必修一 补课练习
新人教版高一英语必修1全册配套完整练习集
新人教版高一英语必修1全册配套完整练习集Ⅰ.单词拼写1.The sea is calm (平静的) and clear today, so we should go for a long walk on the beach.2.It was beyond my power (力量;能力) to help him when he was in great trouble.3.More and more people are concerning (关心) themselves with environmental problems.4.She was still upset (不安的) about the argument she'd had with Harry.5.I once studied some Japanese at college, but I'm afraid that I've entirely (完全地) forgotten it now.6.I said hello to her, but she ignored (不理睬) me completely.7.Many people go out for a walk at dusk (黄昏).8.All children like to play outdoors (在户外) instead of staying indoors when the weather is fine.Ⅱ.多项选择1.— What's the matter with Rod?— I think he's still________ that we forgot his birthday.A.excited B.looseC.upset D.glad解析:考查形容词辨析。
从“我们忘了他的生日”可知,Rod的感受应该是沮丧的,故upset“心烦意乱的”符合句意。
苏教版语文必修一课后巩固提升练习专题1第1课
专题一向青春举杯第1课沁园春·长沙课后巩固再提升一、语基扩展1.下列词语中,加点字的读音和字形完全正确的一组是( )A.淡褪.(tuì)熨.帖(yùn)慰藉.(jí)玉砌.雕栏(qì)B.炫.耀(xuàn)踌.躇(chóu)狙.击(jū)烟熏火燎.(liǎo)C.坍圮.(pǐ)跌宕.(dàng)隽.永(jùn)天理召.彰(zhāo)D.苍.桑(cāng)寒喧.(xuān)吝啬.(sè)生活拮.据(jié)2.下列诗句与“残雪压枝犹有橘”对仗工整的一项是( )A.鸿雁悲鸣红蓼风B.蛛网添丝屋角晴C.田园荒尽尚征苗D.冻雷惊笋欲抽芽3.在下面一段话空缺处依次填入词语,最恰当的一组是( )肖邦的所有作品只能由一样乐器来演奏:钢琴。
肖邦把被________的冲动、不能形容的痛苦、________的怜惜注入到钢琴之中。
“________让每一个音符都歌唱起来。
”肖邦告诉他的学生。
A.抑制莫名其妙必须B.遏止莫名其妙必需C.抑制不可言状必须D.遏止不可言状必需4.下列句子中,没有语病的一项是( )A.世界卫生组织发布的数据表明,人类68%的疾病的原因是由空气污染引起的,空气中的细菌、病毒是感冒的主要根源。
B.在当今时代,文化是一个国家软实力的最重要组成部分。
这个“软实力”硬不硬、强不强、大不大,与一个国家的文化产业强大与否直接关联。
C.在连续遭遇本赛季的五连败后,湖人队的处境令人堪忧,如果后两场比赛再失利,湖人队将跌落至西部赛区第四名。
D.许多地方以较低的价格征用耕地盖起高楼大厦,这给国家不但造成极大的资源浪费,也给老百姓造成极大的利益伤害。
5.依次填入下面一段文字横线处的语句,衔接最恰当的一组是( )在学校的日子里,我没有什么特别的感觉,________,________,________,________,________,________。
新教材人教A版高中数学必修第一册全册课时练习(一课一练,附解析)
新教材人教A版高中数学必修第一册全册课时练习1.1.1集合的概念 (2)1.1.2集合的表示 (3)1.2集合间的基本关系 (5)1.3.1并集与交集 (7)1.3.2补集及集合运算的综合应用 (8)1.4.1充分条件与必要条件 (11)1.4.2充要条件 (12)1.5.1全称量词与存在量词 (13)1.5.2全称量词命题与存在量词命题的否定 (14)2.1等式性质与不等式性质 (16)2.2.1基本不等式 (17)2.2.2利用基本不等式求最值 (18)2.3.1二次函数与一元二次方程、不等式 (19)2.3.2一元二次不等式的应用 (20)3.1.1.1函数的概念 (21)3.1.1.2函数概念的应用 (22)3.1.2.1函数的表示法 (24)3.1.2.2分段函数 (25)3.2.1.1函数的单调性 (26)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (32)3.3幂函数 (36)3.4函数的应用(一) (37)4.1.1根式 (40)4.1.2指数幂及其运算 (41)4.2.1指数函数及其图象性质 (43)4.2.2指数函数的性质及其应用 (44)4.3.1对数的概念 (47)4.3.2 对数的运算 (48)4.4.1对数函数及其图象 (49)4.2.2对数函数的性质及其应用 (51)4.4.3不同函数增长的差异 (53)4.5.1函数的零点与方程的解 (54)4.5.2用二分法求方程的近似解 (57)4.5.3函数模型的应用 (58)5.1.1任意角 (60)5.1.2弧度制 (61)5.2.1三角函数的概念 (62)5.2.2同角三角函数的基本关系 (64)5.3.1诱导公式二、三、四 (66)5.3.2诱导公式五、六 (67)5.4.1正弦函数、余弦函数的图象 (69)5.4.2.1正弦函数、余弦函数的性质(一) ...................................................................... 71 5.4.2.2正弦函数、余弦函数的性质(二) ...................................................................... 73 5.4.3正切函数的性质与图象 ........................................................................................ 75 5.5.1.1两角差的余弦公式 ............................................................................................. 76 5.5.1.2两角和与差的正弦、余弦公式 ......................................................................... 78 5.5.1.3两角和与差的正切公式 ..................................................................................... 80 5.5.1.4二倍角的正弦、余弦、正切公式 ..................................................................... 81 5.5.2.1简单的三角恒等变换 ......................................................................................... 83 5.5.2.2三角恒等变换的应用 ......................................................................................... 84 5.6.1函数y =A sin(ωx +φ)的图象(一) .......................................................................... 86 5.6.2函数y =A sin(ωx +φ)的图象(二) .......................................................................... 88 5.7三角函数的应用 . (90)1.1.1集合的概念1.已知a ∈R ,且a ∉Q ,则a 可以为( ) A . 2 B .12 C .-2 D .-13[解析]2是无理数,所以2∉Q ,2∈R .[答案] A2.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .a =0 B .a =2019 C .a =1D .a =0或a =2019[解析] 若集合M 中有两个元素,则a 2≠2019a .即a ≠0,且a ≠2019.故选C . [答案] C3.下列各组对象能构成集合的有( )①接近于0的实数;②小于0的实数;③(2019,1)与(1,2019);④1,2,3,1. A .1组 B .2组 C .3组D .4组[解析] ①中“接近于0”不是一个明确的标准,不满足集合中元素的确定性,所以不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2019,1)与(1,2019)是两个不同的对象,是确定的,能构成集合,注意该集合有两个元素;④中的对象是确定的,可以构成集合,根据集合中元素的互异性,可知构成的集合为{1,2,3}.[答案] C4.若方程ax2+ax+1=0的解构成的集合中只有一个元素,则a为( )A.4 B.2C.0 D.0或4[解析] 当a=0时,方程变为1=0不成立,故a=0不成立;当a≠0时,Δ=a2-4a =0,a=4,故选A.[答案] A5.下列说法正确的是________.①及第书业的全体员工形成一个集合;②2019年高考试卷中的难题形成一个集合;③方程x2-1=0与方程x+1=0所有解组成的集合中共有3个元素;④x,3x3,x2,|x|形成的集合中最多有2个元素.[解析] ①及第书业的全体员工是一个确定的集体,能形成一个集合,正确;②难题没有明确的标准,不能形成集合,错误;③方程x2-1=0的解为x=±1,方程x+1=0的解为x=-1,由集合中元素的互异性知,两方程所有解组成的集合中共有2个元素1,-1,故错误;④x=3x3,x2=|x|,故正确.[答案] ①④1.1.2集合的表示1.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}[解析] ∵x2-2x+1=0,即(x-1)2=0,∴x=1,选B.[答案] B2.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A[解析] ∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2. (3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课内拓展 课外探究 集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合: (1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.下列四个关系式:①{a,b}⊆{b,a};②∅={∅};③∅{0};④0∈{0}.其中正确的个数是( )A.4 B.3C.2 D.1[解析] 对于①,任何集合是其本身的子集,正确;对于②,相对于集合{∅}来说,∅∈{∅},也可以理解为∅⊆{∅},错误;对于③,空集是非空集合的真子集,故∅{0}正确;对于④,0是集合{0}的元素,故0∈{0}正确.[答案] B2.集合A={x|-1≤x<2,x∈N}的真子集的个数为( )A .4B .7C .8D .16[解析] A ={-1,0,1},其真子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},共有22-1=4(个).[答案] A3.已知集合A ={3,-1},集合B ={|x -1|,-1},且A =B ,则实数x 等于( ) A .4 B .-2 C .4或-2D .2[解析] ∵A =B ,∴|x -1|=3,解得x =4或x =-2. [答案] C4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.[解析] 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.[答案] 65.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A . (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.[解] (1)当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴(如图),得⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-2或0≤m ≤52. (2)当x ∈N 时,A ={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3.1并集与交集1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( ) A .{2} B .{2,3} C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D. [答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3}, 故P ∩M ={0,1,2}. [答案] B3.已知集合A ={x |x >2或x <0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-k 2,且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N . (2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N . ∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.1.3.2补集及集合运算的综合应用1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析] ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.[答案] D2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}[解析] 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.[答案] C3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=( )A.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}[解析] ∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.[答案] C4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.[解析] ∁U A={x|5≤x<10},如图所示.[答案] {x|5≤x<10}5.设全集U={2,3,a2+2a-3},A={|2a-1|,2},且∁U A={5},求实数a的值.[解] ∵∁U A={5},∴5∈U,但5∉A,∴a2+2a-3=5,解得a=2或a=-4.当a=2时,|2a-1|=3,这时A={3,2},U={2,3,5}.∴∁U A={5},适合题意.∴a=2.当a=-4时,|2a-1|=9,这时A={9,2},U={2,3,5},A⃘U,∴∁U A无意义,故a =-4应舍去.综上所述,a=2.课内拓展课外探究空集对集合关系的影响空集是不含任何元素的集合,它既不是有限集,也不是无限集.空集就像一个无处不在的幽灵,解题时需处处设防,提高警惕.空集是任何集合的子集,其中“任何集合”当然也包括了∅,故将会出现∅⊆∅.而此时按子集理解不能成立,原因是前面空集中无元素,不符合定义,因此知道这一条是课本“规定”.空集是任何非空集合的真子集,即∅A(而A≠∅).既然A≠∅,即必存在a∈A而a∉∅,∴∅A.由于空集的存在,关于子集定义的下列说法有误,如“A⊆B,即A为B中的部分元素所组成的集合”.因为从“部分元素”的含义无法理解“空集是任何集合的子集”、“A是A 的子集”、“∅⊆∅”等结论.在解决诸如A⊆B或A B类问题时,必须优先考虑A=∅时是否满足题意.【典例1】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a的值组成的集合.[解] 由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)根的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a <-4或a >4.此时B ⊆A .(2)若B ≠∅,则B ={-2}或{4}或{-2,4}.①若B ={-2},则方程(*)有两个相等的实数根x =-2, ∴(-2)2+(-2)a +a 2-12=0,即a 2-2a -8=0. 解得a =4或a =-2.当a =4时,恰有Δ=0; 当a =-2时,Δ>0,舍去.∴当a =4时,B ⊆A . ②若B ={4},则方程(*)有两个相等的实数根x =4, ∴42+4a +a 2-12=0,解得a =-2,此时Δ>0,舍去.③若B ={-2,4},则方程(*)有两个不相等的实数根x =-2或x =4,由①②知a =-2,此时Δ>0,-2与4恰是方程的两根.∴当a =-2时,B ⊆A .综上所述,满足B ⊆A 的a 值组成的集合是{a |a <-4或a =-2或a ≥4}.[点评] ∅有两个独特的性质,即:(1)对于任意集合A ,皆有A ∩∅=∅;(2)对于任意集合A ,皆有A ∪∅=A .正因如此,如果A ∩B =∅,就要考虑集合A 或B 可能是∅;如果A ∪B =A ,就要考虑集合B 可能是∅.【典例2】 设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆(∁UM ),求实数a 的取值集合.[解] 根据题意可知:N ≠∅,又∵N ⊆(∁U M ). ①当M =∅,即3a -1≥2a 时,a ≥1. 此时∁U M =R ,N ⊆(∁U M )显然成立. ②当M ≠∅,即3a -1<2a 时,a <1.由M ={x |3a -1<x <2a },知∁U M ={x |x ≤3a -1或x ≥2a }.又∵N ⊆(∁U M ),∴结合数轴分析可知⎩⎪⎨⎪⎧a <1,3≤3a -1,或⎩⎪⎨⎪⎧a <1,2a ≤-1,得a ≤-12.综上可知,a 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥1或a ≤-12. [点评] 集合的包含关系是集合知识重要的一部分,在后续内容中应用特别广泛,涉及集合包含关系的开放性题目都以子集的有关性质为主,因此需要对相关的性质有深刻的理解.对于有限集,在处理包含关系时可列出所有的元素,然后依条件讨论各种情况,找到符合条件的结果.1.4.1充分条件与必要条件1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不是充分条件,也不是必要条件D.无法判断[解析] 因为a=2⇒(a-1)(a-2)=0,而(a-1)(a-2)=0不能推出a=2,故a=2是(a-1)(a-2)=0的充分条件,应选A.[答案] A2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3[解析] 因为x>2⇒x>1,所以选A.[答案] A3.下列命题中,是真命题的是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件[解析] A中,x2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x2>0,故x2>0是x>0的必要条件.B中,xy=0⇒x=0或y=0,不能推出x=0,而x=0⇒xy=0,故xy=0是x=0的必要条件.C中,|a|=|b|⇒a=b或a=-b,不能推出a=b,而a=b⇒|a|=|b|,故|a|=|b|是a=b的必要条件.D中,|x|>1⇒x2不小于1,而x2不小于1不能推出|x|>1,故|x|>1是x2不小于1的充分条件,故本题应选B.[答案] B4.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的____________条件.[答案] 不必要(填必要、不必要)5.(1)若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.(2)已知M={x|a-1<x<a+1},N={x|-3<x<8},若N是M的必要条件,求a的取值范围.[解] (1)记A={x|x>2或x<1},B={x|x<m}由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m ≤1.故m 的取值范围为{m |m ≤1}. (2)因为N 是M 的必要条件,所以M ⊆N .于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为{a |-2≤a ≤7}.1.4.2充要条件1.设x ∈R ,则“x <-1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为x <-1⇒|x |>1,而|x |>1⇒x <-1或x >1,故“x <-1”是“|x |>1”的充分不必要条件.[答案] A2.“x 2+(y -2)2=0”是“x (y -2)=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件[解析] x 2+(y -2)2=0,即x =0且y =2,∴x (y -2)=0.反之,x (y -2)=0,即x =0或y =2,x 2+(y -2)2=0不一定成立.[答案] B3.已知A ,B 是非空集合,命题p :A ∪B =B ,命题q :A B ,则p 是q 的( ) A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件[解析] 由A ∪B =B ,得A B 或A =B ;反之,由A B ,得A ∪B =B ,所以p 是q 的必要不充分条件.[答案] D4.关于x 的不等式|x |>a 的解集为R 的充要条件是________. [解析] 由题意知|x |>a 恒成立,∵|x |≥0,∴a <0. [答案] a <05.已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 证法一:①充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y.②必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.5.1全称量词与存在量词1.下列命题中,不是全称量词命题的是( ) A .任何一个实数乘0都等于0 B .自然数都是正整数C .对于任意x ∈Z,2x +1是奇数D .一定存在没有最大值的二次函数 [解析] D 选项是存在量词命题. [答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x ∈R ,y ∈R ,都有x 2+|y |>0.A .0B .1C .2D .3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.1.5.2全称量词命题与存在量词命题的否定1.命题“∃x ∈R ,x 2-2x -3≤0”的否定是( ) A .∀x ∈R ,x 2-2x -3≤0 B .∃x ∈R ,x 2-2x -3≥0 C .∃x 0∈R ,x 2-2x -3>0 D .∀x ∈R ,x 2-2x -3>0[解析] 存在量词命题的否定是全称量词命题,一方面要改量词即“∃”改为“∀”;另一方面要否定结论,即“≤”改为“>”.故选D.[答案] D2.已知命题p :∀x >0,x 2≥2,则它的否定为( )A .∀x >0,x 2<2 B .∀x ≤0,x 2<2 C .∃x ≤0,x 2<2 D .∃x >0,x 2<2[答案] D3.全称量词命题“所有能被5整除的整数都是奇数”的否定是( ) A .所有能被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个能被5整除的整数不是奇数D .存在一个奇数,不能被5整除[解析] 全称量词命题的否定是存在量词命题,而选项A ,B 是全称量词命题,所以选项A ,B 错误.因为“所有能被5整除的整数都是奇数”的否定是“存在一个能被5整除的整数不是奇数”,所以选项D 错误,选项C 正确,故选C.[答案] C4.对下列命题的否定,其中说法错误的是( )A .p :∀x ≥3,x 2-2x -3≥0;p 的否定:∃x ≥3,x 2-2x -3<0B .p :存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆C .p :有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形D .p :∃x ∈R ,x 2+2x +2≤0;p 的否定:∀x ∈R ,x 2+2x +2>0[解析] 若p :有的三角形为正三角形,则p 的否定:所有的三角形都不是正三角形,故C 错误.[答案] C5.写出下列命题的否定,并判断其真假. (1)菱形是平行四边形;(2)与圆只有一个公共点的直线是圆的切线; (3)存在一个三角形,它的内角和大于180°; (4)∃x ∈R ,使得x 2+x +1≤0.[解] (1)题中命题的否定为“存在一个菱形不是平行四边形”,这个命题为假命题. (2)是全称量词命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线;这个命题为假命题.(3)题中命题的否定为“所有三角形的内角和都小于或等于180°”,这个命题为真命题.(4)题中命题的否定为“∀x ∈R ,x 2+x +1>0”,这个命题为真命题.因为x 2+x +1=x 2+x +14+34=⎝⎛⎭⎪⎫x +122+34>0.2.1等式性质与不等式性质1.下列说法正确的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2[解析] ∵1x =1y,且x ≠0,y ≠0,两边同乘以xy ,得x =y .[答案] A2.设a ,b 为非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2B .ab 2<a 2b C .1ab 2<1a 2bD .b a <a b[解析] 用a =-1,b =1,试之,易排除A ,D.再取a =1,b =2,易排除B. [答案] C3.下列命题中正确的个数是( ) ①若a >b ,b ≠0,则a b>1; ②若a >b ,且a +c >b +d ,则c >d ; ③若a >b ,且ac >bd ,则c >d . A .0 B .1 C .2 D .3[解析] ①若a =2,b =-1,则不符合;②取a =10,b =2,c =1,d =3,虽然满足a >b 且a +c >b +d ,但不满足c >d ,故错;③当a =-2,b =-3,取c =-1,d =2,则不成立.[答案] A4.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系为________. [解析] ∵x ≠2或y ≠-1,∴M -N =x 2+y 2-4x +2y +5=(x -2)2+(y +1)2>0,∴M >N . [答案] M >N5.若-1≤a ≤3,1≤b ≤2,则a -b 的范围为________. [解析] ∵-1≤a ≤3,-2≤-b ≤-1, ∴-3≤a -b ≤2. [答案] -3≤a -b ≤22.2.1基本不等式1.若ab >0,则下列不等式不一定能成立的是( ) A .a 2+b 2≥2ab B .a 2+b 2≥-2ab C .a +b2≥abD .b a +a b≥2[解析] C 选项由条件可得到a 、b 同号,当a 、b 均为负号时,不成立. [答案] C 2.已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( ) A.a +12<a <2a a +1 B.a <a +12<2aa +1C.2a a +1<a <a +12 D.a <2a a +1≤a +12 [解析] 当a ,b 是正数时,2ab a +b ≤ab ≤a +b2≤a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C.[答案] C3.b a +ab≥2成立的条件是________.[解析] 只要b a 与a b都为正,即a 、b 同号即可. [答案] a 与b 同号4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立.所以b +c a +c +a b +a +bc≥6.2.2.2利用基本不等式求最值1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( ) A.13 B.12 C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. [解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.2.3.1二次函数与一元二次方程、不等式1.不等式-x 2-5x +6≤0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}[解析] 由-x 2-5x +6≤0得x 2+5x -6≥0, 即(x +6)(x -1)≥0, ∴x ≥1或x ≤-6. [答案] D2.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}[解析] 结合二次函数y =ax 2+bx +c (a <0)的图象可得{x |-1≤x ≤2},故选D. [答案] D3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .4[解析] 由题可知-7和-1为ax 2+8ax +21=0的两个根,∴-7×(-1)=21a,a =3.[答案] C4.不等式x 2-4x +5≥0的解集为________. [解析] ∵Δ=(-4)2-4×5=-4<0, ∴不等式x 2-4x +5≥0的解集为R . [答案] R5.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________. [解析] 原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. [答案] {x |x <-a 或x >1}2.3.2一元二次不等式的应用1.不等式x -2x +3>0的解集是( ) A .{x |-3<x <2} B .{x |x >2} C .{x |x <-3或x >2} D .{x |x <-2或x >3}[解析] 不等式x -2x +3>0⇔(x -2)(x +3)>0的解集是{x |x <-3或x >2},所以C 选项是正确的.[答案] C2.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}[解析] ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. [答案] B3.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2[解析] 由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.[答案] D4.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A. [答案] A5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈R ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时最低产量是( )A .100台B .120台C .150台D .180台 [解析] 3000+20x -0.1x 2≤25x ⇔x 2+50x -30000≥0,解得x ≤-200(舍去)或x ≥150. [答案] C3.1.1.1函数的概念1.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)[解析] 由题意可知,要使函数有意义,需满足{ x -1≥0,x -2≠0,即x ≥1且x ≠2.[答案] A2.函数y =1-x 2+x 的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤-1}D .{x |0≤x ≤1}[解析] 由题意可知⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,解得0≤x ≤1.[答案] D 3.函数f (x )=(x +2)(1-x )x +2的定义域为( )A .{x |-2≤x ≤1}B .{x |-2<x <1}C .{x |-2<x ≤1}D .{x |x ≤1}[解析] 要使函数有意义,需⎩⎪⎨⎪⎧(x +2)(1-x )≥0,x +2≠0,解得-2≤x ≤1,且x ≠-2,所以函数的定义域是{x |-2<x ≤1}.[答案] C4.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. [解析] 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. [答案] [-1,0)∪(1,2]5.已知矩形的周长为1,它的面积S 是其一边长为x 的函数,则其定义域为________(结果用区间表示).[解析] 由实际意义知x >0,又矩形的周长为1,所以x <12,所以定义域为⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,123.1.1.2函数概念的应用1.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (m )=m(m )2[解析] A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.[答案] D2.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35 D .-35[解析] f (2)f ⎝ ⎛⎭⎪⎫12=22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1.[答案] B3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1[解析] y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B4.已知函数f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)[解析] 由f (x )的定义域是[0,2]知,{ 0≤2x ≤2,x -1≠0, 解得0≤x <1,所以g (x )=f (2x )x -1的定义域为[0,1). [答案] B5.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. [解析] ∵x ∈{1,2,3,4,5} ∴f (x )=2x -3∈{-1,1,3,5,7}. ∴f (x )的值域为{-1,1,3,5,7}. [答案] {-1,1,3,5,7}3.1.2.1函数的表示法1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,当x =2时,y =1,所以1=k 2,得k =2.故y =2x.[答案] C2.由下表给出函数y =f (x ),则f [f (1)]等于( )x 1 2 3 4 5 y45321A.1 B .2 C .4 D .[解析] 由题意得f (1)=4,所以f [f (1)]=f (4)=2. [答案] B3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )[解析] 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.[答案] C4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为__________________. [解析] (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25.[答案] f (x )=2x +255.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. [解] 由f (x )=x +b ,得f (ax +1)=ax +1+b . ∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.3.1.2.2分段函数1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100. [答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点⎝ ⎛⎭⎪⎫1,32代入,排除D 项. [答案] B5.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.[答案] 23.2.1.1函数的单调性1.如图所示,函数y =f (x )在下列哪个区间上是增函数( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 观察题中图象知,函数在[-3,1]上是增函数. [答案] C2.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)2[解析] 选项A ,B 在(-∞,0)上为减函数,选项D 在(-2,0]上为减函数,只有选项C 满足在(-∞,0]内为增函数.故选C.[答案] C3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,12 [解析] 由一次函数的性质得2a -1<0,即a <12.故选D.[答案] D4.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.[解析] 因为f (x )在区间[-1,1]上为增函数,且f (x )<f ⎝ ⎛⎭⎪⎫12,所以⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.[答案] ⎣⎢⎡⎭⎪⎫-1,125.已知函数f (x )=x -1x +1,判断f (x )在(0,+∞)上的单调性并用定义证明. [解] f (x )在(0,+∞)上单调递增. 证明如下:任取x 1>x 2>0,f (x 1)-f (x 2)=x 1-1x 1+1-x 2-1x 2+1=2(x 1-x 2)(x 1+1)(x 2+1),由x 1>x 2>0知x 1+1>0,x 2+1>0,x 1-x 2>0,故f (x 1)-f (x 2)>0,即f (x )在(0,+∞)上单调递增.3.2.1.2函数的最大(小)值1.函数f (x )在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2[解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.[答案] C2.已知函数f (x )=|x |,x ∈[-1,3],则f (x )的最大值为( ) A .0 B .1 C .2 D .3[解析] 作出函数f (x )=|x |,x ∈[-1,3]的图象,如图所示.根据函数图象可知,f (x )的最大值为3.[答案] D3.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.[答案] A4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).[解析] 设矩形花园的宽为y m ,则x 40=40-y 40, 即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.[答案] 205.已知二次函数y =x 2-4x +5,分别求下列条件下函数的最小值: (1)x ∈[-1,0];(2)x ∈[a ,a +1].[解] (1)∵二次函数y =x 2-4x +5的对称轴为x =2且开口向上, ∴二次函数在x ∈[-1,0]上是单调递减的. ∴y min =02-4×0+5=5.(2)当a ≥2时,函数在x ∈[a ,a +1]上是单调递增的,y min =a 2-4a +5;当a +1≤2即a ≤1时,函数在[a ,a +1]上是单调递减的,y min =(a +1)2-4(a +1)+5=a 2-2a +2;当a <2<a +1即1<a <2时,y min =22-4×2+5=1.故函数的最小值为⎩⎪⎨⎪⎧a 2-2a +2,a ≤1,1,1<a <2,a 2-4a +5,a ≥2.3.2.2.1函数奇偶性的概念1.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1D .无法确定[解析] 由-1+a =0,得a =1.选C. [答案] C2.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1][解析] A 项中的函数为奇函数;C 、D 选项中的函数定义域不关于原点对称,既不是奇函数,也不是偶函数;B 项中的函数为偶函数.故选B.[答案] B3.函数f (x )=1x-x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称[解析] 函数f (x )=1x-x 的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x=-f (x ),所以f (x )是奇函数,图象关于原点对称.[答案] C4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.[解析] 由f (x )=(x +a )(x -4)得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.[答案] 45.已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-3,3],且它们在[0,3]上的图象如图所示,求不等式f (x )g (x )<0的解集.[解] 由题知,y =f (x )是偶函数,y =g (x )是奇函数. 根据函数图象的对称性画出y =f (x ),y =g (x )在[-3,0]上的图象如图所示.由图可知f (x )>0⇔0<x <2或-2<x <0,g (x )>0⇔1<x <3或-1<x <0.f (x )g (x )<0⇔⎩⎪⎨⎪⎧f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0,可求得其解集是{x |-2<x <-1或0<x <1或2<x <3}.3.2.2.2函数奇偶性的应用1.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1[解析] 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). [答案] B2.设f (x )是R 上的偶函数,且在[0,+∞)上单凋递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2) [解析] ∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π), 又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)<f (2), 即f (-π)>f (3)>f (-2). [答案] A3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 [解析] 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.。
高中数学必修一《补集》精选练习(含详细解析)
高中数学必修一《补集》精选练习(含详细解析)一、选择题1.已知全集U={2,3,4},若集合A={2,3},则UA= ( )A.{1}B.{2}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={2,4,6},B={1,3,5,7}.则A∩(UB)等于( )A.{2,4,5}B.{1,3,5}C.{2,4,6}D.{2,5}3.已知全集U=R,A=,B=,则集合U(A∪B)= ( )A. B.C. D.4.若M⊆U,N⊆U,且M⊆N,则( )A.M∩N=NB.M∪N=MC.U N⊆UM D.UM⊆UN5.设集合M={x|x=3k,k∈Z},P={x|x=3k+1,k∈Z},Q={x|x=3k-1,k∈Z},则Z(P∪Q)= ( )A.MB.PC.QD.∅6如图,I是全集,M,P,S是I的子集,则阴影部分所表示的集合是( )A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩(I S) D.(M∩P)∪(IS)7.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(US)∩T={4},(U S)∩(UT)={1,5},则有( )A.3∈S,3∈TB.3∈S,3∈U T C.3∈US,3∈T D.3∈US,3∈UT二、填空题8.已知全集S={(x,y)|x∈R,y∈R},A={(x,y)|x2+y2≠0},用列举法表示集合SA 是.9.设U=R,A={x|a≤x≤b},UA={x|x<1或x>3},则a= ,b= .10.已知集合A={x|x<a},B={x|1<x<2},且A∪(RB)=R,则实数a的取值范围是.11.如果全集U={x|x是自然数},A,B是U的子集,若A={x|x是正奇数},B={x|x是5的倍数},则B∩UA= .12.已知全集U=A∪B中有m个元素,(U A)∪(UB)中有n个元素.若A∩B非空,则A∩B的元素个数为.三、解答题13.已知全集U={2,3,a2-2a-3},A={2,|a-7|},UA={5},求a的值.14.已知全集U=R,集合A={x|x<-1},B={x|2a<x<a+3},且B⊆RA,求a的取值范围.15.已知U=R,A={x|x2+px+12=0},B={x|x2-5x+q=0},若(UA)∩B={2},(UB)∩A={4},求A∪B.166.设全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},集合C={x|x-m<0},求实数m的取值范围,使其满足下列两个条件:①C⊇(A∩B);②C⊇(UA)∩(UB).参考答案与解析1【解析】选D.因为U={2,3,4},A={2,3},所以UA={4}.2【解析】选C.U B={2,4,6},所以A∩(UB)={2,4,6}.3【解题指南】可先求并集,再利用数轴求补集.【解析】选D.由于A∪B=,结合数轴可知,U(A∪B)=.4【解析】选C.根据已知条件,M,N,U三个集合的关系可用Venn图表示如图:由图可看出:M∩N=M,M∪N=N,U N⊆UM,所以C是正确的.解析】选A.集合M={x|x=3k,k∈Z},表示被3整除的整数构成的集合,P={x|x=3k+1,k∈Z},表示被3除余数为1的整数构成的集合,Q={x|x=3k-1,k∈Z}={x|x=3n+2,n∈Z},表示被3除余数为2的整数构成的集合, 故P∪Q表示被3除余数为1或余数为2的整数构成的集合,Z(P∪Q)=M.6【解析】选C.由图可见阴影部分所表示的集合在M∩P中,同时又在S的补集IS中,故(M∩P)∩(IS)为所求,故选C.7【解题指南】解答本题可利用Venn图处理.【解析】选B.因为S∩T={2},所以2∈S且2∈T,又(U S)∩T=4,所以4∉S,4∈T,又(US)∩(UT)={1,5},所以U(S∪T)={1,5},所以1,5∉(S∪T),如图所示,若3∈T,则3∈(U S)∩T,与(US)∩T={4}矛盾,所以3∈S,3∈UT.8【解题指南】SA是指使x2+y2=0的点集.【解析】SA={(x,y)|x2+y2=0}={(0,0)}.答案:{(0,0)}【误区警示】解答本题时易将点集看成数集而致错.9【解析】因为A={x|a≤x≤b},所以U A={x|x<a或x>b},又UA={x|x<1或x>3},所以a=1,b=3. 答案:1 310【解析】因为B={x|1<x<2},所以R B={x|x≥2或x≤1}.如图,若要A∪(RB)=R,必有a≥2.答案:{a|a≥2}11【解析】UA={x|x是非负偶数}={0,2,4,6,8,10,…},B={0,5,10,15,…},B∩UA={0,10,20,…}.答案:{x∈N|x是10的倍数}12【解析】因为(U A)∪(UB)=U(A∩B),并且全集U中有m个元素,U(A∩B)中有n个元素,所以A∩B中的元素个数为m-n.答案:m-n13【解析】由|a-7|=3,得a=4或a=10,当a=4时,a2-2a-3=5,当a=10时,a2-2a-3=77∉U,所以a=4.【一题多解】由A∪UA=U知所以a=4.14【解析】由题意得RA={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆RA.(2)若B≠∅,则由B⊆RA,得2a≥-1且2a<a+3, 即-≤a<3.综上可得a≥-.15【解析】由(UA)∩B={2},所以2∈B且2∉A,由A∩(UB)={4},所以4∈A且4∉B,分别代入得42+4p+12=0,22-5×2+q=0,所以p=-7,q=6;所以A={3,4},B={2,3},所以A∪B={2,3,4}.16【解析】因为A={x|-5<x<4},B={x|x<-6或x>1},所以A∩B={x|1<x<4}.又UA={x|x≤-5或x≥4},UB={x|-6≤x≤1},所以(U A)∩(UB)={x|-6≤x≤-5}.而C={x|x<m},因为当C⊇(A∩B)时,m≥4,当C⊇(U A)∩(UB)时,m>-5,所以m≥4.。
新版高一数学必修第一册第一章全部配套练习题(含答案和解析)
新版高一数学必修第一册第一章全部配套练习题(含答案和解析)1.1 集合的概念第1课时集合的概念基础练巩固新知夯实基础1.有下列各组对象:①接近于0的数的全体;①比较小的正整数的全体;①平面上到点O的距离等于1的点的全体;①直角三角形的全体.其中能构成集合的个数是()A.2 B.3C.4 D.52.已知集合A由x<1的数构成,则有()A.3①A B.1①AC.0①A D.-1①A3.集合A中只含有元素a,则下列各式一定正确的是()A.0①A B.a①A C.a①A D.a=A4.若a,b,c,d为集合A的四个元素,则以a,b,c,d为边长构成的四边形可能是() A.矩形B.平行四边形C.菱形D.梯形5.已知集合A含有三个元素2,4,6,且当a①A,有6-a①A,则a为() A.2 B.2或4C .4D .06.若x ①N ,则满足2x -5<0的元素组成的集合中所有元素之和为________. 7.已知①5①R ;①13①Q ;①0①N ;①π①Q ;①-3①Z .正确的个数为________.能 力 练综合应用 核心素养8.已知x ,y 都是非零实数,z =x |x |+y |y |+xy|xy |可能的取值组成集合A ,则( )A .2①AB .3①AC .-1①AD .1①A9.已知集合A 中含有三个元素1,a ,a -1,若-2①A ,则实数a 的值为( )A .-2B .-1C .-1或-2D .-2或-310.集合A 中含有三个元素2,4,6,若a ①A ,且6-a ①A ,那么a =________. 11.由实数x ,-x ,|x |,x 2及-3x 3所组成的集合,最多含有________个元素.12.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且M =N .求a ,b 的值.13.设A 为实数集,且满足条件:若a ①A ,则11-a①A (a ≠1).求证:(1)若2①A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.14.已知方程ax2-3x-4=0的解组成的集合为A.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【参考答案】1.A 解析 ①不能构成集合,“接近”的概念模糊,无明确标准.①不能构成集合,“比较小”也是不明确的,多小算小没明确标准.①①均可构成集合,因为任取一个元素是否是此集合的元素有明确的标准可依. 2.C 解析 很明显3,1不满足不等式,而0,-1满足不等式.3.C 解析 由题意知A 中只有一个元素a ,①a ①A ,元素a 与集合A 的关系不能用“=”,a 是否等于0不确定,因此0是否属于A 不确定,故选C .4.D 解析 由集合中的元素具有互异性可知a ,b ,c ,d 互不相等,而梯形的四条边可以互不相等. 5.B 解析 若a =2①A ,则6-a =4①A ;或a =4①A ,则6-a =2①A ;若a =6①A ,则6-a =0①A . 6.3 解析 由2x -5<0,得x <52,又x ①N ,①x =0,1,2,故所有元素之和为3.7.3 解析 ①①①是正确的;①①是错误的. 8.C 解析 ①当x >0,y >0时,z =1+1+1=3;①当x >0,y <0时,z =1-1-1=-1; ①当x <0,y >0时,z =-1+1-1=-1; ①当x <0,y <0时,z =-1-1+1=-1, ①集合A ={-1,3}. ①-1①A .9.C 解析 由题意可知a =-2或a -1=-2,即a =-2或a =-1,故选C .10.2或4 解析若a =2,则6-2=4①A ;若a =4,则6-4=2①A ;若a =6,则6-6=0①A .故a =2或4. 11.2 解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x ,-x ,故合中最多含有2个元素.12.解 法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧a =2ab =b 2或⎩⎪⎨⎪⎧ a =b 2b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.法二 ①两个集合相同,则其中的对应元素相同.①⎩⎪⎨⎪⎧ a +b =2a +b 2a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b b -1=0 ①ab ·2b -1=0 ①①集合中的元素互异,①a ,b 不能同时为零. 当b ≠0时,由①得a =0,或b =12.当a =0时,由①得b =1,或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).①⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.13.证明 (1)若a ①A ,则11-a①A .又①2①A ,①11-2=-1①A .①-1①A ,①11--1=12①A .①12①A ,①11-12=2①A . ①A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解. ①a ≠11-a,①集合A 不可能是单元素集.14.解 (1)因为A 中有两个元素,所以方程ax 2-3x -4=0有两个不等的实数根,所以⎩⎪⎨⎪⎧a ≠0,Δ=9+16a >0,即a >-916且a ≠0.所以实数a 的取值范围为a >-916,且a ≠0.(2)当a =0时,由-3x -4=0得x =-43;当a ≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根,则Δ=9+16a =0,即a =-916;若关于x 的方程无实数根,则Δ=9+16a <0,即a <-916, 故所求的a 的取值范围是a ≤-916或a =0.1.1 集合的概念 第2课时 集合的表示基 础 练巩固新知 夯实基础1.集合A ={x ①Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.错误! B.错误!C .{1,2}D .{(1,2)} 3.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A.{}x |x 是小于18的正奇数 B.{}x |x =4k +1,k ①Z ,且k <5 C.{}x |x =4t -3,t ①N ,且t ≤5 D.{}x |x =4s -3,s ①N *,且s ≤55.集合M ={(x ,y )|xy <0,x ①R ,y ①R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ①N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ①N }用列举法表示为________. 8.有下面四个结论:①0与{0}表示同一个集合;①集合M ={3,4}与N ={(3,4)}表示同一个集合;①方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ①集合{x |4<x <5}不能用列举法表示. 其中正确的结论是________(填写序号).能 力 练综合应用 核心素养9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3} B .{1,3} C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ①Z ,B ={}x |x =2n ,n ①Z ,且x 1,x 2①A ,x 3①B ,则下列判断不正确的是( ) A .x 1·x 2①A B .x 2·x 3①B C .x 1+x 2①BD .x 1+x 2+x 3①A11.已知集合A ={x |x =3m ,m ①N *},B ={x |x =3m -1,m ①N *},C ={x |x =3m -2,m ①N *},若a ①A ,b ①B , c ①C ,则下列结论中可能成立的是( ) A .2 006=a +b +c B .2 006=abc C .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ①A ,y ①A ,x +y ①A },则B 中所含元素的个数为________.13.定义集合A -B ={x |x ①A ,且x ①B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ①R |ax 2+2x +1=0},其中a ①R .若1是集合A 中的一个元素,请用列举法表示集合A .15.设集合A={1,a,b},B={a,a2,ab},且A=B,求a2014+b2014.16.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a①P,b①Q},用列举法表示集合P+Q.【参考答案】1.D 解析因为A={x①Z|-2<x<3},所以x的取值为-1,0,1,2,共4个.2.C 解析C选项表示两个数.3. D 解析集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.D解析对于x=4s-3,当s依次取1,2,3,4,5时,恰好对应的x的值为1,5,9,13,17.5. D 解析因xy<0,所以有x>0,y<0;或者x<0,y>0.因此集合M表示的点集在第四象限和第二象限.6. {1} 解析由x2+x-2=0,得x=-2或x=1. 又x①N,①x=1.7. {(2,4),(5,2),(8,0)} 解析①3y=16-2x=2(8-x),且x①N,y①N,①y为偶数且y≤5,①当x=2时,y=4,当x=5时y=2,当x=8时,y=0.8. ① 解析 {0}表示元素为0的集合,而0只表示一个元素,故①错误;①集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;①不符合集合中元素的互异性,错误;①中元素有无穷多个,不能一一列举,故不能用列举法表示.9. C 解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}. 10. D ①集合A 表示奇数集,集合B 表示偶数集,①x 1,x 2是奇数,x 3是偶数,①x 1+x 2+x 3为偶数. 11. C 解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合; a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.12. 3 解析 根据x ①A ,y ①A ,x +y ①A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.13. {x |x ≥2} 解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12且x ≥2={x |x ≥2}. 14. 解 ①1是集合A 中的一个元素,①1是关于x 的方程ax 2+2x +1=0的一个根,①a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,①集合A ={-13,1}.15.解 ①A =B ,①⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧ a 2=b ,ab =1.解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数.由集合元素的互异性得a ≠1,①a =-1,b =0,故a 2014+b 2014=1.16. 解 ①当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的 值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. ①P +Q ={1,2,3,4,6,7,8,11}.1.1 集合的概念 第2课时 集合的表示基 础 练巩固新知 夯实基础1.集合A ={x ①Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.错误! B.错误!C .{1,2}D .{(1,2)} 3.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A.{}x |x 是小于18的正奇数 B.{}x |x =4k +1,k ①Z ,且k <5 C.{}x |x =4t -3,t ①N ,且t ≤5 D.{}x |x =4s -3,s ①N *,且s ≤55.集合M ={(x ,y )|xy <0,x ①R ,y ①R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ①N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ①N }用列举法表示为________. 8.有下面四个结论:①0与{0}表示同一个集合;①集合M ={3,4}与N ={(3,4)}表示同一个集合;①方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ①集合{x |4<x <5}不能用列举法表示. 其中正确的结论是________(填写序号).能 力 练综合应用 核心素养9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3} B .{1,3} C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ①Z ,B ={}x |x =2n ,n ①Z ,且x 1,x 2①A ,x 3①B ,则下列判断不正确的是( ) A .x 1·x 2①A B .x 2·x 3①B C .x 1+x 2①BD .x 1+x 2+x 3①A11.已知集合A ={x |x =3m ,m ①N *},B ={x |x =3m -1,m ①N *},C ={x |x =3m -2,m ①N *},若a ①A ,b ①B , c ①C ,则下列结论中可能成立的是( ) A .2 006=a +b +c B .2 006=abc C .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ①A ,y ①A ,x +y ①A },则B 中所含元素的个数为________.13.定义集合A -B ={x |x ①A ,且x ①B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ①R |ax 2+2x +1=0},其中a ①R .若1是集合A 中的一个元素,请用列举法表示集合A .16.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ①P ,b ①Q },用列举法表示集合P +Q .【参考答案】3. D 解析 因为A ={x ①Z |-2<x <3},所以x 的取值为-1,0,1,2,共4个.4. C 解析 C 选项表示两个数.3. D 解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4. D 解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.5. D 解析因xy <0,所以有x >0,y <0;或者x <0,y >0.因此集合M 表示的点集在第四象限和第二象限.6. {1} 解析 由x 2+x -2=0,得x =-2或x =1. 又x ①N ,①x =1.7. {(2,4),(5,2),(8,0)} 解析 ①3y =16-2x =2(8-x ),且x ①N ,y ①N ,①y 为偶数且y ≤5,①当x =2时,y =4,当x =5时y =2,当x =8时,y =0.8. ① 解析 {0}表示元素为0的集合,而0只表示一个元素,故①错误;①集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;①不符合集合中元素的互异性,错误;①中元素有无穷多个,不能一一列举,故不能用列举法表示.9. C 解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}. 12. D ①集合A 表示奇数集,集合B 表示偶数集,①x 1,x 2是奇数,x 3是偶数,①x 1+x 2+x 3为偶数. 13. C 解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合; a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.12. 3 解析 根据x ①A ,y ①A ,x +y ①A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.13. {x |x ≥2} 解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12且x ≥2={x |x ≥2}. 14. 解 ①1是集合A 中的一个元素,①1是关于x 的方程ax 2+2x +1=0的一个根,①a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,①集合A ={-13,1}.15.解 ①A =B ,①⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧ a 2=b ,ab =1.解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,①a =-1,b =0,故a 2014+b 2014=1.17. 解 ①当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的 值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.①P+Q={1,2,3,4,6,7,8,11}.1.2集合间的基本关系基础练巩固新知夯实基础1.下列集合中,结果是空集的是()A.{x∈R|x2-1=0} B.{x|x>6或x<1}C.{(x,y)|x2+y2=0} D.{x|x>6且x<1}2.已知集合N={1,3,5},则集合N的真子集个数为()A.5B.6C.7D.83.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.34.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()5.已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是________.6.设集合A={x|x2+x-6=0},B={x|mx+1=0},则满足B⊆A的实数m的值所组成的集合为________.7. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.8.已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.能力练综合应用核心素养9.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值集合是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.⌀10.若集合A={1,3,x},B={x2,1},且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.411.适合条件{1}⊆A{1,2,3,4,5}的集合A的个数是()A.15 B.16 C.31 D.3212.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.413.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠⌀,B⊆A,则(a,b)不能是()A.(-1,1)B.(-1,0)C.(0,-1)D.(1,1)14.已知集合A={x|x2=a},当A为非空集合时a的取值范围是________.15.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为________.16.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是________.17.已知集合M={x|x2+2x-8=0},N={x|(x-2)(x-a)=0},若N⊆M,则实数a的值是.18.已知集合A={x|x2-4x+3=0},B={x|mx-3=0},且B⊆A,求实数m的集合.19. 已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.20.已知集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},且B⊆A.(1)求实数m的取值集合;(2)当x∈N时,求集合A的子集的个数.【参考答案】1. D 解析 对D ,显然不存在既大于6又小于1的数,故{x |x >6且x <1}=∅.2. C 解析 集合N 的真子集有:∅,{1},{3},{5},{1,3},{1,5},{3,5},共7个.3. B 解析 ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.4. B 解析 由N ={-1,0},知N M ,故选B.5. 0,±1 解析 P ={-1,1},Q ⊆P ,所以 (1)当Q =∅时,a =0. (2)当Q ≠∅时,Q ={1a },∴1a =1或1a =-1,解之得a =±1. 综上知a 的值为0,±1.6. ⎩⎨⎧⎭⎬⎫0,13,-12 解析 ∵A ={x |x 2+x -6=0}={-3,2},又∵B ⊆A ,当m =0,mx +1=0无解,故B =∅,满足条件,若B ≠∅,则B ={-3},或B ={2},即m =13,或m =-12,故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12.7. 解 A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A . ①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.8. 解 当B =∅时,只需2a >a +3, 即a >3.当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4.解得a <-4或2<a ≤3. 综上,实数a 的取值范围为{a |a <-4或a >2}.9. B 解析∵A ⊇B ,∴{a -1≤3,a +2≥5,解得3≤a ≤4.经检验知当a=3或a=4时符合题意.故3≤a ≤4.10. C 解析 由B ⊆A ,知x 2=3,或x 2=x ,解得x =±3,或x =0,或x =1,当x =1时,集合A ,B 都不满足元素的互异性,故x =1舍去. 11. A 解析 因为集合A 中必须包含元素1,但从元素2、3、4、5中至多选取3个,于是集合A 的个数是24-1=15个,故选A.12. D 解析 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数.由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 13. B 解析 当a=-1,b=1时,B={x|x 2+2x+1=0}={-1},符合; 当a=b=1时,B={x|x 2-2x+1=0}={1},符合; 当a=0,b=-1时,B={x|x 2-1=0}={-1,1},符合; 当a=-1,b=0时,B={x|x 2+2x=0}={0,-2},不符合.14. a ≥0 解析 要使集合A 为非空集合,则应有方程x 2=a 有解,故只须a ≥0.15. M =P 解析 ∵xy >0,∴x ,y 同号,又x +y <0,∴x <0,y <0,即集合M 表示第三象限内的点,而集合P 表示第三象限内的点,故M =P .16. 0或±1 解析因为A有且仅有两个子集,所以A仅有一个元素,即方程ax2+2x+a=0仅有一根,当a =0时,方程化为2x=0,A={0},符合题意;当a≠0时,Δ=4-4a2=0,解得a=±1此时A={-1}或{1},符合题意.综上所述a=0或a=±1.17.-4或2 解析M={x|x2+2x-8=0}={2,-4}.当a≠2时,N={x|(x-2)(x-a)=0}={2,a}.∵N⊆M,∴a=-4.当a=2时,N={x|(x-2)(x-a)=0}={2},此时N⊆M,符合题意.18. 解由x2-4x+3=0,得x=1或x=3.∴集合A={1,3}.(1)当B=∅时,此时m=0,满足B⊆A.(2)当B≠∅时,则m≠0,B={x|mx-3=0}={3m}.∵B⊆A,∴3m=1或3m=3,解之得m=3或m=1.综上可知,所求实数m的集合为{0,1,3}.19 . 解因为B是A的子集,所以B中元素必是A中的元素,若x+2=3,则x=1,符合题意.若x+2=-x3,则x3+x+2=0,所以(x+1)(x2-x+2)=0.因为x2-x+2≠0,所以x+1=0,所以x=-1,此时x+2=1,集合B中的元素不满足互异性.综上所述,存在实数x=1,使得B是A的子集,此时A={1,3,-1},B={1,3}.20.解:(1)①当m-1>2m+1,即m<-2时,B=⌀符合题意.②当m-1≤2m+1,即m≥-2时,B≠⌀.由B⊆A,借助数轴(如图所示),得{m -1≥-1,2m +1≤6,m ≥−2,解得0≤m ≤52.所以0≤m ≤52.经验证知m=0和m=52符合题意.综合①②可知,实数m 的取值集合为 {m |m <−2或0≤m ≤52}. (2)∵当x ∈N 时,A={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3 集合的基本运算 第1课时 并集与交集基 础 练巩固新知 夯实基础1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B 等于( ) A .{0} B .{-1,0} C .{0,1}D .{-1,0,1}2.已知集合A ={x |x ≥0},B ={x |-1≤x ≤2},则A ①B=( ) A .{x |x ≥-1}B .{x |x ≤2}C.{x|0<x≤2} D.{x|1≤x≤2}3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是()A.A①B B.B①CC.A∩B=C D.B①C=A4.已知集合M={x|(x-1)2<4,x①R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M①N={1,2,3,4}的集合N的个数是()A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=①,则实数t的取值范围是()A.t<-3 B.t≤-3C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________.9.设集合A={-2},B={x|ax+1=0,a①R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B①C=C,求实数a的取值范围.能力练综合应用核心素养11.集合A={0,2,a},B={1,a2},若A①B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠①,若A①B=A,则() A.-3≤m≤4 B.-3<m<4C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A①B=A,则m等于()A.0或 3 B.0或3C.1或 3 D.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B①C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。
人教A版高中数学必修一提升训练1.4 充分条件、必要条件(解析版)
1.4充分条件、必要条件1. 充分条件;2.必要条件;3. 充分条件与必要条件的应用;4. 充要条件的判断;5. 充要条件的证明;6. 利用充分条件和必要条件确定参数的取值范围;7. 充要条件的探求一、单选题1.(2019·全国高一课时练习)“0x ≠”是“0x >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【详细解析】0x ≠时0x >或0x <,所以“0x ≠”是“0x >”的必要而不充分条件,选B.2.(2020·天津市蓟州区擂鼓台中学高二期末)1x =-是1x =的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【正确答案】A【详细解析】若1x =-,则1x =,故“1x =-”是“1x =”的充分条件. 若1x =,则1x =±,推不出1x =-,故“1x =-”是“1x =”的不必要条件.故“1x =-”是“1x =”的充分不必要条件.故选:A.3.(2020·三亚华侨学校高一月考)命题1:3x p y=-⎧⎨=⎩,命题:2q x y +=;则p 是q 的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【正确答案】C【详细解析】因为13x y =-⎧⎨=⎩,所以2x y +=,所以p 是q 的充分条件;因为当2x y +=时, x 可能为1,y 也可能为1,不一定有13x y =-⎧⎨=⎩, 所以p 不是q 的必要条件,所以p 是q 的充分不必要条件,故选:C4.(2019·山东济宁高一月考)设x ∈R ,则“05x <<”是“1213x <+<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【详细解析】由1213x <+<解得01x <<,所以“05x <<”是“01x <<”的必要不充分条件.故选B.5.(2020·安徽省六安中学高二期中(文))设p:x<3,q:-1<x<3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【正确答案】C【详细解析】∵:3p x <,:13q x -<<∴q p ⇒,但,∴p 是q 成立的必要不充分条件,故选C. 6.(2020·上海高一课时练习)设集合{}{}|03,|02,""""M x x N x x a M a N =<≤=<≤∈∈那么是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【正确答案】B【详细解析】因为N ⊆M.所以“a ∈M”是“a ∈N”的必要而不充分条件.故选B .7.(2019·清华附中上庄学校高一期中)已知条件:1p x >,条件:2q x ≥,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【详细解析】{|1}x x >{|2}x x ≥,则p 是q 的必要不充分条件,故选:B.点睛: p 成立的对象构成的集合为A ,q 成立的对象构成的集合为B :p 是q 的充分不必要条件则有:A B ; p 是q 的必要不充分条件则有:B A .8.(2020·浙江高一课时练习)设a ∈R ,则a >4的一个必要不充分条件是( )A .a >1B .a <1C .a >5D .a <5 【正确答案】A【详细解析】由题意,当a >4时,a >1是成立,当a >1成立时,a >4不一定成立,所以a >4是a >1的必要不充分条件,故选A.9.(2020·辽宁沈阳高一期末)“x y =”是“x y =”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【正确答案】B【详细解析】因x y =x y =但x y =⇒x y =.10.(2020·全国高一课时练习)“14m <”是“一元二次方程20x x m ++=”有实数解的 A .充分非必要条件 B .充分必要条件C .必要非充分条件D .非充分必要条件 【正确答案】A【详细解析】方程20x x m ++=有解,则11404m m ∆=-≥⇒≤.14m <是14m ≤的充分不必要条件.故A 正确. 二、多选题11.(2019·全国高一课时练习)下列说法中正确的是( )A .“AB B =”是“B =∅”的必要不充分条件B .“3x =”的必要不充分条件是“2230x x --=”C .“m 是实数”的充分不必要条件是“m 是有理数”D .“1x =”是“1x =”的充分条件【正确答案】ABC【详细解析】由A B B =得B A ⊆,所以“B =∅”可推出“A B B =”,反之不成立,A 选项正确;解方程2230x x --=,得1x =-或3x =,所以,“3x =”的必要不充分条件是“2230x x --=”,B 选项正确; “m 是有理数”可以推出“m 是实数”,反之不一定成立,C 选项正确; 解方程1x =,得1x =±,则“1x =”是“1x =”必要条件,D 选项错误.故选:ABC .12.(2020·浙江高一单元测试)下列不等式中可以作为21x <的一个充分不必要条件的有( ) A .1x <B .01x <<C .10x -<<D .11x -<<【正确答案】BC【详细解析】解不等式21x <,可得11x -<<, {}11x x -<< {}1x x <,{}11x x -<< {}01x x <<,{}11x x -<< {}10x x -<<,因此,使得21x <的成立一个充分不必要条件的有:01x <<,10x -<<.故选:BC.13.(2019·山东中区济南外国语学校高一期中)对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件 【正确答案】CD【详细解析】对于A,因为“a b =”时ac bc =成立,ac bc =,0c 时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD14.(2019·山东省淄博第七中学高一月考)设全集U ,则下面四个命题中是“A B ⊆”的充要条件的命题是( ) A .A B A = B .U U C A C B ⊇ C .U C B A φ⋂= D .U C A B φ⋂=【正确答案】ABC【详细解析】由 A ∩B =A ,可得A ⊆B .由 A ⊆B 可得A ∩B =A ,故A ∩B =A 是命题A ⊆B 的充要条件,故A 满足条件. 由U U C A C B ⊇可得A ⊆B ,由A ⊆B 可得U U C A C B ⊇,故U U C A C B ⊇ 是命题A ⊆B 的充要条件,故 B 满足条件.由U C B A φ⋂=,可得A ⊆B ,由A ⊆B 可得U C B A φ⋂=,故U C B A φ⋂= 是命题A ⊆B 的充要条件,故C 满足条件.由U C A B φ⋂=,可得B ⊆A ,不能推出A ⊆B ,故④U C A B φ⋂=不是命题A ⊆B 的充要条件,故D 不满足条件.故选:ABC .三、填空题15.(2020·全国高一)“0x >”是“1x >”成立的________条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出一种)【正确答案】必要不充分.【详细解析】由1x >,一定有0x >;反之,当0x >时,不一定有1x >;所以,“0x >”是“1x >”成立的必要不充分条件.故正确答案为:必要不充分.16.(2020·全国高一)设r 是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么r 是t 的_____.【正确答案】充要【详细解析】由题意知,r q ⇒,q s ⇔,s t ⇒,t r ⇒,所以r t ⇔.故正确答案为:充要17.(2020·全国高一)已知集合{}12A x x =-<<,{}11B x x m =-<<+,若x A ∈是x B ∈成立的一个充分不必要条件,则实数m 的取值范围是______.【正确答案】()1,+∞【详细解析】由x A ∈是x B ∈成立的一个充分不必要条件,得:A B ,即1112m m +>-⎧⎨+>⎩,即1m , 故正确答案为:()1,+∞.18.(2020·上海)“0x >”的一个充分非必要条件可以为________;一个必要非充分条件可以为________.【正确答案】2x =(正确答案不唯一) 1x >-(正确答案不唯一)【详细解析】“0x >”的充分非必要条件可以为2x =;一个必要非充分条件可以为1x >-;故正确答案为:2x =(正确答案不唯一);1x >-(正确答案不唯一)19.(2019·全国)(1)“2230x x --=”的______条件是“3x =”;(2)“0a =”的______条件是“0ab =”.【正确答案】充分非必要 必要非充分【详细解析】(1)当“2230x x --=”时,3x =或1x =-,故不能推出“3x =”;当“3x =”时,“2230x x --=”.故“2230x x --=”的充分非必要条件是“3x =”.(2)当“0a =”时,“0ab =”;当“0ab =”时,可能0,0a b ≠=,故不能推出“0a =”.故“0a =”的必要不充分条件是“0ab =”.故填:(1)充分非必要;(2)必要非充分.20.(2020·全国)从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选一个合适的填空.(1)“210x -=”是“||10x -=”的______;(2)“5x <”是“3x <”的_______.【正确答案】充要条件 必要不充分条件【详细解析】(1)设{}2|10{1,1}A x x =-==-,{|||10}{1,1}B x x =-==-,所以A B =,即“210x -=”是“||10x -=”的充要条件.(2)因为由“5x <”不能推出“3x <”;由“3x <”能推出“5x <”;所以“5x <”是“3x <”的必要不充分条件.故正确答案为:( 1)充要条件;( 2)必要不充分条件.21.(2018·浙江镇海中学高二期末)设条件():0p x m m ≤>,:14q x -≤≤,若p 是q 的充分条件,则m 的最大值为____,若p 是q 的必要条件,则m 的最小值为____.【正确答案】1 4【详细解析】 由()0x m m ≤>得:m x m -≤≤ p 是q 的充分条件 14m m -≥-⎧⇒⎨≤⎩01m ⇒<≤ m ∴的最大值为1p 是q 的必要条件 14m m -≤-⎧⇒⎨≥⎩ 4m ⇒≥ m ∴的最小值为4四、参考解答题22.(2020·上海高一课时练习)试判断“10x -≠”是“(1)(3)0x x --≠”的什么条件.【正确答案】必要非充分条件【详细解析】当10x -=时,有(1)(3)0x x --=,可知10(1)(3)0x x x -=⇒--=;当(1)(3)0x x --≠时,一定有10x -≠,故(1)(3)010x x x --≠⇒-≠,即“10x -≠”是“(1)(3)0x x --≠”的必要条件.又当10x -≠时,取3x =,可得(1)(3)0x x --=.所以10(1)(3)0x x x -≠--≠.因此,“10x -≠”是“(1)(3)0x x --≠”的必要非充分条件.23.(2020·上海高一课时练习)设A 是B 的充分非必要条件,B 是C 的充要条件,D 是C 的必要非充分条件,则D 是A 的什么条件?【正确答案】必要非充分条件【详细解析】因为D 是C 的必要非充分条件,所以C D ⇒,D C ⇒/.又因为B 是C 的充要条件即B C ⇔,∴B D ⇒,D B ⇒/.所以D 是B 的必要非充分条件.又因为A 是B 的充分非必要条件即A B ⇒,B A ⇒/,∴A D ⇒.假设D A ⇒,则D A B C ⇒⇒⇒,与D C ⇒/矛盾,∴D A ⇒/.所以D 是A 的必要非充分条件.24.(2020·全国高一课时练习)设U 为全集,,A B 是集合,判断“存在集合C ,使得,U A C B C ⊆⊆”是“A B =∅”的什么条件?【正确答案】充要条件.【详细解析】作图如下:令p :存在集合C ,使,U A C B C ⊆⊆,:q A B ⋂=∅. 由图可知,p q ⇒,反之亦成立,所以“存在集合C ,使,U A C B C ⊆⊆”是“A B =∅”的充要条件.25.(2020·全国高一)设集合{}2|320A x x x =-+=,{}|1B x ax ==,若“x B ∈”是“x A ∈”的充分不必要条件,试求满足条件的实数a 组成的集合. 【正确答案】10,1,2⎧⎫⎨⎬⎩⎭【详细解析】∵{}{}2|3201,2A x x x =-+==, 由于“x B ∈”是“x A ∈”的充分不必要条件.∴B A .当B =∅时,得0a =;当B ≠∅时,由题意得{}1B =或{}2B =.当{}1B =时,得1a =;当{}2B =时,得12a =. 综上所述,实数a 组成的集合是10,1,2⎧⎫⎨⎬⎩⎭.26.(2020·全国高一单元测试)已知集合2{}2|A x a x a =-≤≤+,{|1B x x =≤或4}x ≥. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【正确答案】(1){|11A B x x ⋂=-≤≤或45}x ≤≤;(2)01a <<【详细解析】(1)∵当3a =时,15{|}A x x =-≤≤,{|1B x x =≤或4}x ≥,∴{|11A B x x ⋂=-≤≤或45}x ≤≤;(2)∵{|1B x x =≤或4}x ≥,∴{|14}R B x x =<<, 由“x A ∈”是“R x B ∈”的充分不必要条件得A 是R B 的真子集,且A ≠∅,又{|22}(0)A x a x a a =-≤≤+>,∴21,24,a a ->⎧⎨+<⎩,∴01a <<. 27.(2020·全国高一)已知0ab ≠,求证:1a b +=的充要条件是33220a b ab a b ++-=-.【正确答案】见详细解析【详细解析】(1)证明必要性:因为1a b +=,所以10a b +-=.所以()()()33222222a b ab a b a b a ab b a ab b ++--=+-+--+ ()()221a b a ab b =+--+ 0=.(2)证明充分性:因为33220a b ab a b ++--=,即()()2210a b a ab b +--+=,又0ab ≠,所以0a ≠且0b ≠. 因为22223024b a ab b a b ⎛⎫-+=-+> ⎪⎝⎭, 所以10a b +-=,即1a b +=.综上可得当0ab ≠时,1a b +=的充要条件是33220a b ab a b ++--=.。
新教材 人教版高中英语必修第一册全册课时练习 含答案
人教版高中英语必修第一册全册课时练习Welcome Unit (1)1、Listening and Speaking Reading and Thinking (1)2、Discovering Useful Structures (6)3、Listening and Talking Reading for Writing (14)4、单元要点复习课时作业 (19)Unit1 Teenage Life (26)5、Listening and Speaking Reading and Thinking (26)6、Discovering Useful Structures (31)7、Listening and Talking Reading for Writing (38)8、单元要点复习课时作业 (43)Unit2 Travelling Around (52)9、Listening and Speaking Reading and Thinking (52)10、Discovering Useful Structures (56)11、Listening and Talking Reading for Writing (63)12、单元要点复习课时作业 (69)Unit3 Sports And Fitness (78)13、Listening and Speaking Reading and Thinking (78)14、Discovering Useful Structures (83)15、Listening and Talking Reading for Writing (90)16、单元要点复习课时作业 (96)Unit4 Natural Disasters (103)17、Listening and Speaking Reading and Thinking (103)18、Discovering Useful Structures (108)19、Listening and Talking Reading for Writing (115)20、单元要点复习课时作业 (120)Unit5 Lang Uages Around The Orld (128)21、Listening and Speaking Reading and Thinking (128)22、Discovering Useful Structures (133)23、Listening and Talking Reading for Writing (140)24、单元要点复习课时作业 (146)Welcome Unit1、Listening and Speaking Reading and Thinking[基础检测]Ⅰ.单词拼写1.We will have an opportunity to exchange (交换) views tomorrow.2.We had a(n) anxious (不安的) couple of weeks waiting for the test results.3.It annoyed (使恼怒) him when someone made fun of his bad handwriting.4.He drove at a speed that frightened (吓唬) Lara to death.5.Your performance gave me a strong impression (印象).6.You've put me in an awkward (令人尴尬的)position.7.The goal is to explore (探索) and develop a new health care system.8.He's good at his job but he seems to lack confidence (信心).9.The students assisted the professor in doing the experiment (实验).10.There were so many people talking in the concert hall that I couldn't concentrate (聚精会神) on the music.Ⅱ.单句语法填空1.I will make full use of the chance to exchange views with them.2.I'll give him some rice in exchange for some grapes.3.She arrived just as we were leaving,but I'm not sure whether this was by accident or by design.4.He was annoyed at his lost ID card.5.I'm frightened of walking home alone at midnight.6.What I said made no practical impression on him.7.In the end they reached a place of safety.8.It's unnatural for a mother to leave her child alone to enjoy herself.9.What if she finds out that you have lost her books?10.How beautiful a park it is!11.To their delight,they got what they had been looking forward to.12.We were curious to_know (know) where she'd gone.13.The boys could not take in his meaning.14.Then she took up the task of getting the breakfast.15.After many years of hard work,they achieved their goal in time.[能力提升]Ⅰ.阅读理解Dear Daisy,Phew!I'm so glad the day is over.I'm really tired,but my first day at school went well.First of all,we met outside the school building.I was very nervous because my primary school only had 300 pupils but in the middle school there are about 1,300.What a difference!The older pupils are really big.I felt so small waiting there in front of the school.The head teacher came out and told us to go into the school hall.Then he called our names out to tell us which class we were in.My class teacher is called Mrs Black.She took us to our classroom.It's on the 5th floor.We aren't allowed to use the lift!I couldn't believe it.We spent all morning with Mrs Black looking at our timetables.Everyone in the school had a different timetable.I'm worried that I'll forget my timetable and go to the wrong room.Lunchtime was OK.I had salad,fish and fruit,which was quite good,and then I went to play football with some of the other boys.They were all friendly and I don't think it will take me long to make friends.After lunch we started lessons.I had maths and then history,where we started to learn about ancient Greece.That looked interesting.I have to do some homework tonight to find out how the ancient Greek people lived,so I'm going to do an Internet search and look it up in the library.So far so good.I am quite looking forward to tomorrow,even though I've got science.I hate science!Yours,Jason 文章大意:本文是Jason给Daisy的一封书信。
人教版高中物理必修一补习班假期作业(二)
宝丰一高分校2011届补习班假期作业(二)物 理 试 题 2010.10一、选择题(每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确)。
1、许多科学家在物理学发展过程中做出了重要贡献,下列表述正确的是( )A .牛顿最早指出力不是维持物体运动的原因B .笛卡尔对牛顿第一定律的建立做出了贡献C .伽利略的理想斜面实验能够说明物体具有惯性D .伽利略发现了行星运动的规律2、下列关于自然界中的四种相基本互作用叙述不正确的是 ( )A 、四种基本相互作用指的是万有引力相互作用、电磁相互作用、强相互作用和弱相互作用B 、电磁相互作用随距离变化的规律与万有引力相互作用相似C 、重力、弹力、摩擦力、库仑力、安培力和核力都可归结为这四种基本相互作用D 、弱相互作用的强度是四种相互作用中强度最弱的一种3、质量为m 的物体放在质量为M 、倾角为θ的斜面上,斜面置于粗糙的水平地面上,用平行于斜面的力F 拉物体使其沿斜面向下匀速运动,M 始终静止,则下列说法正确的是( )A.M 相对地面有向右运动的趋势B. 地面对M 的支持力为(M+m )gC. 地面对M 的摩擦力大小为FcosθD.物体m 对M 的作用力的大小为mg4、小车沿水平面做直线运动,小车内光滑底面上有一物块被压缩的弹簧压向左壁,小车向右加速运动。
若小车向右加速度增大,则车左壁受物块的压力F 1和车右壁受弹簧的压力F 2的大小变化是( )A .F 1变大,F 2不变B .F 1不变,F 2变大C .F 1、F 2都变大D .F 1变大,F 2减小5、甲乙两车在某时刻由同一地点沿同一方向开始做直线运动,以该时刻作为计时起点,得到两车的x —t 图象如图,下列说法正确的是( ) A .甲做匀加速直线运动,乙做变加速直线运动B .t 1时刻两车的速度刚好相等tC .t 1时刻乙车从后面追上甲车D .0到t 1 时间内,乙车的平均速度小于甲车的平均速度6、光滑绝缘细杆与水平面成θ角固定,杆上套有一带正电小球。
2019-2020年苏教版高中语文必修一课后辅导练习七十二
2019-2020年苏教版高中语文必修一课后辅导练习七十二第1题【单选题】下列选项中加线字的意义和用法完全相同的一项是( )A、师道之不复,可知矣欲人之无惑也难矣B、择师而教之而耻学于师C、其皆出于此乎生乎吾前D、不拘于时学于余【答案】:【解析】:第2题【单选题】下列词语中划线的字,每对的读音完全不相同的一组是( )A、驽马/弓弩舟楫/作揖爪牙/爪子B、蓝本/篮球枯槁/缟素参省/省悟C、镂空/楼盘骐骥/琪玉中绳/中肯D、锲刻/契约跬步/菜畦假借/假道【答案】:【解析】:第3题【单选题】下列句子中划线词的活用,与其他不同的一项是( )A、则群聚而笑之B、师道之不传也久矣C、句读之不知,惑之不解,或师焉,或不焉D、孔子师郯子、苌弘、师襄、老聃【答案】:【解析】:第4题【单选题】下列各句文学常识的表述,不正确的一项是? ( )A、韩愈,字退之,唐代河南河阳(今河南孟县)人,著名文学家、哲学家、古文运动的倡导者。
因为昌黎(现河北省昌黎县)韩氏是望族,所以后人称韩愈为韩昌黎,后世又称他为韩文公。
B、韩愈和柳宗元一起倡导了古文运动。
古文运动,实际是以复古为名的文风改革运动,主张学习先秦、两汉“言之有物”、“言贵创新”的优秀散文,坚决摒弃只讲形式不重内容华而不实的文风。
C、韩愈的散文,题材广泛,内容深刻,形式多样,语言质朴,气势雄壮,因此后世尊他为唐宋八大家(韩愈、柳宗元、范仲淹、苏询、苏拭、苏辙、曾巩、王安石)之首。
D、“说”是一种议论文的文体,可以先叙后议,也可夹叙夹议。
“说”与“论”相比,随便些。
像《捕蛇者说》《马说》都属“说”一类文体。
“说”,古义为陈述和解说,因而对这类文体,都可按“解说……的道理”来理解。
《师说》意思是解说关于“从师”的道理。
【答案】:【解析】:第5题【单选题】下列与例句句式相同的一项是( )以为凡是州之山水有异态者A、句读之不知B、凌万顷之茫然C、此非孟德之困于周郎者乎D、徘徊于斗牛之间【答案】:【解析】:第6题【单选题】下列划线“生”的意义与例句相同的一项是( ) 例句:积水成渊,蛟龙生焉A、君子生非异也,善假于物也。
高中英语上教版 必修第一册 必修第一册 课后练习、课时练习
一、根据首字母填写单词(单词拼写)1. The policeman asked the witness to give a detailed d________ of what had happened at the scene of the accident. (根据首字母单词拼写)2. Seeing Mr. Smith standing at the school gate, Tom i________ got off the bike. (根据首字母单词拼写)3. It was a u______ achievement — no one has ever won the championship five times before. (根据首字母单词拼写)二、根据汉语意思填写单词(单词拼写)4. The witness gave the police a vivid and full ______ (描述) of the accident. (根据汉语提示单词拼写)5. The artwork for that ________(海报)was done by my sister. (根据汉语提示单词拼写)6. Many scientists blame global warming for the ________(减少) in the penguin population. (根据汉语提示单词拼写)三、根据中英文提示填写单词(单词拼写)7. Tom is a reliable guy with a sense of ________([n.sponsə’bilət]). (根据提示单词拼写)8. D________ (尽管) a weight of up to 300 kg, the bears can run at a speed of 64km/h. (根据中英文提示单词拼写)四、完成句子9. 他不能到那里去的原因是他卧病在床。
【新人教A版必修一】补充习题1
如果认为这种学习只是为了执行学校与老师的规定,只是为了应付有关的考试并取得一个好的成绩, 只是为了混得一张文凭将来找一个高收入的工作,或者只是为了或多或少掌握一些有关的数学知识,那么 即使进了数学科学学院,也必然会对数学学习采取一个被动和应付的态度,学习的效果也必然会受到很大 的影响。因此,这个看来似乎很平凡的问题其实很值得大家认真地想一想。
但是,数学愈发展,不是使事情变得愈来愈复杂,相反,处理问题会变得更简单,人们认识世界与改 造世界的能力也愈来愈扩大,这会使我们愈学愈感到数学的魅力,愈学愈想学。
过去小学六年级的算术课,“鸡兔同笼”是一个顶级的难题,说是将一些鸡和兔放在一个笼子里,例如 说,已知头数=10,足数=28,问鸡多少只?兔多少只?由于鸡只有两只脚,而兔有四只脚,问题就复杂了, 而且算术课的要求是要一步写出答案来,那就难上加难。但到中学学了代数,只要设鸡为 x 只,兔为 y 只, 根据题意列出一个二元一次联立方程式,一下子就可求得问题的解答,这是多么容易啊!
自觉的数量观念。使人会认真注意事物的数量方面及其变化规律,而不是 “胸中无数”,凭感觉、“拍 脑袋”做决定、办事情。
严密的逻辑思维能力。使人能保持思路清晰,条理分明,有条不紊地处理头绪纷繁的各项工作。 高度的抽象思维能力。使人面对错综复杂的现象,能分清主次,抓住主要矛盾,突出事物的本质,按 部就班地、有效地解决问题,而不会无所适从、一筹莫展,或是眉毛、胡子一把抓。 数学上的推导要求每一个正负号、每一个小数点都不能含糊敷衍,有助于培养认真细致、一丝不苟的
离开了数学的支撑,有关的科学已很难取得长足的进步,很多学科(特别是很多自然科学学科)近年 来甚至已经出现了数学化的趋势。 5. 数学是一门重要的科学
人教版高中物理必修一相互作用 补充习题
高中物理学习材料(马鸣风萧萧**整理制作)第三章 相互作用 补充习题A 组1.关于相互作用,下列说法正确的是( )A .地球对较近的月球有引力作用,对遥远的火星则没有引力作用B .原子核中质子和中子能紧密地保持在一起,是因为它们之间存在弱相互作用C .电荷间的相互作用和磁体间的相互作用,本质上是同一种相互作用的不同表现D .强相互作用的作用范围比电磁相互作用的作用范围大2.关于重力,下列说法正确的是( )A .自由下落的石块速度越来越大,说明石块所受的重力越来越大B .抛出的石块轨迹是曲线,说明石块所受的重力方向在改变C .物体受到的重力大小和方向与物体的运动状态无关D .物体所受重力作用于重心处,物体的其他部分不受重力作用3.关于日常生活和生产中摩擦力的应用,下列说法中正确的是( )A .传送带靠摩擦力把货物送到高处B .汽车的轮胎有很多花纹是为了增大摩擦C .工人在把线织成布、布缝成衣的过程中纱线之间的静摩擦力是阻力D .海豚的身体呈流线型减小了水对海豚的阻力4.关于相互接触的两物体之间的弹力和摩擦力,下列说法正确的是( )A .有摩擦力不一定有弹力B .有弹力一定有摩擦力C .摩擦力的大小与弹力大小成正比D .摩擦力和弹力在本质上都是由电磁力引起的5.给物体一初速度0v 后,物体开始在水平面上向右做匀减速直线运动。
关于物体在运动过程中的受力情况,下列说法正确的是( )A .物体受四个力的作周B .物体受到的摩擦力方向向左C .物体受到的摩擦力方向向右D .物体受到的摩擦力大小随物体速度的减小而减小6.两个大小分别为1F 和2F (21F F )的力作用在同一质点上,它们的合力的大小F 满足( )A. 21F F F ≤≤ B .121222F F F F F -+≤≤ C.1212F F F F F -≤≤+ D.222221212F F F F F -≤≤+7.一个质量为m 的物体受到三个共点力1F 、2F 、3F 的作用,这三个力的大小和方向刚好构成如图3-38所示的三角形,则这物体所受的合力是( )A. 12F B .32F C .22F D .08.一个实验小组在“探究弹力和弹簧伸长的关系”的实验中,使用两根不同的轻质弹簧a 和b ,得到弹力与弹簧长度的图象如图3-39所示。
高三暑假补课测验 高一上册课本题.doc
一、选择题(每小题3分,共21分) 1、 如果A ={x|x>-1},那么( )(A )0A ⊆(B ){}0A ∈(C )A ∅∈(D ){}0A ⊆2、 下列说法正确个数有( )①||33x x ≠⇒≠。
②命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题是“a +b 不是偶数,则a 、b 都不是偶数”。
③若有命题p :7≧7,q:ln2>0,则p 且q 是真命题。
④一个命题的否命题为真,它的逆命题一定是真。
⑤{}{}{}111∈、与{}{}{}111⊆、只有一个式子是正确的。
(A )1个(B )2个 (C )3个 (D )4个3、 2210ax x ++=至少有一个负数实根的充要条件是( )(A )01a <≤ (B )a<1 (C)a ≤1 (D) 01a <≤或a<0 4、 已知映射f :M N →使集合N 中元素y=x 2与集合M 中元素x 对应,要使映射f :M N→是一一映射,那么M ,N 可以是( )(A)M =R ,N =R (B)M =R ,N ={y|y ≧0}(C)M={x|x ≧0},N=R (D) M={x|x ≧0}, N ={y|y ≧0}5、 设y=f(x)是奇函数,当x>0时,f(x)=x(1+x),当x<0时,f(x)应该等于( )(A )-x(1-x) (B )x(1-x) (C )-x(1+x) (D )x(1+x)6、 已知a 、c 是符号相同的非零实数,那么b 2=ac 是a 、b 、c 成等比数列的( )(A )充分而不必要条件 (B )充要条件(C )必要而不充分条件 (D )不充分也不必要条件7、 已知数列{a n }的前n 项的和S n =a n-1(a 是不为0的实数),那么{a n }是( )(A )一定是等差数列 (B )一定是等比数列 (C )或者是等差数列,或者是等比数列(D )既不可能是等差数列,也不可能是等比数列 二、填空题(每空3分,共30分)8、 如果全集U =Z ,那么U N =ð 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学必修一期中复习题1.下列除杂方案正确的是(括号内为除杂剂)A.NaOH溶液中混有Ba(OH)2(CuSO4)B.Cu(NO3)2中混有AgNO3(Cu粉)C.CO中混有CO2 (炽热的炭)D.CO2中混有HCl气体(NaOH溶液)2.用容量瓶配制一定物质的量浓度的溶液,该容量瓶必须是A.干燥的 B.瓶塞不漏水的C.用欲配制的溶液润洗过的D.以上三项均须要求的3. 下列关于胶体的说法中正确的是A.胶体外观不均匀B.胶体粒子能通过半透膜C.胶体微粒做不停的无秩序运动D.胶体不稳定,静置后容易产生沉淀4. 在无色透明溶液中,不能大量共存的离子组是A.Cu2+、Na+、SO42-、Cl-B.K+、Na+、HCO3-、NO3-C.OH-、HCO3-、Ca2+、Na+ D.Ba2+、Na+、OH-、NO3-5.下列物质的水溶液能导电,但属于非电解质的是A.HClO B.Cl2C.NaHCO3D.CO26.下列反应中硫酸既表现了氧化性,又表现了酸性的有A.2H2SO4(浓)+Cu CuSO4+2H2O+SO2↑B.2H2SO4(浓)十C CO2↑+2H2O+2SO2↑C.H2SO4(浓)+NaCl NaHSO4+HCl↑D.H2SO4+Na2SO3Na2SO4+H2O+SO2↑7.能用H++OH-=H2O表示的是..A.NaOH溶液和CO2的反应B.Ba(OH)2溶液和稀H2SO4的反应C.NaOH溶液和盐酸反应D.氨水和稀H2SO4的反应8.已知反应①2BrO3-+ Cl2 =Br2 +2ClO3-②5Cl2 + I2 +6H2O=2HIO3 +10HCl③ClO3-+5Cl-+6H+=3Cl2 +3H2O,下列物质氧化能力强弱顺序正确的是A.ClO3->BrO3->IO3->Cl2B.BrO3->Cl2>C1O3->IO3-C.BrO3->ClO3->Cl2>IO3-D.Cl2>BrO3->C1O3->IO3-9.设N A表示阿伏加德罗常数,则下列说法正确的是()A.N A个氢气分子和N A个氯气分子的质量比为1:1。
B.N A个水分子的质量与水的摩尔质量在数值上相等。
C.16g氧气含氧分子数为N A。
D.44gCO2与28gCO所含的分子数均为N A10、体积为VmL,密度为dg/mL的溶液,含有相对分子质量为M的溶质mg,其物质的量浓度为cmol/L,质量分数为w%,下列表达式正确的是(BD)A.c=(w×1000×d)/MB.m=V×d×(w/100)C.w%=(c×M)/(1000×d)%D.c=(1000×m)/(V×M)11、下列叙述中不正确的是A.1摩尔任何物质都约含6.02×1023个原子B.0.012kg12C约含6.02×1023个碳原子C.0.5molH2O含有1mol氢和1mol氧D.物质的量单位是摩尔,用符号mol表示12、某实验小组只领取下列仪器和用品:铁架台、铁圈、铁夹、三脚架、石棉网、烧杯、分液漏斗、酒精灯、玻璃棒、量筒、蒸发皿、圆底烧瓶、火柴,不能进行的实验操作的是A.蒸发B.萃取 D.过滤D蒸馏13、下列叙述正确的是A.氯化钠溶液在电流作用下电离成钠离子和氯离子B.溶于水后电离出氢离子的化合物都是酸C.硫酸钡难溶于水,但硫酸钡是电解质D.二氧化碳的水溶液能导电,故二氧化碳属于电解质14、一定条件下硝酸铵受热分解的化学方程式为5NH4NO3=2HNO3+4N2↑+9H2O,在反应中被氧化与被还原的氮原子数之比是A.5:3B.5:4C.1:1D.3:515、己知氧化还原反应:2Cu(IO3)2+24KI+12H2SO4=2CuI↓+13I2+12K2SO4+12H2O其中1mol氧化剂在反应中得到的电子为A.10molB.11molC.12molD.13mol16.在配制一定物质的量浓度的NaOH溶液时,下列哪个原因会造成所配溶液浓度偏高A.所用NaOH已经潮解B.向容量瓶中加水未到刻度线C.有少量NaOH溶液残留在烧杯里D.称量时误用“左码右物”17.容量瓶上需标有以下六项中的①温度②浓度③容量④压强⑤刻度线⑥酸式或碱式A.①③⑤B.③⑤⑥C.①②④D.②④⑥18.选择萃取剂将碘水中的碘萃取出来,这中萃取剂应具备的性质是A.不溶于水,且必须易与碘发生化学反应B.不溶于水,且比水更容易使碘溶解C.不溶于水,且必须比水密度大D.不溶于水,且必须比水密度小19.用10 mL的0.1 mol·L-1 BaCl2溶液恰好可使相同体积的硫酸铁、硫酸锌和硫酸钾三种溶液中的硫酸根离子完全转化为硫酸钡沉淀,则三种硫酸盐溶液的物质的量浓度之比是A.3∶2∶2 B.1∶2∶3 C.1∶3∶3 D.3∶1∶120.将百分比浓度为a%,物质的量浓度为c1 mol·L-1的稀H2SO4蒸发掉一定量的水,使之质量分数为2a%,此时物质的量浓度为c2 mol·L-1,则c1和c2的数值关系是A.c2=c1B.c2<c1C.c2>2c1D.无法确定21.在常温下20L密闭容器中通入a mol H2、b mol O2(a≤4,b≤4,a、b均为正整数),点燃后充分反应恢复至原温度时,容器内气体(水蒸气忽略不计)密度最大值可能是A.5.6 g·L-1B.9.6 g·L-1C.11.2g·L-1D.56 g·L-122.同温同压下,某容器充满O2重116 g,若充满CO2重122 g,现充满某气体重114 g,则某气体的分子量为A.28 B.60 C.32 D.423.下列反应的离子方程式正确的是A.氨气通入醋酸溶液CH3COOH+NH3 == CH3COONH4B.澄清的石灰水跟盐酸反应H++OH-== H2OC.碳酸钡溶于醋酸BaCO3+2H+ == Ba2++H2O+CO2↑D.金属钠跟水反应2Na+2H2O == 2Na++2OH-+H2↑24.以下说法正确的是A.物质所含元素化合价升高的反应叫还原反应B.在氧化还原反应中,失去电子的元素化合价降低C.物质中某元素失去电子,则此物质是氧化剂D.还原剂中必定有一种元素被氧25.下列说法正确的是A.电解质与非电解质的本质区别,是在水溶液或熔化状态下能否电离B.强电解质与弱电解质的本质区别,是其水溶液导电性的减弱C.酸、碱和盐类都属于电解质,其他化合物都是非电解质D.常见的强酸、强碱和大部分盐都是强电解质,其他化合物都是非电解质26.在无色透明溶液中,不能大量共存的离子组是A.Cu2+、Na+、SO42-、Cl-B.K+、Na+、HCO3-、NO3-C.OH-、HCO3-、Ca2+、Na+ D.Ba2+、Na+、OH-、NO3-27.在强酸性溶液中,下列离子组能大量共存且溶液为无色透明的是A.Na+、K+、OH-、Cl-B.Na+、Cu2+、SO42-、NO3-C.Mg2+、Na+、SO42-、Cl-D.Ba2+、HCO3-、NO3-、K+28.关于氧化剂的叙述正确的是A.分子中不一定含有氧元素B.分子中一定含有氧元素C.在反应中易失电子的物质D.在反应中易结合电子的物质29.制印刷电路时常用氯化铁溶液作为“腐蚀液”。
铜被氯化铁溶液腐蚀的方程式为2FeCl3+Cu=2FeCl2+CuCl2;FeCl3溶液也能与铁反应2FeCl3+Fe=3FeCl2;当向盛有氯化铁溶液的烧杯中同时加入铁粉和铜粉,反应结束后,烧杯底部不可能出现的是A.有铜无铁B.有铁无铜C.有铁有铜D.无铁无铜30.下列反应的离子方程正确的是A.碳酸钠溶液中通入少量氯化氢气体CO32-+2H+CO2↑+H2OB.碳酸铵溶液中加入氢氧化钡溶液SO42-+Ba2+BaSO4↓C.用氨水吸收氯化氢气体NH3·H2O+H+NH4++ H2OD.足量的锌跟硫酸铁反应Zn+2Fe3+Zn2++2Fe2+31.已知反应①2BrO3-+ Cl2 =Br2 +2ClO3-②5Cl2 + I2 +6H2O=2HIO3 +10HCl③ClO3-+5Cl-+6H+=3Cl2 +3H2O,下列物质氧化能力强弱顺序正确的A.ClO3->BrO3->IO3->Cl2B.BrO3->Cl2>C1O3->IO3-C.BrO3->ClO3->Cl2>IO3-D.Cl2>BrO3->C1O3->IO3-二、填空题32.过氧化氢H2O2,(氧的化合价为-1价),俗名双氧水,医疗上利用它有杀菌消毒作用来清洗伤口。
对于下列A~D涉及H2O2的反应,填写空白:A.Na2O2 +2HCl= 2NaCl+H2O2 B.Ag2O+ H2O2=2Ag+O2+ H2OC .2 H 2O 2=2 H 2O+O 2D .3 H 2O 2+Cr 2(SO 4)3+10KOH=2K 2CrO 4+3K 2SO 4+8H 2O(1)H 2O 2仅体现氧化性的反应是(填代号) 。
(2)H 2O 2既体现氧化性又体现还原性的反应是(填代号) 。
(3)H 2O 2体现酸性的反应是(填代号) 。
(4)上述反应说明H 2O 2、Ag 2O 、K 2CrO 4氧化性由强到弱的顺序是:三、实验题34.某溶液中含有Ba 2+,Cu 2+,Ag +,现用NaOH盐酸和Na 2SO 4溶液将这三种离子逐一沉淀分离。
其流程图如右(写出最佳答案)(1)沉淀的化学式:沉淀1 ,沉淀2 ,沉淀3 ;(2)写出混合液+A 的离子方程式;溶液+B 的离子方程式 。
35.实验室制取SO 2的反应原理为: Na 2SO 3+H 2SO 4(浓)===Na 2SO 4+SO 2↑+H 2O SO 2转化为SO 3的转化率:(1)这些装置的连接顺序(按气体左右的方向)是 → → → → → → → (填各接口的编号)。
(2)实验时甲仪器的作用与原理是 作用是使浓硫酸能顺利地滴入烧瓶中;原理是维持烧瓶内压强与分液漏斗内压强相等 。
(4)Ⅳ处观察到的现象是 有无色(或白色)晶体(或固体)生成 。
36、某校化学实验兴趣小组在“探究卤素单质的氧化性”的系列实验中发现:在足量的稀氯化亚铁溶液中,加入1-2滴溴水,振荡后溶液呈黄色。
(1)提出问题:Fe 3+、Br 2谁的氧化性强?(2)猜想:①甲同学认为氧化性:Fe 3+>Br 2,故上述实验现象不是发生化学反应所致,则溶液呈黄色是含 所致。
②乙同学认为氧化性:Br 2> Fe 3+,故上述实验现象是发生化学反应所致,则溶液呈黄色是含 所致。
(3)设计实验并验证1丙同学为验证乙同学的观点,选用下列某些试剂设计出两种方案进行实验,并通过观察实验现象,证明了乙同学的观点确实是正确的。