人教版七年级上数学相交线与平行线
四川人教版初中数学目录
四川人教版初中数学目录人教版七年级上册数学目录第一章有理数1.1正数和负数1.2有理数1.3有理数的加减法1.4有理数的乘除法1.5有理数的乘方第二章整式的加减2.1整式2.2整式的加减第三章一元一次方程3.1从算式到方程3.2解一元一次方程(一)——合并同类项与移项3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程第四章几何图形初步4.1几何图形4.2直线、射线、线段4.3角4.4课题学习设计制作长方体形状的包装纸盒人教版七年级下册数学目录第五章相交线与平行线5.1相交线5.2平行线及其判定5.3平行线的性质5.4平移第六章实数6.1平方根6.2立方根6.3实数第七章平面直角坐标系7.1平面直角坐标系7.2坐标方法的简单应用第八章二元一次方程组8.1二元一次方程组8.2消元——解二元一次方程组8.3实际问题与二元一次方程组8.4三元一次方程组的解法第九章不等式与不等式组9.1不等式9.2一元一次不等式9.3一元一次不等式组第十章数据的收集、整理与描述10.1统计调查10.2直方图10.3课题学习从数据谈节水人教版八年级上册数学目录第十一章三角形11.1与三角形有关的线段11.2与三角形有关的角11.3多边形及其内角和第十二章全等三角形12.1全等三角形12.2三角形全等的判定12.3角的平分线的性质第十三章轴对称13.1轴对称13.2画轴对称图形13.3等腰三角形13.4课题学习最短路径问题第十四章整式的乘法与因式分解14.1整式的乘法14.2乘法公式14.3因式分解第十五章分式15.1分式15.2分式的运算15.3分式方程人教版八年级下册数学目录第十六章二次根式16.1二次根式16.2二次根式的乘除16.3二次根式的加减第十七章勾股定理17.1勾股定理17.2勾股定理的逆定理第十八章平行四边形18.1平行四边形18.2特殊的平行四边形第十九章一次函数19.1函数19.2一次函数19.3课题学习选择方案第二十章数据的分析20.1数据的集中趋势20.2数据的波动程度20.3课题学习体质健康测试中的数据人教版九年级上册数学目录第二十一章一元二次方程21.1一元二次方程21.2解一元二次方程21.3实际问题与一元二次方程第二十二章二次函数22.1二次函数的图象和性质22.2二次函数与一元二次方程22.3实际问题与二次函数第二十三章旋转23.1图形的旋转23.2中心对称23.3课题学习图案设计第二十四章圆24.1圆的有关性质24.2点和圆、直线和圆的位置关系24.3正多边形和圆24.4弧长和扇形面积第二十五章概率初步25.1随机事件与概率25.2用列举法求概率25.3用频率估计概率人教版九年级下册数学目录第二十六章二次函数26.1二次函数及其图象26.2用函数观点看一元二次方程26.3实际问题与二次函数第二十七章相似27.1图形的相似27.2相似三角形27.3位似第二十八章锐角三角函数28.1锐角三角函数28.2解直角三角形第二十九章投影与视图29.1投影29.2三视图29.3课题学习制作立体模型。
相交线与平行线(常考考点专题)(基础篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)
专题5.19 相交线与平行线(常考考点专题)(基础篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.如图所示,∠1和∠2一定相等的是()A.B.C.D.2.下列四个图中,1∠互为邻补角的是()∠与2A.B.C.D.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.如图,90∠=︒,点B到线段AC的距离指的是下列哪条线段的长度()AA .AB B .BC C .BD D .AD【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角 5.图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个6.如图,下列判断正确的是( )A .3∠与6∠是同旁内角B .2∠与4∠是同位角C .1∠与6∠是对顶角D .5∠与3∠是内错角【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.如图,P 为直线l 外一点,A ,B ,C 在l 上,且PB ∠l ,下列说法中,正确的个数是( )∠P A ,PB ,PC 三条线段中,PB 最短;∠线段PB 叫做点P 到直线l 的距离;∠线段AB 的长是点A 到PB 的距离;∠线段AC 的长是点A 到PC 的距离.A .1个B .2个C .3个D .4个8.如图,12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥.则下列结论正确的是( ).A .A 与B 之间的距离就是线段ABB .AB 与CD 之间的距离就是线段AC 的长度C .1l 与2l 之间的距离就是线段CE 的长度D .1l 与2l 之间的距离就是线段CD 的长度【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.下列选项中,过点P 画AB 的垂线CD ,三角尺放法正确的是( )A .B .C .D .10.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A.B.C.D.【考点六】相交线与平行线➽➼➵作图➻➼平移11.下列平移作图不正确的是()A.B.C.D.12.将如图图案剪成若干小块,再分别平移后能够得到∠,∠,∠中的()A.0个B.1个C.2个D.3个【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD l 于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A .两点确定一条直线B .两点之间,直线最短C .两点之间,线段最短D .垂线段最短14.下列说法中,正确的是( )∠两点之间的所有连线中,线段最短;∠过一点有且只有一条直线与已知直线垂直;∠平行于同一直线的两条直线互相平行;∠直线外一点到这条直线的垂线段叫做点到直线的距离.A .∠∠B .∠∠C .∠∠D .∠∠【考点八】相交线与平行线➽➼➵平行线的判定15.如图,下面哪个条件不能判断EF DC 的是( )A .12∠=∠B .4C ∠=∠ C .13180∠+∠=︒D .3180C ∠+∠=︒16.如图,下列结论不成立的是( )A .如果∠1=∠3,那么AB CD ∥B .如果∠2=∠4,那么AC BD ∥C .如果∠1+∠2+∠C =180°,那么AB CD ∥D .如果∠4=∠5,那么AC BD ∥17.在同一平面内,a ,b ,c 是直线,下列关于它们位置关系的说法中,正确的是( ) A .若a b ⊥,b c ⊥,则a c ⊥B .若a b ⊥,b //c ,则a //cC .若a //b ,b //c ,则a c ⊥D .若a //b ,b //c ,则a //c18.如图,将木条a ,b 与c 钉在一起,170=︒∠,250∠=︒,要使木条a 与b 平行,木条a 需顺时针旋转的最小度数是( )A .10︒B .20︒C .50︒D .70︒【考点九】相交线与平行线➽➼➵平行线的性质19.将一块直角三角板与两边平行的纸条如图所示放置,若155∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .65︒20.将一副直角三角板按如图所示的方式叠放在一起,若AC DE ∥.则BAE ∠的度数为( )A .85︒B .75︒C .65︒D .55︒【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系 21.如图,将一直角三角板与两边平行的纸条,如图所示放置,下列结论(1)12∠=∠;(2)34∠∠=;(3)2+4=90∠∠︒;(4)5290∠-∠=︒,其中正确的个数是( )A .1个B .2个C .3个D .4个22.如图,在五边形ABCDE 中,AE BC ,延长DE 至点F ,连接BE ,若∠A =∠C ,∠1=∠3,∠AEF =2∠2,则下列结论正确的是( )∠∠1=∠2 ∠AB CD ∠∠AED =∠A ∠CD ∠DEA .1个B .2个C .3个D .4个【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小 23.如图,直线a ,b 被直线c 所截,若a b ,∠1=50°,则∠2的度数是( )A .50°B .100°C .120°D .130°24.如图,AB CD ∥,AE 平分CAB ∠交CD 于点E .若50C ∠=︒,则AEC ∠的大小为( )A .55︒B .65︒C .70︒D .80︒【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,AB CD ,则123∠+∠+∠等于( )A .90︒B .180︒C .210︒D .270︒26.如图,已知4490AB CD BAE E ∠=︒∠=︒∥,,,点P 在CD 上,那么EPD ∠的度数是( ).A .44°B .46°C .54°D .不能确定.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,给出下列条件.∠3=4∠∠;∠12∠=∠;∠4180BCD ∠+∠=︒,且4D ∠=∠;∠35180∠+∠=︒其中,能推出AD BC ∥的条作为( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠28.如图,若∠1=∠2,DE BC ∥,则∠FG DC ∥;∠∠AED =∠ACB ;∠CD 平分∠ACB ;∠∠1+∠B = 90°;∠∠BFG =∠BDC ,其中正确的结论是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是( )A .第一次向左拐 30︒,第二次向右拐 30︒B .第一次向左拐 45︒,第二次向右拐 135︒C .第一次向左拐 60︒,第二次向右拐 120︒D .第一次向左拐 53︒,第二次向左拐 127︒30.如图,小刀的刀片上下是平行的,刀柄外形是一个直角梯形(下底挖去一个小半圆,则12∠+∠的度数为( )A .60︒B .75︒C .90︒D .不能确定【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.下列选项中,可以用来证明命题“若a >b ,则|a |>|b |”是假命题的反例是( )A .a =1,b =0B .a =-1,b =2C .a =-2,b =1D .a =1,b =-332.下列命题都是真命题,其中逆命题也正确的是( )A .若a b =,则22a b =B .若a b >,则22a b >C .若a b <,则22a b <D .若a b =±,则22a b =【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.下列说法正确的是()A.命题是定理,定理是命题B.命题不一定是定理,定理不一定是命题C.真命题有可能是定理,假命题不可能是定理D.定理可能是真命题,也可能是假命题34.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上【考点十七】平移➽➼➵性质35.如图,将周长为8的∠ABC沿BC方向平移1个单位得到∠DEF,则四边形ABFD 的周长为()A.6B.8C.10D.1236.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【考点十八】平移➽➼➵应用37.如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,则这块红地毯至少需要()A.23平方米B.90平方米C.130平方米D.120平方米38.如图所示,在长为50米,宽为40米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是()A.50平方米B.40平方米C.90平方米D.89平方米二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若∠AOB+∠COD=72°,则∠AOB=_______.40.如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图,直线AB ,CD 相交于点O ,EO ∠AB 于点O ,∠EOD =50°,则∠BOC 的度数为_____.42.如图,ABC 中,CD AB ⊥,M 是AD 上的点,连接CM ,其中AC =10cm ,CM =8cm ,CD =6cm ,CB =8cm ,则点C 到边AB 所在直线的距离是__________cm .【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图,∠2的同旁内角是_____.44.如图:与FDB ∠成内错角的是______;与DFB ∠成同旁内角的是______.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图,AD BC ∥,6BC =,且三角形ABC 的面积为12,则点C 到AD 的距离为________.46.已知A ,B ,C 三地位置如图所示,90C ∠=︒,4AC =,3BC =,则A 到BC 距离是______.若A 地在C 地的正东方向,则B 地在C 地的______方向.【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.如图,利用三角尺和直尺可以准确的画出直线AB∠CD ,下面是某位同学弄乱了顺序的操作步骤:∠沿三角尺的边作出直线CD ;∠用直尺紧靠三角尺的另一条边;∠作直线AB ,并用三角尺的一条边贴住直线AB ;∠沿直尺下移三角尺;正确的操作顺序应是:_____.48.如图,一束光线以入射角为50°的角度射向斜放在地面AB 上的平面镜CD ,经平面镜反射后与水平面成30°的角,则CD 与地面AB 所成的角∠CDA 的度数是_____.【考点六】相交线与平行线➽➼➵作图➻➼平移49.作图题:将如图的三角形ABC先水平向右平移4格,再竖直向下平移4格得到三角形DEF.观察线段AB与DE的关系是_____.50.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形变换称为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,则至少需要移动____格.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点B,C在直线l上,且BC=6cm,△ABC的面积为18cm2.若P是直线l 上任意一点,连接AP,则线段AP的最小长度为_____cm.52.a、b、c是直线,且a∠b,b∠c,则________ .【考点八】相交线与平行线➽➼➵平行线的判定53.如图,点E在AC的延长线上,若要使AB CD,则需添加条件_______(写出一种即可)54.如图所示,请你写出一个条件使得12l l ∥,你写的条件是______.55.如图,∠1=30°,AB ∠AC ,要使AD BC ∥,需再添加的一个条件是____________.(要求:添加这个条件后,其它条件也必不可少,才能推出结论)56.如图,请你添加一个条件______,可以得到DE AC ∥.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于点E ,DF ∥AB ,DF 交AC 于点F ,图中∠1与∠2的关系是_________.58.如图,把一张长方形纸条ABCD 沿EF 折叠,若50AEG ∠=︒,则EFG ∠=______°.【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.如图,已知AB DE ∥,且∠C =110°,则∠1与∠2的数量关系为__________________ .60.如图,已知AB ∠CD ,请直接写出下面图形中∠APC 和∠P AB 、∠PCD 之间的数量关系式_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,39AB CD AED ∠=︒∥,,C ∠和D ∠互余,则B ∠的度数为___________.62.将一个含有45°角的直角三角板如图所示放置,其中一个45°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若a//b ,∠2=∠15°,则∠3的度数为___________°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 63.如图,已知1100∠=︒,2100∠=︒,370∠=︒,则4∠=______.64.如图,直线 l 1∠l 2,若∠1=40°,∠2 比∠3 大 10°,则∠4=____.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.如图,已知GF ∠AB ,∠1=∠2,∠B =∠AGH ,则以下结论:∠GH BC ;∠∠D =∠F ;∠HE 平分∠AHG ;∠HE ∠AB .其中正确的有_____(只填序号)66.将一副三角板按如图放置,则下列结论:∠如果∠2=30°.则AC ∥DE ;∠∠2+∠CAD =180°;∠如果BC ∥AD ,则有∠2=60°;∠如果∠CAD =150°,必有∠4=∠C ;其中正确的结论有____________.【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.如图,为某校放置在水平操场上的篮球架的横截面图形,初始状态时,篮球架的横梁EF 平行于AB ,主柱AD 垂直于地面,EF 与上拉杆CF 形成的角度为F ∠,且150F ∠=︒,这一篮球架可以通过调整CF 和后拉杆BC 的位置来调整篮筐的高度.在调整EF 的高度时,为使EF 和AB 平行,需要改变EFC ∠和C ∠的度数,调整EF 使其上升到GH 的位置,此时,GH 与AB 平行,35CDB ∠=︒,并且点H ,D ,B 在同一直线上,则H ∠为______度.68.下图(1)是某学校办公楼楼梯拐角处,从图片抽象出图(2)的几何图形,已知AB GH IJ CD ∥∥∥,AE BF ∥,EC FD ∥,DC EC ⊥,65B ∠=︒,则∠AEC 的度数为______.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若a b =,那么a b =”的逆命题是:_____;该逆命题是一个 _____命题(填真或假).70.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.若四个人里面只有一个人说了真话,则小偷是_____.【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.如图所示,90AOB COD ︒∠=∠=,那么AOC ∠=________,依据是__________.72.如图所示,已知AB FE =,AD FC =,BC ED =.下列结论:∠A F ∠=∠;∠//AB EF ;∠//AD FC .其中正确的结论是________.(填序号)【考点十七】平移➽➼➵性质73.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 _____m .74.用等腰直角三角板画45AOB ∠=,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______.【考点十八】平移➽➼➵应用 75.如图,有一块长为a 米,宽为3米的长方形地,中间阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1米能得到它的右边线,若草地的面积为122米,则=a ______.76.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m ,其侧面如图所示,则购买地毯至少需要______元.三、解答题77.如图:已知AO BC ⊥,DO OE ⊥,B ,O ,C 在同一条直线上.(1) AOE ∠的余角是_________,∠BOE 的补角是_________.(2) 如果35AOD ∠=︒,求∠BOE 的度数.(3) 找出图中所有相等的角(除直角外),并对其中一对相等的角说明理由.78.如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠.请说明AE GF ∥的理由.解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(______),所以BAG AGC ∠=∠(______). 因为EA 平分BAG ∠, 所以112BAG ∠=∠(______). 因为FG 平分AGC ∠, 所以122∠=______, 得12∠=∠(等量代换), 所以______(______).79.把下面的证明过程补充完整: 已知:如图,12180∠+∠=︒,C D ∠=∠. 求证:A F ∠=∠.证明:∠12180∠+∠=︒(已知), ∠BD ∥_________( ), ∠C ABD ∠=∠( ), ∠C D ∠=∠( ), ∠D ∠=∠_________( ), ∠AC DF ∥( ), ∠A F ∠=∠( ).80.在如图所示的网格图(每个小网格都是边长为1个单位长度的小正方形)中,P,A ∠的边OB,OC上的两点.分别是BOC(1) 将线段OP向右平移,使点O与点A重合,画出线段OP平移后的线段'AP,连接PP',并写出相等的线段;∠相等的角;(2) 在(1)的条件下,直接写出与BOC(3) 请在射线OC上找出一点D,使点P与点D的距离最短,并写出依据.参考答案1.D【分析】根据对顶角,邻补角的定义逐一判断即可.解:选项A中∠1和∠2为邻补角,不一定相等.选项B中∠1和∠2为两个不同的角,不一定相等.选项C中∠1和∠2为两个不同的角,不一定相等.选项D中∠1和∠2为对顶角,一定相等.故选D.【点拨】本题考查的是对顶角,邻补角的定义,熟练掌握对顶角,邻补角的定义是解决问题的关键.2.D【分析】根据邻补角的定义作出判断即可.解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点拨】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.B【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解. 解: EO ∠CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒, 2180905436∴∠=︒-︒-︒=︒. 故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键. 4.A【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.根据定义直接可得答案.解:∠90,A ∠=︒∠BA AC ⊥,点B 到线段AC 的距离指线段AB 的长, 故选:A .【点拨】本题主要考查了点到直线的距离的概念.点到直线的距离是是垂线段的长度,而不是垂线段.5.B【分析】根据同位角的定义作答.解:第1个图和第4个图中的1∠与2∠是同位角,有2个, 故选:B .【点拨】本题考查了同位角的识别,两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边在同一条直线上.6.A【分析】根据同位角、同旁内角、内错角和对顶角的概念解答即可. 解:A 、3∠与6∠是同旁内角,故本选项符合题意; B 、2∠与4∠不是同位角,故本选项不合题意; C 、1∠与6∠不是对顶角,故本选项不合题意; D 、5∠与3∠不是内错角,故本选项不合题意;故选:A.【点拨】本题考查了同位角、内错角、同旁内角的定义,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.7.B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.解:∠线段BP是点P到直线l的垂线段,根据垂线段最短可知,P A,PB,PC三条线段中,PB最短;故原说法正确;∠线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;∠线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;∠由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有∠∠;故选:B.【点拨】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.8.C【分析】根据两点间的距离和平行线间的距离的性质逐项判断即可.解:A、A与B之间的距离就是线段AB的长度,不符合题意,故本项错误;B、AB与CD之间的距离就是线段HI的长度,不符合题意,故本项错误;C 、1l 与2l 之间的距离就是线段CE 的长度,符合题意,故本项正确;D 、1l 与2l 之间的距离就是线段CE 或GF 的长度,不符合题意,故本项错误. 故答案为:C .【点拨】本题考查了两点间的距离和平行线间的距离的性质,解决本题的关键是掌握以上基本的性质.9.C【分析】根据P 点在CD 上,CD ∠AB 进行判断.解:过点P 画AB 的垂线CD ,则P 点在CD 上,CD ∠AB ,所以三角尺放法正确的为故选:C .【点拨】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.10.B【分析】根据中点的定义,平行线的定义判断即可. 解:过AC 的中点D 作AB 的平行线, 正确的图形是选项B , 故选:B .【点拨】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.11.C【分析】根据平移的概念作选择即可.解:A、B、D符合平移变换,C是轴对称变换.故选:C.【点拨】本题考查了平移的概念,掌握好平移的概念是本题的关键.12.C【分析】根据图形进行剪切拼接可得图形.解:根据左边图形可剪成若干小块,再进行拼接平移后能够得到∠,∠,不能拼成∠,故选C.【点拨】此题主要考查了图形的平移,通过改变平移的方向和距离可使图案变得丰富多彩.13.D【分析】根据垂线段最短解答即可.⊥于点D,将水泵房建在了D处.这样做最节省水管长度,其数学解:过点C作CD l道理是:垂线段最短.故选D.【点拨】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.14.B【分析】根据线段的性质公理判断∠;根据垂线的性质判断∠;根据平行公理的推论判断∠;根据点到直线的距离的定义判断∠.解:∠两点之间的所有连线中,线段最短,说法正确;∠在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;∠平行于同一直线的两条直线互相平行,说法正确;∠直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.【点拨】本题考查了线段的性质公理,垂线的性质,平行公理的推论,点到直线的距离的定义,是基础知识,需熟练掌握.15.C【分析】由平行线的判定定理求解判断即可.∠=∠,根据内错角相等,两直线平行可判定EF DC,故A不符合题意;解:A.由12B .由4C ∠=∠,根据同位角相等,两直线平行可判定EF DC ,故B 不符合题意; C .由13180∠+∠=︒,根据同旁内角互补,两直线平行可判定ED BC ∥,不能判定EF DC ,故C 符合题意;D .由3180C ∠+∠=︒,根据同旁内角互补,两直线平行可判定EF DC ,故D 不符合题意;故选:C .【点拨】本题考查了平行线的判定,熟练掌握“内错角相等,两直线平行”、“同位角相等,两直线平行”、“同旁内角互补,两直线平行”是解题的关键.16.D【分析】根据平行线的判定定理判断求解即可.解:A .如果∠1=∠3,那么能得到AB CD ∥,故本选项结论成立,不符合题意. B .如果∠2=∠4,那么能得到AC BD ∥,故本选项结论成立,不符合题意. C .如果∠1+∠2+∠C =180°,能得到AB CD ∥,故本选项结论成立,不符合题意. D .如果∠4=∠5,那么不能得到AC BD ∥,故本选项结论不成立,符合题意. 故选:D .【点拨】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键. 17.D【分析】根据平行线的判定与性质、平行公理的推论判断求解即可. 解:若a ∠b ,b ∠c ,则a ∠c ,故A 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故B 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故C 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故D 正确,符合题意; 故选:D .【点拨】此题考查了平行线的判定与性质,平行公理的推论,熟练掌握平行线的判定定理与性质定理是解题的关键.18.B【分析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数. 解:∠当木条a 与b 平行, ∠∠1=∠2, ∠∠1需变为50°,∠木条a 至少旋转:70º-50º=20º, 故选:B .【点拨】本题考查了旋转的性质及平行线的性质:∠两直线平行同位角相等;∠两直线平行内错角相等;∠两直线平行同旁内角互补;∠夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.A【分析】根据题意得到,90ACB AB CD ∠=︒∥,推出1,2ACE BCD ∠=∠∠=∠,进而得到1290∠+∠=︒,即可求出2∠的度数.解:由题意得,90ACB AB CD ∠=︒∥, ∠1,2ACE BCD ∠=∠∠=∠, ∠18090ACE BCD ACB ∠+∠=︒-∠=︒ ∠1290∠+∠=︒ ∠155∠=︒ ∠235∠=︒, 故选:A .【点拨】此题考查了平行线的性质:两直线平行内错角相等,两直线平行同位角相等,熟练掌握平行线的性质是解题的关键.20.B【分析】先根据平行线的性质定理得120CAE ∠=︒,然后由已知得45BAC ∠=︒,再由BAE CAE BAC ∠=∠-∠即可得解.解:AC DE ∥,180E CAE ∴∠+∠=︒,由已知可知:60,45E BAC ∠=︒∠=︒, 180********CAE E ∴∠=︒-∠=︒-︒=︒, 1204575BAE CAE BAC ∴∠=∠-∠=︒-︒=︒;故选:B.【点拨】此题考查了平行线的性质定理与直角三角板的知识,熟练掌握平行线的性质定理是解答此题的关键.21.D【分析】根据平行线的性质即可判断(1)(2),根据平角的定义即可判断(3),根据等量代换即可判断(4).解:∠AB CD,∠123445180==+=︒∠∠,∠∠,∠∠,故(1)(2)正确∠90∠=︒,CAD∠2418090+=︒-=︒∠∠∠,故(3)正确,CAD∠521809090∠∠,故(4)正确;-=︒-︒=︒∠正确的有4个,故选D.【点拨】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.22.C【分析】分别根据平行线的性质以及平行线的判定方法逐一判断即可.解:∠中,∠AE BC,∠∠3=∠2,∠∠1=∠3,∠∠1=∠2,∠∠正确∠中,∠AE BC,∠∠A+∠B=180°,∠∠A=∠C,∠∠C+∠B=180°,∠AB CD;∠∠正确∠中,∠AE BC,∠∠2=∠3,∠A+∠ABC=180°,∠∠1=∠3,∠∠1=∠2=∠3,∠ABC=2∠2,∠∠AEF=2∠2,∠∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°,∠∠AEF+∠AED=180°,∠∠AED=∠A.∠∠正确∠无条件证明,所以不正确.∠结论正确的有∠∠∠共3个.故选:C.【点拨】此题考查了平行线的判定与性质以及多边形的内角和外角,熟练掌握平行线的判定与性质是解本题的关键.23.D∠∠,再【分析】如图所示,根据平行线的性质:两直线平行,同位角相等,可得3=1根据邻角互补即可得到答案.解:如图所示:a b,∠1=50°,∴∠=∠=︒,3150∠+∠=︒,23180∴∠=︒-∠=︒-︒=︒,2180318050130故选:D.【点拨】本题考查求角度问题,涉及到平行线的性质及邻补角定义,熟练掌握相关定义是解决问题的关键.24.B【分析】根据平行线的性质得出130CAB ∠=︒,根据角平分线的性质以及平行线的性质即可求解.解:∠AB CD ∥,∠180BAC C ∠+∠=︒,∠50C ∠=︒,∠130BAC ∠=︒, ∠AE 平分CAB ∠,∠1652BAE CAE BAC ∠=∠=∠=︒, ∠AB CD ∥,∠65AEC BAE ∠=∠=︒.故选B .【点拨】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.25.B【分析】过点E 作直线EF AB ∥,根据平行线的判定和性质,以及平角的定义即可得解. 解:过点E 作直线EF AB ∥,交BC 于点F ,则:3AEF ∠=∠,∠AB CD ,∠EF CD ,∠1DEF ∠=∠,∠12322180AEF DEF DEA ∠+∠+∠=∠++=+=︒∠∠∠∠;故选:B .【点拨】本题考查平行线的判定和性质.熟练掌握平行线的判断和性质是解题的关键.遇到拐点问题,通常过拐点作平行线来进行解题.26.B【分析】过点E 作HF //AB ,可证AB //HF //CD ,由平行线的性质可求∠BAE =∠AEH ,∠EPD =∠HEP ,由∠E =90°,由∠HEP =90°−∠AEH 可求解.解:如图,过点E 作HF //AB ,∠AB //CD ,HF //AB ,∠AB //HF //CD ,∠∠BAE =∠AEH ,∠HEP =∠EPD ,∠∠BAE =44°,∠E =90° ∠∠AEH =44°, ∠HEP =90°−∠AEH =90°−44°=46°,∠∠EPD =∠HEP =46°.故选:B.【点拨】本题考查了平行线的判定和性质,添加恰当辅助线构造平行线是本题的关键.27.C【分析】根据平行线的判定定理依次判断即可.解:∠∠34∠=∠,∠AD BC ∥,正确,符合题意;∠∠12∠=∠,∠AB CD ∥,(内错角相等,两直线平行),选项不符合题意;∠∠4180BCD ∠+∠=︒,4D ∠=∠,∠180D BCD ∠+∠=︒,∠AD BC ∥,正确,符合题意;∠∠3518045180∠+∠=︒∠+∠=︒,,∠3=4∠∠,由同位角相等,两直线平行可得AD BC ∥,正确,符合题意;故能推出AD BC ∥的条件为∠∠∠.故选C .【点拨】题目主要考查平行线的判定,熟练掌握平行线的判定定理是解题关键.28.B【分析】根据平行线的性质和判定定理逐项分析判断∠∠∠,结合题意和图形判断∠∠,即可进行解答.∥,解:∠∠DE BC∠∠1=∠DCB,∠∠1=∠2,∠∠DCB=∠2,∥,∠FG DC故∠正确;∥,∠∠DE BC∠∠AED=∠ACB,故∠正确;∥,∠由∠可知:FG DC∠∠BFG=∠BDC,故∠正确,而CD不一定平分∠ACB,∠1+∠B不一定等于90°,故∠,∠错误;【点拨】本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.29.D【分析】根据题意画出图形,由图可知,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,再根据平行线的性质即可解答.解:如图,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,∠∠1+∠3=180°,∠2=∠3,∠∠1+∠2=180°,故选:D。
七年级数学培优提高讲义:相交线与平行线(一) (1)
七年级数学竞赛讲座:相交线与平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。
2.两条不同的直线,若它们只有一个公共点,就说它们相交。
即,两条直线相交有且只有一个交点。
3.垂直是相交的特殊情况。
有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。
4.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.5.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.6.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________. 7.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .8.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。
初中数学第五章 相交线与平行线(讲义及答案)附解析
初中数学第五章 相交线与平行线(讲义及答案)附解析一、选择题1.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠42.下列说法中,正确的有( )①等腰三角形的两腰相等; ②等腰三角形底边上的中线与底边上的高相等; ③等腰三角形的两底角相等; ④等腰三角形两底角的平分线相等.A .1个B .2个C .3个D .4个3.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠54.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°5.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒ 6.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°7.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒8.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补9.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④ 10.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线二、填空题11.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.12.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.13.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________14.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1______.(用含n的代数式表示)15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.16.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.17.如图,直线a∥b∥c,直角∠BAC的顶点A在直线b上,两边分别与直线a,c相交于点B,C,则∠1+∠2的度数是___________.18.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.19.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒; (3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.23.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证: FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?24.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)25.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.26.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.3.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.4.C解析:C【分析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选C.【点睛】考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.6.D解析:D【分析】由角平分线的定义求出∠BEF=140°,再根据平行线的性质“两直线平行,同旁内角互补”求出∠B 的度数即可.【详解】∵ED 平分BEF ∠,且70∠︒=DEF ,∴70DEB ∠=︒∴270140BEF ︒=∠=⨯︒∵//EF BC∴180B BEF ∠+∠=︒∴180********B BEF ∠=︒-∠=︒-︒=︒故选D【点睛】此题主要考查了平行线的性质和角平分的性质,此题难度不大,注意掌握相关性质的运用7.B解析:B【分析】AD ∥BC ,∠D=∠ABC ,则AB ∥CD ,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF 中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.8.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.二、填空题11.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键. 12.70°【分析】此题要构造辅助线:过点E ,F 分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.13.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.14.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.16.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.17.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.18.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.19.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.20.(n ﹣1)×180【分析】分别过P1、P2、P3作直线AB 的平行线P1E ,P2F ,P3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据ADB ADH BDH ∠=∠+∠即可得到结果; (2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n∠=∠求解即可; 【详解】 解:(1)如图示,分别过点,C D 作CGEF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒ ∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH ,∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.22.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.23.(1)35°;(2)见解析;(3)30°或65°或175°或210°【分析】(1)利用AB ∥CD ,得到∠B =∠BFD ,又∠B=∠EFB ,由此得到∠EFB=∠BFD=12∠EFD=35°; (2)由(1)知∠EFB =∠BFD ,利用FH ⊥FB ,得到∠BFD +∠DFH =90°,∠EFB +∠GFH =90°,再由等角的余角相等得到∠DFH =∠GFH 即可求解;(3)按QH 分别与△EBF 的三边平行三种情况分类讨论即可.【详解】解:(1)AB ∥CD ,∴∠B =∠BFD .∵∠EFB =∠B ,∴∠EFB =∠BFD =12∠EFD =35°, ∴∠B =35°,故答案为:35°;(2)∵FH ⊥FB ,∴∠BFD +∠DFH =90°,∠EFB +∠GFH =90°∵∠EFB =∠BFD ,由等角的余角相等可知,∴∠DFH =∠GFH .∴FH 平分∠GFD .(3)分类讨论:情况一:QH 与△EFB 的边BF 平行时,如下图1和图4所示:当为图1时:∵BF与HQ平行,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,此时旋转角α=∠BFQ=120°-∠HFQ=120°-90°=30°,当为图4时:此时∠HFB=∠H=60°,旋转角α=∠1+∠2+∠3=360°-(∠HFB+∠HFQ)=360°-(60°+90°)=210°;情况二:QH与△EFB的边BE平行时,如下图2所示:此时∠1=∠3=35°,∠2=∠4=30°,∴旋转角α=∠BFQ=∠1+∠2=35°+30°=65°;情况三:QH与△EFB的边EF平行时,如下图3所示:此时∠3=∠Q=30°,∴旋转角α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上所述,旋转角α=30°或65°或175°或210°.故答案为:α=30°或65°或175°或210°.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,周角的定义等,熟练掌握平行线的性质是解决本题的关键.24.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.25.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC +∠ABC =180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.26.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=12∠ABC,∠PDC=12∠ADC,∴∠BPD=12∠ABC+12∠ADC=12∠BCD+12∠A.【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.。
2023学年人教中考数学重难点题型分类 相交线与平行线单元测试白卷
人教版数学七年级上册第5章《相交线与平行线》单元测试白卷(解析版)一、选择题(3分*12=36分)1.(广益)如图,∠1和∠2是同位角的图形有()A.1个B.2个C.3个D.4个【解答】解:根据同位角定义可得①②⑤是同位角,故选:C.2.(师大附中)下列说法中,是真命题的有()A.射线P A和射线AP是同一条射线B.两直线平行,同旁内角相等C.一个角的补角一定大于这个角D.两点确定一条直线【解答】解:A、射线P A和射线AP不是同一条射线,故错误,是假命题,不符合题意;B、两直线平行,同旁内角互补,故原命题错误,是假命题,不符合题意;C、钝角的补角小于这个角,故原命题错误,是假命题,不符合题意;D、两点确定一条直线,正确,是真命题,符合题意,故选:D.3.(长郡双语)下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【解答】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.4.(青一)如图,在所标识的角中,互为同旁内角的两个角是()A.∠1和∠3B.∠2和∠3C.∠1和∠4D.∠1和∠2【解答】解:互为同旁内角的两个角是:∠1和∠3.故选:A.5.(广益)如图,有下列判断①∠1与∠3是对顶角②∠1与∠4是内错角③∠1与∠2是同旁内角④∠3与∠4是同位角,其中不正确的是()A.①B.②C.③D.④【解答】解:①∠1与∠3是对顶角,正确;②∠1与∠4是内错角,正确;③∠1与∠2是邻补角;错误;④∠3与∠4是同位角,正确.故选:C.6.(长郡)如图,直线l∥n,AB∥CD,∠1=30°,则∠2=()A.120°B.130°C.140°D.150°【解答】解:延长AB交直线l于E,∵直线l∥n,∴∠3=∠1=30°,∵AB∥CD,∴∠2=180°﹣∠3=150°,故选:D.7.(麓山)将一条两边互相平行的纸带按如图所示的方式折叠.若∠1=50°,则∠a的度数是()A.50°B.65°C.75°D.80°【解答】解:延长DB至E点,如下图所示,∵BD∥AC,∴∠1=∠3=50°(两直线平行,同位角相等),∵两边互相平行的纸带按如图所示的方式折叠,∴∠2=∠α,∵∠2+∠α+∠3=180°,∴2∠α+50°=180°,∴∠α=,故选:B.8.(广益)如图,下列条件中,不能判定AB∥CD的是()A.∠D+∠BAD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠DCE【解答】解:根据∠D+∠BAD=180°,可得AB∥CD;根据∠1=∠2,可得AB∥CD;根据∠3=∠4,可得BC∥AD,得不到AB∥CD;根据∠B=∠DCE,可得AB∥CD.故选:C.9.(青一)下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A.1个B.2个C.3个D.4个【解答】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误.故选:B.10.(青一)如图AD是∠BAC的平分线,EF∥AC交AB于点E,交AD于点F,∠1=30°,∠BAD的度数为()A.20°B.120°C.30°D.60°【解答】解:∵EF∥AC,∴∠CAD=∠1=30°,∵AF是∠BAC的平分线,∴∠BAD=∠CAD=30°.故选:C.11.(明德)已知,三条直线a、b、c在同一平面内,下列命题是假命题的是()A.若a⊥c,b⊥c,则a∥b B.若a∥c,b∥c,则a∥bC.若a∥b,b⊥c,则a⊥c D.若a⊥c,b⊥c,则a⊥b【解答】解:A、若a⊥c,b⊥c,则a∥b,是真命题;B、若a∥c,b∥c,则a∥b,是真命题;C、若a∥b,b⊥c,则a⊥c,是真命题;D、若a⊥c,b⊥c,则a∥b,原命题是假命题;故选:D.12.(师梅)如图,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,则下列结论中:①∠ACB=∠E;②DF平分∠ADC;③∠BFD=∠BCD;④∠ABF=∠BCD,正确的有()A.1个B.2个C.3个D.4个【解答】解:∵BC∥DE,∴∠ACB=∠E,故①正确;∵BC∥DE,∴∠ABC=∠ADE,∵BF平分∠ABC,DC平分∠ADE,∴∠ABF=∠CBF=∠ABC,∠ADC=∠EDC=∠ADE,∴∠ABF=∠CBF=∠ADC=∠EDC,∴BF∥DC,∴∠BFD=∠FDC,根据已知不能得出∠ADF=∠CDF,即不能得出DF平分∠ADC,故②错误;∵∠FDC≠∠BCD,∴∠BFD≠∠BCD,③错误;∵∠ABF=∠ADC,∠ADC=∠EDC,∴∠ABF=∠EDC,∵DE∥BC,∴∠BCD=∠EDC,∴∠ABF=∠BCD,故④正确;即正确的有2个,故选:B.二、填空题(3分*6=18分)13.(长郡双语)把命题“邻补角是互补的角”写成“如果…那么…”的形式是:如果两个角是邻补角,那么它们(这两个角)互补.【解答】解:把命题“邻补角是互补的角”改写为“如果…那么…”的形式是:如果两个角是邻补角,那么它们(这两个角)互补.故答案为:如果两个角是邻补角,那么它们(这两个角)互补.14.(中雅)如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=134°.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠COE=44°,∴∠COB=90°+44°=134°,∴∠AOD=134°,故答案为:134°.15.(师梅)如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是55°.【解答】解:如图.由题意得:∠FEG=∠1+∠3=90°,AB∥CD.∴∠2=∠3.又∵∠1=35°,∴∠3=90°﹣∠1=55°.∴∠2=∠3=55°.16.(明德)如图,AD∥CE,∠ABC=100°,则∠2﹣∠1的度数是80°.【解答】解:作BF∥AD,∵AD∥CE,∴AD∥BF∥EC,∴∠1=∠3,∠4+∠2=180°,∠3+∠4=100°,∴∠1+∠4=100°,∠2+∠4=180°,∴∠2﹣∠1=80°.故答案为:80°.17.(青一)如图,将周长为18cm的△ABC沿BC平移1cm得到△DEF.则AD =1cm.【解答】解:∵△ABC沿BC平移1cm得到△DEF.∴AD=1cm.故答案为1.18.(广益)已知,BC∥OA,∠B=∠A=100°,点E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列结论中正确的是:①④.①OB∥AC;②∠EOC=45°;③∠OCB:∠OFB=1:3;④若∠OEB=∠OCA,则∠OCA=60°.【解答】解:∵BC∥OA,∠B=∠A=100°,∴∠AOB=∠ACB=180°﹣100°=80°,∴∠A+∠AOB=180°,∴OB∥AC.故①正确;∵OE平分∠BOF,∴∠FOE=∠BOE=∠BOF,∴∠FOC=∠AOC=∠AOF,∴∠EOC=∠FOE+∠FOC=(∠BOF+∠AOF)=×80°=40°.故②错误;∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,∴∠OCB:∠OFB=1:2.故③错误;∵∠OEB=∠OCA=∠AOE=∠BOC,∴∠AOE﹣∠COE=∠BOC﹣∠COE,∴∠BOE=∠AOC,∴∠BOE=∠FOE=∠FOC=∠AOC=∠AOB=20°,∴∠OCA=∠BOC=3∠BOE=60°.故④正确.故答案为:①④.三、解答题(6分+6分+7分+7分+10+10分)19.(长郡)如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.20.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.【解答】(1)证明:方法一:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;方法二:∵∠1=∠2,∠1=∠ABF,∠2=∠BFG,∴∠ABF=∠BFG,∵∠ABF的平分线是BE,∠BFG 的平分线是FC,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.20.(青一)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B 作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.21.(雅礼)如图,AB⊥BD,CD⊥BD,∠A与∠AEF互补,以下是证明CD∥EF的推理过程及理由,请你在横线上补充适当条件,完整其推理过程或理由.证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=90°.(垂直的定义)∴∠ABD+∠CDB=180°∴AB∥CD(同旁内角互补,两直线平行)又∠A与∠AEF互补(已知)∠A+∠AEF=180°∴AB∥EF.(同旁内角互补,两直线平行)∴CD∥EF(平行于同一条直线的两条直线平行)【解答】证明:∵AB⊥BD,CD⊥BD(已知)∴∠ABD=∠CDB=90°.(垂直的定义)∴∠ABD+∠CDB=180°∴AB∥CD(同旁内角互补,两直线平行)又∠A与∠AEF 互补(已知)∴∠A+∠AEF=180°(互补的定义)∴AB∥EF(同旁内角互补,两直线平行)∴CD∥EF(平行于同一条直线的两条直线平行);故答案为:90°;垂直的定义;CD;同旁内角互补,两直线平行;已知;180°;EF;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.22.(广益)完成下面的证明如图,端点为P的两条射线分别交两直线l1、l2于A、C、B、D四点,已知∠PBA=∠PDC,∠1=∠PCD,求证:∠2+∠3=180°.证明:∵∠PBA=∠PDC(已知)∴AB∥CD(同位角相等,两直线平行)∴∠P AB=∠PCD(两直线平行同位角相等)∵∠1=∠PCD(已知)∴∠P AB=∠1(等量代换)∴PC∥BF(内错角相等,两直线平行)∴∠AFB=∠2(两直线平行内错角相等)∵∠AFB+∠3=180°(邻补角的性质)∴∠2+∠3=180°(等量代换)【解答】证明:∵∠PBA=∠PDC(已知)∴AB∥CD(同位角相等,两直线平行)∴∠P AB=∠PCD(两直线平行同位角相等)∵∠1=∠PCD(已知)∴∠P AB=∠1(等量代换)∴PC∥BF(内错角相等,两直线平行)∴∠AFB=∠2(两直线平行内错角相等)∵∠AFB+∠3=180°(邻补角的性质)∴∠2+∠3=180°(等量代换).故答案为:已知,AB∥CD,两直线平行同位角相等,已知,∠P AB=∠1,两直线平行内错角相等,邻补角的性质.23.(师梅)我们已经学过了对顶角、邻补角、同位角等,知道了它们的特征.现在若有两个角,它们不是同一个顶点,但这两角的两边相互平行,我们就把满足这个条件的两个角称作“平行角”.如图1,已知AB∥CD,AD∥BC,因此∠B和∠D是“平行角”.(1)图1中,证明∠B=∠D;(2)如图2,延长DC到E,可知∠A和∠BCE也是“平行角”,判断它们的数量关系;(3)如图3,DE平分∠ADC,BF平分∠ABC,请说明图中的∠1和∠2是“平行角”.【解答】(1)证明:∵AB∥CD,AD∥BC,∴∠D+∠A=180°,∠B+∠A=180°.∴∠B=∠D.(2)解:由(1)知∠B=∠D,同理可得,∠A=∠BCD.∵∠BCD+∠BCE=180°,∴∠A+∠BCE=180°.即∠A和∠BCE互补.(3)证明:∵∠B和∠D是“平行角”,∴∠ABC=∠ADC.∵DE平分∠ADC,BF平分∠ABC∴∠1=∠ADC,∠2=∠ABC.∴∠1=∠2.又∵AB∥DC,∴∠2=∠BFC.∴∠1=∠BFC.∴DE∥BF.∴∠1和∠2是“平行角”.24.(雅礼)如图,已知,BC∥OA,∠C=∠OAB=100°,试回答下列问题:(1)如图1,求证:OC∥AB;(2)如图2,点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC:①若平行移动AB,当∠BOC=6∠EOF时,求∠ABO;②若平行移动AB,那么的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.【解答】(1)证明:∵BC∥OA,∴∠C+∠COA=180°,∠BAO+∠ABC=180°,∵∠C=∠BAO=100°,∴∠COA=∠ABC=80°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)①如图②中,设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=4x,∵∠AOB+∠BOC+∠OCB=180°,∴4x+6x+100°=180°,∴x=8°,∴∠ABO=∠BOC=6x=48°.如图③中,设∠EOF=x,则∠BOC=6x,∠BOF=3x,∠BOE=∠AOB=2x,∵∠AOB+∠BOC+∠OCB=180°,∴2x+6x+100°=180°,∴x=10°,∴∠ABO=∠BOC=6x=60°.综上所述,满足条件的∠ABO为48°或60°;②∵BC∥OA,∠C=100°,∴∠AOC=80°,∵∠EOB=∠AOB,∴∠COE=80°﹣2∠AOB,∵OC∥AB,∴∠BOC=∠ABO,∴∠AOB=80°﹣∠ABO,∴∠COE=80°﹣2∠AOB=80°﹣2(80°﹣∠ABO)=2∠ABO﹣80°,∴==2,∴平行移动AB,的值不发生变化.。
人教版数学七年级第五章《相交线与平行线》单元同步检测试题 (附答案)
第五章《相交线与平行线》单元检测题题号一二三总分192021222324分数1.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补2.如图,将△ABC沿BC方向平移得到△DEF,若△ABC的周长为12cm,四边形ABFD的周长为18cm,则平移的距离为()A.2cm B.3cm C.4cm D.6cm3.如图所示,下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角4.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1 个B.2个C.3 个D.4个10.如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15°,则∠2=()A.95°B.105°C.115°D.125°二、填空题(每题3分,共24分)11.把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式是.12.如图所示,DE∥BF,∠D=53°,∠B=30°,DC平分∠BCE,则∠DCE的度数为.13.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,已知直线AB,CD相交于点O,EO⊥AB于O,若∠1=32°,则∠2=°,∠3=°,∠4=°.18.已知:如图,CD平分∠ACB,∠1+∠2=180°,∠3=∠A,∠4=35°,则∠CED=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.20.如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE().∴∠ABC=∠BCD().∵∠P=∠Q(已知),∴PB∥()().∴∠PBC=()(两直线平行,内错角相等).∵∠1=∠ABC﹣(),∠2=∠BCD﹣(),∴∠1=∠2(等量代换).21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数.24.如图1,AB∥CD,E是AB、CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.参考答案一、选择题:题号12345678910答案D B B C C D A D B B二、填空题:11.解:把命题“在同一平面内,垂直于同一条直线的两直线平行”改写成“如果…,那么…”的形式,是“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”,故答案为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行”.12.解:∵DE∥BF,∠D=53°,∴∠F AC=∠D=53°,∵∠B=30°,∴∠ACB=23°,∵DC平分∠BCE,∴∠DCE=23°.故答案为:23°.13.解:∵a∥b∥c,∴∠1=∠3,∠2=∠4,∵∠1=35°,∴∠3=30°,∵∠4+∠3=90°,∴∠4=55°,∴∠2=55°,故答案为:55°.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵EO⊥AB于O,∴∠AOE=90°,∵∠1=32°,∴∠3=58°,∴∠2=58°,∴∠4=180°﹣58°=122°,故答案为:58;58;122.18.解:∵∠1+∠2=180°,∠1+∠BDC=180°∴∠2=∠BDC∴EF∥AB∴∠3=∠BDE∵∠3=∠A∴∠A=∠BDE∴AC∥DE∴∠ACB+∠CED=180°∵CD平分∠ACB,∠4=35°∴∠ACB=2∠4=2×35°=70°∴∠CED=180°﹣∠ACB=180°﹣70°=110°故答案为:110°.三.解答题:19.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.20.证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23.解:(1)由平移得,∠ONM=30°∠DCN=45°在△CEN中,∠CEN=180°﹣∠ONM﹣∠DCN=180°﹣30°﹣45°=105°;(2)由旋转知,∠N=30°,∵∠BON=30°∴∠BON=∠N=30°,∴MN∥BC∴∠CEN=180°﹣∠DCO=180°﹣45°=135°.24.解:(1)∠BAE+∠CDE=∠AED.理由如下:作EF∥AB,如图1,∵AB∥CD,∴EF∥CD,∴∠1=∠BAE,∠2=∠CDE,∴∠BAE+∠CDE=∠AED;(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,∵∠BAE、∠CDE的两条平分线交于点F,∴∠BAF=∠BAE,∠CDF=∠CDE,∴∠AFD=(∠BAE+∠CDE),∵∠BAE+∠CDE=∠AED,∴∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,而射线DC沿DE翻折交AF于点G,∴∠CDG=4∠CDF,∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED﹣∠BAE)=2∠AED﹣∠BAE,∵90°﹣∠AGD=180°﹣2∠AED,∴90°﹣2∠AED+∠BAE=180°﹣2∠AED,∴∠BAE=60°.。
初一数学相交线与平行线28道典型题(含 答案和解析)
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
第5章 相交线与平行线练习题(重庆地区专用下学期重庆市各地人教版七年级数学期中复习 - 副本
第5章相交线与平行线练习题一、单选题1.(2021·重庆巴南·七年级期中)在下列四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.(2021·重庆·西南大学附中七年级期中)如图,OD平分∠AOB,OC∠OD,OE平分∠AOC,若∠BOE=15°,则∠AOD的度数为()A.18°B.20°C.22°D.30°3.(2021·重庆九龙坡·七年级期中)如图,直线AB,CD相交于点O,OE∠CD于点O,若AOC=52°,则∠BOE的度数为().A.142°B.128°C.148°D.152°4.(2021·重庆巴南·七年级期中)在公路旁有一城镇,现打算从城镇修一条和公路垂直的道路,这种方案是唯一的,其原因是()A.经过两点有且只有一条直线B.两点之间的所有连线中线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2021·重庆·七年级期中)如图,点A、C、B在同一直线上,DC∠EC,若∠BCD=40°,则∠ACE的度数是()A .30°B .40°C .50°D .60°6.(2021·重庆·七年级期中)如图,直线l 1截l 2、l 3分别交于A 、B 两点,则∠1的同位角是( )A .∠2B .∠3C .∠4D .∠57.(2021·重庆巴南·七年级期中)如图,B 的内错角是( )A .1∠B .2∠C .3∠D .4∠8.(2021·重庆·七年级期中)如图,下列说法错误的是( )A .∠A 与∠C 是同旁内角B .∠1与∠3是同位角C .∠2与∠3是内错角D .∠3与∠B 是同旁内角9.(2021·重庆·七年级期中)下列说法正确的有( )∠两点之间的所有连线中,线段最短;∠相等的角叫对顶角;∠过一点有且只有一条直线与已知直线平行;∠过一点有且只有一条直线与已知直线垂直;∠两点之间的距离是两点间的线段;∠在同一平面内的两直线位置关系只有两种:平行或相交.A .1个B .2个C .3个D .4个10.(2021·重庆市两江中学校七年级期中)如图点E 在BC 的延长线上,则下列条件中,不能判定AB ∥CD 的是( )A .∠1=∠2B .∠B =∠DCEC .∠3=∠4D .∠D +∠DAB =180°11.(2021·重庆·七年级期中)如图,点E 在CD 延长线上,下列条件中不能判定//AB CD 的是( )A .12∠=∠B .34∠=∠C .∠5=∠BD .180B BDC ∠+∠=︒12.(2021·重庆·西南大学附中七年级期中)下列说法错误的是( )A .在同一平面内,若P A =PB ,则P 是线段AB 的中点B .两直线平行,同旁内角互补C .在同一平面内,过一点,有且只有一条直线与已知直线垂直D .两点之间,线段最短13.(2021·重庆·七年级期中)如图,AB //CD ,∠ABE =12∠EBF ,∠DCE =13∠ECF ,设∠ABE =α,∠E =β,∠F =γ,则α,β,γ的数量关系是( )A .4β﹣α+γ=360°B .3β﹣α+γ=360°C .4β﹣α﹣γ=360°D .3β﹣2α﹣γ=360°14.(2021·重庆·西南大学附中七年级期中)如图,一艘快艇从O 沿正北方向航行,到A 处时接到指令向左转60°航行到B 处,再向左转70度继续航行,此时的航行方向为( )A.北偏东40°B.北偏东50°C.南偏西40°D.南偏西50°15.(2021·重庆·西南大学附中七年级期中)如图,∠OAB为等腰直角三角形(∠A=∠B=45°,∠AOB=90°),∠OCD为等边三角形(∠C=∠D=∠COD=60°),满足OC>OA,∠OCD绕点O从射线OC与射线OA重合的位置开始,逆时针旋转,旋转的角度为α(0°<α<360°),下列说法正确的是()A.当α=15°时,DC∠ABB.当OC∠AB时,α=45°C.当边OB与边OD在同一直线上时,直线DC与直线AB相交形成的锐角为15°D.整个旋转过程,共有10个位置使得∠OAB与∠OCD有一条边平行16.(2021·重庆·七年级期中)如图,已知GF∠AB,∠1=∠2,∠B=∠AGH,则下列结论:∠GH∠BC;∠∠D=∠F:∠HE平分∠AHG;∠HE∠AB,其中正确的有()A.0个B.1个C.2个D.3个17.(2021·重庆·七年级期中)下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等18.(2021·重庆·七年级期中)如图,AB∠CD,有图中α,β,γ三角之间的关系是()A .α+β-γ=180°,B .α-β+γ=180°C .α+β-γ=360°,D .α+β+γ=360°19.(2021·重庆·七年级期中)如图,把一个含30°的直角三角尺的一个顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )A .10°B .20°C .25°D .30°20.(2021·重庆市璧山区青杠初级中学校七年级期中)如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D 、C '的位置,若70EFB ∠=︒,则AED '∠等于( )A .40︒B .50︒C .65︒D .70︒21.(2021·重庆市第九十五初级中学校七年级期中)如图,//,100,50,AB CD A BCD ACB ∠=︒∠=︒∠的度数为( )A .25︒B .30C .45︒D .50︒22.(2021·重庆市璧山区青杠初级中学校七年级期中)如图,已知直线AB∠CD ,直线EF 分别与AB 、CD交于点M、N,点H在直线CD上,HG∠EF于点G,过点G作GP∠AB.则下列结论:∠∠AMF与∠DNF是对顶角;∠∠PGM=∠DNF;∠∠BMN+∠GHN=90°;∠∠AMG+∠CHG=270°.其中正确结论的个数()A.1个B.2 个C.3个D.4个23.(2021·重庆市两江中学校七年级期中)下列命题中真命题的个数有()∠有公共顶点且相等的两个角叫对顶角;∠过直线外一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两条直线平行;∠过一点有且只有一条直线与已知直线垂直;∠直线外一点到已知直线的垂线段就是该点到直线的距离.A.1个B.2个C.3个D.4个24.(2021·重庆·七年级期中)下列命题是真命题的是()A.对顶角相等B.内错角相等C.邻补角相等D.余角相等25.(2021·重庆九龙坡·七年级期中)下列命题是假命题...的是().A.同一平面内,两直线不相交就平行B.对顶角相等C.互为邻补角的两角和为180°D.相等的两个角一定是对顶角26.(2021·重庆巴南·七年级期中)把命题“等角的余角相等”改写成“如果……那么……”的形式,正确的是()A.如果两个角互余,那么这两个角相等B.如果两个角相等.那么这两个角互为余角C.如果两个角相等,那么这两个角的余角也相等D.如果两个角互余,那么这两个角的余角相等27.(2021·重庆·七年级期中)下面的四个图形中,能够通过基本图形平移得到的图形有()A.1个B.2个C.3个D.4个28.(2021·重庆巴南·七年级期中)下列各组图形可以通过平移互相得到的是()A.B.C.D.29.(2021·重庆·七年级期中)下列现象中,不属于平移的是()A.滑雪运动员在的平坦雪地上滑行B.钟摆的摆动C.大楼上上下下地迎送来客的电梯D.火车在笔直的铁轨上飞驰而过30.(2021·重庆·七年级期中)如图,两个相同的四边形重叠在一起,将其中一个四边形沿DA方向平移AE长,则下列关于阴影部分面积的说法正确的是()A.S阴影=S四边形EHGF B.S阴影=S四边形DHGKC.S阴影=S四边形EDKF D.S阴影=S四边形EDKF-S四边形DHGK二、填空题31.(2021·重庆·七年级期中)如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH∠PQ于点H,沿AH修建公路,则这样做的理由是________32.(2021·重庆·七年级期中)如图,若AB EF∥,1∠=α,2∠=β,那么BCE∠=_____.(用α、β表示)33.(2021·重庆·七年级期中)如图,AB//CD,∠BAC的角平分线交CD于点E,若∠ECA=130°,则∠1=_____度.34.(2021·重庆巴南·七年级期中)如图,直线a ,b ,a ∠b ,点C 在直线b 上,BC ∠CD ,若∠1=75°,则∠2的度数为___.35.(2021·重庆市璧山区青杠初级中学校七年级期中)如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.36.(2021·重庆南开中学七年级期中)如图,//AB DE ,//BC EF ,130∠=︒E ,则B 的度数为____________.37.(2021·重庆·七年级期中)如图,图∠是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图∠,则图∠中的∠CFG 的度数是_____________.38.(2021·重庆·七年级期中)完成下面的证明:看图填空:已知如图,AD BC ⊥于D ,EG BC ⊥于G ,3E ∠=∠,求证:AD 平分BAC ∠.证明:AD BC ⊥于D ,EG BC ⊥于G (_____),90ADC ∴∠=︒,90EGC ∠=︒(_____).ADC EGC ∴∠=∠(_____).AD EG ∴∥(_____).1∴∠=∠_____(_____), 2∠=∠_____(_____). 又3E ∠=∠(已知),12∠∠∴=(_____), AD ∴平分BAC ∠(_____). 39.(2021·重庆·七年级期中)把命题“互补两角的和是180︒”,改写成“如果…,那么…”的形式:________.40.(2021·重庆·七年级期中)如果两个角的两条边分别平行,其中一个角比另一个角的3倍少20︒,则这两个角的度数分别为______.41.(2021·重庆·西南大学附中七年级期中)如图,∠ABC 沿AB 方向平移3个单位长度后到达∠DEF 的位置,BC 与DF 相交于点O ,连接CF ,已知∠ABC 的面积为14,AB =7,S △BDO ﹣S △COF =___.42.(2021·重庆·七年级期中)如图,边长为8cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A ′B ′C ′D ′,此时阴影部分的面积为_____.三、解答题43.(2021·重庆巴南·七年级期中)如图,直线AB 与CD 相交于点O ,OE 平分∠BOC ,OF ∠OE ,OG ∠OC .(1)求证:∠COF =∠EOG ;(2)若∠BOD =32°,求∠EOG 的度数.44.(2021·重庆·七年级期中)已知:如图,在∠ABC 中,CD ∠AB 于点D ,E 是AC 上一点且∠1+∠2=90°.求证:DE ∠BC .45.(2021·重庆·七年级期中)如图:完成下列填空:∠若12∠=∠,则 ∥ .( )若180DAB ABC ∠+∠=︒,则 ∥ .若DC 平分BDE ∠,23∠∠=,则 ∥ .∠当 ∥ 时,180C ABC ∠+∠=︒.( )当 ∥ 时,3C ∠=∠ .46.(2021·重庆·七年级期中)已知,AB //CD ,点E 在AB 上,且ED ∠AD ,垂足为D . (1)如图1,若∠A =28°,求∠CDE 的度数;(把下面的解答补充完整)解:(1)∠ED ∠AD (已知)∠∠ADE = ( )∠AB //CD ( )∠∠A +∠ADC =180°( )∠∠A=28°(已知)∠∠ADC=180°﹣∠A=152°∠∠CDE=∠ADC﹣∠ADE=°(2)如图2,在AB上取一点F,连接CF,交DE于点G,若AD//CF,∠1=90°,则DE//CB成立吗?请说明理由.47.(2021·重庆·西南大学附中七年级期中)如图,点H、点D在AB上,点F、点G在AC上,点E在BC上,已知HG∠AB,DF∠AB,∠2+∠3=180°,求证:∠1=∠A.证明:∠HG∠AB,DF∠AB(已知),∠∠AHG=∠HDF=90°(垂直的定义).∠DF∠HG().∠∠3+=180°().∠∠2+∠3=180°(已知),∠∠2=∠4().∠(内错角相等,两直线平行).∠∠1=∠A().48.(2021·重庆·七年级期中)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG=∠HFD,求证:∠G=∠H.解:∠∠BEF +∠EFD =180°,( ).∠AB // ( ).∠ =∠EFD ( ).又∠∠AEG =∠HFD ,∠∠AEF ﹣∠AEG =∠EFD ﹣∠HFD ,即 = .∠ //FH ( ).∠∠G =∠H .( ).49.(2021·重庆巴南·七年级期中)完成下面推理过程.在括号内的横线上填上推理依据.如图,已知:AB ∠EF ,EP ∠EQ ,∠EQC +∠APE =90°,求证:AB ∠CD .证明:∠AB ∠EF ,∠∠APE =∠PEF ( )∠EP ∠EQ ,∠∠PEQ = (垂直的定义).即∠QEF +∠PEF =90°.∠∠APE +∠QEF =90°.∠∠EQC +∠APE =90°,∠∠EQC = ( )∠EF ∠CD ( ).∠AB ∠CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行).50.(2021·重庆市璧山区青杠初级中学校七年级期中)如图,已知12180∠+∠=︒,3B ∠=∠,求证:AED ACB ∠=∠,请补充完成下面证明过程.证明:12180∠+∠=︒(已知),1480∠+∠=︒ ,2∴∠= (同角的补角相等), //AB EF ∴ ,3∴∠= (两直线平行,内错角相等),3B ∠=∠ ,B ADE ∴∠=∠ ,//DE ∴ (同位角相等,两直线平行),AED ACB ∴∠=∠ .51.(2021·重庆市两江中学校七年级期中)如图,AE ∠BC 于点M ,DF ∠BC 于点N ,且∠1=∠2. (1)判断AB 与CD 是否平行,并请说明理由;(2)若BC 平分∠ABD ,且∠BDC =∠3+90°,求∠C 的度数.52.(2021·重庆·七年级期中)已知:AB ∠CD ,E 、G 是AB 上的点,F 、H 是CD 上的点,∠1=∠2. (1)如图1,求证:EF ∠GH ;(2)如图2,过F 点作FM ∠GH 交GH 延长线于点M ,作∠BEF 、∠DFM 的角平分线交于点N ,EN 交GH 于点P ,求证:∠N =45°;(3)如图3,在(2)的条件下,作∠AGH 的角平分线交CD 于点Q ,若3∠FEN =4∠HFM ,直接写出GQH MPN∠∠的值.53.(2021·重庆·西南大学附中七年级期中)如图,点A在直线PQ上,点C在直线MN上,PQ∠MN,∠CAQ=60°,CB平分∠ACM.(作答过程不需要写依据)(1)∠MCB=;(2)将∠ACB绕点C以每秒3°的速度顺时针方向旋转,A的对应点为A1,B的对应点为B1,设旋转时间为t(t<50),当2∠ACB1+∠A1CN=100°时,求旋转时间t的值;(3)将射线CB绕点C以每秒2°的速度顺时针方向旋转,射线AQ绕点A以每秒10°的速度顺时针方向旋转,设旋转时间为m(m<40),当BC与AQ平行或垂直时,直接写出旋转时间m的值.54.(2021·重庆九龙坡·七年级期中)已知AB//CD,H为AB、CD之间一点,E为直线CD上点C左边一点;(1)如图1所示,HF平分∠GHC,∠F=∠CHF,∠AHG=∠FCE,求证:∠A=2∠FCE;(2)如图2所示,∠AHG:∠GHF:∠FHC=1:2:3,CF平分∠HCE,∠F=64°,求∠A的度数.55.(2021·重庆·七年级期中)如图,CD∠AB于D,FE∠AB于E,∠ACD+∠F=180°.(1)求证:AC∠FG;(2)若∠A=45°,∠BCD:∠ACD=2:3,求∠BCD的度数.56.(2021·重庆·七年级期中)如图,AD//EF,∠1+∠2=180°,(1)若∠1=50°,求∠BAD的度数;(2)若DG∠AC,垂足为G,∠BAC=90°,试说明:DG平分∠ADC.57.(2021·重庆市璧山区青杠初级中学校七年级期中)如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求ΔABC的面积;(2)在图中画出ΔABC向右平移3个单位,再向下平移2个单位的图形∠A1B1C1;(3)写出点A1,B1,C1的坐标.参考答案:1.B【解析】根据对顶角的概念判断即可.解:根据对顶角的定义可知:选项A、D中,∠1与∠2的顶点不相同,则不是对顶角,选项C中,∠1的两边分别不是∠2的两边的反向延长线,则不是对顶角,只有B选项中的是对顶角.故选:B.【点睛】本题考查的是对顶角的判断,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.2.B【解析】根据垂线的性质、角平分线的定义得出含∠AOD的等式求解即可.解:∠OC∠OD,∠∠COD=90°,∠∠AOC=∠COD+∠AOD=90°+∠AOD,∠OD平分∠AOB,OE平分∠AOC,∠BOE=15°,∠AOC=∠BOE+∠AOB=15°+2∠AOD,∠∠AOE=12∠15°+2∠AOD=1(90°+∠AOD),2∠∠AOD=20°,故选:B.【点睛】本题考查了垂线,熟记垂线的性质及角平分线的定义是解题的关键.3.A【解析】由对顶角相等可得∠AOC=∠BOD,由OE∠CD,可得∠EOD=90°,即可求∠BOE的度数.解:∠∠AOC=∠BOD,∠AOC=52°,∠∠BOD=52°.∠OE∠CD,∠∠EOD=90°,∠∠BOE=∠EOD+∠BOD=90°+52°=142°,故选A.【点睛】本题考查了垂直的定义,对顶角相等,数形结合是解答本题的关键.4.D【解析】根据垂线的性质解答.解:同一平面内,过一点有且只有一条直线与已知直线垂直.故选:D.【点睛】本题主要考查了垂线的性质,属于基础题,掌握相关概念即可.5.C【解析】根据垂线和平角的定义可求∠ACE的度数.解:∠DC∠EC,∠∠ECD=90°,∠∠BCD=40°,∠∠ACE=180°-90°-40°=50°.故选:C.【点睛】本题考查了垂线,关键是熟悉垂线的定义.6.B【解析】根据同位角的定义判断即可.解:∠∠1和∠3分别在l2、l3的下方,在直线l1截的同侧,∠∠1和∠3是同位角.故选:B.【点睛】本题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.7.A【解析】根据内错角的定义判断即可;解:A、B的内错角是1∠,故此选项符合题意;B、B与2∠是同旁内角,故此选项不合题意;C、B与3∠是同位角,故此选项不合题意;∠不是内错角,故此选项不合题意;D、B与4答案:A.【点睛】本题主要考查了内错角的判定,准确分析判断是解题的关键.8.B【解析】试题分析:根据同位角、内错角、同旁内角的定义,可得答案.解:A、∠A与∠C是同旁内角,故A正确;B、∠1与∠3是同旁内角,故B错误;C、∠2与∠3是内错角,故C正确;D、∠3与∠B是同旁内角,故D正确;故选B.考点:同位角、内错角、同旁内角.9.B【解析】根据所学的相关知识,逐一判断即可.解:∠两点之间的所有连线中,线段最短,故∠说法正确.∠相等的角不一定是对顶角,故∠说法错误.∠经过直线外一点有且只有一条直线与已知直线平行,故∠说法错误.∠同一平面内,过一点有且只有一条直线与已知直线垂直,故∠说法错误.∠两点之间的距离是两点间的线段的长度,故∠说法错误.∠在同一平面内,两不重合的直线的位置关系只有两种:相交和平行,故∠说法正确.综上所述,正确的结论有2个.故选:B.【点睛】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.10.C【解析】根据平行线的判定定理进行逐一分析解答即可.解:A 、正确,符合“内错角相等,两条直线平行”的判定定理;B 、正确,符合“同位角相等,两条直线平行”的判定定理;C 、错误,若∠3=∠4,则AD ∠BE ;D 、正确,符合“同旁内角互补,两条直线平行”的判定定理;故选:C .【点睛】本题考查的是平行线的判定定理,比较简单.11.A【解析】根据平行线的判定方法直接判定即可.解:选项B 中,34∠∠=,//AB CD ∴(内错角相等,两直线平行),所以正确;选项C 中,5B ∠=∠,//AB CD ∴(内错角相等,两直线平行),所以正确;选项D 中,180B BDC ∠+∠=︒,//AB CD ∴(同旁内角互补,两直线平行),所以正确;而选项A 中,1∠与2∠是直线AC 、BD 被AD 所截形成的内错角,因为12∠=∠,所以应是//AC BD ,故A 错误.故选:A .【点睛】本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.A【解析】根据两点间的距离、线段的性质、平行线的性质等判断即可得解.解:A ,在同一平面内,若P A =PB ,则P 不一定是线段AB 的中点,故此说法符合题意;B ,两直线平行,同旁内角互补,故此说法不符合题意;C,在同一平面内,过一点,有且只有一条直线与已知直线垂直,故此说法不符合题意;D,两点之间,线段最短,故此说法不符合题意;故选A.【点睛】本题主要考查了平行线的性质,垂线的定义,两点之间线段最短,线段中点,解题的关键在于能够熟练掌握相关知识进行求解.13.A【解析】过E作EN∥AB,过F作FQ∥AB,根据已知条件得出∠ABF=3α,∠DCF=4∠ECD,求出AB∥EN∥CD,AB∥FQ∥CD,根据平行线的性质得出∠ABE=∠BEN=α,∠ECD=∠CEN,∠ABF+∠BFQ=180°,∠DCF+∠CFQ=180°,求出α+∠ECD=β,3α+γ+4∠DCE=360°,再求出答案即可.解:过E作EN∥AB,过F作FQ∥AB,∠∠ABE=12∠EBF,∠DCE=13∠ECF,∠ABE=α,∠∠ABF=3α,∠DCF=4∠ECD,∠AB∥CD,∠AB∥EN∥CD,AB∥FQ∥CD,∠∠ABE=∠BEN=α,∠ECD=∠CEN,∠ABF+∠BFQ=180°,∠DCF+∠CFQ=180°,∠∠ABE+∠ECD=∠BEN+∠CEN=∠BEC,∠ABF+∠BFQ+∠CFQ+∠DCF=180°+180°=360°,即α+∠ECD=β,3α+γ+4∠DCE=360°,∠∠ECD=β﹣α,∠3α+γ+4(β﹣α)=360°,即4β﹣α+γ=360°,故选A.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.14.D【解析】根据平行线的性质,可得∠ABC的度数,根据角的和差,可得答案.解:过点B作BC∠AO,如图:∠BC∠AO,∠DAB=60°,∠∠ABC=∠DAB=60°.∠∠1=180°﹣60°﹣70°=50°.故此时的航行方向为南偏西50°.故选D.【点睛】本题主要考查了平行线的性质和方位角,解题的关键在于能够熟练掌握相关知识进行求解.15.A【解析】设OC与AB交点为M,OD与AB交点为N,当α=15°时,可得∠OMN=α+∠A=60°,可证DC∠AB;当OC∠AB时,α+∠A=90°,可得α=30°;当边OB与边OD在同一直线上时,应分两种情况,则直线DC 与直线AB相交形成的锐角也有两种情况;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得∠OAB与∠OCD有一条边平行.解:设OC与AB交点为M,OD与AB交点为N,当α=15°时,∠OMN=α+∠A=60°,∠∠OMN=∠C,∠DC∠AB,故A正确;当OC∠AB时,α+∠A=90°或α﹣180°=90°﹣∠A,∠α=45°或225°,故B错误;当边OB与边OD在同一直线上时,应分两种情况,则直线DC与直线AB相交形成的锐角也有两种情况,故C错误;整个旋转过程,因OC、OB、OD、OA都有交点,只有AB和CD存在平行,根据图形的对称性可判断有两个位置使得∠OAB与∠OCD有一条边平行,故D错误;故选A.【点睛】本题主要考查了平行线的性质与判定,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解. 16.C【解析】根据平行线的性质和判定逐个判断即可.解:∠∠B=∠AGH,∠GH∠BC,故∠正确;∠∠1=∠HGF,∠∠1=∠2,∠∠2=∠HGF,∠DE∠GF,∠∠D=∠DMF,根据已知条件不能推出∠F也等于∠DMF,故∠错误;∠DE∠GF,∠∠F=∠AHE,∠∠D=∠1=∠2,∠∠2不一定等于∠AHE,故∠错误;∠GF∠AB,GF∠HE,∠HE∠AB,故∠正确;即正确的个数是2,【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的判定定理有:∠同位角相等,两直线平行,∠内错角相等,两直线平行,∠同旁内角互补,两直线平行,反之亦然.17.D【解析】由平行公理,平行线的性质,对顶角的性质即可判定.解:由平行公理知A正确.由平行线的性质知B正确.由对顶角相等知C正确.两直线平行,才有同位角相等,故D错误.故选:D.【点睛】本题考查平行线的性质,对顶角的性质,正确理解平行线的性质和判定是求解本题的关键.18.A【解析】过E作EF∠AB∠CD,由平行线的质可得∠α+∠AEF=180°,∠ECD=∠γ,由∠β=∠AEF+∠FED即可得∠α、∠β、∠γ之间的关系.解:过点E作EF∠AB,∠∠α+∠AEF=180°,∠AB∠CD,∠EF∠CD,∠∠FEC=∠ECD,∠∠β=∠AEF+∠FED,又∠γ=∠ECD,∠∠α+∠β-∠γ=180°.故选:A.本题考查了平行线的性质,根据题意正确作出辅助线是解题的关键.19.B【解析】根据题意可得∠A =90°,∠ACB =60°,DE ∠CF ,∠1=40°,利用平行线的性质可求解∠2的度数. 解:如图,∠A =90°,∠ACB =60°,DE ∠CF ,∠1=40°,∠∠ACF =∠1=40°,∠∠ACF +∠2=∠ACB =60°,∠∠2=20°,故选:B .【点睛】本题主要考查平行线的性质,三角板及直尺的隐含条件是解题的关键.20.A【解析】根据平行线的性质可得∠DEF =70°,再由折叠可得∠D EF =∠DEF =65°,再根据平角定义可得答案.解:∵∠EFB =70°,AD ∥CB ,∴∠DEF =70°,由折叠可得∠D EF =∠DEF =70°,∴∠AE D =180°﹣70°﹣70°=40°,故选:A .【点睛】此题主要考查了平行线的性质、折叠的性质等,解题关键是掌握两直线平行,内错角相和折叠角相等. 21.B【解析】根据两直线平行,同旁内角互补,求得∠ACD =80°,根据∠BCD =50°,确定∠ACB 的度数即可∠//,100∠=︒AB CD A ,∠80ACD ∠=︒,∠∠BCD =50°,∠∠ACB =8050∠-∠=︒-︒ACD BCD=30°,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用性质是解题的关键.22.C【解析】根据平行线的性质对各项进行判断即可.解:∠∠AMF 与∠DNF 不是对顶角,错误;∠∠PG ∠AB ,AB ∠CD ,∠PG ∠CD ,∠∠PGM =∠GNH ,∠∠GNH =∠DNF ,∠∠PGM =∠DNF ,正确;∠∠AB ∠PG ∠CD ,∠∠BMN =∠MGP ,∠PGH =∠GHN ,∠∠MGP +∠PGH =90°,∠∠BMN +∠GHN =90°,正确;∠∠AB ∠CD ∠PG ,∠∠AMG +∠MGP =180°,∠CHG +∠PGH =180°,∠∠MGP +∠PGH =90°,∠∠AMG +∠CHG =180°+180°﹣90°=270°,正确;本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.23.A【解析】根据对顶角的定义(有公共顶点且两条边都互为反向延长线的两个角称为对顶角)可判断∠;同一平面内,过直线外一点有且只有一条直线与已知直线平行,可判断∠;平行于同一条直线的两条直线平行,根据平行线的判定可判断∠;同一平面内,过一点有且只有一条直线与已知直线垂直,可判断∠;直线外一点到已知直线的垂线段长度就是该点到直线的距离,可判断∠,综合即可得出选项.解:根据对顶角的定义(有公共顶点且两条边都互为反向延长线的两个角称为对顶角)判断∠错误,是假命题;同一平面内,过直线外一点有且只有一条直线与已知直线平行,故∠错误,是假命题;平行于同一条直线的两条直线平行,根据平行线的判定可得∠正确,是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,故∠错误,是假命题;直线外一点到已知直线的垂线段长度就是该点到直线的距离,故∠错误,是假命题;综上可得只有∠正确,是真命题,故选:A.【点睛】题目主要考查真假命题的判断,包括对顶角,平行线和垂线的性质,点到直线的距离等,理解题意,熟练掌握各个定理是解题关键.24.A【解析】根据对顶角相等、平行线的性质、邻补角的概念、余角的概念判断即可.解:A、对顶角相等,是真命题,本选项符合题意;B、两直线平行,内错角相等,故本选项说法是假命题,不符合题意;C、邻补角互补,不一定相等,故本选项说法是假命题,不符合题意;D、同角或等角的余角相等,故本选项说法是假命题,不符合题意;故选:A.【点睛】本题考查的是命题的真假判断,掌握对顶角相等、平行线的性质、邻补角的概念、余角的概念是解题的关键.根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.26.C【解析】根据任何一个命题都可以写成“如果…,那么…”的形式,如果后面是题设,那么后面是结论,从而得出答案.解:命题“等角的余角相等”的题设是“两个角相等”,结论是“这两个角的余角相等”.故命题“等角的余角相等”写成“如果…,那么…”的形式是:如果两个角相等,那么这两个角的余角相等.故选择:C.【点睛】此题考查了命题与定理,解答此题的关键是找出原命题的题设和结论,此题比较简单.27.B【解析】根据平移的性质,对逐个选项进行分析即可.解:第一个、第二个图不能由基本图形平移得到,第三个、第四个图可以由基本图形平移得到,故选:B.【点睛】本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.28.C【解析】根据平移不改变图形的形状和大小,进而得出答案.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.29.B【解析】根据平移不改变图形的形状、大小和方向,结合图形对选项进行一一分析,选出正确答案.解:A. 滑雪运动员在的平坦雪地上滑行,属于平移运动,故本选项不符合题意;B. 钟摆的摆动不属于平移得到,故本选项符合题意;C. 大楼上上下下地迎送来客的电梯属于平移运动,故本选项不符合题意;D. 火车在笔直的铁轨上飞驰而过属于平移运动,故本选项不符合题意.故选B.【点睛】本题考查平移的特点,属于基础题目,注意掌握平移不改变图形的形状、大小和方向.30.B【解析】根据平移的性质可知,平移后图形的面积不变即可得到答案.两个相同的四边形重叠在一起,将其中一个四边形沿DA方向平移AE长,∴阴影的面积+梯形EIKD的面积=梯形EIKD的面积+梯形DKGH的面积,∴阴影=四边形,S S DHGK所以B选项是正确的.【点睛】本题主要考查平移的性质,是基础题,熟记平移的本质是解题的关键.31.垂线段最短【解析】根据垂线段的性质:垂线段最短,进行判断即可.∠从直线外一点到这条直线上各点所连线段中,垂线段最短,∠过点A作AH∠PQ于点H,这样做的理由是垂线段最短.故答案为垂线段最短.【点睛】本题主要考查了垂线段的性质,从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.过点C 作CD AB ∥,证明AB CD EF ∥∥,可得1,2180,BCD DCE 再结合角的和差关系可得结论.解:过点C 作CD AB ∥,∥AB EF ,AB CD EF ∥∥,1,2180,BCD DCE1802DCE , 11802BCE BCD DCE ,1,2,180BCE故答案为:180. 【点睛】本题考查的是平行公理的应用,平行线的性质的应用,作出适当的辅助线是解本题的关键. 33.25【解析】根据平行线的性质得出∠1=∠EAB ,∠ECA +∠CAB =180°,求出∠CAB ,根据角平分线的定义求出∠EAB ,再求出答案即可.解:∠AB∥CD ,∠∠1=∠EAB ,∠ECA +∠CAB =180°,∠∠ECA =130°,∠∠CAB =50°,∠AE 平分∠CAB ,∠∠EAB =12∠CAB =25°,∠∠1=25°,故答案为:25.【点睛】。
初中数学-平行线与相交线
F A D
O B E
练习3:下列命题是真命题的有( C, E, G ) A、相等的角是对顶角; B、不是对顶角的角不相等; C、对顶角必相等; D、有公共顶点的角是对顶角; E 、邻补角的和一定是180°; F、互补的两个角一定是邻补角; G、两条直线相交,只要其中一个角的大小确 定了,那么另外三个角的大小就确定了。
随堂 练习
3、垂直与垂线
(1)概念:两条直线相交形成一个直角时称两 条直线垂直,其中一条直线是另一条的垂线, 交点叫垂足。 (2)垂线的性质:在同一平面内,经过一点有 且只有一条直线与已知直线垂直。
(3)点到直线的距离:
连接直线外一点与直线上各点的所有线段中, 垂线段最短。简称:垂线段最短。
直线外一点到此直线的垂线段的长度叫做点到 直线的距离。
例题3:如图,在宽18米、长32米的长方形草地ABCD的中 间有一条宽2米的曲折的小路,你能否算出草地的面积?
A D
解:小路边沿的两条曲线,因小 路宽度的一致,形状、长度是完 全一样的,故可以将其中的一条 经过平移与另一条重合。 利用平移,两条曲线重合,将 中间的小路“挤”没了!小路 两边的草地重新“拼接”成一 个新的长方形,此长方形只是 比原长方形一边短了2米。
3 4 O' O 1 2 A B
祝大家学习愉快!
A D F C
B E
∴ EF// BC。 (平行于同一条直线的两条直线互相平行)
例题2:如图,EF⊥AB,CD⊥AB,∠EFB=∠GDC, A 求证:∠AGD=∠ACB。
证明: ∵ EF⊥AB,CD⊥AB (已知) ∴ AD∥BC ∴ ∠EFB= ∠DCB (两直线平行,同位角相等) ∵ ∠EFB=∠GDC (已知) ∴ ∠DCB=∠GDC (等量代换)
人教版七年级上册数学知识点
人教版七年级上册数学知识点知识是嘈杂的,智慧是宁静的。
知识总是在卖弄,智慧却深藏不露;知识,只有当它靠积极的思维得来,而不是凭记忆得来的时候,才是真正的知识。
下面小编给大家分享一些人教版七年级上册数学知识,希望能够帮助大家,欢迎阅读!人教版七年级上册数学知识1整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
人教版七年级数学相交线与平行线练习及解析
人教版七年级数学相交线与平行线练习1.已知三条直线a,b,c,下列命题中错误的是()A.如果a∥b,b∥c,那么a∥c B.如果a⊥b,b⊥c,那么a⊥c C.如果a⊥b,b⊥c,那么a∥c D.如果a⊥b,a∥c,那么b⊥c 2.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD=()A.30°B.36°C.45°D.72°3.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数。
一.选择题(共11小题)1.在同一平面内,三条直线的交点个数不能是()A.1个B.2个C.3个D.4个2.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个3.如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围()A.大于b B.小于aC.大于b且小于a D.无法确定4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A.B.C.D.5.如图,与∠B互为同旁内角的有()A.1个B.2个C.3个D.4个6.同一平面内,直线l与两条平行线a,b的位置关系是()A.l与a,b平行或相交B.l可能与a平行,与b相交C.l与a,b一定都相交D.同旁内角互补,则两直线平行7.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③AD∥BE,且∠D=∠B;其中,能推出AB∥DC的条件为()A.①②B.①③C.②③D.以上都错8.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°9.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规10.下列画图语句中,正确的是()A.画射线OP=3cm B.连接A,B两点C.画出A,B两点的中点D.画出A,B两点的距离11.下列作图语句正确的是()A.延长线段AB到C,使AB=BCB.延长射线ABC.过点A作AB∥CD∥EFD.作∠AOB的平分线OC二.填空题(共8小题)1.平面内两直线相交有个交点,两平面相交形成条直线.2.如图,已知AB与CD相交于O,OE⊥AB,∠EOD=60°,则∠AOC=.3.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.4.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM,理由是.5.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为.6.如图所示,与∠A是同旁内角的角共有个.7.在同一平面内,两条直线有种位置关系,分别是和.8.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).解答题(共8小题)1.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,求∠AOM和∠NOC的度数.2.说出日常生活现象中的数学原理:日常生活现象相应数学原理有人和你打招呼,你笔直向他两点之间直线段最短走过去要用两个钉子把毛巾架安装在墙上桥建造的方向通常是垂直于河两岸人去河边打水总是垂直于河边方向走3.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?4.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.5.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.6.如图,AB∥CD,直线EF分别交AB,CD于E、F,EG平分∠BEF交CD于点G,∠1=50°,求∠2的度数.参考答案:1.已知三条直线a,b,c,下列命题中错误的是( B )A.如果a∥b,b∥c,那么a∥c B.如果a⊥b,b⊥c,那么a⊥c C.如果a⊥b,b⊥c,那么a∥c D.如果a⊥b,a∥c,那么b⊥c 2.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD=(B)A.30°B.36°C.45°D.72°【分析】根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答。
七年级初一数学数学第五章 相交线与平行线试题附解析
七年级初一数学数学第五章 相交线与平行线试题附解析一、选择题1.下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短2.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .43.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个4.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为( ).A .100︒B .80︒C .75︒D .50︒5.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65° 6.下列语句中,假命题的是( )A .垂线段最短B .如果直线a 、b 、c 满足a ∥b ,b ∥c ,那么a ∥cC .同角的余角相等D .如果∠AOB =80°,∠BOC =20°,那么∠AOC =60°7.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒8.下列说法中,错误的有( )①若a 与c 相交,b 与c 相交,则a 与b 相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个9.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 10.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-=二、填空题11.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔12.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.13.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.14.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .15.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.16.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.17.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .18.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.19.两个角的两边分别平行,一个角是50°,那么另一个角是__________.20.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.三、解答题21.如图,已知//AB CD ,50A C ∠=∠=︒,线段AD 上从左到右依次有两点E 、F (不与A 、D 重合)(1)求证://AD BC ;(2)比较1∠、2∠、3∠的大小,并说明理由;(3)若:1:4FBD CBD ∠∠=,BE 平分ABF ∠,且1BDC ∠=∠,判断BE 与AD 的位置关系,并说明理由.22.在综合与实践课上,老师让同学们以“三条平行线m ,n ,l (即始终满足m ∥n ∥l )和一副直角三角尺ABC ,DEF (∠BAC =∠EDF =90°,∠FED =60°,∠DFE =30°,∠ABC =∠ACB =45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC 的边BC 放在l 上,三角尺DEF 的顶点F 与顶点B 重合,边EF 经过AB ,顶点E 恰好落在m 上,顶点D 恰好落在n 上,边ED 与n 相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m 向下平移后使得两个三角尺的两个直角顶点A 、D 分别落在m 和l 上,顶点C 恰好落在n 上,边AC 与l 相交所成的一个角记为∠2,边DF 与m 相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N 是直线n 上一点,CN 恰好平分∠ACB 时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.23.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.24.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( )130,PFD ∠=︒218013050∴∠=︒-︒=.12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程)25.(1)①如图1,//AB CD ,则B 、P ∠、D ∠之间的关系是 ;②如图2,//AB CD ,则A ∠、E ∠、C ∠之间的关系是 ;(2)①将图1中BA 绕B 点逆时针旋转一定角度交CD 于Q (如图3).证明:123BPD ∠=∠+∠+∠②将图2中AB 绕点A 顺时针旋转一定角度交CD 于H (如图4)证明:360E C CHA A ∠+∠+∠+∠=︒(3)利用(2)中的结论求图5中A B C D E F G ∠+∠+∠+∠+∠+∠+∠的度数. A B C D E F G ∠+∠+∠+∠+∠+∠+∠=26.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A .立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质; B .从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C .把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D .直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质; 故选:C .【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.2.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.3.B解析:B【分析】根据平行线的性质,点到直线的距离依次判断.【详解】解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确;③直线外一点到直线的垂线段叫点到直线的距离,说法错误;④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误;正确的说法有2个,故选:B .【点睛】此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.4.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.5.B解析:B【分析】由题意过点B 作直线//l m ,利用平行线的判定定理和性质定理进行分析即可得出答案.【详解】解:如图,过点B 作直线//l m ,l m,∵直线m//n,//l n,∴//∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,l m,∵//∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.6.D解析:D【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、垂线段最短是真命题,故A不符合题意;B、如果直线a、b、c满足a∥b,b∥c,那么a∥c是真命题,故B不符合题意;C、同角的余角相等是真命题,故C不符合题意;D、如果∠AOB=80°,∠BOC=20°,那么∠AOC=60°或100°,是假命题,故D符合题意.故选:D.【点睛】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P 作MN ∥AB ,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB ∥CD,PF ⊥CD 于F ,∴PF ⊥MN ,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.8.B解析:B【解析】①若a 与b 相交,b 与c 相交,则a 与c 相交或平行,故本小题错误; ②若a ∥b ,b ∥c ,则a ∥c ;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.故选:B.9.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.10.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.二、填空题11.;(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图中,当时,DE//AC ;图中,当 时,CE//AB ,图中,当 时,DE//BC .故答案为:;(答案解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.12.4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.13.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.14.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 解析:7513【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.15.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.16.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.17.【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25解析:125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE ,DF 平分∠CDE ,根据角平分线的性质,即可求得∠ABF+∠CDF 的度数,又由两只线平行,内错角相等,即可求得∠BFD 的度数.【详解】过点E 作EM ∥AB ,过点F 作FN ∥AB ,∵AB ∥CD ,∴EM ∥AB ∥CD ∥FN ,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠ABF=12∠ABE ,∠CDF=12∠CDE , ∴∠ABF+∠CDF=12(∠ABE+∠CDE )=125°, ∵∠DFN=∠CDF ,∠BFN=∠ABF ,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】 此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.18.平行 平行 垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行 平行 垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3).19.130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是解析:130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是130°或50°.故答案为:130°或50°.20.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:130152AB BC+=⨯=.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)见解析;(2)∠1>∠2>∠3,理由见解析;(3)BE⊥AD,理由见解析【分析】(1)证明∠C+∠ADC=180°,再根据平行线的判定证明即可;(2)通过比较∠EBC、∠FBC、∠DBC的大小,再进行等量代换即可;(3)设∠FBD=x°,则∠DBC=4x°,根据∠ABC=130°列出方程,求解即可.【详解】解:(1)证明:∵AB∥CD,∴∠A+∠ADC=180°,∵∠A=50°,∴∠ADC=130°,∵∠C=50°,∴∠C+∠ADC=180°,∴AD∥BC;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3;(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∴∠ABE=∠DBC,∵BE平分∠ABF,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE⊥AD.【点睛】此题考查平行线的性质,关键是根据平行线的判定和性质解答.22.(1)75°;(2)见解析;(3)∠2=3∠3【分析】(1)利用三角板的度数,求出∠DBC的度数,再利用平行线的性质得到∠BDN的度数,由此得到∠1的度数;(2)过B点作BG∥直线m,利用平行线的性质可得到∠3=DBG和∠LAB=∠ABG,再利用等量代换得到∠3+∠LAB=75°,利用余角性质得到∠LAB=90°-∠2,由此证明结论;(3)结论:∠2=3∠3.利用(2)中结论,结合平行线的性质得到∠2和∠3的度数由此证明结论.【详解】(1)∵直线n∥直线l,∴∠DBC=∠BDN,又∵∠DBC=∠ABC﹣∠ABD=45°﹣30°=15°,∴∠BDN=15°,∴∠1=90°﹣15°=75°.(2)如图所示,过B点作BG∥直线m,∵BG∥m,l∥m,∴BG∥l(平行于同一直线的两直线互相平行),∵BG∥m,∴∠3=DBG,又∵BG∥l,∴∠LAB=∠ABG,∴∠3+∠LAB=∠DBA=30°+45°=75°,又∵∠2和∠LAB互为余角,∴∠LAB=90°﹣∠2,∴∠3+90°﹣∠2=75°,∴∠2﹣∠3=15°.(3)结论:∠2=3∠3.理由:在(2)的条件下,∠2﹣∠3=15°,又∵CN平分∠BCA,∴∠BCN=∠CAN=22.5°,又∵直线n∥直线l,∴∠2=22.5°,∴∠3=7.5°,∴∠2=3∠3.【点睛】考查平行线的性质并结合了三角板中的特殊角度,学生需要作辅助线利用平行线的传递性将特殊的角的关系联系起来,熟悉掌握平行线之间角的关系是解题的关键.∠=∠+∠,理由见解析;23.(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.24.(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补;(2),PFC PEA P ∠=∠+∠理由见解析;(3)1.2G α∠=【分析】(1)根据平行线的性质与判断,即可解答.(2)过P 点作PN//AB ,则PN//CD ,根据平行线的性质得出∠PEA=∠NPE ,进而得到∠FPN=∠PFC ;(3)令AB 与PF 交点为O ,连接EF EF 如图3,在△GFE 中,利用三角形内角和定理进行计算,由(2)知∠PFC=∠PEA+∠P ,得到∠PEA=∠PFC −α,即可解答.【详解】解:(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补(2)PFC PEA P ∠=∠+∠理由如下:过点P 作//PN AB ,则//PN CD∴PEA NPE ∠=∠∵FPN NPE FPE ∠=∠+∠∴FPN ∠=PEA FPE ∠+∠ ∵//PN CD∴F FPN P C ∠=∠∴PFC PEA FPE ∠=∠+∠即PFC PEA P ∠=∠+∠.(3)令AB 与PF 交点为O ,连接EF 如图3,在GFE 中,180()G GFE GEF ∠=︒-∠+∠,∵12GEF PEA OEF ∠=∠+∠,12GFE PFC OFE ∠=∠+∠, ∴1122GEF GFE PEA PFC OEF OFE ∠+∠=∠+∠+∠+∠,∵由(2)知PFC PEA P ∠=∠+∠,∴C PEA PF α=∠-∠,而180180OF PF E OEF F E C O ∠+∠=-︒-∠∠=︒, ∴11()22GEF GFE PFC PFC α∠+∠=∠-+∠+11801802PFC α︒-∠=︒-, ∴11180()18018022G GEF GFE αα∠=︒-∠+∠=︒-︒+=. 故答案为:12G α∠=【点睛】 此题考查平行线的性质的运用,三角形内角和定理,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算.25.(1)①B D P ∠+∠=∠,②360A E C ∠+∠+∠=︒;(2)①证明见解析,②证明见解析;(3)540︒.【分析】(1)①如图1中,作//PE AB ,利用平行线的性质即可解决问题;②作//EH AB ,利用平行线的性质即可解决问题;(2)①如图3中,作//BE CD ,利用平行线的性质即可解决问题;②如图4中,连接EH .利用三角形内角和定理即可解决问题;(3)利用(2)中结论,以及五边形内角和540︒即可解决问题;【详解】解:(1)①如图1中,作//PE AB ,//AB CD ,//PE CD ∴,1B ∴∠=∠,D 2∠=∠,12B D BPD .②如图2,作//EH AB ,//AB CD ,//EH CD ,1180A ∴∠+∠=︒,2180C , 12360A C , 360A AEC C .故答案为B D P ∠+∠=∠,360A E C ∠+∠+∠=︒.(2)①如图3中,作//BE CD ,3EBQ,1EBP EBQ , 2132BPD EBP .②如图4中,连接EH .180A AEH AHE ,180C CEB CBE ,360AAEH AHE CEH CHE C , 360A AEC C AHC .(3)如图5中,设AC 交BG 于H .AHB A B F ,AHB CHG ∠=∠, 在五边形HCDEG 中,540CHG CD E G , 540A B F C D E G【点睛】本题考查图形的变换、规律型问题、平行线的性质、多边形内角和等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用结论解决问题.26.(1)∠DAC;EAB BAC DAC ∠+∠+∠(2)见解析(3)①65②215°−12n 【分析】 (1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D+∠FCD=180°,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)①过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; ②∠BED 的度数改变.过点E 作EF ∥AB ,先由角平分线的定义可得:∠ABE =12∠ABC =12n°,∠CDE =12∠ADC =35°,然后根据两直线平行内错角相等及同旁内角互补可得:∠BEF =180°−∠ABE =180°−12n°,∠CDE =∠DEF =35°,进而可求∠BED =∠BEF +∠DEF =180°−12n°+35°=215°−12n°. 【详解】(1)过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=∠DAC .EAB BAC DAC ∠+∠+∠180=︒180B BAC C ∴∠+∠+∠=︒故答案为:∠DAC;EAB BAC DAC ∠+∠+∠;(2)如图2,过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ,∴∠D+∠FCD=180°,∵CF ∥AB ,∴∠B =∠BCF ,∵BCD ∠=∠FCD+∠BCF ,∴D BCD B ∠+∠-∠=180D FCD BCF B D FCD B B D FCD ∠+∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; 即180D BCD B ∠+∠-∠=︒;(3)①如图3,过点E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°;故答案为:65;②如图4,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°−∠ABE=180°−12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°−12n°+35°=215°−12n°.故答案为:215°−12 n.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.。
新人教版七年级数学知识点归纳(上下册)
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
(完整版)人教版初一数学知识点总结
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
人教五四学制版七年级上册数学第12章 相交线与平行线含答案(综合题)
人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移()个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位2、小达在某广场上骑共享单车,两次拐弯后骑行方向与原来相同这两次拐弯的角度可能是()A.第一次左拐,第二次右拐B.第一次右拐,第二次左拐C.第一次右拐,第二次右拐D.第一次向左拐,第二次向左拐3、如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个D.4个4、已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为( )A.10°B.20°C.30°D.40°=25,∠BAC的平分线交BC于点D,5、如图,在锐角△ABC中,AC=10,S△ABC点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.C.5D.66、如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.1407、点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)8、如图,在中,和的平分线相交于点,过作,交于点,交于点,若,,则线段的长为( )A.3B.4C.3.5D.29、若和是内错角,且,则的度数为()A.50 oB.130 oC.50 o或130 oD.无法确定10、如图所示,两条直线AB、CD被第三条直线EF所截,∠1=75°,下列说法正确的()A.若∠4=75°,则AB∥CDB.若∠4=105°,则AB∥CDC.若∠2=75°,则AB∥CD D.若∠2=155°,则AB∥CD11、如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB 交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④ =(1+ )2;其中正确的结论的个数()A.1个B.2个C.3个D.4个12、如图,若a∥b,∠1=50°,则∠2=()A.50°B.130°C.60°D.120°13、下列命题中是真命题的是()A.相等的两个角是对顶角B.两条直线被第三条直线所截,同位角相等 C.在同一平面内,若a∥b,b∥c,则a∥c D.在同一平面内,若a∥b,b⊥c,则a∥c14、下列现象是数学中的平移的是( )A.小朋友荡秋千B.碟片在光驱中运行C.“神舟”十号宇宙飞船绕地球运动D.瓶装饮料在传送带上移动15、如图,能得到AB∥CD的条件是()A.∠B=∠DB.∠B+∠D+∠E=180°C.∠B+∠D=180°D.∠B+∠D=∠E二、填空题(共10题,共计30分)16、对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′= Q Q′,我们把这种对应点连线相等的变换称为“同步变换”。
人教五四学制版七年级上册数学第12章 相交线与平行线 含答案
人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,为一长条形纸带,,将沿折叠,两点分别与对应,若,则的度数是()A. B. C. D.2、如图,不能判定AB∥CD的条件是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠53、如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1B.2C.3D.44、如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°5、如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角6、下列图形中,由∠1=∠2,能得到AB∥CD的是()A. B. C. D.7、如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB= ,则此三角形移动的距离AA′是()A. ﹣1B.C.1D.8、如图,BC⊥DE,垂足为点C,AC∥BD,∠B=40°,则∠ACE的度数为()A.40°B.50°C.45°D.60°9、如图,直线,点在上,点、点在上,的角平分线交于点,过点作于点,已知,则的度数为()A.26ºB.32ºC.36ºD.42º10、下列说法不正确的是()A.对顶角相等B.两点确定一条直线C.一个角的补角一定大于这个角D.垂线段最短11、如图所示,已知l1∥l2,直线l与l1、l2分别相交于C、D两点,把一块含有30°角的三角板按如图位置摆放.若∠1=130°,则∠2=()A.60°B.50°C.30°D.20°12、如图,已知∠1=∠2,则()A.∠3=∠4B.AB∥CDC.AD∥BCD.以上结论都正确13、下列图案中,可以看出由图案自身的部分经过平移而得到的是()A. B. C. D.14、如图,在中,.边在x轴上,顶点的坐标分别为和.将正方形沿x轴向右平移当点E落在边上时,点D的坐标为()A. B. C. D.15、如图,把矩形ABCD沿EF对折,若,则等于()A.115°B.130°C.120°D.65°二、填空题(共10题,共计30分)16、如图,AB与⊙O相切于点B,弦BC∥OA.若⊙O的半径为3,∠A=50°,则的长为________.17、如图,直线AB,CD相交于点O,OE⊥CD于O,∠AOC=36°,则∠BOE的度数是________18、我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.图形的变化示例图形与对应线段有关的结论与对应点有关的结论平移________AA′=BB′AA′∥BB′轴对称________ ________旋转AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.________19、如图,在中,的平分线交于点,,过点作交于点,若的周长为,则边的长为________.20、如图,已知AB∥CD,则∠1与∠2,∠3的关系是________.21、在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,且两弦在圆心O的异侧,若AB=24,则CD的长为________.22、如图,已知△ABC≌△DCE≌△GEF,三条对应边BC、CE、EF在同一条直线=3,则图中三个阴上,连接BG,分别交AC、DC、DE于点P、Q、K,其中S△PQC影部分的面积和为________.23、如图,AD∥BC,AC与BD相交于点O,则图中相等的角有________对.(平角除外)24、一把直尺与含30°的直角三角板如图所示放置,,则________.25、如图,直线,°,,则的度数是________度.三、解答题(共5题,共计25分)26、如图,∠1=70°,∠2=70°,∠3=105°,求∠4的度数.27、如图,在△ABC中,∠1=∠2,ED//BC,CD⊥AB于点D.求证:∠FGB=90°.28、将一副直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.29、如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.30、如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、B6、C7、A8、B9、A10、C12、B13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
(2023年最新)人教五四学制版七年级上册数学第12章 相交线与平行线含答案
人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,在所标识的角中,同位角是()A. B. C. , D.2、如图所示,AB∥CD,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()A.80°B.100°C.140°D.120°3、如图,直线AB∥CD,如果∠1=70°,那么∠BOF的度数是()A.70°B.100°C.110°D.120°4、如图,将直尺与三角尺叠放在一起,如果,那么的度数为()A.62°B.56°C.28°D.72°5、对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°6、下列结论中:①若a=b,则= ,②在同一平面内,若a⊥b,b∥c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④| ﹣2|=2﹣,正确的个数有()A.1个B.2个C.3个D.4个7、如图,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于点R,PS⊥AC于S,①AS=AR,②QP∥AR,③△BRP≌△QSP.其中正确的是()A.全部正确B.①和②C.①D.②8、如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)9、下列说法中,正确的是( )A.图形的平移是指把图形沿水平方向移动B.平移前后图形的形状和大小都没有发生改变C.“相等的角是对顶角”是一个真命题 D.“直角都相等”是一个假命题10、如图,AB⊥CD于O,EF为经过点O的一条直线,∠1与∠2的关系是()A.互余B.互补C.互为对顶角D.相等11、如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A. B. C. D.12、如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠DB.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠A BE=2∠D13、如图,a b,且∠1=60°,则∠2=()A.30°B.45°C.60°D.120°14、如图,将一副三角板和一张对边平行的纸条按如图方式摆放两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30°B.25°C.20°D.15°15、如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30 °B.35 °C.40 °D.50 °二、填空题(共10题,共计30分)16、连接直线外一点与直线上各点的所有线段中,________最短.17、如图,________ 与∠C是直线BC与________ 被直线AC所截的同位角,________ 与________ 是直线AB与AC被直线DE所截的内错角,________ 与∠A是直线AB与BC被直线________ 所截的同旁内角.18、如果一个角的两边和另外一个角的两边分别平行,其中一个角是30°,则另外一个角的度数是________.19、如图,点A的坐标为(2,0),点B在直线y=x上,当线段AB最短时,点B的坐标为________.20、如图,EF∥AD,∠1=∠2, ∠BAC=70°,将求∠AGD的过程填空完整。
人教五四学制版七年级上册数学第12章 相交线与平行线含答案
人教五四学制版七年级上册数学第12章相交线与平行线含答案一、单选题(共15题,共计45分)1、如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=34°,那么∠BED =()A.134°B.124°C.114°D.104°2、已知坐标平面内的点A(-2,4),如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A的坐标是()A.(1,6)B.(-5,6)C.(-5,2)D.(1,2)3、如图,下列各组条件中,能一定得到a//b的是()A.∠1+∠2=180ºB.∠1=∠3C.∠2+∠4=180ºD.∠1=∠44、如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5、在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)6、已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等。
其中假命题有()A.4个B.3个C.2个D.1个7、如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A.60°B.50°C.40°D.30°8、如图,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有( )A.1个B.2个C.3个D.4个9、已知,CE平分,交AB于点E,,则的度数为()A. B. C. D.10、在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(﹣5,2)、N(1,﹣4),将线段MN向上移动3个单位,向左移动2个单位平移后,点M,N的对应坐标为()A.(﹣5,1),(0,﹣5)B.(﹣4,2),(1,﹣3)C.(﹣7,5),(﹣1,﹣1)D.(﹣5,0),(1,﹣5)11、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°12、如图,AB//CD,EF与AB、CD分别相交于点E、F,EP⊥EF,且∠BEP=50°,则∠EFD=()A.30°B.40°C.50°D.90°13、如图,下列条件中能判定AB∥CE的是()A.∠B=∠ACEB.∠B=∠ACBC.∠A=∠ECDD.∠A=∠ACE14、如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.15、一把直尺和一块三角板(含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,三角形ABC中,∠C=90°,三条边AB,AC,BC中AB>AC,理由:________.又有BC________AB(点B到AC距离,以垂线段最短).17、AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为________.18、如图,∠1=∠2,∠4=120°,则∠3=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相交线与平行线的复习
一、学习目标 1、进一步巩固邻补角、对顶角的概念和性质 2、理解垂线、垂线段的概念和性质 3、掌握两条直线平行的判定和性质 4、通过平移,理解图形平移变换的性质 5、能区分命题的题设和结论以及命题的真假
二、重点和难点
重点:垂线的性质和平行线的判定和性质。
对应点所连的线段平行且相等。
例1. 在以下生活现象中,不是平移现象的是 A.站在运动着的电梯上的人
B.左右推动的推拉窗扇
C.小李荡秋千运动
D.躺在火车上睡觉的旅客
分析: A、B、D属平移,在一个位置取两点连 成一条线,在另一个位置再观察这条线段,发 现是平行的,而C同样取两点连成一条线段,运 动到另一位置时,可能已不平行
(4)三种角判定(3种方法):
b C
a
同位角相等,两直线平行。 内错角相等,两直线平行。
E
1
A 34
B
同旁内角互补,两直线平行。
C
2
D
在这六种方法中,定义一般不常用。 F
例2. 已知∠DAC= ∠ACB, ∠D+∠DFE=1800,求
证:EF//BC
证明: ∵ ∠DAC= ∠ACB (已知) D F
难点:平行线的判定和性质。
相
知
交 线
识
构
图
平 行 线
两条 直线 相交
一般情况 特殊
两条直线被 第三条所截
邻补角
邻补角互补
对顶角 垂直
对顶角相等
存在性和唯一性
点到直
垂线段最短 线的距
离
同位角、内错角、同旁内角
平行线的判定
平行公理及其推论
平行线的性质 两条平行线的距离
命题
平移
平移的特征
相
知
交 线
1. 平移变换的定义: 把一个图形整体沿某一方向移动,会得到 一个新图形,这样的图形运动,叫做平移变换,简称平移。
2. 平移的特征: (1)平移不改变图形的形状和大小。 (2)新图形中的每一点,都是由原图形中的某一点移动后得到 的,这两个点是对应点,对应点连结而成的线段平行且相等。
3. 决定平移的因素是平移的方向和距离。 4. 经过平移,图形上的每一点都沿同一方向移动相同的距离。 5. 经过平移,对应角相等;对应线段平行且相等;
C
∴ AD// BC
(内错角相等,两直线平行)
∵ ∠D+∠DFE=180°(已知)
B E
∴ AD// EF
A
(同旁内角互补,两直线平行)
∴ EF// BC
(平行于同一条直线的两条直线互相平行)
平 行
条件
线
的 两直线平行
性
质
平
条件
行 线
同位角相等
的 内错角相等
判
定 同旁内角互补
结论 叫 夹
同位角相等
你知道如何解答了吗?
(20 – 0.5) ×8=156m2
小结:
1、邻补角、对顶角的概念和性质 2、垂线画法、垂线段的性质 3、平行线的判定和性质 4、命题的题设与结论以及命题的真假 5、平移的如图(1) 1与2是邻补角。
2. 对顶角: (1)两条直线相交所构成的四个角中,
有公共顶点但没有公共边的两个角是对顶角。
如图(2). 1与2, 3与4是对顶角。 2 1
(2)一个角的两边分别是另一个角的两边的
(1)
反向延长线,这两个角是对顶角。
3. 邻补角的性质: 同角的补角相等。 1与3互补,2与3互补
3
1
2
4
1 2(同角的补角相等)
(2)
4. 对顶角性质:对顶角相等。 两个特征:(1) 具有公共顶点; 5. n条直线相交于一点,
(2) 角的两边互为反向延长线。 就有n(n-1)对对顶角。
垂线
1.垂线的定义: 两条直线相交,所构成的四个角中,有一 个角是90°时,就说这两条直线互相垂直。其中一条直线 叫做另一条直线的垂线。它们的交点叫垂足。
A
B
C
D
A
B
C
D
三、运用新知
2.下图中的变换属于平移的有哪些?
A
B
C
D
E
F
巩固
3.下列汽车标志哪些是利用平移 设计的?(不考虑颜色)
(1)√
(2)
(3)
(4√)
(5√)
(6)
(7)
三、运用新知
4.答疑 如图,在一块长为20m,宽为8m的长方形的草
地上,有一条弯曲的柏油小路(小路任何地方的水 平宽度都是0.5m)。请你猜想草地的面积是多少。
理由:垂线段最短
C
例4:你能量出C到AB的距离,B到AC的距离,A到BC 的距离吗?
F
E
C
A
D
B
平行
1. 平行线的概念:在同一平面内,不相交的两条直线叫做平行线。 2. 两直线的位置关系: 在同一平面内,两直线的位置关系只 有两种:(1)相交; (2)平行。
3. 平行线的基本性质: (1) 平行公理(平行线的存在性和唯一性)
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。或 “若……, 则……”等形式。
3. 真命题和假命题: 命题是一个判断,这个判断可能是正确的, 也可以是错误的。由此可以把命题分成真命题和假命题。
真命题就是: 如果题设成立,那么结论一定成立的命题。
假命题就是: 如果题设成立时,不能保证结论总是成立的命题。
经过直线外一点,有且只有一条直线与已知直线平行。
(2) 推论(平行线的传递性) 如果两条直线都和第三条直线 平行,那么这两条直线也互相平行。
4.同位角、内错角、同旁内角的概念
同位角、内错角、同旁内角,指的是一条直线分别与两条 直线相交构成的八个角中,不共顶点的角之间的特殊位置 关系。它们与对顶角、邻补角一样,总是成对存在着的。
2. 垂线的性质: (1)过一点有且只有一条直线与已知直线 垂直。(2): 直线外一点与直线上各点连结的所有线段中, 垂线段最短。简称:垂线段最短。
3.点到直线的距离: 从直线外一点到这条直线的垂线段的 长度,叫做点到直线的距离。
4.如遇到线段与线段,线段与射线,射线与射线,线段 或射线与直线垂直时,特指它们所在的直线互相垂直。
1、同位角的位置特征是: (1)在截线的同旁, (2)在被截两直线的同方向。
2、内错角的位置特征是:
(1)在截线的两旁, (2)在被截两直线之间。 3、同旁内角的位置特征是:
(1)在截线的同旁,
三线八角
(2)在被截两直线之间。
C
3
E
1
截线
75
D
42
A 86
B
F
被截线
练一练 如图中的∠1和∠2是同位角吗? 为什么?
解. (1)、(3)不是命题; (2)、(4)、(5)是命题; (2)、(4)都是 真命,(5)是假命题。
“把‘等角的余角相等’改写成‘如 果……,那么……’的形式是 ”
“如果两个角是两个等角的余角,那 么这两个角相等”。
“同角的补角相等”
“如果两个角是同一个角的补角,那 么这两个角相等”。
平移
做在 两两
内错角相等 平 平 行行
同旁内角互补 线 线
间间
结论
的的 距垂
离线
。段
两直线平行 的
长
度
,
命题
1. 命题的概念: 判断一件事情的句子,叫做命题。
命题必须是一个完整的句子; 这个句子必须对某件事情做出 肯定或者否定的判断。两者缺一不可。
2. 命题的组成: 每个命题是由题设、结论两部分组成。
5.垂线是直线,垂线段特指一条线段是图形,点到直线距 离是指垂线段的长度,是指一个数量,是有单位的。
知识及运用
2、“过一点有且只有一条直线与已 知直线垂直”这句话对吗?为什么?
P
P
l
l
直线上、外一点
例3:如图,要把水渠中的水引到水池C中,在渠岸的
什么地方开沟,水沟的长度才能最短?请画出图来, 并说明理由。
例1. 判断下列语句,是不是命题,如果是命 题,是真命题,还是假命题?
(1)画线段AB=2cm
(2)直角都相等;
(3)两条直线相交,有几个交点?
(4)如果两个角不相等,那么这两个角不是对顶角。
(5)相等的角都是直角;
分析: 因为(1)、(3)不是对某一件事作出判断的句子,所以 (1)、(3)不是命题。
解: 选C
.下面生活中的物体的运动情况可以看成
平移的是 (2)和(6。)
(1)摆动的钟摆。 (2)在笔直的公路上行驶的汽车。 (3)随风摆动的旗帜。 (4)摇动的大绳。 (5)汽车玻璃上雨刷的运动。 (6)从楼顶自由落下的球(球不旋转)。
分辨一下:找出平移后的图片。
(1) (2) (3) (4)
2 1
1
2
∠1和∠2不是同位角,
∠1和∠2是同位角,
∵∠1和∠2无一边共线。 ∵∠1和∠2有一边共线、同向 且不共顶点。
判定两直线平行的方法有三种:
(1)定义法;在同一平面内不相交的两条直线是平行线。
(2)传递法;两条直线都和第三条直线平行,这两条直线也平行。
(3)因为a⊥c, a⊥b;
所以b//c
识
构
图
平 行 线
两条 直线 相交
一般情况 特殊
两条直线被 第三条所截
邻补角
邻补角互补
对顶角 垂直
对顶角相等
存在性和唯一性
点到直
垂线段最短 线的距
离
同位角、内错角、同旁内角