2021年新人教版数学七年级下人教新课标第5章相交线与平行线同步练习

合集下载

人教版初一数学7年级下册 第5章(相交线与平行线)相交线 同步练习(含答案)

人教版初一数学7年级下册 第5章(相交线与平行线)相交线 同步练习(含答案)

初中数学人教版七年级下册第五章相交线与平行线相交线同步练习一、单选题1.将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A. B. C. D.2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A. 五棱锥B. 五棱柱C. 六棱锥D. 六棱柱3.如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A. 跟B. 百C. 走D. 年4.将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A. B.C. D.5.下列几何体中,其主视图是曲线图形的是()A. B. C. D.6.下列图形中,是圆锥侧面展开图的是()A. 三角形B. 圆C. 扇形D. 矩形7.如图,设点P是直线l外一点,PQ⊥l,垂足为点Q,点T是直线l上的一个动点,连结PT,则()A. PT≥2PQB. PT≤2PQC. PT≥PQD. PT≤PQ8.如图,在ΔABC中,CD是高,CM是中线,点C到AB边的距离是()A. CD的长B. CA的长C. CM的长D. CB的长9.如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A. 两点之间,线段最短B. 在同一平面内,过一点有且只有一条直线与已知直线垂直C. 两点确定一条直线D. 直线外一点与直线上所有点的连线中,垂线段最短10.下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B.C. D.11.如图,直线CD和AB相交于点O,OD平分∠BOF,OE⊥CD于点O,若∠EOF=a,下列说法∶①∠AOC=a-90°;②∠EOB=180°-a③∠AOF=360°-2a ,其中正确的是()A. ①②B. ①③C. ②③D. ①②③12.下列说法正确的个数是()①射线MN与射线NM是同一条射线;②点A到点B的距离是线段AB;③画一条长为3cm的直线;④在同一平面内,过一点有且只有一条直线垂直于已知直线.A. 0个B. 1个C. 2个D. 3个13.下列语句正确的个数是()①直线外一点与直线上各点连接的所有线段中,垂线段最短②两点之间直线最短③在同一平面内,两条不重合的直线位置关系不平行必相交④两点确定一条直线A. 1B. 2C. 3D. 4二、填空题14.如图,要把池中的水引到D处,且使所开渠道最短,可过D点作DC⊥AB于C,然后沿所作的线段DC开渠,所开渠道即最短,试说明设计的依据是:________.15.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=|kx0+b−y0|,例如:点(0,1)到直线1+k2y=2x+6的距离d=|2×0+6−1|=5.据此进一步可得点(2,−1)到直线y=x−4之间的距离为1+22________.16.如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.你能说出这里面的道理吗________.17.已知一次函数y=kx+1−3k,当k变化时,原点到一次函数y=kx+1−3k的图象的最大距离为________.18.如图,点O为直线AB上一点,∠AOC=55∘,过点O作射线使得OD⊥OC,则∠BOD的度数是________.19.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=________.三、综合题20.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿渔具,然后再去河边钓鱼,怎样走路程最短,请画出行走路径,并说明理由.21.如图,已知同一平面内四个点A,B,C,D.(1)同时过A,C,两点能作几条直线?作图并写出理由;(2)在直线AC上画出符合下列条件的点P和Q,并说明理由.①使线段DP长度最小;②使BQ+DQ最小.22.如图,射线OC、OD把AOB分成三个角,且度数之比是∠AOC:∠COD:∠DOB=2:3:4,射线OM平分∠AOC ,射线ON平分∠BOD,且OM⊥ON.(1)求∠COD的度数;(2)求∠AOB的补角的度数.23.已知点直线BC及直线外一点A(如图),按要求完成下列问题:(1)画出射线CA、线段AB.过C点画CD⊥AB,垂足为点D;(2)比较线段CD和线段CA的大小,并说明理由;(3)在以上的图中,互余的角为________,互补的角为________.(各写出一对即可)答案解析部分一、单选题1.【答案】D【解析】【解答】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故答案为:D.【分析】根据图中棱柱展开后,两个三角形的面不可能位于同一侧,再观察各选项,可得答案.2.【答案】A【解析】【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故答案为:A.【分析】根据平面图形的折叠及立体图形的表面展开图的特点解答即可.3.【答案】B【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“百”是相对面,“党”与“年”是相对面,“跟”与“走”是相对面,故答案为:B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点进行解答,即可得出答案.4.【答案】A【解析】【解答】解:根据题意可知只有A符合题意.故答案为:A.【分析】利用长方体的展开图中的141,可得答案.5.【答案】B【解析】【解答】解:A、主视图是三角形,故本选项不符合题意;B、主视图是圆,故本选项符合题意;C、主视图是矩形,故本选项不符合题意;D、主视图是矩形,故本选项不符合题意;故答案为:B.【分析】本题考查立体图形的三视图和直线及曲线的概念,熟练掌握立体图形的三视图是关键。

人教版七年级数学下册第五章 相交线与平行线同步练习(含答案)

人教版七年级数学下册第五章 相交线与平行线同步练习(含答案)

第五章相交线与平行线一、单选题1.如图,直线,a b相交于点O,若130︒∠=()∠=,则2A.150︒B.90︒C.60︒D.30︒2.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.3.如图,点D、E分别为三角形ABC边BC、AC上一点,作射线DE,则下列说法错误的是()A.∠1与∠3是对顶角B.∠2与∠A是同位角C.∠2与∠C是同旁内角D.∠1与∠4是内错角4.下列说法中错误..的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角A .1个B .2个C .3个D .4个5.如图,直线a 、b 都与直线c 相交,给出下列条件:∠∠1=∠2;∠∠3=∠6;∠∠4+∠7=180°;∠∠5+∠8=180°.其中能判断a∠b 的条件是( )A .∠∠B .∠∠C .∠∠∠D .∠∠∠∠ 6.如图,以下说法错误的是( )A .若EADB ∠=∠,则AD BC ∥B .若180EAD D ∠+∠=︒,则AB CD ∥C .若CAD BCA ∠=∠,则AD BC ∥ D .若D EAD ∠=∠,则AB CD ∥ 7.如图,直线AB ∠CD ,CE 平分∠ACD ,交AB 于点E ,∠ACE =20°,点F 在AC 的延长线上,则∠BAF 的度数为( )A .20°B .30°C .40°D .50°8.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )∠//AD BC ;∠B D ∠=∠;∠//AB CD ;∠2180B ∠+∠=︒A .4个B .3个C .2个D .1个9.下列命题中,是真命题的是( )A .互补的角是邻补角B .相等的角是对顶角C .同旁内角互补D .两直线平行,内错角相等10.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2二、填空题11.如图,想过点A建一座桥,搭建方式最短的是垂直于河两岸的AO,理由是_______.12.如图,对于下列条件:∠∠B+∠BCD=180°;∠∠1=∠2;∠∠3=∠4;∠∠D=∠5;其中一定能判定AB∠CD的条件有_____(填写所有正确条件的序号).13.如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是130°,则第二次的拐角∠B是______,根据是______.14.根据图中数据求阴影部分的面积和为_______.三、解答题15.如图,直线AB、CD相交于O点,OM∠AB;(1)若∠1=∠2,求∠NOD;(2)若∠1=14∠BOC,求∠AOC与∠MOD.16.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∠BE证明:∠DF平分∠ADE(已知)∠__________=12∠ADE()∠∠ADE=60°(已知)∠_________________=30°()∠∠1=30°(已知)∠____________________()∠____________________()17.小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零件,工人师傅告诉他:AB∠CD,∠BAE=45°,∠1=60°,小明马上运用已学的数学知识得出∠ECD 的度数.你能求出∠ECD的度数吗?如果能,请写出理由.18.如图,AF ∠DE ,B 为AF 上一点,∠ABC =60°,交ED 于C ,CM 平分∠BCE ,∠MCN =90°.(1)求∠DCN 的度数;(2)若∠CBF 的平分线交CN 于N ,求证:BN ∠CM .19.如图,ABC V 的顶点都在边长为1的正方形方格纸的格点上,将ABC V 向左平移2格,再向上平移4格.(1)在图中画出平移后的三角形A B C '''V ;(2)在图中画出三角形A B C '''V 的高C D ''、中线B E '';(3)图中线段AB 与A B ''的关系是_____;(4)ABC V 的面积是_____答案1.D 2.C 3.D 4.C 5.D 6.B7.C8.A9.D10.B11.垂线段最短12.∠∠13.130°;两直线平行,内错角相等14.815.解:(1)∠OM∠AB∠∠AOM=90°∠∠1+∠AOC=90°∠∠1=∠2∠∠2+∠AOC=90°∠∠CON=90°∠∠NOD=180°-∠CON=90°(2)∠OM∠AB∠∠AOM=∠BOM=90°∠∠1=14∠BOC∠∠1=13∠BOM=30°∠∠AOC=∠AOM-∠1=60°∠∠MOD=180°-∠1=150°16.解:∠DF平分∠ADE,(已知)∠∠EDF=12∠ADE.(角平分线定义)∠∠ADE=60°,(已知)∠∠EDF=30°.(等量代换)∠∠1=30°,(已知)∠∠1=∠EDF,(等量代换)∠DF∠BE,(内错角相等,两直线平行);故答案为:∠EDF,角平分线定义;∠EDF,等量代换;∠1=∠EDF,等量代换;DF∠BE,内错角相等,两直线平行.17.15.ECD∠=o理由:如图,过点E作EF∠AB,∠AB∠CD,∠EF∠AB∠CD,∠45BAE AEF ECD FEC∠=∠=∠=∠o,,∠604515CEF AEC AEF∠=∠-∠=-=o o o,∠15.ECD∠=o18.解:(1)∠AF∠DE,∠ABC=60°,∠∠BCE=180°﹣60°=120°,∠BCD=∠ABC=60°,∠CM平分∠BCE,∠∠MCB=60°,∠∠MCN=90°,∠∠BCN=90°﹣60°=30°,∠∠DCN=60°﹣30°=30°;(2)∠∠ABC=60°,∠∠FBC=120°,∠BN平分∠FBC,∠∠NBC=60°,∠∠BCM=60°,∠∠NBC=∠BCM,∠BN∠CM.19.(1)如图所示;(2)如图所示;(3)∠∠A′B′C′由∠ABC 平移而成, ∠线段AB 与A′B′平行且相等. 故答案为:平行且相等;(4)S ∠ABC=12×4×4=8.故答案为:8。

2021年人教版七年级下册数学 第五章《相交线与平行线》训练卷(含答案)

2021年人教版七年级下册数学 第五章《相交线与平行线》训练卷(含答案)

2021年人教版七年级下册数学 第五章《相交线与平行线》训练卷一、单选题1.下列四个生活、生产现象:①用两枚钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③体育课上,老师测量某同学的跳远成绩;④把弯曲的公路改直,就能缩短路程,其中可用基本事实“两点确定一条直线”来解释的现象有( )A .①②B .①③C .②④D .③④2.将如图所示的图案通过平移后可以得到的图案是( )A .B .C .D .3.如图,点O 在直线AB 上,90COB EOD ∠=∠=°,那么下列说法错误的是()A .1∠与2∠相等B .AOE ∠与2∠互余C .AOD ∠与1∠互补 D .AOE ∠与COD ∠互余4.如图,直线1l 和2l 被直线3l 所截,则( )A .1∠和2∠是同位角B .1∠和2∠是内错角C .1∠和3∠是同位角D .1∠和3∠是内错角5.如图,在下列给出的条件中,能判定//DF AB 的是( )A .∠4=∠3B .∠1=∠AC .∠1=∠4D .∠4+∠2=180°6.下列命题中,是真命题的是( )A .算术平方根等于自身的数只有1B .12×|﹣1|×1是最简二次根式C .只有一个角等于60°的三角形是等边三角形D .三角形内角和等于180度7.如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是()(1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A .1个B .2个C .3个D .4个8.将一副三角板按如图放置,如果230∠=︒,则有4∠是( )A .15°B .30°C .45°D .60°9.如图,直线AB 、CD 相交于点E ,//DF AB .若70D ∠=︒,则CEB ∠等于( )A .70°B .110°C .90°D .120°10.如图a 是长方形纸带,26DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE∠的度数是( )A .102°B .112°C .120°D .128°11.①如图1,AB ∥CD,则∠A +∠E +∠C=180°;②如图2,AB ∥CD,则∠E =∠A +∠C;③如图3,AB ∥CD,则∠A +∠E -∠1=180° ; ④如图4,AB ∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个12.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.15.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.16.将一个含45的三角尺和一把直尺按如图所示摆放,若120∠=︒,则2∠=_______.17.如图,点E 在AB 的延长线上,下列四个条件:①13∠=∠;②24∠∠=;③DAB CBE ∠=∠;④180D BCD ∠+∠=︒.其中能判断//AD CB 的是__________________(填写正确的序号即可).∠=∠=∠=︒,则∠4的度数是___________.18.已知:如图,12354三、解答题19.如图,∠ABC与∠DEF的两边分别交于点M、N.若∠ABC=∠DEF,且AB∥EF.试说明BC∥DE.20.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠BOF=38°.(1)求∠AOC的度数;(2)过点O作射线OG,使∠GOE=∠BOF,求∠FOG的度数.21.如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:∵AD⊥BC,EF⊥BC(已知),∴AD ∥EF (在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2= °(两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠ (同角的补角相等), ∴AB ∥DG ( ),∴∠GDC =∠B ( ).22.如图,已知//BC GE ,//AF DE ,145∠=︒.(1)求AFG ∠的度数;(2)若AQ 平分FAC ∠,交BC 于点Q ,且20Q ∠=︒,求ACB ∠的度数.23.(1)如图a 所示,//AB CD ,且点E 在射线AB 与CD 之间,请说明AEC A C ∠=∠+∠的理由.(2)现在如图b 所示,仍有//AB CD ,但点E 在AB 与CD 的上方,①请尝试探索1∠,2∠,E ∠三者的数量关系.②请说明理由.24.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.25.如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.(3)如图3,AH//BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QM//GR,猜想∠MQN与∠ACB的关系,说明理由.参考答案1.A①②现象可以用两点可以确定一条直线来解释;③现象可以用垂线段最短来解释;④现象可以用两点之间,线段最短来解释.2.B解:根据平移不改变图形的形状、大小和方向,将题目中所示的图案通过平移后可以得到的图案是B ,其它三项皆改变了方向,故错误.3.D∵∠EOD =90°,∠COB =90°,∴∠1+∠DOC =∠2+∠DOC =90°,∴∠1=∠2,∴∠AOE +∠2=90°,即AOE ∠与2∠互余,∵∠2+AOD ∠=180°,∴∠1+AOD ∠=180°,即:AOD ∠与1∠互补,∵∠1+∠AOE =∠1+∠COD ,∴∠AOE =∠COD ,4.C同位角是位于两直线及截线的同侧,内错角是位于两直线内侧及截线两侧,故1∠和3∠是同位角; 故选:C .5.C解:A 、∵∠4=∠3,∴DE ∥AC ,不符合题意;B 、∵∠1=∠A ,∴DE ∥AC ,不符合题意;C 、∵∠1=∠3,∴DF ∥AB ,符合题意;D 、∵∠4+∠2=180°,∴DE ∥AC ,不符合题意;6.D解:选项A 、算术平方根是自身的数有0和1,故该选项不符合题意;B 、12×|-1|×1不是最简二次根式,故该选项不符合题意;C 、只有一个角是60°的三角形不一定是等边三角形,故该选项不符合题意;D 、三角形的内角和等于180度,故该选项符合题意,故选:D .7.B过点E 做直线EF 平行于直线AB ,如下图所示,(1)无法判断;(2)∵AB//CD ,AB//EF∴EF//CD∴70AEF ∠=︒,15DEF ∠=︒∴85AED ∠=︒故(2)正确;(3)由(2)得A CEF CED DEF ∠=∠=∠+∠,DEF D ∠=∠∴A CED D ∠=∠+∠故(3)正确;(4)无法判断;8.C解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,∵230∠=︒,∴∠1=60°,∴∠1=∠E ,∴AC ∥DE ,∴∠4=∠C=45°.故选:C .9.B解:∵//DF AB ,∴70BED D ∠=∠=︒,∵180BED BEC ∠+∠=︒,∴18070110CEB ∠=︒-︒=︒.10.A解:∵AD ∥BC ,∠DEF=26°,∴∠BFE=∠DEF=26°,∴∠EFC=154°(图a ),∴∠BFC=154°-26°=128°(图b ),∴∠CFE=128°-26°=102°(图c ).11.C①如图1,过点E 作EF ∥AB ,因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E 作EF ∥AB ,因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A=∠AEF ,∠C=∠CEF ,所以∠A+∠C=∠AEC+∠AEF=∠AEC ,则②正确;③如图3,过点E 作EF ∥AB ,因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A+∠AEF=180°,∠1=∠CEF ,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确; ④如图4,过点P 作PF ∥AB ,因为AB ∥CD ,所以AB ∥PF ∥CD ,所以∠A=∠APF ,∠C=∠CPF ,所以∠A=∠CPF+∠APC=∠C+∠APC ,则④正确;故选C.12.C过C 作CD ∥AB ,过M 作MN ∥EF ,∵AB ∥EF ,∴AB ∥CD ∥MN ∥EF ,∴α+∠BCD=180°,∠DCM=∠CMN ,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,∴x =∠BCD+∠DCM=180αγβ︒--+,故选:C .13.假;“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,14.(4)(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.15.65︒∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.16.25解:∵AB ∥CD ,∴∠3=∠1=20°,∵三角形是一个含45的三角尺,∴∠2=45°-∠3=25°,故答案为:25.17.②③④解:①∵13∠=∠,∴AB ∥CD ;故①错误;②∵24∠∠=,∴//AD CB ;故②正确;③∵DAB CBE ∠=∠,∴//AD CB ;故③正确;④∵180D BCD ∠+∠=︒,∴//AD CB ;故④正确;18.126°.解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l 1∥l 2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.19.证明:∵AB∥EF,∴∠ABC+∠BNE=180°,又∵∠ABC=∠DEF,∴∠BNE+∠DEF=180°,∴BC∥DE.20.(1)52°;(2)图见解析,26°或102°(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG的度数为26°或102°.21解:∵AD⊥BC,EF⊥BC(已知),∴AD∥ EF(在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2=180°两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠ 3(同角的补角相等),∴AB∥DG(内错角相等,两直线平行),∴∠GDC=∠B(两直线平行,同位角相等).22.解:(1)∵BC∥EG,∴∠E=∠1=45°.∵AF∥DE,∴∠AFG=∠E=45°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠FAM=∠AFG=45°.∵AM∥BC,∴∠QAM=∠Q=20°,∴∠FAQ=∠FAM+∠QAM=65°.∵AQ平分∠FAC,∴∠QAC=∠FAQ=65°,∴∠MAC=∠QAC+∠QAM=85°.∵AM∥BC,∴∠ACB=∠MAC=85°.23.解:(1)过点E作EF∥AB,∴∠A=∠AEF,∵AB∥CD,∴EF∥CD,∴∠FEC=∠C,∵∠AEC=∠AEF+∠FEC,∴∠AEC=∠A+∠C;(2)①∠1+∠2-∠E=180°,②过点E作EF∥AB,∴∠AEF+∠1=180°,∵AB∥CD,∴EF∥CD,∴∠FEC=∠2,即∠CEA+∠AEF=∠2,∴∠AEF=∠2-∠CEA,∴∠2-∠CEA+∠1=180°,即∠1+∠2-∠AEC=180°.24.(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.25.解:(1)∵CE//AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD=12∠ECD,∠HAF=12∠HAD,∴∠F=12∠HAD+12∠ECD=12(∠HAD+∠ECD),∵CH//AB,∴∠ECD=∠B,∵AH//BC,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB .。

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 同步练习(含答案)

人教版初一数学7年级下册 第5章(相交线与平行线)平行线 同步练习(含答案)

5.2 平行线及其判定5.2.1 平行线【笔记】1.两条直线的位置关系:在同一平面内,两条直线的位置关系有 种: 和 , 是相交的一种特殊情况.2.平行线的定义:在同一平面内, 的两条直线叫平行线.如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行.3.平行公理:经过直线外一点,有且只有 直线与已知直线平行.4.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【训练】1.下列生活实例中:①交通道口的斑马线;②天上的彩虹;③体操的纵队;④百米跑道线;⑤火车的平直铁轨线.其中可以抽象成平行线的有()A.1个B.2个C.3个D.4个2.在同一平面内,两条直线可能的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直3.下列说法中,正确的个数有()①在同一平面内,不相交的两条线段必平行②在同一平面内,不相交的两条直线必平行③在同一平面内,不平行的两条线段必相交④在同一平面内,不平行的两条直线必相交A.1个B.2个C.3个D.4个4.下面推理正确的是()A.因为a⊥b,b∥c,所以c∥aB.因为a∥c,b∥d,所以c∥dC.因为a∥b,a∥c,所以b∥cD.因为a⊥b,c⊥b,所以a⊥c5.小明与小刚在讨论数学问题时,有如下对话:小明:过一点A有且只有一条直线与已知直线m平行.小刚:过一点A有且只有一条直线与已知直线m垂直.你认为小明与小刚谁说的是正确的()A.小明正确B.小刚正确C.小明与小刚都正确D.都不正确6.下列说法正确的有()①不相交的两条直线是平行线②两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直③过一点可以而且只可以画一条直线与已知直线平行④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行A.1个B.2个C.3个D.4个7.如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A.4条第7题图B.3条C.2条D.1条8.下列说法中:①过一个点有且只有一条直线与已知直线垂直;②两直线相交成的四个角中,相邻两角的角平分线互相垂直;③三条直线两两相交,总有三个交点;④若a∥b,b∥c,则a∥c;⑤若a⊥b,b⊥c,则a⊥c.其中正确的说法是 .9.在同一平面内的三条直线,它们的交点个数是 .第10题图10.如图所示,若AB∥CD,经过点E可画EF∥AB,则EF与CD的关系是 ,理由是 .11.直线l同侧有A、B、C三点,若A、B两点确定的直线l1与B、C两点确定的直线l2都与l平行,则A、B、C三点 ,其数学理论依据是 . 12.如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字母“M”:(1)请从正面、上面、右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A'B'有何位置关系,CC'与DH有何位置关系?第12题图13.在同一平面内的两条直线a、b,分别根据下列的条件,写出a、b的位置关系:(1)如果它们没有公共点,则 ;(2)如果它们都平行于第三条直线,则 ;(3)如果它们有且只有一个公共点,则 ;(4)过平面内的同一点画它们的平行线,能画出两条,则 ;(5)过平面内的不在a,b上的一点画它们的平行线,只画出一条,则 .14.画图题:第14题图(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH;(2)判断EF、GH的位置关系是 ;(3)连接AC和BC,若每个正方形小方格的边长为1,则△ABC的面积是 .∠COB,求∠AOC的度数.15.如图,AO∥CD,BO∥CD,且∠AOC=12第15题图16.如图,在四边形ABCD中,AD∥BC,P是AB的中点,过点P作AD的平行线交DC于点Q.(1)画出线段PQ,PQ与BC平行吗?为什么?(2)测量DQ和CQ是否相等?第16题图(AD+BC)=PQ是否成立?(3)通过测量判断1217.如图所示,在∠AOB的内部有一点P.(1)以P为顶点,作∠P,使它的两边分别与∠AOB的两边平行,画出所有可能的情形;(2)用量角器测量,比较∠AOB与∠P的数量关系.第17题图参考答案5.2 平行线及其判定5.2.1 平行线【笔记】1.2 相交 平行 垂直2.不相交3.一条【训练】1.D2.C3.B4.C5.D6.B7.B8.②④ 9.0或1或2或310.EF ∥CD 平行于同一条直线的两条直线互相平行11.共线 过直线外一点,有且只有一条直线与已知直线平行12.(1)GN ∥DH ,A'A ∥BB',D'D ∥RH (答案不唯一)(2)EF ∥A'B',CC'⊥DH13.(1)平行 (2)平行 (3)相交 (4)相交 (5)平行14.(1)略 (2)EF ⊥GH (3)1015.∵AO ∥CD ,BO ∥CD ,由经过直线外一点有且只有一条直线与已知直线平行,可知AOB 是一条直线,即∠AOB 是平角,又∵∠AOC =12∠COB ,∴∠AOC =13∠AOB =13×180°=60°.16.(1)画图略,平行;因为它们都与AD 平行(2)相等 (3)成立17.(1)如下图所示:第17题图(2)相等或互补.。

人教版初中数学七年级下册第五章《相交线》同步练习(含答案)

人教版初中数学七年级下册第五章《相交线》同步练习(含答案)

《相交线与平行线》同步练习一、选择题(每小题只有一个正确答案)1.下列语句中,指的是对顶角的是( )A.有公共顶点并且相等的两个角 B.有公共顶点的两个角C.角的两边互为反向延长线的两个角 D.两直线相交所成的两个角2.如图1,直线AB CD EF ,,相交于点O ,且AB CD ⊥,若70BOE ∠,则DOF ∠的度数为( )A.10 B.20C.30 D.403.已知直线a b c ,,在同一平面内,则下列说法错误的是( )A.如果a b ∥,b c ∥,那么a c ∥ B.如果a b ⊥,c d ⊥,那么a c ∥ C.如果a 与b 相交, 那么a b ∥ D .如果a b ⊥,,a c ∥,那么b c ∥4.如图,已知∠1=∠2=∠3=∠4,则图形中平行的是( )A .AB ∥CD ∥EF;B .CD ∥EF;C .AB ∥EF;D .AB ∥CD ∥EF ,BC ∥DE5.如图,已知∠1=∠2,则在结论:(1)∠3=∠4,(2)AB ∥CD ,(3)AD ∥BC 中 ( )A .三个都正确B .只有一个正确;C .三个都不正确D .只有一个不正确6.如图,在△ABC 中,D 、E 、F 分别在AB 、BC 、AC 上,且EF ∥AB ,要使DF ∥BC ,只需再有下列条件中的( )A ∠1=∠2B .∠EFD=∠ADEC .∠AFD=∠2D .都不正确7.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A 、18°B 、126C 、18°或126°D 、以上都不对8.P 为直线l 上的一点,Q 为l 外一点,下列说法不正确的是( )A 、过P 可画直线垂直于lB 、过Q 可画直线l 的垂线C 、连结PQ 使PQ ⊥lD 、过Q 可画直线与l 垂直9.下列关系中,互相垂直的两条直线是( )A 、互为对顶角的两角的平分线B.互为补角的两角的平分线C 、两直线相交所成的四个角中相邻两角的角平分线D 、相邻两角的角平分线10.如图,AB ⊥BC ,BC ⊥CD ,∠EBC=∠BCF ,那么∠ABE 与∠DCF 的位置和大小关系是( )A 、是同位角且相等B 、不是同位角但相等C 、是同位角但不等D 、不是同位角也不等二、 填空题1.如图4,已知三条直线AB CD EF ,,两两相交于点P Q R ,,,则图中邻补角有____对,对顶角有____对(平角除外).2.图5,90AOC = ∠,45BOC =∠,OD 平分AOB ∠,则AOD ∠的度数为____,COD ∠的度数为____.3.定点P 在直线AB 外,动点O 在直线AB 上移动,当PO 最短时,∠POA=_______,这时线段PO 所在的直线是AB 的___________,线段PO 叫做直线AB 的______________。

2021-2022学年人教版七年级数学下册《第5章相交线与平行线》同步单元测试题(附答案)

2021-2022学年人教版七年级数学下册《第5章相交线与平行线》同步单元测试题(附答案)

2021-2022学年人教版七年级数学下册《第5章相交线与平行线》同步单元测试题(附答案)一、单选题(共10小题,满分40分)1.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°2.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠33.如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度4.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°5.如图,已知l1∥AB,AC为角平分线,下列说法错误的是()A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠36.如图所示,以下几种说法,其中正确的个数是()①∠3和∠4是同位角;②∠6和∠7是同位角;③∠4和∠5是内错角;④∠2和∠5是同旁内角;⑤∠2和∠7是同位角;⑥∠1和∠2是同位角.A.3个B.4个C.5个D.6个7.如图,在6×6方格中有两个涂有阴影的图形M、N,每个小正方形的边长都是1个单位长度,图①中的图形M平移后位置如图②所示,以下对图形M的平移方法叙述正确的是()A.先向右平移2个单位长度,再向下平移3个单位长度B.先向右平移1个单位长度,再向下平移3个单位长度C.先向右平移1个单位长度,再向下平移4个单位长度D.先向右平移2个单位长度,再向下平移4个单位长度8.下列命题不正确的是()A.若两相等的角有一边平行,则另一边也互相平行B.两条直线相交,所成的两组对顶角的平分线互相垂直C.两条平行线被第三条直线所截,同旁内角的平分线互相垂直D.经过直线外一点,有且只有一条直线与已知直线平行9.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为()A.115°B.120°C.125°D.130°10.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°二、填空题(共7小题,满分35分)11.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.12.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)13.如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=.14.如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=度.15.写出一个能说明命题“若|a|>|b|,则a>b”是假命题的反例.16.如图,若∠1=∠2,∠ADC=78°,则∠BCD的度数是.17.如图,将△ABE向右平移2cm得到△DCF,AE、DC交于点G.如果△ABE的周长是16cm,那么△ADG与△CEG的周长之和是cm.三、解答题(共6小题,满分45分)18.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.19.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.20.如图是从一个边长为50cm的正方形材料中裁出的一块垫片,现测得BC=DC=50cm,FG=16cm,求这个垫片的周长.21.如图,已知:EF⊥AC,垂足为点F,DM⊥AC,垂足为点M,DM的延长线交AB于点B,且∠1=∠C,点N在AD上,且∠2=∠3,试说明AB∥MN.22.如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若AF平分∠BAD,试说明:①∠BAD=2∠F;②∠E+∠F=90°注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.解:(1)AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠,()∴AD∥BC(2)AB与EF的位置关系是:.∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠.()∴∥.()23.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?参考答案一、单选题(共10小题,满分40分)1.解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.2.解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.3.解:点C到边AB所在直线的距离是点C到直线AB的垂线段的长度,而CD是点C到直线AB的垂线段,故选:C.4.解:∵∠B=90°,∠A=30°,∴∠ACB=60°.∵∠EDF=90°,∠F=45°,∴∠DEF=45°.∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.故选:A.5.解:∵l1∥AB,∴∠2=∠4,∠3=∠2,∠5=∠1+∠2,∵AC为角平分线,∴∠1=∠2=∠4=∠3,∠5=2∠1.故选:B.6.解:①由同位角的概念可知,∠3和∠4是同位角,故本选项正确;②由同位角的概念可知,∠6和∠7不是同位角,故本选项错误;③由内错角的概念可知,∠4和∠5是内错角,故本选项正确;④由同旁内角的概念可知,∠2和∠5是同旁内角,故本选项正确;⑤由同位角的概念可知,∠2和∠7不是同位角,故本选项错误;⑥由同位角的概念可知,∠1和∠2是同位角,故本选项正确;则正确的个数有4个;故选:B.7.解:观察图象可知由图形①变成图形②,把图M先向右平移1个单位长度,再向下平移3个单位长度得到.故选:B.8.解:A、若两相等的角有一边平行,则另一边也互相平行或者相交,所以说法错误;B、两条直线相交,所成的两组对顶角的平分线互相垂直,正确;C、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,正确;D、经过直线外一点,有且只有一条直线与已知直线平行,正确,故选:A.9.解:Rt△ABE中,∠ABE=20°,∴∠AEB=70°;由折叠的性质知:∠BEF=∠DEF;而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°;易知∠EBC′=∠D=∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′=180°﹣∠BEF=125°.故选:C.10.解:如图所示,过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°,又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴四边形BEDF中,∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选:D.二、填空题(共7小题,满分35分)11.解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.12.解:若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)13.解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵DE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.14.解:∵∠AOB=40°,OP平分∠AOB,∴∠AOC=∠BOC=20°,又∵CD⊥OA于点D,CE∥OB,∴∠DCP=90°+20°=110°,∠PCE=∠POB=20°,∴∠DCE=∠DCP+∠PCE=110°+20°=130°,故答案为:130.15.解:因为a=﹣5,b=1时,满足|a|>|b|,不满足a>b,所以a=﹣5,b=1可作为说明命题“若|a|>|b|,则a>b”是假命题的反例.故答案为a=﹣5,b=1.16.解:∵∠1=∠2,∴AD∥BC,∴∠BCD+∠ADC=180°,又∵∠ADC=78°,∴∠BCD=(180﹣78)o=102°.故答案是:102°.17.解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴△ADG与△CEG的周长之和=AD+CE+CD+AE=BE+AB+AE=16,故答案为:16;三、解答题(共6小题,满分45分)18.解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.19.证明一:∵∠A=∠1,∴AE∥BF,∴∠2=∠E.∵CE∥DF,∴∠2=∠F,∴∠E=∠F.证明二:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.20.解:如图所示:这块垫片的周长为:50×4+FG+NH=200+16×2=232(cm).21.证明:∵EF⊥AC,DM⊥AC,∴∠CFE=∠CMD=90°(垂直定义),∴EF∥DM(同位角相等,两直线平行),∴∠3=∠CDM(两直线平行,同位角相等),∵∠3=∠2(已知),∴∠2=∠CDM(等量代换),∴MN∥CD(内错角相等,两直线平行),∴∠AMN=∠C(两直线平行,同位角相等),∵∠1=∠C(已知),∴∠1=∠AMN(等量代换),∴AB∥MN(内错角相等,两直线平行).22.(1)解:结论:AD∥BC.理由如下:∵∠ADE+∠ADF=180°,(平角的定义)∠ADE+∠BCF=180°,(已知)∴∠ADF=∠BCF,(同角的补角相等)∴AD∥BC(2)解:结论:AB与EF的位置关系是:AB∥EF,∵BE平分∠ABC,(已知)∴∠ABE=∠ABC.(角平分线的定义)又∵∠ABC=2∠E,(已知),即∠E=∠ABC,∴∠E=∠ABE.(等量代换)∴AB∥EF.(内错角相等,两直线平行)故答案为BCF,同角的补角相等,AB∥EF,ABE,等量代换,AB,EF,内错角相等,两直线平行.(3)证明:①∵AB∥EF,∴∠BAF=∠F,∵∠BAD=2∠BAF,∴∠BAD=2∠F.②∵AD∥BC,∴∠DAB+∠CBA=180°,∵∠OAB=DAB,∠OBA=∠CBA,∴∠OAB+∠OBA=90°,∴∠EOF=∠AOB=90°,∴∠E+∠F=90°.23.解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);而∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);而∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α;(3)从(1)(2)的结果中能看出∠AOE=2∠BOD.。

精品解析2021-2022学年人教版七年级数学下册第五章相交线与平行线同步练习试题(含解析)

精品解析2021-2022学年人教版七年级数学下册第五章相交线与平行线同步练习试题(含解析)

七年级数学下册第五章相交线与平行线同步练习(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列命题是假命题的有()①在同一个平面内,不相交的两条直线必平行;②内错角相等;③相等的角是对顶角;④两条平行线被第三条直线所截,所得同位角相等.A.4个B.3个C.2个D.1个2、下列语句中,正确的有()①一条直线的垂线只有一条;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直;③两直线相交,则交点叫垂足;④互相垂直的两条直线形成的四个角一定都是直角.A.0个B.1个C.2个D.3个3、下列命题是真命题的是()A.等边对等角B.周长相等的两个等腰三角形全等C .等腰三角形的角平分线、中线和高线互相重合D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等4、可以用来说明“若22a b =,则a b =.”是假命题的反例是( )A .1,2a b =-=B .2,2a b ==C .2,2a b =-=D .4,3a b ==5、直线AB 、BC 、CD 、EG 如图所示.若∠1=∠2,则下列结论错误的是( )A .AB ∥CD B .∠EFB =∠3C .∠4=∠5D .∠3=∠56、如图,直线被所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④7、有以下命题:①同位角相等,两直线平行;②对顶角相等;③若a b =,则a b =;④若0a >,0b >,则0ba >.它们的逆命题是真命题的有( ).A .①③B .②④C .②③D .①④ 8、在下列各题中,属于尺规作图的是( )A .用直尺画一工件边缘的垂线B .用直尺和三角板画平行线C .利用三角板画45︒的角D .用圆规在已知直线上截取一条线段等于已知线段9、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A .0个B .1个C .2个D .3个 10、如图,下列条件中,不能判断1l ∥2l 的是( )A .∠1=∠3B .∠2=∠4C .∠4+∠5=180°D .∠3=∠4二、填空题(5小题,每小题4分,共计20分)1、已知:如图,在三角形ABC 中,CD AB ⊥于点D ,连接DE ,当1290∠+∠=︒时,求证:DE ∥BC . 证明:∵CD AB ⊥(已知),∴90ADC ∠=︒(垂直的定义).∴1∠+________90=︒,∵1290∠+∠=︒(已知),∴________2=∠(依据1:________),∴∥DE BC (依据2:________).2、两条射线或线段平行,是指_______________________.3、如图,直线AB 与CD 被直线AC 所截得的内错角是 ___.4、如图,AE BC ∥,45BDA ∠=︒,30C ∠=︒,则∠CAD 的度数为____________.5、如图,直线AB 、CD 相交于点O ,∠AOD +∠BOC =240°,则∠BOC 的度数为__________°.三、解答题(5小题,每小题10分,共计50分)1、已知直线AB 和CD 交于点O ,∠AOC =α,∠BOE =90°,OF 平分∠AOD .(1)当α=30°时,则∠EOC =_________°;∠FOD =_________°.(2)当α=60°时,射线OE ′从OE 开始以12°/秒的速度绕点O 逆时针转动,同时射线OF ′从OF 开始以8°/秒的速度绕点O 顺时针转动,当射线OE ′转动一周时射线OF ′也停止转动,求经过多少秒射线OE ′与射线OF ′第一次重合?(3)在(2)的条件下,射线OE ′在转动一周的过程中,当∠E ′OF ′=90°时,请直接写出射线OE ′转动的时间为_________秒.2、写出下列命题的逆命题,并判断它是真命题还是假命题.(1)若22>,则a b>.ac bc(2)角平分线上的点到这个角的两边距离相等.(3)若0a=.ab=,则03、已知点O为直线AB上一点,将直角三角板MON按如图所示放置,且直角顶点在O处,在MON∠内部作射线OC,且OC恰好平分BOM∠.(1)若24∠的度数;CON∠=︒,求AOM(2)若2∠的度数.BON CON∠=∠,求AOM4、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON 的度数为°;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为°;∠AOM﹣∠CON的度数为°5、如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.---------参考答案-----------一、单选题1、C根据平面内两条直线的位置关系:平行,相交,可判断①,根据两直线平行,内错角相等可判断②,根据对顶角的定义:有公共的顶点,角的两边互为反向延长线可判断③,由两直线平行,同位角相等可判断④,从而可得答案.【详解】解:在同一个平面内,不相交的两条直线必平行;原命题是真命题,故①不符合题意;两直线平行,内错角相等;原命题是假命题;故②符合题意;相等的角不一定是对顶角;原命题是假命题;故③符合题意;两条平行线被第三条直线所截,所得同位角相等;原命题是真命题,故④不符合题意;故选C【点睛】本题考查的是真假命题的判断,同时考查平面内两条直线的位置关系,平行线的性质,对顶角的定义,掌握“判断真假命题的方法”是解本题的关键.2、C【分析】根据垂线的性质和定义进行分析即可.【详解】解:①一条直线的垂线只有一条,说法错误;②在同一平面内,过直线上一点有且仅有一条直线与已知直线垂直,说法正确;③两条直线相交,则交点叫垂足,说法错误;④互相垂直的两条直线形成的四个角一定是直角,说法正确.正确的共有2个;故选:C.此题主要考查垂线的性质和定义以及真假命题的判断.3、D【分析】根据三角形的边角关系对A 进行判断;根据全等三角形的判定方法对B 进行判断;根据等腰三角形的性质对C 进行判断;利用三角形全等可对D 进行判断.【详解】解:A 、在一个三角形中,等边对等角,所以A 选项错误;B 、周长相等的两个等腰三角形不一定全等,所以B 选项错误;C 、等腰三角形的顶角的平分线、底边上的中线和底边上的高线互相重合,所以C 选项错误;D 、三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D 选项正确.故选:D .【点睛】本题主要考查了命题真假判断,结合全等三角形的判定,三角形的边角关系,等腰三角形的性质进行证明是解题的关键.4、C【分析】若22a b =,则包括a b =或a b =-,由此分析即可.【详解】解:∵22a b =,∴a b =或a b =-,∴反例可为2,2a b =-=,故选:C .本题考查命题的判断,以及等式的性质,掌握举例证明命题真假的方法以及等式的性质是解题关键.5、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.6、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③B与4∠是同位角,说法正确;④1∠与3∠是内错角,说法正确,故选:D .【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F ” 形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.7、A【分析】把一个命题的条件和结论互换就得到它的逆命题,再根据课本中的性质定理进行判断,即可得出答案.【详解】解:①同位角相等,两直线平行的逆命题是两直线平行,同位角相等,成立;②对顶角相等的逆命题是相等的角是对顶角,错误; ③若a b =,则a b =的逆命题是若a =b ,则|a |=|b |,正确;④若0a >,0b >,则0ba >的逆命题是若0b a >,则0a >,0b >或0a <,0b <,故错误;故选:A .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.8、D【分析】根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.【详解】解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;故选D.【点睛】本题主要考查了尺规作图的定义,解题的关键在于熟知定义.9、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B .【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.10、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:A 、13∠=∠,内错角相等,12//l l ∴,故本选项错误,不符合题意;B 、24∠∠=,同位角相等,12//l l ∴,故本选项错误,不符合题意;C 、45180∠+∠=︒,同旁内角互补,12//l l ∴,故本选项错误,不符合题意;D 、34∠∠=,它们不是内错角或同位角,1l ∴与2l 的关系无法判定,故本选项正确,符合题意.故选:D .【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.二、填空题1、 EDC ∠ EDC ∠ 同角的余角相等 内错角相等,两直线平行【解析】【分析】根据垂直的定义及平行线的判定定理即可填空.【详解】∵CD AB ⊥(已知),∴90ADC ∠=︒(垂直的定义).∴1∠+EDC ∠90=︒,∵1290∠+∠=︒(已知),∴EDC ∠2=∠(同角的余角相等),∴//DE BC (内错角相等,两直线平行).故答案为:EDC ∠;EDC ∠;同角的余角相等;内错角相等,两直线平行.【点睛】此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.2、射线或线段所在的直线平行【解析】【分析】根据直线、线段、射线的关系以及平行线的知识进行解答.【详解】解:两条射线或线段平行,是指:射线或线段所在的直线平行,故答案为:射线或线段所在的直线平行.【点睛】本题考查了直线、线段、射线以及平行线的问题,本题是对基础知识的考查,记忆时一定要注意公理或定义、性质成立的前提条件.3、∠2与∠4【解析】【分析】根据内错角的特点即可求解.【详解】由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.4、15︒【解析】【分析】根据两直线平行内错角相等可得45∠=∠=︒,30BDA DAE∠=∠=︒,再根据角之间的关系即可求出C CAE∠的度数.CAD【详解】解:∵AE∥BC,45BDA∠=︒,30C∠=︒∴45BDA DAE∠=∠=︒,30C CAE∠=∠=︒∴15CAD DAE CAE∠=∠-∠=︒故答案为:15︒【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.5、120【解析】【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,∴∠BOC=120°.故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.三、解答题1、(1)60,75;(2)152秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据60α=︒,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.解:(1)∵∠BOE =90°,∴∠AOE =90°,∵∠AOC=α=30°,∴∠EOC =90°-30°=60°,∠AOD =180°-30°=150°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =12×150°=75°;故答案为:60,75;(2)当60α=︒,9060150EOF ∠=︒+︒=︒.设当射线OE '与射线OF '重合时至少需要t 秒,可得128150t t +=,解得:152t =; 答:当射线OE '与射线OF '重合时至少需要152秒; (3)设射线OE '转动的时间为t 秒,由题意得:12815090t t +=-或12815090t t +=+或81236015090t t +=+-或12836015090t t +=++, 解得:3t =或12或21或30.答:射线OE '转动的时间为3或12或21或30秒.【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.2、(1)逆命题为:若a b >,则22ac bc >,假命题;(2)逆命题为:到角的两边距离相等的点在这个角的平分线上,真命题;(3)逆命题为:若0a =,则0ab =,真命题.【分析】分析命题的条件与结论,然后交换条件与结论即可写出逆命题,最后进行判断真假即可.解:(1)逆命题为:若a b >,则22ac bc >;它是假命题;如0c ,22ac bc =;(2)逆命题为:到角的两边距离相等的点在这个角的平分线上;它是真命题;(3)逆命题为:若0a =,则0ab =;它是真命题.【点睛】本题考查了逆命题、真假命题,解题的关键熟练掌握命题和逆命题之间的关系.3、(1)48°;(2)45°.【分析】(1)先根据余角的定义求出∠MOC ,再根据角平分线的定义求出∠BOM ,然后根据∠AOM =180°-∠BOM 计算即可;(2)根据角的倍分关系以及角平分线的定义即可求解;【详解】解:(1)∵∠MON =90°,∠CON =24°,∴∠MOC =90°-∠CON =66°,∵OC 平分∠MOB ,∴∠BOM =2∠MOC =132°,∴∠AOM =180°-∠BOM =48°;(2)∵∠BON =2∠NOC ,OC 平分∠MOB ,∴∠MOC =∠BOC =3∠NOC ,∵∠MOC +∠NOC =∠MON =90°,∴3∠NOC +∠NOC =90°,∴4∠NOC =90°,∴∠BON =2∠NOC=45°,∴∠AOM =180°-∠MON -∠BON =180°-90°-45°=45°;【点睛】本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.4、(1)120;150;(2)30°;(3)30,=;(4)150;30.【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∠BOC=60°,∴∠BOM=12又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.5、12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),∴∠1+∠2=90°.故答案为:12∠ABC;角平分线的定义;12∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.。

2020-2021学年七年级数学人教版下册第五章5.1.1《相交线》同步练习

2020-2021学年七年级数学人教版下册第五章5.1.1《相交线》同步练习

人教版数学七年级下册第五章《相交线与平行线》5.1.1《相交线》同步练习一、选择题1.如图所示,∠1和∠2是对顶角的图形有()个A 1个B 2个C 3个D 4个2.邻补角是()A 和为180°的两个角B 有公共顶点且互补的两个角C 有一条公共边相等的两个角D 有公共顶点且有一条公共边,另一边互为反向延长线的两个角3.如图,直线AB,CD相交于点O,所形成的∠1、∠2、∠3和∠4中,一定相等的角有( ) A.0对B.1对C.2对D.4对4.如图,直线AB,CD相交于点O,若∠1+80°=∠BOC,则∠BOC等于( )A.130°B.140°C.150°D.160°5.如图所示,三条直线AB、CD、EF相交于一点O,则∠AOE+∠DOB+∠COF等于()A. 150°B. 180°C. 210°D. 120°第5题图第6题图6.如图,直线AB,CD交于点O.射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142° D.144°二、填空题7.如图,点A,O,B在同一直线上,已知∠BOC=50°,则∠AOC=_______________.8.如图是一把剪刀,其中∠1=40°,则∠2= _____,其理由是______________9.如图,A、B、O在同一条直线上,如果OA的方向是北偏西24030',那么OB的方向是东偏南.第9题图第10题图10.如图所示,其中共有________对对顶角. 11. 三条直线两两相交,则交点有_________个.12.如图,直线AB、CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=.三、解答题13.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数.14.如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,求∠BOD的度数.15.如图所示,l1,l2,l3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章《相交线与平行线》习题精讲精析
提要:本章的考查重点是垂线的概念与平行线的性质和判定.本章的难点则是推理证明的引入,这也是几何入门难的难点之一.因为以前没接触过逻辑推理,对于为什么要推理和怎样进行推理很陌生,不知道应由什么,根据什么,推出什么.不容易分清“判定”与“性质”有什么本质区别.解决以上教学难点的关键是按照本部分知识的安排,循序渐进地去了解与掌握推理论证,要求会进行一二步推理,会写一些简单命题的已知、求证.
习题
一、填空题
1.a 、b 、c 是直线,且a ∥b ,b ⊥c ,则a 与c 的位置关系是________.
2.如图5-1,MN ⊥AB ,垂足为M 点,MN 交CD 于N ,过M 点作MG ⊥CD ,垂足为G ,EF 过点N 点,且EF ∥AB ,交MG 于H 点,其中线段GM 的长度是________到________的距离, 线段MN 的长度是________到________的距离,又是_______的距离,点N 到直线MG 的距离是___.
3.如图5-2,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.
4.因为AB ∥CD ,EF ∥AB ,根据_________,所以_____________. 5.命题“等角的补角相等”的题设__________,结论是__________. 6.如图5-3,给出下列论断:①AD ∥BC :②AB ∥CD ;③∠A =∠C .
以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.
G H N
M F E
D
C B A F
E
O
D
C
B
A 图5-1 图5-2
D
C B
A
F
E
O D C
B
A
c
l
N
M
b a
2
1
图5-3 图5-4 图5-5
7.如图5-4,直线AB 、CD 、EF 相交于同一点O ,而且∠B O C=23∠AOC ,∠DOF =1
3
∠AOD ,那么∠FOC =_____ _ 度.
8.如图5-5,直线a 、b 被c 所截,a ⊥l 于M ,b ⊥l 于N ,∠1=66°,则∠2=________. 9.如图5-6,∠ACB =90°,CD ⊥AB ,则图中与∠A 互余的角有 个,它们分别是 .∠A =∠ ,根据是 .
10.如图5-7,一棵小树生长时与地面所成的角为80°,它的根深入泥土,如果根和小树在
同一条直线上,那么∠2等于 °.
11.如图5-8,量得∠1=80°,∠2=80°,由此可以判定 ∥ ,它的根据是 .
量得∠3=100°,∠4=100°,由此可以判定 ∥ ,它的根据是 .
12.猜谜语:(打本章两个几何名称)剩下十分钱: ;斗牛 . 13.a 、b 、c 是直线,且a ∥b , b ∥c , 则a ___c ; a 、b 、c 是直线,且a ⊥b , b ⊥c , 则a ___c ;
14. 如图5-9,直线AD 、BC 交于O 点,∠+∠=︒AOB COD 110,则∠COD 的度数为 .
15. 如图5-10,直线AB 与CD 交于O 点,∠-∠=︒3180,则∠2= .
16. 如图5-11,直线AB 、EF 相交于O 点,CD AB ⊥于O 点,∠=︒'EOD 12819,则
∠∠BOF AOF ,的度数分别为 .
二、选择题
17.若a ⊥b ,c ⊥d 则a 与c 的关系是( )
A .平行
B .垂直
C .相交
D .以上都不对 18.如图5-12,∠AD
E 和∠CED 是( )
A .同位角
B .内错角
C .同旁内角
D .互为补角 19.如图5-13,l l 1211052140//,,∠=∠=
,则∠=α( ) A . 55
B . 60
C . 65
D . 70
20.如图5-14,能与∠α构成同旁内角的角有( ) A . 5个 B .4个 C . 3个 D . 2个
21.如图5-15,已知AB CD //,∠α等于( ) A .
75
B . 80
C . 85
D . 95
A
B 120°
α25°
C D B
M
C
A N P D
22.如图5-16,AB CD MP AB MN ////,,平分∠∠=∠=AMD A D ,,4030
,则
∠NMP 等于( )
A . 10
B . 15
C . 5
D . 75.
23.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30
,那么这两个角是( )
图5-13 图5-15 图5-16
A . 42138

B . 都是10
C . 42138
、或4210

D . 以上都不对
24.如图5-17,a ∥b ,∠1与∠2互余,∠3=1150,则∠4等于( )
A .1150
B . 1550
C . 1350
D .1250
25.如图5-18,∠1=150 , ∠AOC =900
,点B 、O 、D 在同一直线上,则∠2的度数为( )
A .750
B .150
C .1050
D . 1650
26.如图5-19,能表示点到直线(或线段)距离的线段有( )
A . 2条
B .3条
C .4条
D .5条 27.下列语句错误的是( )
A .连接两点的线段的长度叫做两点间的距离
B .两条直线平行,同旁内角互补
C .若两个角有公共顶点且有一条公共边,和等于平角, 则这两个角为邻补角
D .平移变换中,各组对应点连成两线段平行且相等
28.如图5-20,如果AB ∥CD ,那么图中相等的内错角是( )
A .∠1与∠5,∠2与∠6;
B .∠3与∠7,∠4与∠8;
C .∠5与∠1,∠4与∠8;
D .∠2与∠6,∠7与∠3
29.下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被
第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )
A .①、②是正确的命题
B .②、③是正确命题
C .①、③是正确命题
D .以上结论皆错
30.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行;②一条直
线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( ) A .3个 B .2个 C .1个 D .0个 三、解答题
31.如图5-21,过P 点,画出OA 、OB 的垂线.
d
第(18)题4
321
c
b
a 第(20)题D C
B
A
O
第(19)题D
C
B
A
2
1
图5-17 图5-18 图5-19
8
7
654321
D C
B A 图5-20
2.
32.如图5-22,过P点,画出AB、CD的垂线.
3.
B
C
D
33.如图5-23,是一条河,C河边AB外一点:
(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.
(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本
图比例尺为1:2000)
B
A
34.如图5-24,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.
(1)判断CD与AB的位置关系;
(2)BE与DE平行吗?为什么?
N
M
F
E
D
C
B
A
图5-21
图5-22
图5-24
35.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?
(3)BC 平分∠DBE 吗?为什么.
F 2
1
D
C
B
A
36.如图5-26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .
B
37.如图5-27,已知:AB //CD ,AB =CD ,求证:AC 与BD 互相平分.
图5-25
图5-26
图5-26
38.如图5-27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,
∠1=∠2,求证:∠B =∠C .
2 A
B
E
C
F
D H
G 1
39.如图5-28,已知:在∆ABC 中,∠=︒C 90,AC =BC ,BD 平分∠CBA ,DE AB ⊥于E ,求证:AD +DE =BE .
40.如图5-29,已知:AB //CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)
E
A
B
C
D
图5-27 图5-28
图5-29。

相关文档
最新文档