 or x=-1/33) x=-1/2 or x=-5/26、用适当方法解下列方程:1) (3-x)^2+x^2=52) 3x(x-1)=2-2x3) (3x-11)(x-2)=24) 2(x-3)^2=x^2-9答案:1) x=1 or x=-12) x=1/5 or x=-2/33) x=11/4 or x=3/24) x=-3 or x=57、解下列关于x的方程: 1) x^2+2x-2=02) 3x^2+4x-7=03) (x+3)(x-1)=5答案:1) x=-1+sqrt(3) or x=-1-sqrt(3)2) x=(-2+sqrt(19))/3 or x=(-2-sqrt(19))/33) x=2 or x=-48、解下列方程:1) (x-1)^2=43) 3x^2+5(2x+1)=0答案:1) x=3 or x=-13) x=-5/3 or x=-1/39、用适当方法解下列方程:1) x(x-14)=02) x^2+23x+3=03) x^2=x+564) x(5x+4)=5x+45) 4x-45=31x6) -3x+22x-24=227) (x+8)(x+1)=-128) (3x+2)(x+3)=x+14答案:1) x=0 or x=142) x=-23+sqrt(457) or x=-23-sqrt(457)3) x=8 or x=-74) x=1 or x=-1/55) x=-7/36) x=24/197) No real ns8) x=1/2 or x=-4/31.x1=143.x2=±(2-6i)。
北师大版九年级上册数学第二章 一元二次方程含答案
北师大版九年级上册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程x2﹣8x+2=0,则方程可变形为()A.(x﹣4)2=5B.(x+4)2=21C.(x﹣4)2=14D.(x ﹣4)2=82、已知二次函数y=ax2+bx+c自变量x与函数值y之间满足下列数量关系:x 2 4 5y0.38 0.38 6则(a+b+c)(+ )值为()A.24B.36C.6D.43、若x+1与x-1互为倒数,则实数x为()A.0B.C.D.4、下列关于一元二次方程的四种解法叙述不正确的是()A.公式法B.配方法C.加减法D.因式分解法5、小丽同学想用公式法解方程-x2+3x=1,你认为a、b、c的值应分别为()A. 、3、B. 、3、1C. 、、D.1、、6、用配方法解一元二次方程x2﹣6x﹣8=0,下列变形正确的是()A.(x﹣6)2=﹣8+36B.(x﹣6)2=8+36C.(x﹣3)2=8+9D.(x﹣3)2=﹣8+97、解一元二次方程x2-2x-5=0,结果正确的是()A. x1=-1+, x2=-1- B. x1=1+, x2=1-C. x1=7, x2= 5 D. x1= 1+, x2=1-8、用配方法解一元二次方程:,下列变形正确的是()A. B. C. D.9、用配方法解方程x2﹣2x﹣1=0时,配方后所得的方程为()A.(x﹣1)2=2B.(x﹣1)2=0C.(x+1)2=2D.(x+1)2=010、用配方法法解方程,则方程可变形为()A. B. C. D.11、若代数式x2-6x+5的值是12,则x的值为()A.7或-1B.1或-5C.-1或-5D.不能确定12、用配方法解一元二次方程x2+6x﹣3=0,原方程可变形为()A.(x+3)2=9B.(x+3)2=12C.(x+3)2=15D.(x+3)2=3913、一元二次方程配方后化为()A. B. C. D.14、把方程x2﹣3x=10左边配成一个完全平方式,方程两边应同加上()A.9x 2B.C.9D.15、用配方法解一元二次方程,配方得到的方程是()A. B. C. D.二、填空题(共10题,共计30分)16、方程的解为________.17、古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为________.18、若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=________.19、某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是________.20、在实数范围内分解因式:2x2﹣x﹣2=________.21、若,其中,则________.22、若x1, x2是方程的两个实数根,则代数式的值等于________.23、把方程3x2=5x+2化为一元二次方程的一般形式是________.24、对于任意实数、,定义:◆= .若方程的两根记为、,则m2+mn+n2=________.25、对于实数a,b,我们定义一种运算“※”为:a※b=a2﹣ab,例如1※3=12﹣1×3.若x※4=0,则x= ________.三、解答题(共5题,共计25分)26、解方程①x2﹣3x+2=0②4x2﹣12x+7=0.27、将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?28、如图,一幅长、宽的图案,其中有一横一竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为,若图案中两条彩条所占面积是图案面积的,求横、竖彩条的宽度.29、方程17+15x=245,, 2(x+1.5x)=24都只含有一个未知数,未知数的指数都是1,它们是一元一次方程,方程x2+3=4,x2+2x+1=0,x+y=5是一元一次方程吗?若不是,它们各是几元几次方程?30、根据下列问题列方程并将其化成一元二次方程的一般形式:(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?(2)参加一次聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、C5、A6、C7、B8、D9、A11、A12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。
北师大版九年级上册 第2章《一元二次方程》 单元测试题
第2章《一元二次方程》单元测试题一.选择题1.下列方程是一元二次方程的是()A.x2=2x+3 B.x2+1=2xy C.x2+=3 D.2x+y=12.一元二次方程x2+2x=0的根的判别式的值是()A.4 B.2 C.0 D.﹣43.一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.若方程x2+3x+c=0有实数根,则c的取值范围是()A.c≤B.c≤C.c≥D.c≥5.二位同学在研究函数y=a(x+3)(x﹣)(a为实数,且a≠0)时,甲发现当0<a <1时,函数图象的顶点在第四象限;乙发现方程a(x+3)(x﹣)+5=0必有两个不相等的实数根.则()A.甲、乙的结论都错误B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确D.甲的结论错误,乙的结论正确6.如图所示,在一幅矩形风景画的四周镶一条相同宽度的边框,制成一幅长为80cm,宽为50cm的挂图,设边框的宽为xcm,如果风景画的面积是2800cm2,下列方程符合题意的是()A.(50+x)(80+x)=2800 B.(50+2x)(80+2 x)=2800C.(50﹣x)(80﹣x)=2800 D.(50﹣2x)(80﹣2x)=28007.某商店今年10月份的销售额是2万元,12月份的销售额是2.88万元,从10月份到12月份,该商店销售额平均每月的增长率为()A.44% B.22% C.20% D.10%8.一元二次方程x2﹣kx+2=0的一个根为2,则k的值是()A.1 B.﹣1 C.3 D.﹣39.关于x的一元二次方程(m﹣2)x2﹣2x﹣1=0有两个不相等的实数根,则实数m的取值范围是()A.m≥1且m≠2 B.m>1 C.m>1且m≠2 D.m≠210.设一元二次方程x2﹣2x﹣3=0的两个实数根为x1,x2,则x1+x1x2+x2等于()A.1 B.﹣1 C.0 D.3二.填空题11.已知关于x的一元二次方程2x2﹣kx﹣24=0的一个根为x=﹣3,则k的值是.12.已知实数x满足(x2﹣x)2﹣2(x2﹣x)﹣3=0,则代数式x2﹣x+2020的值为.13.已知关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,则a=.14.若关于x的一元二次方程ax2﹣x+1=0有实数根,则a的最大整数值是.15.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.三.解答题16.用适当方法解下列方程.(1)3x2﹣1=4x(2)2x(2x+5)=(x﹣1)(2x+5)17.阅读探究:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x 和y ,由题意得方程组,消去y 化简得:2x 2﹣7x +6=0,∵b 2﹣4ac =49﹣48>0,∴x 1= ,x 2= ,∴满足要求的矩形B 存在.(2)如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B .(3)如果矩形A 的边长为m 和n ,请你研究满足什么条件时,矩形B 存在?18.已知关于x 的方程x 2﹣(k +1)x ++1=0有两个实数根 (1)求k 的取值范围;(2)若方程的两实数根分别为x 1,x 2,且x 12+x 22=6x 1x 2﹣15,求k 的值.19.今年奉节脐橙喜获丰收,某村委会将全村农户的脐橙统一装箱出售.经核算,每箱成本为40元,统一零售价定为每箱50元,可以根据买家订货量的多少给出不同的折扣价销售.(1)问最多打几折销售,才能保证每箱脐橙的利润率不低于10%?(2)该村最开始几天每天可卖5000箱,因脐橙的保鲜周期短,需要尽快打开销路,减少积压,村委会决定在零售价基础上每箱降价3m %,这样每天可多销售m %;为了保护农户的收益与种植积极性,政府用“精准扶贫基金”给该村按每箱脐橙m 元给予补贴进行奖励,结果该村每天脐橙销售的利润为49000元,求m 的值.20.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?参考答案一.选择题1.解:A、x2=2x+3是一元二次方程,符合题意;B、x2+1=2xy是二元二次方程,不符合题意;C、x2+=3不是整式方程,不符合题意;D、2x+y=1是二元一次方程,不符合题意,故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.解:x2+2x=0,△=b2﹣4ac=22﹣4×1×0=4,故选:A.【点评】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.3.解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4.解:∵方程x2+3x+c=0有实数根,∴△=b2﹣4ac=32﹣4×1×c≥0,解得:c≤,故选:A.【点评】本题考查了根的判别式,能根据题意得出△≥0是解此题的关键.5.解:由函数y=a(x+3)(x﹣)可知,函数与x轴的两个交点的横坐标分别是﹣3和,∴函数顶点的横坐标为,∵0<a<1,∴>﹣,∴函数的顶点不一定在第四象限,故甲的结论错误;∵a(x+3)(x﹣)+5=0可以化为ax2+(3a﹣2)x﹣1=0,△=(3a﹣2)2+4a=9a2﹣8a+4=9(a﹣)2+>0,∴a(x+3)(x﹣)+5=0必有两个不相等的实数根,故乙的结论正确;故选:D.【点评】本题考查根的判别式;熟练掌握一元二次函数对称性,一元二次方程判别式与根的关系是解题的关键.6.解:依题意,设边框的宽为xcm,(80﹣2x)(50﹣2x)=2800,故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.解:设该商店销售额平均每月的增长率为x,依题意,得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.8.解:把x=2代入x2﹣kx+2=0得4﹣2k+2=0,解得k=3.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.解:∵关于x 的一元二次方程(m ﹣2)x 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=22﹣4(m ﹣2)(﹣1)=4m ﹣4>0且m ﹣2≠0,解得:m >1,即m 的取值范围是m >1且m ≠2;故选:C .【点评】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.解:∵一元二次方程x 2﹣2x ﹣3=0的两个实数根为x 1,x 2,∴x 1+x 2=2,x 1•x 2=﹣3,则x 1+x 1x 2+x 2=2﹣3=﹣1.故选:B .【点评】考查了根与系数的关系,解答此题要熟知一元二次方程根与系数的关系:x 1+x 2=﹣,x 1•x 2=.二.填空题(共5小题)11.解:把x =﹣3代入方程2x 2﹣kx ﹣24=0,可得2×9+3k ﹣24=0,即k =2, 故答案为:2.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.12.解:令x 2﹣x =t ,∴t =x 2﹣x =(x)2﹣≥,∴t 2﹣2t ﹣3=0,解得:t =3或t =﹣1(舍去),∴t =3,即x 2﹣x =3,∴原式=3+2020=2023,故答案为:2023.【点评】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.13.解:∵关于x的一元二次方程(a﹣3)x2﹣2x+a2﹣9=0的常数项是0,∴a2﹣9=0,即a=3或a=﹣3,当a=3时,方程为﹣2x=0,不符合题意,则a=﹣3.故答案为:﹣3.【点评】此题考查了一元二次方程的一般形式,以及一元二次方程的定义,熟练掌握各自的性质是解本题的关键.14.解:∵关于x的一元二次方程ax2﹣x+1=0有实数根,∴△=(﹣1)2﹣4×a×1≥0,且a≠0,则a≤且a≠0,则a的最大整数值为﹣1,故答案为:﹣1.【点评】本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.15.解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题(共5小题)16.解:(1)3x2﹣4x﹣1=0,△=(﹣4)2﹣4×3×(﹣1)=28,x==,所以x 1=,x 2=;(2)2x (2x +5)﹣(x ﹣l )(2x +5)=0,(2x ﹣x +1)(2x +5)=0(x +1)(2x +5)=0x +1=0或2x +5=0,所以x 1=﹣1,x 2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.17.解:(1)利用求根公式可知:x 1==,x 2==2. 故答案为:;2.(2)设所求矩形的两边分别是x 和y , 根据题意得:, 消去y 化简得:2x 2﹣3x +2=0.∵b 2﹣4ac =(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B .(3)设所求矩形的两边分别是x 和y , 根据题意得:,消去y 化简得:2x 2﹣(m +n )x +mn =0.∵矩形B 存在,∴b 2﹣4ac =[﹣(m +n )]2﹣4×2mn ≥0,∴(m ﹣n )2≥4mn .故当m 、n 满足(m ﹣n )2≥4mn 时,矩形B 存在.【点评】本题考查了一元二次方程的应用以及根的判别式,解题的关键是:(1)套用求根公式求出方程的解;(2)牢记“当△<0时,方程无实数根”;(3)牢记“当△≥0时,方程有实数根”.18.解:(1)∵关于x 的方程x 2﹣(k +1)x +k 2+1=0有两个实数根,∴△=[﹣(k +1)]2﹣4(k 2+1)=2k ﹣3≥0,解得k ≥;(2)∵方程的两实数根分别为x 1,x 2,∴x 1+x 2=k +1,x 1•x 2=k 2+1,∵x 12+x 22=6x 1x 2﹣15,∴(x 1+x 2)2﹣8x 1x 2+15=0,∴k 2﹣2k ﹣8=0,解得:k 1=4,k 2=﹣2,又∵k ≥,∴k =4.【点评】本题主要考查根与系数的关系及根的判别式,掌握两根之和等于﹣、两根之积等于是解题的关键.19.解:(1)设打x 折销售,才能保证每箱脐橙的利润率不低于10%, 由题意得:≥10%,x ≥8.8,答:最多打8.8折销售,才能保证每箱脐橙的利润率不低于10%;(2)由题意得:5000(1+m %)[50(1﹣3m %)+m ﹣40]=49000, 5(1+)(50﹣m +m ﹣40)=49,m 2﹣5m ﹣6=0,m 1=6,m 2=﹣1(舍).【点评】本题考查了一元二次方程及一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系和不等关系,列出方程与不等式,再求解.20.解:(1)设经过x 秒,使△PBQ 的面积等于8cm 2,依题意有(6﹣x )•2x =8,解得x 1=2,x 2=4,经检验,x 1,x 2均符合题意.故经过2秒或4秒,△PBQ 的面积等于8cm 2;(2)设经过y 秒,线段PQ 能否将△ABC 分成面积相等的两部分,依题意有 △ABC 的面积=×6×8=24,(6﹣y )•2y =12,y 2﹣6y +12=0,∵△=b 2﹣4ac =36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ 不能否将△ABC 分成面积相等的两部分;(3)①点P 在线段AB 上,点Q 在线段CB 上(0<x ≤4),设经过m 秒,依题意有(6﹣m )(8﹣2m )=1,m 2﹣10m +23=0,解得m 1=5+,m 2=5﹣,经检验,m 1=5+不符合题意,舍去,∴m =5﹣; ②点P 在线段AB 上,点Q 在射线CB 上(4<x ≤6),设经过n 秒,依题意有(6﹣n )(2n ﹣8)=1,n 2﹣10n +25=0,解得n 1=n 2=5,经检验,n =5符合题意.③点P 在射线AB 上,点Q 在射线CB 上(x >6),设经过k 秒,依题意有(k ﹣6)(2k ﹣8)=1,k 2﹣10k +23=0,解得k 1=5+,k 2=5﹣,经检验,k 1=5﹣不符合题意,舍去,∴k =5+; 综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ 的面积为1cm 2.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.注意分类思想的运用.。
北师大版九年级上册数学《一元二次方程》测试卷(含答案)
九年级上册数学《一元二次方程》测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题).1.已知2是关于x 的方程23202x a -=的一个根,则21a -的值是( )A.3B.4C.5D.6【答案解析】C2.关于x 的方程22(1)260a x ax ++-=是一元二次方程,则a 的取值范围是( )A.1a ≠±B.0a ≠C.a 为任何实数D.不存在【答案解析】C;21a +恒大于03.小明要在一幅长90厘米、宽40厘米的水彩画得外围镶上一条宽度相等的金色彩条,要求使水彩画的面积是整幅画面积的54%,设金色彩条的宽为x 厘米,根据题意列方程为( )A.(90)(40)54%9040x x ++⨯=⨯B.(902)(402)54%9040x x ++⨯=⨯C.(90)(402)54%9040x x ++⨯=⨯D.(902)(40)54%9040x x ++⨯=⨯【答案解析】B4.若方程20ax bx c ++=(0)a ≠的一个根是另一个根的3倍,则a 、b 、c 的关系是()A.2316b ac =B.2316b ac =-C.2163b ac =D.2163b ac =-【答案解析】A;不妨设方程20ax bx c ++=的两个根为1x 、2x ,且123x x =∴1224x x x +=,则24bx a=- ∴24b x a =-,将24bx a=-代入方程20ax bx c ++=整理,即可得A 【解析】韦达定理5.已知a ,b ,c 为正数,若二次方程20ax bx c ++=有两个实数根,那么方程22220a x b x c ++=的根的情况是( )A .有两个不相等的正实数根B .有两个异号的实数根C .有两个不相等的负实数根D .不一定有实数根【答案解析】C;22220a x b x c ++=的422224(2)(2)b a c b ac b ac ∆=-=+-,∵二次方程20ax bx c ++=有两个实数根, ∴240b ac ->,∴220b ac ->, ∴422224(2)(2)0b a c b ac b ac ∆=-=+->∴方程有两个不相等的实数根,而两根之和为负,两根之积为正.故有两个负根.故选C .6.对于方程2()ax b c +=下列叙述正确的是( )A.不论c 为何值,方程均有实数根B.方程根是c bx a -=C.当0c ≥时,方程可化为:ax b +=ax b +=当0c =时,b x a=【答案解析】C7.如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A .1k <B .0k ≠C .10k k <≠且D .1k >【答案解析】C ;由题可得363600k k ∆=->⎧⎨≠⎩,所以 10k k <≠且8.不解方程,判别一元二次方程2261x x -=的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法确定【答案解析】A ;由方程可得3680∆=+>,所以方程有两个不相等的实数根.9.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( )A.1B.1-C.1或1-D.12【答案解析】B10.已知a ,b ,c 是不全为0的3个实数,那么关于x 的一元二次方程2222()()0x a b c x a b c ++++++= 的根的情况( ).A .有2个负根B .有2个正根C .有2个异号的实根D .无实根【答案解析】D ;方程 2222()()0x a b c x a b c ++++++=的判别式为: 2222()4()a b c a b c ∆=++-++222333222a b c ab bc ca =---+++222222222(2)(2)(2)a ab b b bc c c bc a a b c =-+-+-+-+-+---- 222222[()()()]a b b c c a a b c =--+-+-+++∵a ,b ,c 不全为0,∴0∆<.∴原方程无实数根.故选D .二、填空题(本大题共5小题).11.以3-和2为根,二次项系数为1的一元二次方程为____________【答案解析】(3)(2)0x x +-=,(最好让学生整理出一般形式260x x +-=)12.已知关于x 的方程22(2)1a x ax x --=-是一元二次方程,则a 的取值范围是 .【答案解析】3a ≠;整理方程得:2(3)10a x ax --+=,当3a ≠时,原方程是一元二次方程.13.方程2610kx x -+=有两个不相等的实数根,则k 的取值范围是【答案解析】9k <且0k ≠14.关于x 的方程2210x bx +-=的一个根为2-,则另一个根是 ,______b =【答案解析】设另一个根是2x ,根据题意得,22(2)2(2)1x b x +-=-⎧⎨⋅-=-⎩,解得212x =,34b =15.已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【答案解析】-1;∵()()2212102x a b x b b -+--+=有两个相等的实数根. ∴0∆=,即()()222210a b b b ++-+= ∴()()22210a b b ++-=,∴0a b +=,10b -= ∴1b =,1a =-,因此321a b +=-.三、解答题(本大题共8小题).16.把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项⑴2(21)(32)2x x x -+=+⑵2)(3)x x x =+【答案解析】⑴化简后为2540x x +-=,因此二次项系数为5;一次项系数为1;常数项为4-⑵化简后为22610x x ++=,二次项系数为2;一次项系数为6;常数项为117.不解方程224)0x x +--,求两根之和与两根之积【答案解析】令此方程的两个实数根为1x 、2x由韦达定理得12x x +=,12x x ⋅==【解析】韦达定理成立的前提条件是0∆≥18.不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【答案解析】⑴22340x x +-=∵2342(4)410∆=-⨯⨯-=> ∴方程有两个不相等的实数根. ⑵∵0a ≠∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零∵22()40b a b ∆=--⋅⋅=∵无论b 取任何数,2b 均为非负数 ∴0∆≥,故方程有两个实数根19.已知关于x 的方程210x mx m -+-=有两个不相等的实根1x 、2x ,且1211m x x +=,求m 的值【答案解析】由韦达定理得12121x x m x x m +=⎧⎨⋅=-⎩,∵1211m x x += ∴ 1212x x m x x +=⋅,即1mm m =-,解得0m =或2m =∵0∆>,∴0m = 【解析】易忽略0∆>的条件20.解关于x 的方程:2222(1)(1)(1)a x x a x a x -+--=-【答案解析】原方程可整理为2222()(21)()0a a x a x a a ---++= ①⑴当20a a -=时,则1a =或0a =;若1a =,则方程①可整理为20x -+=,解得2x = 若0a =,则方程①可整理为0x = ⑵当20a a -≠时,0a ≠且1a ≠时[(1)][(1)]0a x a ax a ---+=,解得1a x a =-或1a x a+= 【解析】化为一般式:()()()2222210a a x a x a a ---++=,然后讨论二次项系数是否为021.解无理方程(换元法)22330x x +-=【答案解析】a =,则22239x x a ++=,∴22239x x a +=-则原方程变形为29530a a --+=,整理得2560a a --=解得11a =-,26a =0a =≥ ∴6a =6=,整理得223270x x +-=,解得13x =,292x =- 经检验13x =,292x =-均为原方程的解 ∴原方程的解为13x =,292x =-22.求作一个一元二次方程,使它的两根分别是25230x x +-=各根的负倒数【答案解析】设方程25230x x +-=的两根为1x 、2x ,则1225x x +=-,1235x x ⋅=-设所求方程为20y py q ++=,其两根为1y 、2y 则111y x =-,221y x =- ∴12121212112()()3x x p y y x x x x +=-+=---==⋅; 1212121115()()3q y y x x x x =⋅=-⋅-==- ∴所求的方程为225033y y +-=,即23250y y +-=【解析】求作新方程时,均可以设所求方程为20y py q ++=的简单形式,再根据12()p y y =+,12q y y =⋅23.已知方程240x x m ++=的两个根的平方和是10,求m 的值。
北师大版九年级数学上册第二章一元二次方程单元测试题(含答案)
北师大版九年级数学上册第二章一元二次方程单元测试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.1x2+1x=2 C.x2+2x=y2-1D.3(x+1)2=2(x+1)2.一元二次方程x2-2x-1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.一元二次方程x2-8x-1=0配方后为()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=174.把方程x(x+2)=5(x-2)化成一般式,则a,b,c的值分别是()A.1,-3,10 B.1,7,-10 C.1,-5,12 D.1,3,25.某城市2019年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,预计到2021年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1-x)2=3006.若关于x的方程2x2-ax+2b=0的两根和为4,积为-3,则a,b分别为(D)A.a=-8,b=-6 B.a=4,b=-3 C.a=3,b=8 D.a=8,b=-37.当x取何值时,代数式x2-6x-3的值最小()A.0 B.-3 C.3 D.-98.老师出示了小黑板上的题目(如图)后,小敏回答:“方程有一根为4”,小聪回答:“方程有一根为-1”.则你认为()A .只有小敏回答正确B .只有小聪回答正确C .小敏、小聪回答都正确D .小敏、小聪回答都不正确 9.已知2是关于x 的方程x 2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或1010.有两个一元二次方程M :ax 2+bx +c =0;N :cx 2+bx +a =0,其中a ·c ≠0,a ≠c .下列四个结论中,错误的是( )A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =1二、填空题(每小题3分,共24分)11.一元二次方程x 2-6x =0的解是 .12.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为 .13.下面是某同学在一次测试中解答的填空题:①若x 2=a 2,则 ;②方程2x (x -2)=x -2的解为 ;③已知x 1,x 2是方程2x 2+3x -4=0的两根,则 x 1+x 2=32,x 1x 2=2 .其中错误的答案序号是 .14.已知x 1=3是关于x 的一元二次方程x 2-4x +c =0的一个根,则方程的另一个根x 2是__1__.15.已知x =-1是关于x 的方程2x 2+ax -a 2=0的一个根,则a = .16.方程3(x -5)2=2(x -5)的根是 x 1=5,x 2= .17.设x 1、x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为 .18.关于x 的一元二次方程(k -1)x 2-1-kx +14=0有两个实数根,则k 的取值范围是 .三、解答题(共66分)19.(12分)用适当的方法解下列方程:(1)4x 2-1=0;(2)3x 2+x -5=0;(3)(x +1)(x -2)=x +1;(4)2x 2-42=4x .20.(7分)已知关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,求k 的值.21.(6分)已知两个连续偶数之积为120,求这两个连续偶数.22.(7分)某工厂一种产品2019年的产量是100万件,计划2021年产量达到121万件.假设2019年到2021年这种产品产量的年增长率相同.求2019年到2021年这种产品产量的年增长率.23.(6分)如图,某广场一角的矩形花草区,其长为40 m ,宽为26 m ,其间有三条等宽的路,一条直路,两条曲路,路以外的地方全部种上花草,要使花草的面积为864 m 2,求路的宽度为多少m?24.(8分)关于x的一元二次方程(x-2)(x-3)=|m|.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求另一根及m的值.25.(8分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售价定为52元时可售出180个,定价每增加1元,销售量减少10个.若商店准备获利2 000元,则应进货多少个?每个销售价是多少元?26.(12分)如图,长方形ABCD(长方形的对边相等,每个角都是90°),AB=6 cm,AD =2 cm,动点P、Q分别从点A、C同时出发,点P以2厘米/秒的速度向终点B移动,点Q 以1厘米/秒的速度向D移动,当有一点到达终点时,另一点也停止运动.设运动的时间为t,问:(1)当t=1秒时,四边形BCQP面积是多少?(2)当t为何值时,点P和点Q距离是3 cm?(3)当t=________以点P、Q、D为顶点的三角形是等腰三角形.(直接写出答案)。
北师大版九年级上册第二单元一元二次方程计算题训练及测试题
一元二次方程计算题训练一:分别用下列方法解方程 (1)9)12(2=-x (直接开平方法)(2)4x 2–8x +1=0(配方法)(3)3x 2+5(2x+1)=0(公式法) (4)()()752652xx x +=+(因式分解法)二:用配方法解方程:(1)2213x x += (2)x 2- 2x - 2 = 0.(3) 2310x x ++=三:用适当的方法解方程(1) 220x x -= (2) 2620x x --= (3) 242x x +=(4)26160x x --= (5)26120x x --= (6)2x 2=92(7)2(x -2)2=50, (8)051242=+-x x (9)10)4)(5(=+-x x(10) 3x 2+4x =0 (11)x (x +2)=5(x -2) (12)4x 2-0.3(13)(3)3x x x +=+ (14)31x 2-x -4=0 (15)(x -1 )(3x+1 ) = 0(16)(5x -1)2=3(5x -1) (17) (x +1)2=(2x -1)2(18)(x +3)(x -1)=5(19)(y -1)(y -2)=(2-y ); (20)(x 2-1 )2- 5(x 2-1 ) + 4 = 0(21)x 2+2x =2-4x -x 2。
(22)(x –1)(2x +1)=2 (23)x x =--27422(24)(t -3)2+t=3 (25)2x (2x +1)-(x +1)(2x -11)=0。
(一元二次方程)一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分): 1.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0232057x +-= 2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+2 3.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A 、1 B 、1- C 、1或1- D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 9.已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是1- (D )方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______. 15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____. 17.已知x 2+mx+7=0的一个根,则m=________,另一根为_______. 18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = . 三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+=22.230x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
北师大版九年级数学上册《一元二次方程综合测试》
北师大版九年级数学上册《一元二次方程综合测试》一、选择题1.下列方程中,是一元二次方程的是()A. x2+2x=x2−1B. x2+1x=1C. x2+y2=1D. ax2+bx+c=0(其中a≠0)2.一元二次方程x2+4x−5=0的解是()A. x1=1,x2=−5B. x1=−1,x2=5C. x1=x2=−2D. x1=2+√11,x2=2−√113.对于一元二次方程ax2+bx+c=0(其中a≠0),若b2−4ac<0,则方程()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 有一根为0二、填空题1.方程x2−6x+9=0的两个根为___。
2.若关于x的一元二次方程x2+2x+k−1=0有两个相等的实数根,则k=___。
3.若x1,x2是方程2x2−5x−3=0的两个根,则x1+x2=_,x1∙x2=。
三、解答题1.解方程:3x2−5x−2=0(要求使用公式法)。
解:对于方程3x2−5x−2=0,其中a=3,b=−5,c=−2。
2.计算判别式Δ=b2−4ac=(−5)2−4×3×(−2)=25+24=49。
因为Δ>0,所以方程有两个不相等的实数根。
使用公式法,得x=−b±√Δ2a=5±√496=5±76。
因此,x1=2,x2=−13。
3.已知关于x的一元二次方程x2−4x+k−1=0有两个不相等的实数根。
(1)求k的取值范围;(2)若该方程的两个实数根的积为2,求k的值。
解:(1)对于方程x2−4x+k−1=0,其中a=1,b=−4,c=k−1。
要求有两个不相等的实数根,则Δ=b2−4ac=(−4)2−4×1×(k−1)= 16−4k+4=20−4k>0。
解得k<5。
(2)设方程的两个实数根为x1,x2,由根与系数的关系知x1∙x2=ca=k−1。
已知x1∙x2=2,所以k−1=2,解得k=3。
北师大版九年级上册数学第二章 一元二次方程 含答案
北师大版九年级上册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程x2﹣2x﹣1=0时,配方后所得的方程为()A.(x﹣1)2=2B.(x﹣1)2=0C.(x+1)2=2D.(x+1)2=02、用配方法解方程时,配方后所得的方程为()A. B. C. D.3、如图,形如的方程的图解是:画,使,,,再以B为圆心,长为半径画弧,分别交边及延长线于点D、E,则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长4、用配方法解方程x2+2x﹣1=0时,配方结果正确是()A.(x+2)2=2B.(x+1)2=2C.(x+2)2=3D.(x+1)2=35、用配方法解方程,配方后的方程是()A. B. C. D.6、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.7、若x2+bx+c=0的两根中较小的一个根是m(m≠0),则=()A.mB.﹣mC.2mD.﹣2m8、用配方法解下列方程时,配方有错误的是()A. 化为B. 化为C. 化为D.化为9、方程3x2-5x-2=0的两个根是()A.1,B.2,C.D.-2,10、用配方法解方程x2﹣10x﹣1=0时,变形正确的是()A.(x﹣5)2=24B.(x﹣5)2=26C.(x+5)2=24D.(x+5)2=2611、若用配方法解一元二次方程,则原方程可变形为()A. B. C. D.12、用配方法解一元二次方程x2﹣4x﹣3=0下列变形正确的是()A.(x﹣2)2=0B.(x﹣2)2=7C.(x﹣4)2=9D.(x﹣2)2=113、对于方程x2﹣2|x|+2=m,如果方程实根的个数恰为3个,则m值等于()A.1B.2C.D.2.514、用配方法解下列方程时,配方有错误的是()A.2m 2+m﹣1=0化为B.x 2﹣6x+4=0化为(x﹣3)2=5 C.2t 2﹣3t﹣2=0化为 D.3y 2﹣4y+1=0化为15、将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为()A. B. C. D.二、填空题(共10题,共计30分)16、一元二次方程的两个根为,且则k=________。
(北师大版)北京市九年级数学上册第二单元《一元二次方程》测试题(答案解析)
一、选择题1.要组织一次足球联赛,赛制为双循环形式(每两队之间都进行两场比赛),共要比赛90场.设共有x 个队参加比赛,则x 满足的关系式为( )A .12x (x +1)=90B .12x (x ﹣1)=90 C .x (x +1)=90 D .x (x ﹣1)=902.欧几里得的《原本》记载,方程x 2+ax =b 2的图解法是:画Rt △ABC ,使∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =BC .则该方程的一个正根是( )A .AC 的长B .CD 的长C .AD 的长 D .BC 的长 3.关于x 的一元二次方程()21210k x x +-+=有实数根,则k 满足( )A .0k ≥B .0k ≤且1k ≠-C .0k <且1k ≠-D .0k ≤ 4.下列方程中,是一元二次方程的是( ) A .12x +=B .21x y +=C .243x x -=D .35-=xy 5.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2230x x -+=C .22x x -=D .23420x x -+= 6.若关于x 的一元二次方程2(2)20a x x --+=有实数根,则整数a 的最大值为( ) A .−2B .−1C .1D .2 7.方程220x x -=的根是( ) A .120x x == B .122x x == C .120,2x x == D .120,2x x ==- 8.已知关于x 的一元二次方程2420ax x +-=有实数根,则a 的取值范围是( ) A .2a >-且0a ≠ B .2a ≥-且0a ≠ C .2a ≥- D .0a ≠ 9.某企业通过改革,生产效率得到了很大的提高,该企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3390万元.若设月平均增长率是x ,那么可列出的方程是( )A .1000(1+x )2=3390B .1000+1000(1+x )+1000(1+x )2=3390C .1000(1+2x )=3390D .1000+1000(1+x )+1000(1+2x )=339010.2020年12月29日,贵阳轨道交通2号线实现试运行,从白云区到观山湖区轨道公司共设计了132种往返车票,则这段线路有多少个站点?设这段线路有x 个站点,根据题意,下面列出的方程正确的是( )A .()1132x x +=B .()1132x x -=C .1(1)1322x ⨯+=D .1(1)1322x x -= 11.若关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根,则m 的值是( )A .-1或2B .1C .2D .1或212.若关于x 的一元二次方程kx 2-3x +1=0有实数根,则k 的取值范围为( ) A .k ≥94 B .k ≤94且k ≠0 C .k <94且k ≠0 D .k ≤94二、填空题13.关于x 的方程2210mx x --=有两个不相等的实数根,那么m 的取值范围是________.14.关于x 的方程21x a =-有实数根,则a 的取值范围为_______________________. 15.用配方法解关于x 的一元二次方程2430x x --=,配方后的方程可以是__________.16.已知m ,n 是一元二次方程230x x --=的两个实数根,则代数式2219m n +-的值为________.17.若x 1,x 2是方程x 2-3x +1=0的两个不相等的实数根,则x 1+x 2+x 1x 2=______.18.方程21(1)04k x -+=有两个实数根,则k 的取值范围是________. 19.一元二次方程2310x x -++=的根的判别式的值是______.20.定义新运算“⊕”如下:当a b ≥时,a b ab b ⊕=+;当a b <时,a b ab a ⊕=-.若(21)(2)0x x -⊕+=,则x =______________.三、解答题21.(1)解方程:2450x x --=(2)已知点(2,1)P x y +与点(7,)Q x y --关于原点对称,求x ,y 的值.22.已知关于x 的一元二次方程为210mx nx -+=.(1)当2n m =+时,不解方程,判断方程根的情况;(2)在(1)的条件下,若2m =,求解这个方程.23.已知一元二次方程2230x x --=的正实数根也是一元二次方程()2230x k x --+=的根,求k 的值.24.用适当的方法解下列方程:(1)22210x x +-= (2)225(3)9x x +=-25.已知关于x 的一元二次方程22230x x m ++-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.26.在ABC 中,90,10cm B AB BC ∠===,点P 、Q 分别从A 、C 两点同时出发,均以1cm/s 的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,设点P 运动时间为(s)t ,PCQ △的面积为()2cm S .当P 运动到几秒时625ABC S S =?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛90场,可列出方程.【详解】解:设有x 个队参赛,则x (x ﹣1)=90.故选:D .【点睛】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.2.C解析:C【分析】在Rt ABC 中,由勾股定理可得222AC BC AB +=,结合AB AD BD =+,,2a ACb BD BC ===,即可得出22AD aAD b +=,进而可得出AD 的长是方程22x ax b +=的一个正根.【详解】在Rt ABC 中,由勾股定理可得222AC BC AB +=,2a AC b BD BC === 22222222a a a b AD AD aAD ⎛⎫⎛⎫⎛⎫∴+=+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴22AD aAD b +=22AD aAD b +=与方程22x ax b +=相同,且AD 的长度是正数∴AD 的长是方程22x ax b +=的一个正根.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,利用勾股定理及各边的长得出22AD aAD b +=是解题关键.3.B解析:B【分析】根据根的判别式计算即可.【详解】解:∵关于x 的一元二次方程()21210k x x +-+=有实数根, ∴()244410b ac k ∆=-=-+≥,10k +≠,∴4440k --≥,1k ≠-,解得:0k ≤,1k ≠-;故答案选B .【点睛】本题主要考查了一元二次方程根的判别式,准确计算是解题的关键.4.C解析:C【分析】只含有一个未知数,并且未知数的最高次数是2的方程是一元二次方程,根据定义解答即可.【详解】A 、是一元一次方程,不符合题意;B 、是二元一次方程,不符合题意;C 、是一元二次方程,符合题意;D 、是二元二次方程,不符合题意;故选:C .【点睛】此题考查一元二次方程,熟记定义是解题的关键.5.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x 2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x -+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22x x -=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题意;D.23420x x -+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题意.故选C .【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.C解析:C【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出a 的范围,确定出所求即可.【详解】解:∵关于x 的一元二次方程2(2)20a x x --+=有实数根,∴△=1−8(a−2)≥0,且a−2≠0,解得:a≤178且a≠2, 则整数a 的最大值为1.故选C .【点睛】此题考查了一元二次方程根的判别式,以及一元二次方程的定义,掌握一元二次方程根与判别式的关系是解本题的关键.7.C解析:C【分析】本题可用因式分解法,提取x 后,变成两个式子相乘为0的形式,让每个式子都等于0,即可求出x .【详解】解:∵x 2-2x=0∴x (x-2)=0,可得x=0或x-2=0,解得:x=0或x=2.故选:C .【点睛】本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用8.B解析:B【分析】根据方程有实数根得到.【详解】由题意得:0∆≥,即244(2)0a -⨯⨯-≥,且0a ≠,解得2a ≥-且0a ≠,故选:B .【点睛】此题考查根据一元二次方程根的情况求参数,掌握一元二次方程根的判别式与根的个数的三种情况是解题的关键. 9.B解析:B【分析】月平均增长的百分率是x ,则该超市二月份的营业额为1000(1+x )万元,三月份的营业额为1000(1+x )2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长的百分率是x ,则该超市二月份的营业额为1000(1+x )万元,三月份的营业额为1000(1+x )2万元,依题意,得1000+1000(1+x )+1000(1+x )2=3990.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.B解析:B【分析】利用列方程解应用题,仔细阅读试题,找出等量关系为:站点数×每站票数(比站点数少1)=总票数,列方程即可.【详解】设这段线路有x 个站点,每个站点售其它各站一张往返车票,共有(x-1)张票,根据题意,列方程得()1132x x -=.故选择:B .【点睛】本题考查列方程解应用题,掌握列方程解应用题的方法,抓住等量关系站点数×每站票数(比站点数少1)=总票数是解决问题的关键.11.C解析:C【分析】关于x 的一元二次方程有两个相等的实数根,说明判别式=0,且要注意二次项系数不为0,解出m 的值即可.【详解】关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根, 则()()22141010m m m ⎧⎡⎤∆=----=⎪⎣⎦⎨-≠⎪⎩,解得:11m =(舍去),22m =∴m=2,故选:C .【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法及根的判别式是解决本题的关键.12.B解析:B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程kx 2-3x+1=0有实数根,∴()203410k k ≠⎧⎪⎨--⨯⨯≥⎪⎩=, ∴k≤94且k≠0. 故选:B .【点睛】 本题考查了一元二次方程的定义以及根的判别式,利用二次项系数非零及根的判别式△≥0,找出关于k 的一元一次不等式组是解题的关键.二、填空题13.且【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4+4m >0且m≠0求出m 的取值范围即可【详解】解:∵方程mx2−2x -1=0有两个不相等的实数根∴△>0且m≠0∴4+4m >0且m≠0∴解析:1m >-且0m ≠【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4+4m >0且m≠0,求出m 的取值范围即可.【详解】解:∵方程mx 2−2x-1=0有两个不相等的实数根,∴△>0且m≠0,∴4+4m >0且m≠0,∴m>-1,且m≠0,故答案为:m>-1且m≠0.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式△=b 2−4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.14.【分析】根据平方的意义得出关于a 的一元一次不等式解之即可得出结论【详解】解:∵关于x 的一元二次方程有实数根∴a-1≥0解得a≥1故答案为a≥1【点睛】本题考查了一元二次方程有根的条件直接开平方法解一解析:1a ≥【分析】根据平方的意义得出关于a 的一元一次不等式,解之即可得出结论.【详解】解:∵关于x 的一元二次方程21x a =-有实数根,∴a-1≥0,解得a≥1,故答案为a≥1.【点睛】本题考查了一元二次方程有根的条件,直接开平方法解一元二次方程,列出关于a 的一元一次不等式是解题的关键.15.【分析】移项后两边配上一次项系数一半的平方即可得【详解】解:故答案为:【点睛】本题考查一元二次方程的解法解题的关键是熟练运用配方法本题属于基础题型解析:()227x -=.【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:2430x x --= 243x x -=24+43+4x x -=()227x -=故答案为:()227x -=.【点睛】本题考查一元二次方程的解法,解题的关键是熟练运用配方法,本题属于基础题型. 16.【分析】根据m 与n 是方程的两个实数根得到根与系数关系式原式变形后代入计算即可求出值【详解】解:∵mn 是一元二次方程x2﹣x ﹣3=0的两个实数根∴m+n =1mn =-3∵(m+n)2=m2+n2+2mn解析:12-【分析】根据m 与n 是方程的两个实数根,得到根与系数关系式,原式变形后代入计算即可求出值.【详解】解:∵m ,n 是一元二次方程x 2﹣x ﹣3=0的两个实数根,∴m+n =1,mn =-3,∵(m+n)2=m 2+n 2+2mnm 2+n 2=(m+n)2-2mn∴m 2+n 2=12-2×(-3)=7∴m 2+n 2-19=7-19=-12故答案为:-12.【点睛】本题考查了一元二次方程的解,根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.4【分析】利用一元二次方程根与系数的关系求解:用韦达定理算出和的值带入求解即可;【详解】∵方程为∴a=1b=-3c=1∴=3=1∴=3+1=4故答案为:4【点睛】本题考查了一元二次方程根与系数的关系解析:4【分析】 利用一元二次方程根与系数的关系求解:12b x x a +=- ,12c x x a= ,用韦达定理算出12x x + 和12x x 的值带入求解即可;【详解】∵ 方程为2310x x -+= ,∴ a=1,b=-3,c=1,∴ 12x x +=3,12x x =1,∴ 1212x x x x ++ =3+1=4,故答案为:4.【点睛】本题考查了一元二次方程根与系数的关系,正确理解韦达定理是解题的关键; 18.【分析】由方程有两个实数根可得方程为一元二次方程可得:且解不等式组可得答案【详解】解:由已知方程可知:∵方程有两个实数根∴解得:∵∴故答案为:【点睛】本题考查的是二次根式有意义的条件一元二次方程的定 解析:1k <【分析】由方程有两个实数根,可得方程为一元二次方程,可得:0≥且110k k ≠⎧⎨-≥⎩,解不等式组可得答案.【详解】解:由已知方程可知:11,4a k b c =-==, ∵方程有两个实数根,∴24220b ac k =-=-+≥,解得:1k ≤,∵110k k ≠⎧⎨-≥⎩∴1k <,故答案为:1k <.【点睛】本题考查的是二次根式有意义的条件,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识列不等式组求参数的范围是解题的关键.19.13【分析】根据△=b2-4ac 计算可得答案【详解】解:∵a=-1b=3c=1∴△=32-4×(-1)×1=13故答案为:13【点睛】本题主要考查根的判别式熟记判别式(△=b2-4ac )是解题关键解析:13【分析】根据△=b 2-4ac 计算可得答案.【详解】解:∵a=-1,b=3,c=1,∴△=32-4×(-1)×1=13,故答案为:13.【点睛】本题主要考查根的判别式,熟记判别式(△=b 2-4ac )是解题关键.20.或【分析】分类讨论当和当两种情况时根据所给的新运算法则列出二元一次方程求解即可注意所求的解要符合题意【详解】分类讨论①当时即此时解得:由于所以两个根都舍去②当时即此时解得:由于所以两个根都符合题意故 解析:12或1-. 【分析】分类讨论当212x x -≥+和当212x x -<+两种情况时,根据所给的新运算法则列出二元一次方程求解即可.注意所求的解要符合题意.【详解】分类讨论①当212x x -≥+时,即3x ≥.此时2212(21)(2)(2)240x x x x x x x -⊕+=-+++=+=,解得:1202x x ==-,.由于3x ≥,所以两个根都舍去.②当212x x -<+时,即3x <.此时2212(21)(2)(21)210x x x x x x x -⊕+=-+--=+-=, 解得:34112x x ==-,. 由于3x <,所以两个根都符合题意. 故答案为:12或1-. 【点睛】本题考查新定义下的实数运算和解一元二次方程.利用分类讨论的思想是解答本题的关键.三、解答题21.(1)15=x ,21x =-;(2)23x y =⎧⎨=⎩【分析】(1)利用十字相乘法进行进行因式分解,继而求解;(2)直接利用关于原点对称点的性质得出方程组进而得出答案;【详解】(1)解:2450x x --=,(5)(1)0x x -+=,解得:15=x ,21x =-;(2)∵点P(2x+y ,1)与点Q(-7,x-y)关于原点对称,∴27010x y x y +-=⎧⎨-+=⎩, 解得23x y =⎧⎨=⎩, 【点睛】本题考查了解一元二次方程和解一元二次方程组,正确掌握运算方法是解题的关键;22.(1)有两个不相等的实数根;(2)1x =2x =【分析】(1)根据关于x 的一元二次方程210mx nx -+=的根的判别式△=b 2-4ac 的符号来判定该方程的根的情况;(2)由已知条件列出关于m 的方程,通过解该方程即可求得m 的值.【详解】解:(1)把2n m =+代入方程,得2(2)10mx m x -++=.∵根的判别式为[]222(2)444440m m m m m m -+-=++-=+>, ∴方程有两个不相等的实数根.(2)当2m =时,方程为22410x x -+=.∴224248m +=+=.x ==.∴122x +=,222x =. 【点睛】本题考查了根与系数的关系、根的判别式.一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23.6k =【分析】解一元二次方程2230x x --=,把正实根代入一元二次方程()2230x k x --+=,解方程即可.【详解】解:2230x x --=,(1)(3)0x x +-=,10x +=或30x -=,解得,12-1=3x x =,,把2=3x 代入()2230x k x --+=得, ()93230k --+=,解得,6k =.【点睛】本题考查了一元二次方程的解和解法,解题关键是准确的解一元二次方程,把正实根代入得到关于k 的一元一次方程.24.(1)121122x x -+-==;(2)1293,2x x =-=- 【分析】(1)根据公式法计算即可;(2)根据因式分解法计算即可;【详解】解:(1)22210x x +-=, 2242(1)12∆=-⨯⨯-=,x =,12x x ∴==; (2)25(3)(3)(3)x x x +=+-,25(3)(3)(3)0x x x +-+-=,(3)[5(3)(3)]0x x x ++--=,即(3)(418)0x x ++=,1293,2x x ∴=-=-. 【点睛】本题主要考查了一元二次方程的求解,准确计算是解题的关键.25.(1)2m <;(2)11x =-21x =-【分析】(1)根据两个不相等的实数根列不等式即可;(2)根据m 为正整数,确定m 的值,解方程即可.【详解】解:(1)∵原方程有两个不相等的实数根,∴2241(23)1680m m ∆=-⨯⨯-=->,∴2m <.(2)∵m 为正整数,又2m <,∴1m =.当1m =时,原方程为2210x x +-=,解得212x -+==-±.因此,原方程的根为11x =-21x =-.【点睛】本题考查了一元二次方程根的判别式和一元二次方程的解法,解题关键是熟记一元二次方程根的判别式与根的关系,列出不等式;熟练解一元二次方程.26.4秒、6秒或12秒【分析】先根据三角形面积公式可得S △ABC ,根据S =625S △ABC ,可求△PCQ 的面积,再分两种情况:P 在线段AB 上;P 在线段AB 的延长线上;进行讨论即可求得P 运动的时间.【详解】 解:∵S △ABC =12AB•BC=50cm 2,625S △PCQ =12cm 2, 设当点P 运动x 秒时,S =625S △ABC , 当P 在线段AB 上,此时CQ=x ,PB=10-x ,S △PCQ =12x (10-x )=12, 化简得 x 2-10 x+24=0,解得x=6或4,P 在线段AB 的延长线上,此时CQ=x ,PB=x-10,S △PCQ =12x (x-10)=12, 化简得 x 2-10 x+24=0,x 2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P 运动4秒、6秒或12秒时,S =625S △ABC . 【点睛】此题主要考查了三角形面积公式和一元二次方程的应用,根据已知分两种情况进行讨论是解题关键.。
北师大版数学九年级上册第2章 一元二次方程 专项练习题
一元二次方程专项练习题一.选择题1.下列方程中属于一元二次方程的是()A.=0 B.x2+3x=x2﹣2C.ax2+bx+c=0 D.2(x+1)2=x+12.将一元二次方程﹣3x2﹣2=﹣4x化成一般形式ax2+bx+c=0(a>0)后,一次项和常数项分别是()A.﹣4,2 B.4x,﹣2 C.﹣4x,2 D.3x2,2 3.用配方法解方程x2﹣8x+2=0,配方后的方程是()A.(x+4)2=2 B.(x﹣4)2=2 C.(x+4)2=14 D.(x﹣4)2=14 4.方程x(x+5)=x+5的根为()A.x1=5,x2=﹣5 B.x1=1,x2=﹣5C.x=0 D.x1=x2=﹣55.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×306.若关于x的一元二次方程x2+6x+c=0有实数根,则c应满足的条件是()A.c>9 B.c≥9 C.c<9 D.c≤97.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则x1+x2﹣x1•x2的值是()A.1 B.3 C.﹣1 D.﹣38.矩形ABCD的一条对角线长为5,边AB的长是方程x2﹣6x+8=0的一个根,则矩形ABCD的面积为()A.12 B.20 C.2D.12或2 9.表格对应值:x 1 2 3 4ax2+bx+c﹣0.5 5 12.5 22判断关于x的方程ax2+bx+c=2的一个解x的范围是()A.0<x<1 B.1<x<2 C.2<x<3 D.3<x<4 10.某厂家2019年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1﹣x)2=461 B.180(1+x)2=461C.368(1﹣x)2=442 D.368(1+x)2=442二.填空题11.关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为.12.经过两年的连续治理,某城市的大气环境有了明显改善,其每年每平方公里的降尘量从50t下降到40.5t,设平均每年下降的百分率是x,根据题意可得方程.13.把一元二次方程6x2+5=x(5x﹣3)化为一般形式为.14.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1x2的值=.15.用配方法解一元二次方程x2+5x=1时,应该在等式两边都加上.三.解答题16.解方程.(1)2x2+5x﹣1=0.(2)(x+2)2﹣10(x+2)﹣24=0.17.用配方法解下列方程(1)x2﹣2x﹣2=0(2)a2﹣5a﹣2=0(3)x2﹣x=018.2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?19.定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0.写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣2(m﹣1)x+m2﹣2m=0求证:不论m 为何值,该方程总有两个不相等的实数根,并求出该方程的衍生点M的坐标;(3)是否存在b、c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c =0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有,请求出b,c的值;若没有,说明理由.。
北师大版九年级上册数学第二章 一元二次方程 含答案
北师大版九年级上册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、解一元二次方程x2﹣8x﹣5=0,用配方法可变形为()A.(x+4)2=11B.(x﹣4)2=11C.(x+4)2=21D.(x﹣4)2=212、用配方法解方程x2﹣2x﹣5=0方程可变形为()A.(x+1)2=4B.(x﹣1)2=4C.(x+1)2=6D.(x﹣1)2=63、用配方法解方程x2-4x+1=0,下列变形正确的是()A.(x-2)2=4B.(x-4)2=4C.(x-2)2=3D.(x-4)2=34、用配方法解方程x2﹣8x+7=0,配方后正确的是()A.(x﹣4)2=7B.(x﹣4)2=11C.(x﹣4)2=9D.(x+4)2=75、解方程,可用配方法将其变形为()A. B. C. D.6、一元二次方程x2+6x﹣6=0配方后化为()A.(x﹣3)2=3B.(x﹣3)2=15C.(x+3)2=15D.(x+3)2=37、一元二次方程配方后可化为()A. B. C. D.8、用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+ )2=B.(x+ )2=C.(x﹣)2=D.(x﹣)2=9、方程x2=x的根是( )A.x1=+1,x2=-1 B.x1=0,x2=1 C.x=1 D.x=010、方程x2﹣2x﹣4=0的一较小根为x1,下面对x1的估计正确的是()A.﹣3<x1<﹣2 B.﹣2<x1<- C.﹣<x1<-1 D.﹣1<x1<011、用配方法解方程,配方正确的是()A. B. C. D.12、给出以下方程的解题过程,其中正确的有()①解方程(x﹣2)2=16,两边同时开方得x﹣2=±4,移项得x1=6,x2=﹣2;②解方程x(x﹣)=(x﹣),两边同时除以(x﹣)得x=1,所以原方程的根为x1=x2=1;③解方程(x﹣2)(x﹣1)=5,由题得x﹣2=1,x﹣1=5,解得x1=3,x2=6;④方程(x﹣m)2=n的解是x1=m+ ,x2=m﹣.A.0个B.2个C.3个D.4个13、用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是().A.(x-4)2=14B.(x-4)2=18C.(x+4)2=14D.(x+4)2=1814、一元二次方程x2﹣8x+48=0可以表示成(x﹣a)2=b的形式,其中a,b 为整数,则a+b=()A.40B.﹣36C.﹣32D.﹣2815、用配方法解方程:x2-4x+2=0,下列配方正确的是()A.(x-2)2=2B.(x+2)2=2C.(x-2)2=-2D.(x-2)2=6二、填空题(共10题,共计30分)16、若两数和为-7,积为12,则这两个数是________.17、已知关于的一元二次方程有两个不相等的实数根,若则的值是________.18、关于x的一元二次方程(a+3)x2+x+a2-9=0的一个根是0,则a的值为________.19、关于x的一元二次方程的两个实数根分别是,且,则m的值是________.20、一个等腰三角形的底边长是6,腰长是一元二次方程的一根,则此三角形的周长是________.21、方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为________.22、方程的根为________.23、若,是一元二次方程的两个实数根,则________.24、若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是________25、已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为________.三、解答题(共5题,共计25分)26、已知实数a满足,求的值.27、已知方程x2﹣2x﹣15=0的两个根分别是a和b,求代数式(a﹣b)2+4b(a ﹣b)+4b2的值.28、12月6日,我县举行了商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,共有多少家公司参加了这次会议?29、已知三角形的两边长分别是1cm和2cm,第三边的长是方程2x2﹣5x+3=0的两根,求这个三角形的周长.30、现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、C5、B6、C7、B8、A9、B10、C11、D12、A13、A14、D15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
(常考题)北师大版初中数学九年级数学上册第二单元《一元二次方程》测试卷(含答案解析)
一、选择题1.已知a ,b ,c 是1,3,4中的任意一个数(a ,b ,c 互不相等),当方程20ax bx c -+=的解均为整数时,以1,3和此方程的所有解为边长能构成的多边形一定是( )A .轴对称图形B .中心对称图形C .轴对称图形或中心对称图形D .非轴对称图形或中心对称图形 2.如图,在长20米,宽12米的矩形ABCD 空地中,修建4条宽度相等且都与矩形的各边垂直的小路,4条路围成的中间部分恰好是个正方形,且边长是路宽的2倍,小路的总面积是40平方米,若设小路的宽是x 米,根据题意列方程,正确的是( )A .32x +2x 2=40B .x (32+4x )=40C .64x +4x 2=40D .64x ﹣4x 2=40 3.一元二次方程x 2+4x=3配方后化为( )A .(x+2)2=3B .(x+2)2=7C .(x-2)2=7D .(x+2)2=-1 4.下列一元二次方程中无实数根的是( )A .22x x =B .(1)(3)0x x ++=C .2(2)5x -=D .210x x -+= 5.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .66.将一个正方形剪成①、②、③、④四块(如图1),恰能拼成如图2的矩形,若1a =,则这个正方形的面积为( )A B C .9 D 7.下列一元二次方程中,有两个不相等实数根的是( )A .2690x x ++=B .2230x x -+=C .22x x -=D .23420x x -+=8.如果方程220x x --=的两个根为α,β,那么22αβαβ+-的值为( ) A .7B .6C .2-D .0 9.已知点(3,44)P m m -为平面直角坐标系中一点,若O 为原点,则线段PO 的最小值为( )A .2B .2.4C .2.5D .310.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥C .1mD .1m 11.若关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根,则m 的值是( )A .-1或2B .1C .2D .1或212.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=60二、填空题13.某电脑公司计划两年内将产品成本由原来2500元下降到1600元,则每年平均下降的百分率是________.14.一个等腰三角形的腰和底边长分别是方程28120x x -+=的两根,则该等腰三角形的周长是________.15.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.16.某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到150吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为_________________. 17.已知方程2560x kx ++=的一个根是2,则它的另一个根是________.18.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______.19.已知方程240x x k -+=的一个根是11x =-,则方程的另一根2x =____. 20.对于实数a b 、,定义新运算“⊗”:2a b a ab ⊗=-,如2424428⊗=-⨯=.若44x ⊗=-,则实数x 的值是_______.三、解答题21.某商店经销一种成本为每千克20元的水产品,据市场分析,若按每千克30元销售,一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,解答以下问题. (1)当销售单价定为每千克35元时,销售量是 千克、月销售利润是 元;(2)商店想在月销售成本不超过6000元的情况下,使得月销售利润达到8000元,销售单价应为多少?22.解方程:(1)22150x x --=;(2)()()421321x x x +=+23.网络购物已成为新的消费方式,催生了快递行业的高速发展.某快递公司2020年9月份与11月份投递的快递件数分别为10万件和14.4万件,假定每月投递的快递件数的增长率相同,求该快递公司投递的快递件数的月平均增长率.24.如果关于x 的一元二次方程20(a 0)++=≠ax bx c 有两个实数根、且其中一个根比另一个根大 1,那么称这样的方程为“邻根方程”.例如、一元二次方程20x x +=的两个根是120,1x x ==-,则方程20x x +=是“邻根方程”.通过计算,判断下列方程是否是“邻根方程”:(1)260x x --=;(2)2210x -+=.25.某玩具经销商2017年全年的销售总额为20万元,总成本为12万元;由于改善经营模式,与2017年相比2019年总成本下降了20%,销售总额增加了10.5%.(1)求该经销商年利润的平均增长率;(2)如果不受客观因素的影响,并按此增长速度,那么2020年该经销商获得的利润是多少万元(结果精确到0.01万元).26.某旅游景区今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,求该旅游景区9,10两个月游客人数的平均增长率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据一元二次方程有整数解,可得△≥0,然后对b ,a ,c 分别取值试算,从而得出b=4,a=1,c=3或b=4,a=3,c=1时方程有解;再分类计算出方程的根,两者均为整数时符合要求,则此时围成的多边形及其性质也可作出判断,从而问题得解.【详解】解:∵方程ax 2-bx+c=0的解均为整数∴△=b 2-4ac≥0∵已知a ,b ,c 是1,3,4中的任意一个数(a ,b ,c 互不相等),当b=1时,△=1-4×4×3<0,不符合题意;当b=3时,△=9-4×1×3<0,不符合题意;当b=4时,△=16-4×1×3=4>0,符合题意.∴b=4,a=1,c=3或b=4,a=3,c=1;当b=4,a=1,c=3时,方程ax 2-bx+c=0的解x = ∴x 1=3,x 2=1,两个根均为整数,符合题意;当b=4,a=3,c=1时,方程ax 2-bx+c=0的解423x ±=⨯ ∴x 1=1,x 2=13,不符合题意,故舍去; ∴当b=4,a=1,c=3时,方程ax 2-bx+c=0的解为x 1=3,x 2=1,∵以1,3和此方程的所有解为边长能构成的多边形有两种情况:①1,1作对边,3.3作对边,此时多边形为平行四边形,为中心对称图形;②1,1作邻边,3.3作邻边,1与3也相邻此时多边形为筝形,为轴对称图形.∴以1,3和此方程的所有解为边长能构成的多边形一定是中心对称图形或轴对称图形. 故选:C .【点睛】本题考查了一元二次方程的解与直线型的综合,明确一元二次方程的根与判别式的关系及平行四边形和筝形的性质是解题的关键.2.B解析:B【分析】设小路的宽度为x 米,则小正方形的边长为2x 米,根据小路的横向总长度(20+2x )米和纵向总长度(12+2x )米,根据矩形的面积公式可得到方程.【详解】解:设道路宽为x 米,则中间正方形的边长为2x 米,依题意,得:x(20+2x+12+2x)=40,即x(32+4x)=40,故选:B .【点睛】考查了一元二次方程的应用,解题的关键是找到该小路的总的长度,利用矩形的面积公式列出方程并解答.3.B解析:B【分析】在方程的两边同时加上一次项系数一半的平方,化成完全平方的形式即可得出答案.【详解】解:x 2+4x=3,x 2+4x+4=7,(x+2)2=7,故选:B .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键;配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.4.D解析:D【分析】由因式分解法、偶次方的非负性和根的判别式依次判断即可;【详解】解:A.由22x x =可得(2)0x x -=,由因式分解法可知有两个实数根,故不符合题意;B.(1)(3)0x x ++=,由因式分解法可知有两个实数根,故不符合题意;C. 2(2)5x -=,50>,有两个实数根,故不符合题意;D. 224(1)41130b ac ∆=-=--⨯⨯=-<,没有实数根,符合题意.故选:D .【点睛】本题主要考查了根的判别式Δ=b 2−4ac 以及配方法和因式分解法解一元二次方程,牢记Δ<0时,方程有两个相等的实根是解题的关键.5.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.【详解】解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大∴12AB·12BC=6,即AB•BC=24.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为10,∴AB+BC=10.则BC=10-AB,代入AB•BC=24,得AB2-10AB+24=0,解得AB=4或6,因为AB>BC,所以AB=6.故选:D.【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.D解析:D【分析】从图中可以看出,正方形的边长=a+b,所以面积=(a+b)2,矩形的长和宽分别是a+2b,b,面积=b(a+2b),两图形面积相等,列出方程得=(a+b)2=b(a+2b),其中a=1,求b的值,即可求得正方形的面积.【详解】解:根据图形和题意可得:(a+b)2=b(a+2b),其中a=1,则方程是(1+b)2=b(1+2b),解得:b=2,∴正方形的面积为(1+2)2.故选:D.【点睛】此题主要考查了图形的剪拼,本题的关键是从两图形中,找到两图形的边长的值,然后利用面积相等列出等式求方程,解得b的值,从而求出边长,求面积.7.C解析:C【分析】根据一元二次方程根的判别式判断即可.【详解】解:A.x2+6x+9=0,则△=62-4×9=36-36=0,即该方程有两个相等实数根,故本选项不合题意;B.2230x x-+=,则△=(-2)2-4×3=4-12=-8<0,即该方程无实数根,故本选项不合题意;C.22x x-=,则△=(-1)2-4×(-2)=1+8=9>0,即该方程有两个不相等实数根,故本选项合题D.23420x x -+=,则△=(-4)2-4×3×2=16-24=-8<0,即该方程无实数根,故本选项不合题意.故选C .【点睛】本题考查了一元二次方程根的判别式,一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.A解析:A【分析】将α代入方程220x x --=,即可得22αα=+,即可推出22()22αβαβαβαβ+-=+-+,再由韦达定理即可求出结果.【详解】将α代入方程220x x --=得:220αα--=,即22αα=+∴2222()22αβαβαβαβαβαβ+-=++-=+-+.∵α、β是方程的两个根, ∴111αβ-+=-=,221αβ-==-. ∴()2212(2)27αβαβ+--=-⨯-+=. 故选:A .【点睛】本题考查一元二次方程根与系数的关系以及代数式求值.熟知韦达定理公式是解答本题的关键.9.B解析:B【分析】利用勾股定理求出两点的距离=,当16=25m 时,OP 最小=2.4即可. 【详解】(3,44)P m m -,=,= ∴16=25m ,OP 最小12=2.45=, 故选择:B .【点睛】 本题考查勾股定理求两点距离问题,掌握勾股定理两点距离公式,会用配方法求最值是解题关键.10.D解析:D【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可.【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根,∴△=(-2)2-4m<0,解得m>1.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.11.C解析:C【分析】关于x 的一元二次方程有两个相等的实数根,说明判别式=0,且要注意二次项系数不为0,解出m 的值即可.【详解】关于x 的一元二次方程()()212110m x m x ---+=有两个相等的实数根, 则()()22141010m m m ⎧⎡⎤∆=----=⎪⎣⎦⎨-≠⎪⎩, 解得:11m =(舍去),22m =∴m=2,故选:C .【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法及根的判别式是解决本题的关键.12.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.二、填空题13.20【分析】新成本=原成本×(1-平均每月降低的百分率)2把相关数值代入即可求解【详解】∵原开支为2500元设平均每月降低的百分率为x ∴第一个月的开支为2500×(1-x)元第二个月的开支为2500解析:20%【分析】新成本=原成本×(1-平均每月降低的百分率)2,把相关数值代入即可求解.【详解】∵原开支为2500元,设平均每月降低的百分率为x ,∴第一个月的开支为2500× (1-x)元,第二个月的开支为2500×(1-x)×(1-x) =2500×(1-x)2元, 可列方程为:2500(1-x)2= 1600,解得:x=0.2=20%或x =-1.8(舍去)故答案为:20%.【点睛】本题考查求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1土x) 2=b.14.14【分析】运用因式分解法解一元二次方程求出两根因为三角形是等腰三角形分情况讨论:腰为2时和腰为6时再利用三角形三边关系验证是否符合题意即可求出周长;【详解】解:(x-2)(x-6)=0x1=2x2解析:14【分析】运用因式分解法解一元二次方程,求出两根,因为三角形是等腰三角形,分情况讨论:腰为2时和腰为6时,再利用三角形三边关系验证是否符合题意,即可求出周长;【详解】解:28120x x -+=,(x-2)(x-6)=0,x 1=2,x 2=6,当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去; 当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,则周长为:6+6+2=14,故答案为:14.【点睛】本题考查因式分解解一元二次方程和三角形的三边关系,求解后验三角形的三边关系是解题的关键.15.m >0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n 的任意性构造不等式求解即可【详解】∵关于x 的一元二次方程m ﹣nx ﹣m ﹣3=0对于任意实数n 都有实数根∴△≥0且m ≠0∴≥0∴≥0解析:m >0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n 的任意性,构造不等式求解即可.【详解】∵关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根, ∴△≥0,且m≠0,∴2()4(3)n m m -++≥0,∴22412n m m ++≥0,∵对于任意实数n 都有实数根,∴2412m m +≥0,∴030m m ≥⎧⎨+≥⎩或030m m ≤⎧⎨+≤⎩, ∴m≥0或m≤-3,且m≠0,∴m >0或m≤-3,故答案为:m >0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.16.【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2设平均每次增长的百分率为x 根据从100吨增加到150吨即可得出方程【详解】解:设蔬菜产量的年平均增长率为x 则可列方程为100(1+x )2=解析:()21001150x +=【分析】利用两次增长后的产量=增长前的产量×(1+增长率)2,设平均每次增长的百分率为x ,根据“从100吨增加到150吨”,即可得出方程.【详解】解:设蔬菜产量的年平均增长率为x ,则可列方程为100(1+x )2=150,故答案为:()21001150x +=.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于熟知两次增长后的产量=增长前的产量×(1+增长率)2,根据条件列出方程. 17.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的 解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =, ∴另一个根为35. 故答案为:35. 【点睛】 本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a c x x x x a-+=,=. 18.-3【分析】由于可知m 是方程的解可得将其带入求值即可;【详解】∵∴∵m 是的一个根∴∴故答案为:-3【点睛】本题考查了方程的解的定义此类型的题的特点是:利用方程解的定义找到相等的关系再把所求的代数式化 解析:-3【分析】由于2210x x +-=可知221x x +=,m 是方程的解,可得221m m += ,将其带入求值即可;【详解】∵2210x x +-=,∴ 221x x +=,∵ m 是2210x x +-=的一个根,∴ 221m m +=,∴ 224143m m +-=-=- ,故答案为:-3.【点睛】本题考查了方程的解的定义,此类型的题的特点是:利用方程解的定义找到相等的关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值;19.5【分析】利用根与系数的关系解答【详解】∵方程的根是x1x2∴∵∴5故答案为:5【点睛】此题考查一元二次方程根与系数的关系熟记根与系数的两个关系式并应用是解题的关键解析:5【分析】利用根与系数的关系解答.【详解】∵方程240x x k -+=的根是x 1、x 2,∴124x x +=,∵11x =-,∴2x =5,故答案为:5.【点睛】此题考查一元二次方程根与系数的关系,熟记根与系数的两个关系式并应用是解题的关键.20.【分析】根据新运算法则以及一元二次方程的解法解答即可【详解】解:由题意可知:∴即解得:x =2故答案为:2【点睛】本题以新运算的形式考查了一元二次方程的解法正确理解新运算法则熟练掌握解一元二次方程的方 解析:2【分析】根据新运算法则以及一元二次方程的解法解答即可.【详解】解:由题意可知:2a b a ab ⊗=-,∴2444x x x ⊗=-=-,即244x x -=-,解得:x =2.故答案为:2.【点睛】本题以新运算的形式考查了一元二次方程的解法,正确理解新运算法则、熟练掌握解一元二次方程的方法是解题关键.三、解答题21.(1)450,6750;(2)销售单价应为60元/千克.【分析】(1)根据题意直接计算得出即可;(2)销售成本不超过6000元,即进货不超过6000÷20=300kg .根据利润表达式求出当利润是8000时的售价,从而计算销售量,与进货量比较得结论.【详解】解:(1)销售量:500-5×10=450(kg );销售利润:450×(35-20)=450×15=6750(元);故答案为:450,6750.(2)由于水产品不超过6000÷20=300(kg ),定价为x 元,则(x-20)[500-10(x-30)]=8000解得:x 1=40,x 2=60当x 1=40时,进货500-10(40-30)=400kg >300kg ,舍去,当x 2=60时,进货500-10(60-30)=200kg <300kg ,符合题意.答:销售单价应为60元.【点睛】本题考查了一元二次方程的应用,此题的创意在第2问,同时考虑进出两个方面的问题,比较后得结论.22.(1)13x =-,25x =;(2)112x =-,234x = 【分析】(1)运用因式分解法分解成两个一元一次方程,求出方程的解即可;(2)移项后运用因式分解法分解成两个一元一次方程,求出方程的解即可.【详解】解:(1)22150x x --=, ()()530-+=x x ,30x +=,50x -=,∴13x =-,25x =.(2)()()421321x x x +=+()()4213210x x x +-+=,()()21430x x +-=,210x +=或430x -=, 所以112x =-,234x =. 【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键. 23.该快递公司投递的快递件数的月平均增长率为20%.【分析】设该快递公司投递的快递件数的月平均增长率为x ,根据该快递公司今年9月份及11月份投递的快递件数,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;【详解】解:设该快递公司投递的快递件数的月平均增长率为x ,依题意,得:10(1+x )2=14.4,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:该快递公司投递的快递件数的月平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 24.(1)不是;(2)是.【分析】(1)求出方程解,然后根据“邻根方程”的定义进行判定;(2)求出方程解,然后根据“邻根方程”的定义进行判定.【详解】解:(1)260x x --=,解得13x =,22x =-,∵125x x -=,不符合邻根方程的定义∴260x x --=不是邻根方程.(2)2210x -+=,解得112x =,212x = ∴121x x -=∴符合邻根方程的定义 ∴2210x -+=是邻根方程.【点睛】本题主要考查了一元二次方程解法.理解题意,掌握“邻根方程”的定义是关键. 25.(1)该经销商年利润的平均增长率为25%;(2)2020年该经销商获得的利润是15.63万元【分析】(1)设该经销商利润的平均增长率为x ,根据增长率问题的数量关系建立方程求出其解; (2)根据增长率问题的数量关系得到2020年该经销商获得的利润即可.【详解】解:()1该经销商年利润的平均增长率为x .依题意,得:()()()()22012120110.5%12120%x -+=+--,即:()28112.5x +=, 1 1.25x ∴+=±,则120.25, 2.25x x -==(不符合,舍去),答:该经销商年利润的平均增长率为25%.()22019年获得的利润12.5万元.()12.5125%15.62515.63∴⨯+=≈(万元).答:2020年该经销商获得的利润是15.63万元.【点睛】本题考查了增长率问题的数量关系在实际问题中的运用,一元二次方程的解法的运用,解答时根据据增长率问题的数量关系建立方程是关键.26.该旅游景区9,10两个月游客人数的平均增长率是56%【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设9月、10月游客人数的平均增长率是x ,根据今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,据此即可列方程解出即可.【详解】解:设该旅游景区9,10两个月游客人数的平均增长率是x ,根据题意,得()()()21144%169%x +=+⨯+,解得10.5656%x ==,2 2.56x =-(不合实际,舍去).答:该旅游景区9,10两个月游客人数的平均增长率是56%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a ()21a ±.增长用“+”,下降用“−”.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.
已知关于x 的方程222(2)40x m x m +-++=两根的平方和比两根的积大21,求m 的值
已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ). 如果x 2-10x+y 2-16y+89=0,求x y
的值. 解方程x 4-5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x 2=y ,那么x 4=y 2,于是原方程可变为y 2-5y+4=0 ①,解得y 1=1,y 2=4.
当y=1时,x 2=1,∴x=±1; 当y=4时,x 2=4,∴x=±2;
∴原方程有四个根:x 1=1,x 2=-1,x 3=2,x 4=-2.
(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x 2+x )2-4(x 2+x )-12=0.
设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2-12
a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0.(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.
解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<14
.∴当a<0时,方程有两个不相等的实数 (2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a
-=0 ① 解得a=12,经检验,a=12是方程①的根 ∴当a=12
时,方程的两个实数根x 1与x 2互为相反数. 上述解答过程是否有错误?如果有,请指出错误之处,并解答.
D 点拨:由已知x 2-10x+y 2-16y+89=0,得(x -5)2+(y -8)2=0, ∴x=5,y=8,∴x y =58
. (1)换元 降次(2)设x 2+x=y ,原方程可化为y 2-4y -12=0, 解得y 1=6,y 2=-2.由x 2+x=6,得x 1=-3,x 2=2.由x 2+x=-2,得方程x 2+x+2=0, b 2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x 1=-3,x 2=2.
∵12x 2-12a=0有两个相等的实数根,∴判别式=2-4×12(c -12
a )=0,整理得a+
b -2c=0 ①,又∵3cx+2b=2a 的根为x=0,∴a=b ②.把②代入①得a=
c ,∴a=b=c ,∴△ABC 为等边三角形.
(2)a ,b 是方程x 2+mx -3m=0的两个根, 所以m 2-4×(-3m )=0,即m 2+12m=0,∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.
上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程。
∴a 2≠0且满足(2a -1)2-4a 2>0,
∴a<
14且a ≠0(2)a 不可能等于12,∵(1)中求得方程有两个不相等实数根,同时a 的取值范围是a<14
且a ≠0,而a=12>14(不符合题意)所以不存在这样的a 值,使方程的两个实数根互为相反数.2003 3、若α、β是方程x2+2x-2005=0的两个实数根,则α2+3α+β的值为( )。