抛物线测试题
2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解
专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。
人教版九年级数学上册拱桥问题和运动中的抛物线测试题
第3课时 拱桥问题和运动中的抛物线知识点:利用二次函数解决抛物线的问题,如隧道、大桥和拱门等,要恰当地建立平面直角坐标系,从而确定抛物线的解析式,然后利用抛物线的性质解决实际问题。
一、选择1.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .y=-2x 2B .y=2x 2C 、212y x =-D 、212y x =第1题 第2题 第3题 第4题 2、有长24m 的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为xm ,面积是sm 2,则s 与x 的关系式是( )A 、2324s x x =-+B 、2224s x x =-+C 、2324s x x =--D 、2224s x x =-+3、如图,铅球的出手点C 距地面1米,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,则铅球运行路线的解析式为( )A 、2316h t =-B 、2316h t t =-+ C 、2118h t t =-++ D 、21213h t t =-++ 4、在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm 2,那么y 关于x 的函数是( )A 、y=(60+2x )(40+2x )B 、y=(60+x )(40+x )C 、y=(60+2x )(40+x )D 、y=(60+x )(40+2x )5、如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m ,此时水面到桥拱的距离是4m ,则抛物线的函数关系式为( )A 、2254y x =B 、2254y x =-C 、2425y x =-D 、2425y x = 6、国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A 、y=36(1-x )B 、y=36(1+x )C 、218(1)y x =+D 、218(1)y x =-7、如图,正方形ABCD 的边长为1,E 、F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管E 、F 怎样动,始终保持AE ⊥EF .设BE=x ,DF=y ,则y 是x 的函数,函数关系式是( )A 、1y x =+B 、1y x =-C 、21y x x =-+D 、21y x x =--第5题 第7题 第8题8、某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A 、4米B 、3米C 、2米D 、1米二、填空题1、一个边长为3厘米的正方形,若它的边长增加x 厘米,面积随之增加y 平方厘米,则y 关于x 的函数解析式是2、有一个抛物线形拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在如图所示的平面直角坐标系中,则此抛物线的解析式为第10题 第13题 第14题 第15题3、二次函数2y ax bx c =++中,2b ac =,且x=0时y=4,则y 的最 (大或小)值=4、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形的面积之和的最小值是5、如图,一小孩将一只皮球从A 处抛出去,它经过的路线是某个二次函数图像的一部分,如果他的出手处A 距地面OA 为1m ,球路的最高点为B (8,9),则这个二次函数的表达式为 ,小孩将球抛出约 米。
2020届高考数学理一轮(新课标通用)考点测试:54 抛物线
考点测试54 抛物线高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度考纲研读1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)2.理解数形结合的思想3.了解抛物线的实际背景及抛物线的简单应用一、基础小题1.抛物线y =x 2的准线方程是( )14A .y =-1 B .y =-2 C .x =-1 D .x =-2答案 A解析 依题意,抛物线x 2=4y 的准线方程是y =-1,故选A .2.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线准线的距离为( )A .4B .6C .8D .12答案 B解析 依题意得,抛物线y 2=8x 的准线方程是x =-2,因此点P 到该抛物线准线的距离为4+2=6,故选B .3.到定点A (2,0)与定直线l :x =-2的距离相等的点的轨迹方程为( )A .y 2=8x B .y 2=-8xC .x 2=8yD .x 2=-8y 答案 A解析 由抛物线的定义可知该轨迹为抛物线且p =4,焦点在x 轴正半轴上,故选A .4.若抛物线y 2=2px (p >0)上的点A (x 0,)到其焦点的距离是A 到y 轴距离2的3倍,则p 等于( )A .B .1C .D .21232答案 D解析 由题意3x 0=x 0+,x 0=,则=2,∵p >0,∴p =2,故选D .p2p4p 225.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,则|AB |等于( )A .4B .6C .8D .10答案 C解析 由抛物线y 2=4x 得p =2,由抛物线定义可得|AB |=x 1+1+x 2+1=x 1+x 2+2,又因为x 1+x 2=6,所以|AB |=8,故选C .6.若抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点为( )A .(1,2)B .(0,0)C .,1D .(1,4)12答案 C解析 解法一:根据题意,直线y =4x -5必然与抛物线y =4x 2相离,抛物线上到直线的最短距离的点就是与直线y =4x -5平行的抛物线的切线的切点.由y ′=8x =4得x =,故抛物线的斜率为4的切线的切点坐标是,1,该1212点到直线y =4x -5的距离最短.故选C .解法二:抛物线上的点(x ,y )到直线y =4x -5的距离是d ==|4x -y -5|17=,显然当x =时,d 取得最小值,此时y =1.故选C .|4x -4x 2-5|174x -122+417127.已知动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.答案 y 2=4x解析 设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与其到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .8.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足|NF |=|MN |,则∠NMF =________.32答案 π6解析 过N 作准线的垂线,垂足是P ,则有|PN |=|NF |,∴|PN |=|MN |,∠NMF =∠MNP .又cos ∠MNP =,∴∠MNP =,即3232π6∠NMF =.π6二、高考小题9.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·=( )23FM → FN → A .5 B .6 C .7 D .8答案 D解析 根据题意,过点(-2,0)且斜率为的直线方程为y =(x +2),与抛物2323线方程联立Error!消去x 并整理,得y 2-6y +8=0,解得M (1,2),N (4,4),又F (1,0),所以=(0,2),=(3,4),从而可以求FM → FN→ 得·=0×3+2×4=8,故选D .FM→ FN → 10.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10答案 A解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-,故直线l 1,l 2的方程分别为y =k (x -1),1k y =-(x -1).1k 由Error!得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=,x 1x 2=1,2k 2+4k 2所以|AB |=·|x 1-x 2|1+k 2=·1+k 2(x 1+x 2)2-4x 1x 2=·=.1+k 22k 2+4k 22-44(1+k 2)k 2同理可得|DE |=4(1+k 2).所以|AB |+|DE |=+4(1+k 2)4(1+k 2)k 2=4+1+1+k 2=8+4k 2+≥8+4×2=16,1k 21k 2当且仅当k 2=,即k =±1时,取得等号.故选A .1k 211.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.答案 2解析 设A (x 1,y 1),B (x 2,y 2),则Error!所以y -y =4x 1-4x 2,212所以k ==.y 1-y 2x 1-x 24y 1+y 2取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1 的垂线,垂足分别为A ′,B ′.因为∠AMB =90°,所以|MM ′|=|AB |=(|AF |+|BF |)=(|AA ′|+|BB ′|).121212因为M ′为AB 的中点,所以MM ′平行于x 轴.因为M (-1,1),所以y 0=1,则y 1+y 2=2,所以k =2.12.(2018·北京高考)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为________.答案 (1,0)解析 由题意得a >0,设直线l 与抛物线的两交点分别为A ,B ,不妨令A 在B 的上方,则A (1,2),B (1,-2),故|AB |=4=4,得a =1,故抛物线方a a a 程为y 2=4x ,其焦点坐标为(1,0).13.(2017·天津高考)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为________.答案 (x +1)2+(y -)2=13解析 由y 2=4x 可得点F 的坐标为(1,0),准线l 的方程为x =-1.由圆心C 在l 上,且圆C 与y 轴正半轴相切(如图),可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°,所以∠OAF =30°,所以|OA |=,所以点C 的纵坐标为.33所以圆的方程为(x +1)2+(y -)2=1.3三、模拟小题14.(2018·沈阳监测)抛物线y =4ax 2(a ≠0)的焦点坐标是( )A .(0,a )B .(a ,0)C .D .(0,116a )(116a,0)答案 C解析 将y =4ax 2(a ≠0)化为标准方程得x 2=y (a ≠0),所以焦点坐标为14a ,故选C .(0,116a )15.(2018·太原三模)已知抛物线y 2=4x 的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于M ,N 两点,若=3,则|MN |=( )PF → MF→ A . B .8 C .16 D .163833答案 A解析 由题意F (1,0),设直线PF 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2).因为准线方程为x =-1,所以得P (-1,-2k ).所以=(2,2k ),PF→ =(1-x 1,-y 1),因为=3,所以2=3(1-x 1),解得x 1=.把MF → PF → MF→ 13y =k (x -1)代入y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,所以x 1x 2=1,所以x 2=3,从而得|MN |=|MF |+|NF |=(x 1+1)+(x 2+1)=x 1+x 2+2=.故选A .16316.(2018·豫南九校联考)已知点P 是抛物线x 2=4y 上的动点,点P 在x 轴上的射影是点Q ,点A 的坐标是(8,7),则|PA |+|PQ |的最小值为( )A .7B .8C .9D .10答案 C解析 延长PQ 与准线交于M 点,抛物线的焦点为F (0,1),准线方程为y =-1,根据抛物线的定义知,|PF |=|PM |=|PQ |+1.∴|PA |+|PQ |=|PA |+|PM |-1=|PA |+|PF |-1≥|AF |-1=-1=10-1=9.82+(7-1)2当且仅当A ,P ,F 三点共线时,等号成立,则|PA |+|PQ |的最小值为9.故选C .17.(2018·青岛质检)已知点A 是抛物线C :x 2=2py (p >0)的对称轴与准线的交点,过点A 作抛物线C 的两条切线,切点分别为P ,Q ,若△APQ 的面积为4,则实数p 的值为( )A .B .1C .D .21232答案 D解析 解法一:设过点A 且与抛物线C 相切的直线为y =kx -.由Error!得p2x 2-2pkx +p 2=0.由Δ=4p 2k 2-4p 2=0,得k =±1,所以得点P -p ,,p2Qp ,,所以△APQ 的面积为S =×2p ×p =4,解得p =2.故选D .p212解法二:如图,设点P (x 1,y 1),Q (x 2,y 2).由题意得点A 0,-.y =x 2,求导得y ′=x ,所以切线PA 的p212p 1p 方程为y -y 1=x 1(x -x 1),即y =x 1x -x ,切线PB 的方程为y -y 2=x 2(x -x 2),1p 1p 12p 211p 即y =x 2x -x ,代入A 0,-,得点P -p ,,Qp ,,所以△APQ 的面积为1p 12p 2p 2p2p2S =×2p ×p =4,解得p =2.故选D .1218.(2018·沈阳质检一)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是________.答案 2x -y -1=0解析 设点A (x 1,y 1),B (x 2,y 2),由A ,B 都在抛物线上,可得Error!作差得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).因为AB 中点为P (1,1),所以y 1+y 2=2,则有2·=4,所以k AB ==2,从而直线AB 的方程为y -1=2(x -1),即y 1-y 2x 1-x 2y 1-y 2x 1-x 22x -y -1=0.一、高考大题1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .解 (1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =x +1或y =-x -1.1212(2)证明:当l 与x 轴垂直时,AB 为线段MN 的垂直平分线,所以∠ABM =∠ABN .当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由Error!得ky 2-2y -4k =0,可知y 1+y 2=,y 1y 2=-4.2k 直线BM ,BN 的斜率之和为k BM +k BN =+=.①y 1x 1+2y 2x 2+2x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2)将x 1=+2,x 2=+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得y 1k y 2k x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k (y 1+y 2)k==0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以-8+8k∠ABM =∠ABN .综上,∠ABM =∠ABN .2.(2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+=1(x <0)上的动点,求△PAB 面积的取值范围.y 24解 (1)证明:设P (x 0,y 0),A y ,y 1,B y ,y 2.1421142因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程2=4·即y 2-2y 0y +8x 0-y =0的两个不同的y +y 0214y 2+x 0220实根.所以y 1+y 2=2y 0,因此,PM 垂直于y 轴.(2)由(1)可知Error!所以|PM |=(y +y )-x 0=y -3x 0,182123420|y 1-y 2|=2.2(y 20-4x 0)因此,△PAB 的面积S △PAB =|PM |·|y 1-y 2|12=(y -4x 0).3242032因为x +=1(x 0<0),20y 204所以y -4x 0=-4x -4x 0+4∈[4,5].2020因此,△PAB 面积的取值范围是6,.2151043.(2018·北京高考)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(1)求直线l 的斜率的取值范围;(2)设O 为原点,=λ,=μ,求证:+为定值.QM → QO → QN → QO→ 1λ1μ解 (1)因为抛物线y 2=2px 过点(1,2),所以2p =4,即p =2.故抛物线C 的方程为y 2=4x ,由题意知,直线l 的斜率存在且不为0.设直线l 的方程为y =kx +1(k ≠0).由Error!得k 2x 2+(2k -4)x +1=0.依题意Δ=(2k -4)2-4×k 2×1>0,解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)证明:设A (x 1,y 1),B (x 2,y 2),由(1)知x 1+x 2=-,x 1x 2=.2k -4k 21k 2直线PA 的方程为y -2=(x -1).y 1-2x 1-1令x =0,得点M 的纵坐标为y M =+2=+2.-y 1+2x 1-1-kx 1+1x 1-1同理得点N 的纵坐标为y N =+2.-kx 2+1x 2-1由=λ,=μ得λ=1-y M ,μ=1-y N .QM → QO → QN → QO → 所以+=+=+=·=1λ1μ11-yM 11-yN x 1-1(k -1)x 1x 2-1(k -1)x 21k -12x 1x 2-(x 1+x 2)x 1x 2·=2.1k -12k 2+2k -4k 21k 2所以+为定值.1λ1μ二、模拟大题4.(2018·湖北八市联考)如图,已知抛物线x 2=2py (p >0),其焦点到准线的距离为2,圆S :x 2+y 2-py =0,直线l :y =kx +与圆和抛物线自左至右顺次交p 2于A ,B ,C ,D 四点.(1)若线段AB ,BC ,CD 的长按此顺序构成一个等差数列,求正数k 的值;(2)若直线l 1过抛物线焦点且垂直于直线l ,l 1与抛物线交于点M ,N ,设MN ,AD 的中点分别为P ,Q ,求证:直线PQ 过定点.解 (1)由题意可得p =2,所以抛物线x 2=4y ,圆S 的方程可化为x 2+(y -1)2=1,其圆心S (0,1),圆的半径为1,设点A (x 1,y 1),D (x 2,y 2).由Error!得x 2-4kx -4=0,所以x 1+x 2=4k ,所以y 1+y 2=k (x 1+x 2)+2=4k 2+2,所以|AB |+|CD |=|AS |+|DS |-|BC |=y 1+1+y 2+1-2=y 1+y 2=4k 2+2=2|BC |=4,所以k =(负值舍去).22(2)证明:因为x 1+x 2=4k ,y 1+y 2=k (x 1+x 2)+2=4k 2+2,所以Q (2k ,2k 2+1).当k ≠0时,用-替换k 可得P -,+1,1k 2k 2k 2所以k PQ =,k 2-1k 所以PQ 的直线方程为y -(2k 2+1)=(x -2k ),k 2-1k 化简得y =x +3,过定点(0,3).k 2-1k 当k =0时,直线l 1与抛物线只有一个交点,不符合题意,舍去.5.(2018·珠海摸底)已知椭圆C 1,抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,其坐标分别是(3,-2),3(-2,0),(4,-4),,.222(1)求C 1,C 2的标准方程;(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足⊥?若存在,求出直线的方程;若不存在,请说明理由.OM → ON → 解 (1)设抛物线C 2:y 2=2px (p ≠0),则有=2p (x ≠0),y 2x 据此验证四个点知(3,-2),(4,-4)在抛物线上,3易得,抛物线C 2的标准方程为y 2=4x .设椭圆C 1:+=1(a >b >0),x 2a 2y 2b 2把点(-2,0),,代入可得a 2=4,b 2=1,222所以椭圆C 1的标准方程为+y 2=1.x 24(2)由抛物线的标准方程可得C 2的焦点F (1,0),当直线l 的斜率不存在时,直线l 的方程为x =1.直线l 交椭圆C 1于点M 1,,N 1,-,3232·≠0,不满足题意.OM → ON → 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),并设点M (x 1,y 1),N (x 2,y 2).由Error!消去y ,得(1+4k 2)x 2-8k 2x +4(k 2-1)=0,于是x 1+x 2=,8k 21+4k 2x 1x 2=. ①4(k 2-1)1+4k 2则y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2-+14(k 2-1)1+4k 28k 21+4k 2=. ②-3k 21+4k 2由⊥得x 1x 2+y 1y 2=0. ③OM → ON → 将①②代入③式,得+==0,4(k 2-1)1+4k 2-3k 21+4k 2k 2-41+4k 2解得k =±2,所以存在直线l 满足条件,且l 的方程为2x -y -2=0或2x +y -2=0.6.(2018·石家庄质检二)已知圆C :(x -a )2+(y -b )2=的圆心C 在抛物线94x 2=2py (p >0)上,圆C 过原点且与抛物线的准线相切.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在A ,B 处作抛物线的两条切线交于点P ,求△PAB 面积的最小值及此时直线l 的方程.解 (1)由已知可得圆心C (a ,b ),半径r =,焦点F 0,,准线y =-,因为圆C 与抛物线F 的准线相切,所32p 2p 2以b =-.又因为圆C 过原点,且圆C 过焦点F ,所以圆心C 必在线段OF 的32p 2垂直平分线上,即b =,所以-=,解得p =2,p 432p 2p 4所以抛物线的方程为x 2=4y .(2)易得焦点F (0,1),直线l 的斜率必存在,设为k ,即直线l 的方程为y =kx +1,设A (x 1,y 1),B (x 2,y 2).由Error!得x 2-4kx -4=0,Δ>0,所以x 1+x 2=4k ,x 1x 2=-4,对y =求导得y ′=,即k AP =.x 24x 2x 12直线AP 的方程为y -y 1=(x -x 1),x 12即y =x -x ,x 121421同理得直线BP 的方程为y =x -x .x 22142设点P (x 0,y 0),联立直线AP 与BP 的方程,解得Error!即P (2k ,-1),所以|AB |=|x 1-x 2|=4(1+k 2),点P 到直线1+k 2AB 的距离d ==2,所以△PAB 的面积|2k 2+2|1+k 21+k 2S =·4(1+k 2)·2=4(1+k 2)≥4,121+k 232当且仅当k=0时取等号.综上,△PAB面积的最小值为4,此时直线l的方程为y=1.。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:8.6 抛物线 Word版含答案
§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。
人教版选修2-1抛物线测试题2
抛物线测试题(2) 一.选择题1.抛物线2y ax =的准线方程为y=1,则实数a 的值是… ( ) A.14B.12C.14-D.12-解析:抛物线2y ax =化为21ax y =,由于其准线方程为y=1,故a<0,且|14a |=1, 解得14a =-.答案:C2.若抛物线y 2=4x 上一点P 到焦点F 的距离是10,则P 点的坐标为( )A .(9,6)B .(6,9)C .(±6,9)D .(9,±6)解析:选D.设P (x 0,y 0),则x 0-(-1)=10,即x 0=9,代入抛物线方程,得y 20=36,即y 0=±6. 3.若抛物线2y x =上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A.14(B.18(C.14( D.18(解析:由抛物线定义可得,P 到顶点的距离等于它到抛物线焦点的距离,∴P 点的横坐标为20128p +=.∴18(P .答案:B4..若抛物线2y x =上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A.14(B.18(C.14( D.18(解析:由抛物线定义可得,P 到顶点的距离等于它到抛物线焦点的距离,∴P 点的横坐标为20128p +=.∴18(P .答案:B5. 对任意实数θ,则方程22sin 4x y θ+=所表示的曲线不可能是(A ) A .抛物线 B .双曲线 C .椭圆 D .圆6.已知抛物线22(0)y px p =>的准线与圆22(3)16x y -+=相切,则p 的值为( ) A.12B.1C.2D.4解析:抛物线22y px =的准线为2px =-与圆2(3)x -+216y =相切,∴21p-=-.∴p=2.答案:C7.点P 是抛物线24y x =上一动点,则点P 到点A(0,-1)的距离与P 到直线x=-1的距离和的最小值是 ( ) A.5B.3C.32D.2解析:抛物线焦点为F(1,0),AF 连线与抛物线交点P 为所求点,最小值为|AF|2=.答案:D8.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.116解析:选D.依题意得e =2,抛物线方程为y 2=12px ,故18p =2,得p =116. 9.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 解析:选A.由题意知,所求椭圆的一个焦点坐标为(-1,0),即c =1,又e =12,所以a=2,b 2=a 2-c 2=3.故所求的椭圆方程为x 24+y 23=1.10.已知F 是抛物线2y x =的焦点,A,B 是该抛物线上的两点,|AF|+|BF|=3,则线段AB 的中点到y 轴的距离为( ) A.34B.1C.54D.74解析:如图,由抛物线的定义知,|AM|+|BN|=|AF|+|BF|=3.|CD|=32,所以中点C 的横坐标为32-5144=.答案:C11.抛物线2y x =-上的点到直线4x+3y-8=0距离的最小值是( )A.43B.75C.85D.3解析:(方法一)设直线4x+3y+m=0与2y x =-相切,则联立两方程,消去y 得2340x x m --=.令0∆=,有m=-43.两直线间的距离为15|438()---|43=.(方法二)设抛物线2y x =-上一点为2()m m ,-, 该点到直线4x+3y-8=0的距离为15|2438m m --|,当23m =时,取得最小值为43.答案:A12.已知抛物线y 2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为( ) A.B.+1C.+1D.【解析】选B.如图, 由双曲线-=1, 且AF ⊥x 轴得-=1得|y|=,由抛物线y 2=2px 的定义得 AF=p ,即=2c.得b 2=2ac ,所以=,e 2-1=2e ,所以e=+1.13.设抛物线28y x =的准线与x 轴交于点Q,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.1122[]-,B.[-2,2]C.[-1,1]D.[-4,4]解析:设直线方程为y=k(x+2),与抛物线方程联立,得 28(2)y x y k x ⎧=,⎨=+,⎩ 消去x 得到关于y 的方程28160ky y k -+=.当k=0时,直线与抛物线有一个交点;当0k ≠时,令264640k ∆=-≥,解得10k -≤<或0<k ≤1.所以11k -≤≤. 答案:C 二.填空题14.抛物线2y x =-的焦点坐标为_____. 答案:14(0),-15.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F 且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为_____. 解析:抛物线焦点为4(0)a F ,,则直线l 的方程为y=2(x-4)a.令x=0得2(0)a A ,-, 则12OAFS=⋅|4a |⋅|2a|=4,∴8a =±.∴抛物线方程为28y x =±. 答案:28y x =±16.已知抛物线y 2=4x 的准线与双曲线x 2a2-y 2=1交于A ,B 两点,点F 为抛物线的焦点,若△FAB 为直角三角形,则该双曲线的离心率是________.解析:抛物线y 2=4x 的准线为x =-1,又△FAB 为直角三角形,则只有∠AFB =90°,如图,则A (-1,2)应在双曲线上,代入双曲线方程可得a 2=15,于是c =a 2+1=65. 故e =c a= 6. 答案: 617.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。
解析几何测试题
解析几何测试题(椭圆、双曲线、抛物线)姓名一. 选择题:(本大题共12小题,每小题5分,共60分)1. 抛物线x y 42=的焦点坐标是( ) A .(1,0) B .(0,1) C .(0,2) D .(2,0)2. 若椭圆长轴长为8,且焦点为F 1(-2,0),F 2(2,0),则这个椭圆的离心率等于( )A.22B. 13C. 12D.413. 已知方程01222=+-+m y m x 表示双曲线,则m 的取值范围是( )A .m<-2B .m>-1C .-2<m<-1D .m<-2或m>-14. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 如果点M (x,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x 则点M 的轨迹方程为( )A.191622=+yx B. 191622=+x y C. 1162522=+y x D. 1162522=+x y6.已知双曲线C :x 2a -y 2b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 7. 抛物线)0(242>=a ax y 上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为 ( )A.x y 82=B. x y 122=C. x y 162=D. x y 202= 8.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则 cos ∠F 1PF 2= ( ) A.14 B.35 C.34 D.459. 等轴双曲线C 的中心在原点,焦点在x 轴上,双曲线c 与抛物线x y 162=的准线交于B A 、两点,AB =34,则双曲线C 的实轴长为 ( )A. 2B. 22C. 4D. 810.已知定点A (3,4),点P 为抛物线y 2=4x 上一动点,点P 到直线x=-1的距离为d ,则|PA|+d 的最小值为( ) A ..2 C . . 11. 设椭圆)0(12222>>=+b a b y a x 的离心率21=e ,右焦点F (c ,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在 ( ) A .圆222=+y x 内 B. 圆222=+y x 上 C .圆222=+y x 外 D. 以上三种情况都有可能12.过双曲线22221(0,0)y x a b a b -=>>的左焦点F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,PF 的中点M 在第一象限,则以下正确的是( )A .||||b a MO MT -<-B .||||MT MO a b -=-C .||||MT MO a b ->-D .||||MT MO a b --与大小不定二.填空题:(本大题共4小题,每小题4分,共16分)13.双曲线22221x y a b-=的两条渐近线互相垂直,那么双曲线的离心率为14. 已知B ,C 是两个定点,坐标分别为(3,0),(-3,0),若顶点A 的轨迹方程为)0(1162522≠=+y y x ,则 △ABC 的周长为15.过抛物线)0(22>=p px y 的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2),则2121x x y y 的值为 16.方程12422=-+-t y t x 所表示的曲线为C ,有下列命题:①若曲线C 为椭圆,则2<t<4;②若曲线C 为双曲线,则t>4或t<2;③曲线C 不可能为圆; ④若曲线C 表示焦点在y 轴上的双曲线, 则t>4, 则以上命题正确的是三. 解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.求双曲线14416922=-x y 的实轴长,虚轴长,顶点和焦点的坐标,离心率,渐近线方程。
(完整版)高二抛物线基础测试题
高二抛物线基础测试题一、 选择题:1.顶点在原点,焦点是F (0,5)的抛物线方程是( )A .y 2=20xB .x 2=20yC .y 2=120xD .x 2=120y2.抛物线y =-x 2的焦点坐标为( )A.⎝ ⎛⎭⎪⎫0,14B.⎝⎛⎭⎪⎫0,-14 C.⎝ ⎛⎭⎪⎫14,0 D.⎝ ⎛⎭⎪⎫-14,03.抛物线y =ax 2的准线方程是y =2,则实数a 的值为( )A.18 B .-18 C .8 D .-84.(2010年高考陕西卷)已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( )A.12 B .1 C .2 D .45.(2010年高考湖南卷)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4B .6C .8D .126.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A .y 2=-16xB .y 2=-32xC .y 2=16xD .y 2=16x 或y =0(x <0)7.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y8.已知抛物线y 2=2px (p >0)的焦点F ,点P 1(x 1,y 1)、P 2(x 2,y 2)、P 3(x 3,y 3)在抛物线上,且2x 2=x 1+x 3,则有( )A .|FP 1|+|FP 2|=|FP 3|B .|FP 1|2+|FP 2|2=|FP 3|2C .|FP 1|+|FP 3|=2|FP 2|D .|FP 1|·|FP 3|=|FP 2|29.抛物线y 2=12x 截直线y =2x +1所得弦长等于( )A.15 B .215C.152D .15.10.以抛物线y 2=2px (p >0)的焦半径|PF |为直径的圆与y 轴的位置关系为( )A .相交B .相离C .相切D .不确定11.过抛物线的焦点且垂直于其对称轴的弦是AB ,抛物线的准线交x 轴于点M ,则∠AMB 是( )A .锐角B .直角C.钝角D.锐角或钝角12.(2010年高考山东卷)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )A.x=1 B.x=-1C.x=2 D.x=-2二.填空题13.已知直线x-y-1=0与抛物线y=ax2相切,则a=________.14.抛物线y2=4x上的点P到焦点F的距离是5,则P点的坐标是________.15.抛物线y2=4x与直线2x+y-4=0交于两点A与B,F是抛物线的焦点,则|FA|+|FB|=________. 16.边长为1的等边三角形AOB,O为原点,AB⊥x轴,则以O为顶点,且过A、B的抛物线方程是________.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M点的坐标.18.抛物线的焦点F在x轴上,直线y=-3与抛物线相交于点A,|AF|=5,求抛物线的标准方程.19.已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k的值.高二抛物线基础测试题参考答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BBBCBCCCACBB1.解析:选B.由p2=5得p =10,且焦点在y 轴正半轴上,故x 2=20y .2.解析:选B.x 2=-y ,∴2p =1,p =12,∴焦点坐标为⎝ ⎛⎭⎪⎫0,-14.3.解析:选B.由y =ax 2,得x 2=1a y ,14a =-2,a =-18.4.解析:选C.由抛物线的标准方程得准线方程为x =-p2.由x 2+y 2-6x -7=0得(x -3)2+y 2=16.∵准线与圆相切,∴3+p2=4,∴p =2.5解析:选B.如图所示,抛物线的焦点为F (2,0),准线方程为x =-2,由抛物线的定义知:|PF |=|PE |=4+2=6.6.解析:选C.∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与它到直线x +4=0的距离相等.故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x . 7.解析:选C.通径2p =8且焦点在x 轴上,故选C. 8.解析:选C.由抛物线定义知|FP 1|=x 1+p2,|FP 2|=x 2+p 2,|FP 3|=x 3+p2,∴|FP 1|+|FP 3|=2|FP 2|,故选C.9.解析:选A.令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =2x +1y 2=12x 得4x 2-8x +1=0,∴x 1+x 2=2,x 1x 2=14,∴|AB |=1+22x 1-x 22=5[x 1+x 22-4x 1x 2]=15.10. 解析:选C.|PF |=x P +p 2,∴|PF |2=x P 2+p4,即为PF 的中点到y 轴的距离.故该圆与y 轴相切.11. 解析:选B.由题意可得|AB |=2p .又焦点到准线距离|FM |=p ,F 为AB 中点,∴|FM |=12|AB |,∴△AMB 为直角三角形且∠AMB =90°.12.解析:选B.∵y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,∴过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,将其代入y 2=2px 得y 2=2py +p 2,即y 2-2py-p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴y 1+y 22=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1. 二. 填空题13解析:由⎩⎪⎨⎪⎧x -y -1=0y =ax2,得ax 2-x +1=0, 由Δ=1-4a =0,得a =14. 答案:1414.解析:设P (x 0,y 0),则|PF |=x 0+1=5,∴x 0=4, ∴y 20=16,∴y 0=±4. 答案:(4,±4) 15.解析:设A (x 1,y 1),B (x 2,y 2), 则|FA |+|FB |=x 1+x 2+2.又⎩⎪⎨⎪⎧y 2=4x 2x +y -4=0⇒x 2-5x +4=0, ∴x 1+x 2=5,x 1+x 2+2=7. 答案:7 16.解析:焦点在x 轴正半轴上时,设方程为y 2=2px (p >0)代入点(32,12)得p =312,焦点在x 轴负半轴上时,设方程为y 2=-2px (p >0),∴p =-312.综上,所求方程为y 2=±36x . 答案:y 2=±36x 三、解答题17.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9.它到焦点的距离为10,求抛物线方程和M 点的坐标.解:由抛物线定义知焦点为F (-p 2,0),准线为x =p2,由题意设M 到准线的距离为|MN |, 则|MN |=|MF |=10,即p2-(-9)=10, ∴p =2.故抛物线方程为y 2=-4x ,将M (-9,y )代入y 2=-4x ,解得y =±6, ∴M (-9,6)或M (-9,-6).18.抛物线的焦点F 在x 轴上,直线y =-3与抛物线相交于点A ,|AF |=5,求抛物线的标准方程.解:设所求抛物线的标准方程为: y 2=ax (a ≠0),A (m ,-3).则由抛物线的定义得5=|AF |=|m +a4|,又(-3)2=am .所以,a =±2或a =±18.故所求抛物线的方程为y 2=±2x 或y 2=±18x .19.已知抛物线y 2=-x 与直线l :y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解:(1)证明:联立⎩⎪⎨⎪⎧y 2=-xy =k x +1,消去x ,得ky 2+y -k =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1.因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,即OA →·OB →=0,所以OA ⊥OB .(2)设直线l 与x 轴的交点为N ,则N 的坐标为(-1,0),所以S △AOB =12|ON |·|y 1-y 2|=12×|ON |×y 1+y 22-4y 1·y 2 =12×1× 1k 2+4=10, 解得k 2=136,所以k =±16.。
初中数学二次函数应用题型分类——抛物线形物体问题8(附答案)
4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)间的关系为 ,由此可知铅球推出的距离是()
A.2mB.8mC.10mD.12
5.如图,小明在某次投篮中,球的运动路线是抛物线y=﹣0.2x2+3.5的一部分,若命中篮圈中心,则他与篮圈底的距离l是()
13.体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线 的一部分,该同学的成绩是________.
14.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣ x2+ x+ ,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.
15.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是 ,则小球从抛出到落地所用的时间是______ s.
(2)网球在斜坡的落点 的垂直高度.
参考答案
1.B
【解析】
【分析】
礼炮到最高点爆炸,那么所需时间为t= ,代入相应数据才能正确解答.
【详解】
解:当礼炮到达最高点时,即为抛物线的顶点,此时t= ,故选:B.
【点睛】
考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.
2.A
(1)小球飞行时间是多少时,小球最高?最大高度是多少?
(2)小球飞行时间t在什么范围时,飞行高度不低于15m?
26.以40m/s的速度将小球沿与地面成约45°角的方向击出,小球的飞行路线是一条抛物线,我们不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.
3.D
高考数学总复习 椭圆、双曲线、抛物线单元测试题
高考数学总复习 椭圆、双曲线、抛物线单元测试题一.选择题(1) 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( )A 2B 3C 4D 5 (2) 若焦点在x轴上的椭圆2212x y m +=的离心率为12,则m=( )A B32 C83D23(3) 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆, 那么实数k 的取值范围是 ( )A (0, +∞)B (0, 2)C (1, +∞)D (0, 1)(4) 设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,F 1、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF( )A 1或 5B 6C 7D 9(5) 对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |, 则a 的取值范围是( )A [0, 1]B (0, 1)C (]1,∞- D (-∞, 0)(6) 若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A1716B 17174C 54D 552(7) 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为 ( )A23 B23C 26D 332(8) 设A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB. 则y 1y 2等于( )A – 4p 2B 4p 2C – 2p 2D 2p 2(9) 已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A43B53C 3 (10) 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P , 若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A2B C 2 1 二.填空题(11) 若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________.(12)设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(13) 过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.(14) 以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动弦AB ,O 为坐标原点,若),(21OB OA OP +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号) 三.解答题(15)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标; .(16) 已知抛物线C: y=-21x 2+6, 点P (2, 4)、A 、B 在抛物线上, 且直线PA 、PB 的倾斜角互补. (Ⅰ)证明:直线AB 的斜率为定值;(Ⅱ)当直线AB 在y 轴上的截距为正数时, 求△PAB 面积的最大值及此时直线AB 的方程.(17) 双曲线12222=-by a x (a>1,b>0)的焦距为2c,直线l 过点(a,0)和(0,b),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围(18) 已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4、且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线方程;(2)过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(3)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.参考答案一选择题:1.D[解析]:点A 与抛物线焦点的距离就是点A 与抛物线准线的距离,即5)1(4=-- 2.B[解析]:∵焦点在x 轴上的椭圆2212x y m +=的离心率为12,∴2122=-m 则m=233.D[解析]: ∵方程x 2+ky 2=2,即12222=+ky x 表示焦点在y 轴上的椭圆 ∴22>k故10<<k 4.C[解析]:双曲线19222=-y ax 的一条渐近线方程为023=-y x ,故2=a 又P 是双曲线上一点,故4||||||21=-PF PF ,而3||1=PF ,则=||2PF 75.C[解析]:对于抛物线y 2=2x 上任意一点Q, 点P(a, 0)都满足|PQ|≥|a |,若,0≤a 显然适合若0>a ,点P(a, 0)都满足|PQ|≥|a |就是2222)2(y y a a +-≤ 即1142≤+≤y a ,此时10≤<a 则a 的取值范围是(]1,∞- 6.D[解析]:3522=-+b c bc ,5245222==∴=∴=a c e a c b c 7.D[解析]:双曲线)0(1222>=-a y a x 的准线为122+±=a a x抛物线x y 62-=的准线为23=x 因为两准线重合,故122+a a =23,2a =3,则该双曲线的离心率为328.A[解析]:∵A(x 1,y 1),B(x 2,y 2)是抛物线y 2=2px(p>0)上的两点,并且满足OA ⊥OB.∴04)(0,12122212121=+∴=+∴-=⋅y y py y y y x x k k OBOA 则y 1y 2 = – 4p 29.C[解析]:∵120,MF MF ⋅=∴点M 在以F 1F 2为直径的圆322=+y x 上故由32||1232222=⎪⎩⎪⎨⎧=-=+y y x y x 得 则点M 到x 轴的距离为332 10.D[解析]:不妨设点P 在 x 轴上方,坐标为),(2ab c ,∵△F 1PF 2为等腰直角三角形∴|PF 2|=|F 1F 2|,即c a b 22=,即e e a c ac a 2122222=-∴=- 故椭圆的离心率e1二填空题:11. 1922=-y x [解析]: 因为双曲线的渐近线方程为x y 3±=,则设双曲线的方程是λ=-922y x ,又它的一个焦点是()0,10 故1109=∴=+λλλ12. 1222=+y x [解析]:双曲线2 x 2-2y 2=1的焦点为()0,1±,离心率为2故椭圆的焦点为()0,1±,离心率为22, 则1,2,1===b a c ,因此该椭圆的方程是1222=+y x 13. 2[解析]:设双曲线22221x y a b-=(a >0,b >0)的左焦点F 1,右顶点为A ,因为以MN 为直径的圆恰好过双曲线的右顶点, 故|F 1M|=|F 1A|,∴c a ab +=2∴2112=∴+=-e e e 14. ③④[解析]:根据双曲线的定义必须有||||AB k ≤,动点P 的轨迹才为双曲线,故①错 ∵),(21OB OA OP +=∴P 为弦AB 的中点,故090=∠APC 则动点P 的轨迹为以线段AC 为直径的圆。
【初中数学】人教版九年级上册第3课时 抛物线类型的实际问题(练习题)
人教版九年级上册第3课时抛物线类型的实际问题(380)1.如图,已知桥拱形状为抛物线,其函数关系式为y=−14x2,当水位线在AB位置时,水面的宽度为12m,这时水面离桥拱顶部的距离是.2.廊桥是我国的文化遗产.图是某座抛物线形的廊桥示意图,已知抛物线的函数解析式为y=−140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.3.比赛中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度y(米)与水平距离x(米)之间满足关系y=−29x2+89x+109,则羽毛球飞出的水平距离为米.4.在体育测试时,初三的一名高个子男同学在推铅球.已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01m,√15=3.873)5.一座拱桥的轮廓是抛物线形(如图所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.将抛物线放在所给的平面直角坐标系中(如图所示),求该抛物线的解析式.解:根据题目条件,A,B,C三点的坐标分别是.设抛物线的解析式为y=ax2+c(a≠0),将点B,C的坐标代入y=ax2+c,得.解得a=,c=.所以该抛物线的解析式为.6.有一个抛物线形的立交拱桥,这个拱桥的最大高度为16m,跨度为40m,现把它的图形放在平面直角坐标系中(如图).若在离跨度中心5m处的点M垂直竖立一根铁柱支撑拱顶,则这根铁柱的长为多少米?解:据题意知,抛物线的顶点坐标为,所以设该抛物线的解析式为.把点A的坐标或点B的坐标代入解析式,得a=,所以抛物线的解析式为,把铁柱所在位置的横坐标,即OM=代入解析式,得到对应的纵坐标的值为,即这根铁柱的长为m.参考答案1.【答案】:9m【解析】:根据题意,当x =6时,原式=−14×62=−9,即水面离桥拱顶部的距离是9m2.【答案】:8√53.【答案】:54(1)【答案】设二次函数的解析式为y =a(x −ℎ)2+k(a ≠0),顶点坐标为(6,5). ∴y =a(x −6)2+5.∵A(0,2)在抛物线上,∴2=62⋅a +5∴a =−112∴y =−112(x −6)2+5,即y =−112x 2+x +2.【解析】:设顶点式,用待定系数法求解析式.(2)【答案】当y =0时,−112x 2+x +2=0,解得x =6±2√15(舍6−2√15).∴x =6+2√15≈13.75m .∴该男同学把铅球推出去约13.75m .【解析】:该男同学把铅球推出去的距离,即为当y =0时,x 在正半轴上的值.5.【答案】:(−10,0),(10,0),(0,6) ;{0=100a +c ,6=c;−350;6;y =−350x 2+66.【答案】:(20,16);y =a(x −20)2+16;−0.04;y =−0.04(x −20)2+16;15;15;15。
(48)人教版九年级数学上册测试题 附答案
(48)人教版九年级数学上册测试题附答案人教版九年级数学上册测试题附答案一、选择题1.已知抛物线y=yy^2+yy+y的标准方程的顶点坐标为(1,2),则(),若y=2 ,则y=()A. y=−4B. y=−2C. y=0D. y=22.解方程y^3−3y^2+y−3=y时得一个实根y,则( )A. y自己装填到根式中是B. 根式填写形式C. y填写小数的形式D. y填写百分数的形式3.计算 5/6÷4/5 的结果()A. 1B. 5/6C. 1/4D. 5/4二、填空题1.使抛物线y=yy^2+yy+y的图象经过点(1,2),则()是准确的方法A. 代入y=1 ,y=2 ,求解y、y、yB. 代入y=2 ,y=5 ,求解y、y、yC. 代入y=2 ,y=4 ,求解y、y、yD. 代入y=4 ,y=16 ,求解y、y、y2.在以下几个平面角中,不是锐角的是()A. 90°B. 60°C. 30°D. 120°3.已知模数为8的两个整数y和y,若 |y−y|=5 ,则()的表达式能够表示出这两个整数A. y=8y7 ,y=8y2 (y为任意整数)B. y=8y8 ,y=8y2 (y为任意整数)C. y=8y7+5 ,y=8y2 (y为任意整数)D. y=8y8+5 ,y=8y2 (y为任意整数)三、解答题1.已知函数y=8^y,解方程 8^y=1/4 ,并用图像的方法给出解的分析解答。
解:首先化简方程 8^y=1/4 ,可得 2^(3y)=2^(-2) ,那么 3y=(-2) ,解得y=(-2)/3 。
所以方程的解为y=(-2)/3 。
通过图像的方法验证解的正确性,绘制函数y=8^y的图像,与y=1/4 的图像进行比较,可以发现两个图像在y=(-2)/3 的位置相交,符合方程 8^y=1/4 的解y=(-2)/3 。
2.已知直线y的斜率为y,直线y过点(3,4)且与直线y互相垂直,求直线y的斜率。
高中数学《抛物线》单元测试
一、选择题1.(2017·广东汕头质检)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45[解析 ∵抛物线C :y 2=4x 的焦点为F ,∴点F 的坐标为(1,0).又∵直线y =2x -4与C 交于A ,B两点,∴A ,B 两点坐标分别为(1,-2),(4,4),则FA →=(0,-2),FB →=(3,4),∴cos ∠AFB =FA →·FB→|FA →||FB →|=-810=-45.故选D. [答案 D2.(2017·北京东城期末)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于3,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在[解析 过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,若直线AB 的斜率不存在,则横坐标之和等于2,不符合题意.设直线AB 的斜率为 ,则直线AB 的方程为y = (x -1),代入抛物线方程y 2=4x ,得 2x 2-2( 2+2)x + 2=0.∵A ,B 两点的横坐标之和等于3,∴2k 2+2k 2=3.解得 =±2,∴符合题意的直线有且仅有两条.故选B.[答案 B3.(2017·湖南长沙调研)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4x B .y 2=4x C .y 2=±8x D .y 2=8x[解析 ∵抛物线y 2=ax (a ≠0)的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,∴直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a4.∵直线l与y 轴的交点为A ⎝⎛⎭⎪⎫0,-a 2,∴△OAF 的面积为12⎪⎪⎪⎪⎪⎪a 4·⎪⎪⎪⎪⎪⎪a 2=4,解得a =±8.∴抛物线的方程为y 2=±8x ,故选C.[答案 C4.(2017·河南三门峡灵宝期末)已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线交抛物线于A ,B 两点,过点A ,点B 分别作AM ,BN 垂直于抛物线的准线,分别交准线于M ,N 两点,那么∠MFN 必是( )A .锐角B .直角C .钝角D .以上皆有可能[解析 由题意画出图象,如图.由抛物线的定义,可知|NB |=|BF |.所以△BNF 是等腰三角形.因为BN ∥OF ,所以NF 平分∠OFB .同理MF 平分∠OFA ,所以∠NFM =90°.故选B.[答案 B5.(2017·黑龙江七台河期末)已知抛物线C :y 2=-8x 的焦点为F ,直线l :x =1,点A 是l 上的一动点,直线AF 与抛物线C 的一个交点为B .若FA →=-3FB →,则|AB |=( )A .20B .16C .10D .5[解析 由抛物线C :y 2=-8x ,得F (-2,0).设A (1,a ),B (m ,n ),且n 2=-8m .∵FA →=-3FB →,∴1+2=-3(m +2),解得m =-3,∴n =±2 6.∵a =-3n ,∴a =±66, ∴|AB |=1+32+26+662=20.故选A.[答案 A6.(2017·湖北襄阳月考)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2 D. 3 [解析如图,过N 作准线的垂线NH ,垂足为H .根据抛物线的定义可知|NH |=|NF |, 在△NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MF 中,∠FM =45°,所以|MF |=2|F |.而|F |=1. 所以|MF |= 2.故选C. [答案 C7.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为__________. [解析 曲线的标准方程为(x -2)2+y 2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x =-p 2,∴由抛物线的准线与圆相切得2+p2=3,解得p =2.[答案 2 二、填空题8.(2018·武汉模拟)抛物线y 2=4x 的焦点为F ,倾斜角等于45°的直线过F 交该抛物线于A ,B 两点,则|AB |=__________.[解析 由抛物线焦点弦的性质,得|AB |=2p sin 2α=2×2sin 245°=8. [答案 89.(2017·黑龙江绥化期末)设抛物线y 2=16x 的焦点为F ,经过点P ( 1,0)的直线l 与抛物线交于A ,B 两点,且2BP →=PA →,则|AF |+2|BF |=________.[解析 设A (x 1,y 1),B (x 2,y 2).∵P (1,0),∴BP →=(1-x 2,-y 2),PA →=(x 1-1,y 1).∵2BP →=PA →,∴2(1-x 2,-y 2)=(x 1-1,y 1),∴x 1+2x 2=3,-2y 2=y 1. 将A (x 1,y 1),B (x 2,y 2)代入抛物线方程y 2=16x ,得y 21=16x 1,y 22=16x 2.又∵-2y 2=y 1,∴4x 2=x 1.又∵x 1+2x 2=3,解得x 2=12,x 1=2.∴|AF |+2|BF |=x 1+4+2(x 2+4)=2+4+2×⎝ ⎛⎭⎪⎫12+4=15. [答案 15 三、解答题10.(2017·河北沧州百校联盟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线上一点P 的横坐标为2,|PF |=3.(1)求抛物线C 的方程;(2)过点F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,求△OAB 的面积. [解 (1)由抛物线定义可知,|PF |=2+p2=3,∴p =2,∴抛物线C 的方程为y 2=4x .(2)由y 2=4x ,得F (1,0),∴过点F 且倾斜角为30°的直线方程为y =33(x -1).联立y 2=4x ,消去x 得y 2-43y -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=43,y 1y 2=-4. ∴S △OAB =S △OAF +S △OFB =12|y 1-y 2|=12×48+16=4.[能力提升11.(2017·辽宁沈阳二中期中)抛物线C :y 2=4x 的焦点为F ,斜率为 的直线l 与抛物线C 交于M ,N 两点.若线段MN 的垂直平分线与x 轴交点的横坐标为a (a >0),n =|MF |+|NF |,则2a -n =( )A .2B .3C .4D .5[解析 由题意得F (1,0),准线方程为x =-1.线段MN 的中点坐标为(x 0,y 0).由抛物线的定义,得n =|MF |+|NF |=x M +1+x N +1=x M +x N +2=2x 0+2.因为线段MN 的垂直平分线方程为y -y 0=-1k(x -x 0),令y =0,得x = y 0+x 0,即a = y 0+x 0.由点差法可得 y 0=2,所以x 0=a -2,所以2a -n =2x 0+4-(2x 0+2)=2.故选A.[答案 A12.(2017·北京昌平期末)已知△ABC 的三个顶点均在抛物线y 2=x 上,边AC 的中线BM ∥x 轴,|BM |=2,则△ABC 的面积为________.[解析 根据题意设A (a 2,a ),B (b 2,b ),C (c 2,c ),不妨设a >c .∵M 为边AC 的中点,∴M ⎝ ⎛⎭⎪⎫a 2+c 22,a +c 2.又∵BM ∥x 轴,∴b =a +c2. ∴|BM |=⎪⎪⎪⎪⎪⎪a 2+c 22-b 2=⎪⎪⎪⎪⎪⎪a 2+c 22-a +c 24=2,∴(a -c )2=8,∴a -c =2 2.作AH ⊥BM 交BM 的延长线于H ,故S △ABC =2S △ABM =2×12|BM |·|AN |=2|a -b |=2⎪⎪⎪⎪⎪⎪a -a +c 2=a -c =2 2.[答案 2 213.(2017·福建厦门期中)设抛物线C :y 2=4x ,F 为C 的焦点,过点F 的直线l 与C 相交于A ,B 两点.(1)若l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值. [解 (1)∵直线l 的斜率为1且过点F (1,0),∴直线l 的方程为y =x -1.设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =x -1,y 2=4x ,消去y 得x 2-6x +1=0.Δ>0,∴x 1+x 2=6,x 1x 2=1,∴|AB |=x 1+x 2+p =8.(2)证明:设直线l的方程为x = y +1,联立⎩⎪⎨⎪⎧x =ky +1,y 2=4x ,消去x 得y 2-4 y -4=0,Δ>0.设A =(x 1,y 1),B =(x 2,y 2),则y 1+y 2=4 ,y 1y 2=-4,OA →=(x 1,y 1),OB →=(x 2,y 2).∴OA →·OB →=x 1x 2+y 1y 2=( y 1+1)( y 2+1)+y 1y 2= 2y 1y 2+ (y 1+y 2)+1+y 1y 2=-4 2+4 2+1-4=-3. ∴OA →·OB →=-3是一个定值.14.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A 、B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以AB 为直径的圆与y 轴相切时,求直线l 的方程.[解 (1)设l :x =my -2,代入y 2=2px ,得y 2-2pmy +4p =0.( )设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p2=4.因为OA →·OB →=12,所以x 1x 2+y 1y 2=12,即4+4p =12, 得p =2,抛物线的方程为y 2=4x .(2)(1)中( )式可化为y 2-4my +8=0,y 1+y 2=4m ,y 1y 2=8. 设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4,① 又|AB |=1+m 2|y 1-y 2|=1+m216m 2-32,②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2,解得m 2=3,m =± 3. 所以直线l 的方程为x +3y +2=0或x -3y +2=0.15.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. [解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎩⎪⎨⎪⎧y 1y 2=4, ①y 1+y 2=8+p 2. ②又∵AC →=4AB →,∴y 2=4y 1,③由①②③及p >0得:y 1=1,y 2=4,p =2,则抛物线G 的方程为x 2=4y . (2)设l :y = (x +4),BC 的中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4 x -16 =0,④∴x 0=x C +x B2=2 ,y 0= (x 0+4)=2 2+4 .∴线段BC 的中垂线方程为y -2 2-4 =-1k(x -2 ),∴线段BC 的中垂线在y 轴上的截距为:b =2 2+4 +2=2( +1)2, 对于方程④,由Δ=16 2+64 >0得: >0或 <-4. ∴b ∈(2,+∞).。
新高考一轮复习人教版 抛物线及其性质 作业
9.4抛物线及其性质基础篇固本夯基考点一抛物线的定义及标准方程1.(2022届广州花都8月调研,3)已知抛物线x2=ay的焦点为F,且M(2,1)为抛物线上的点,则|MF|=()A.1B.2C.3D.4答案B2.(2022届江苏百校大联考,3)已知抛物线C:y2=4x的焦点为F,A为抛物线C上第一象限的点,若|FA|=73,则直线OA的倾斜角为()A.π6B.π4C.π3D.2π3答案C3.(2019课标Ⅱ,文9,理8,5分)若抛物线y2=2px(p>0)的焦点是椭圆x 23p +y2p=1的一个焦点,则p=()A.2B.3C.4D.8答案D4.(2021石家庄3月质检,7)已知F是抛物线C:y2=8x的焦点,M是C上一点,MF的延长线交y轴于点N.若MF⃗⃗⃗⃗⃗ =2FN⃗⃗⃗⃗ ,则|MF|为()A.8B.6C.4D.2答案A5.(2020课标Ⅰ理,4,5分)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9答案C6.(2021广东湛江一模,6)已知抛物线C:x2=-2py(p>0)的焦点为F,点M是C上的一点,M到直线y=2p的距离是M到C的准线距离的2倍,且|MF|=6,则p=()A.4B.6C.8D.10答案A7.(2021北京,12,5分)已知抛物线y2=4x的焦点为F,点M在抛物线上,MN垂直x轴于点N.若|MF|=6,则点M的横坐标为;△MNF的面积为.答案5;4√5考点二抛物线的几何性质1.(2022届广东茂名11月测试,2)抛物线x=43y2的焦点坐标为()A.(13,0)B.(0,13)C.(316,0)D.(0,23)答案C2.(2021山东枣庄二模,4)已知点(1,1)在抛物线C:y2=2px(p>0)上,则C的焦点到其准线的距离为()A.1 4B.12C.1D.2答案B3.(2020课标Ⅲ,文7,理5,5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)答案B4.(2021辽宁朝阳一模,8)抛物线C:y2=2px(p>0)的焦点为F,过F与x轴垂直的直线交C于点M,N,有下列四个命题:甲:点F的坐标为(1,0);乙:抛物线C的准线方程为x=-2;丙:线段MN的长为4;丁:直线y=x+1与抛物线C相切.如果只有一个命题是假命题,则该命题是()A.甲B.乙C.丙D.丁答案B5.(2018北京文,10,5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为.答案(1,0)考点三直线与抛物线的位置关系1.(2022届广东深圳三中检测,7)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于A,B两点,延长FB交准线于点C,若|BC|=2|BF|,则|BF||AF|=()A.1 4B.13C.12D.23答案B2.(多选)(2022届山东师大附中开学考试,11)过抛物线y2=4x的焦点F作直线交抛物线于A,B两点,M为线段AB的中点,则下列结论正确的是()A.以线段AB为直径的圆与直线x=-12相交B.以线段BM为直径的圆与y轴相切C.当AF⃗⃗⃗⃗ =2FB⃗⃗⃗⃗ 时,|AB|=92D.|AB|的最小值为4答案ACD3.(2021百校大联考(六),12)已知F是抛物线y2=2px(p>0)的焦点,斜率为-2且经过焦点F的直线l交该抛物线于M,N两点,若|MN|=52,则该抛物线的方程是()A.y2=xB.y2=2xC.y2=4xD.y2=6x 答案B4.(2021济南二模,7)已知抛物线x 2=2py(p>0),过焦点F 的直线与抛物线交于A,B 两点(点A 在第一象限).若直线AB 的斜率为√33,点A 的纵坐标为32,则p 的值为( )A.14B.12C.1D.2 答案 C5.(2018课标Ⅰ理,8,5分)设抛物线C:y 2=4x 的焦点为F,过点(-2,0)且斜率为23的直线与C 交于M,N 两点,则FM ⃗⃗⃗⃗⃗ ·FN ⃗⃗⃗⃗ =( )A.5B.6C.7D.8 答案 D6.(2019课标Ⅰ理,19,12分)已知抛物线C:y 2=3x 的焦点为F,斜率为32的直线l 与C 的交点为A,B,与x 轴的交点为P.(1)若|AF|+|BF|=4,求l 的方程;(2)若AP ⃗⃗⃗⃗ =3PB⃗⃗⃗⃗ ,求|AB|. 解析 设直线l:y=32x+t,A(x 1,y 1),B(x 2,y 2). (1)由题设得F (34,0),故|AF|+|BF|=x 1+x 2+32, 由题设可得x 1+x 2=52.由{y =32x +t,y 2=3x可得9x 2+12(t-1)x+4t 2=0,则x 1+x 2=-12(t−1)9.从而-12(t−1)9=52,得t=-78.所以l 的方程为y=32x-78.(2)由AP⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗ 可得y 1=-3y 2.由{y =32x +t,y 2=3x可得y 2-2y+2t=0.所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13.故|AB|=4√133. 综合篇 知能转换A 组考法一 利用抛物线的定义解题1.(2021福建龙岩三模,6)已知抛物线x 2=4y 的焦点为F,准线为l,过抛物线上一点P 作PQ ⊥l,垂足为Q,若|PF|=4,则∠FQP=( )A.30°B.45°C.60°D.75° 答案 C2.(2022届广东深圳实验学校、长沙市一中联考,13)抛物线y=ax 2(a>0)上的点M (m,12)到其准线l 的距离为1,则a 的值为 . 答案123.(2022届华大新高考联盟11月测评,13)已知抛物线y 2=2px(p>0)的焦点坐标为(1,0),则该抛物线上任一点到焦点的距离的取值范围是 . 答案 [1,+∞)4.(2021广东肇庆二模,15)已知点P 是抛物线x 2=8y 上的一个动点,则点P 到点A(2,0)的距离与到抛物线的准线的距离之和的最小值为 . 答案 2√25.(2021新高考Ⅰ,14,5分)已知O 为坐标原点,抛物线C:y 2=2px(p>0)的焦点为F,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP.若|FQ|=6,则C 的准线方程为 . 答案 x=-32考法二 直线与抛物线的位置关系问题1.(2022届湖北部分学校11月质检,6)已知抛物线y 2=4x,直线l 与抛物线交于A,B 两点,若线段AB 中点的纵坐标为2,则直线AB 的斜率为( ) A.2 B.√3 C.√33D.1答案 D2.(多选)(2021湖南衡阳联考(一),11)已知抛物线C:x 2=2py(p>0),过其准线上的点T(1,-1)作C 的两条切线,切点分别为A 、B,下列说法正确的是( ) A.p=1 B.TA ⊥TBC.直线AB 的斜率为12D.线段AB 中点的横坐标为1 答案 BCD3.(2022届四省八校期中,14)过点M(-1,2)作抛物线y 2=4x 的两条切线,切点分别为A 、B,则线段AB 的中点到抛物线准线的距离为 . 答案 44.(2020新高考Ⅰ,13,5分)斜率为√3的直线过抛物线C:y 2=4x 的焦点,且与C 交于A,B 两点,则|AB|= . 答案1635.(2019北京理,18,14分)已知抛物线C:x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M,N,直线y=-1分别交直线OM,ON 于点A 和点B.求证:以AB 为直径的圆经过y 轴上的两个定点.解析 (1)由抛物线C:x 2=-2py 经过点(2,-1),得p=2.所以抛物线C 的方程为x 2=-4y,其准线方程为y=1. (2)证明:抛物线C 的焦点为F(0,-1).设直线l 的方程为y=kx-1(k ≠0). 由{y =kx −1,x 2=−4y 得x 2+4kx-4=0.设M(x 1,y 1),N(x 2,y 2), 则x 1x 2=-4,直线OM 的方程为y=y 1x 1x. 令y=-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D(0,n),则DA ⃗⃗⃗⃗ =(−x 1y 1,−1−n ),DB⃗⃗⃗⃗ =(−x2y 2,−1−n ), DA⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗ =x 1x 2y 1y 2+(n+1)2=x 1x 2(−x 124)(−x 224)+(n+1)2=16x 1x 2+(n+1)2=-4+(n+1)2.令DA ⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗ =0,即-4+(n+1)2=0,得n=1或n=-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).6.(2021全国乙文,20,12分)已知抛物线C:y 2=2px(p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗ ,求直线OQ 斜率的最大值. 解析 (1)∵抛物线y 2=2px(p>0)的焦点F 到准线的距离为2,∴p=2.∴抛物线C 的方程为y 2=4x. (2)由已知不妨设点P(4x 02,4x 0),Q(x 1,y 1),则PQ ⃗⃗⃗⃗ =(x 1-4x 02,y 1-4x 0),∵F(1,0),∴QF ⃗⃗⃗⃗ =(1-x 1,-y 1), ∵PQ ⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗ ,∴{x 1−4x 02=9(1−x 1),y 1−4x 0=9(−y 1),整理得{x 1=110(9+4x 02),y 1=410x 0,∴k OQ =y 1x 1=4x 09+4x 02, 当k OQ 最大时,x 0>0,∴k OQ =49x 0+4x 0≤2√36=13,当且仅当4x 0=9x 0时取“=”,此时x 0=32,点P 的坐标为(9,6),因此k OQ 的最大值为13.B 组1.(2020北京,7,4分)设抛物线的顶点为O,焦点为F,准线为l,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q,则线段FQ 的垂直平分线( )A.经过点OB.经过点PC.平行于直线OPD.垂直于直线OP 答案 B2.(2017课标Ⅱ文,12,5分)过抛物线C:y 2=4x 的焦点F,且斜率为√3的直线交C 于点M(M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为( ) A.√5 B.2√2 C.2√3 D.3√3 答案 C3.(2022届广东深圳七中月考,8)过抛物线C:y 2=4x 的焦点作倾斜角为34π的直线l 交C 于A 、B 两点,以C 的准线上一点M 为圆心作圆M 经过A 、B 两点,则圆M 的面积为( ) A.96π B.48π C.32π D.16π 答案 B4.(多选)(2022届广东11月大联考,10)已知P(x 0,y 0)是抛物线C:y 2=4x 上一动点,则( ) A.C 的焦点坐标为(2,0)B.C 的准线方程为x+1=0 C.x 0+1=√(x 0−1)2+y 02D.x 0+1y 02+1的最小值为34答案 BCD5.(2021湖北九师联盟2月质检,8)已知抛物线C:y 2=2px(p>0)的焦点为F,点M(x 0,2√2)(x 0>p2)是抛物线C 上一点,以点M 为圆心的圆与直线x=p2交于E,G 两点,若sin ∠MFG=13,则抛物线C 的方程是( ) A.y 2=x B.y 2=2x C.y 2=4x D.y 2=8x 答案 C。
抛物线综合测试(含有详细答案)
高二数学抛物线综合测试满分:150分 时间:100分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目的要求,请将答案填写在题后的表格中.1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( )A.|a |4B.|a |2 C .|a | D .-a 22.[2010·陕西卷] 已知抛物线y 2=2px (p >0)的准线与圆x 2+y 2-6x -7=0相切,则p 的值为( ) A.12B .1C .2D .4 3.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2) 4.已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点( )A .(2,0)B .(1,0)C .(0,1)D .(0,-1)5.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x6.(2011·北京)已知点A (0,2),B (2,0).若点C 在函数y =x 2的图像上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .17.(2011·大纲全国理)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则 cos ∠AFB =( )A.45B.35 C .-35 D .-458.(2010·辽宁)设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=( )A .4 3B .8C .83D .169.[2010·山东卷] 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-210.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,经过F 的直线与抛物线交于A 、B 两点,交准线于C 点,点A 在x 轴上方,AK ⊥l ,垂足为K ,若|BC |=2|BF |,且|AF |=4,则△AKF 的面积是( )A .4B .3 3C .4 3D .8高二数学抛物线综合测试选择题答题卡题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5个小题,每小题5分,共25分.请将答案填写在横线上.11.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB |等 于 .12.如果直线l 过定点M (1,2),且与抛物线y =2x 2有且仅有一个公共点,那么l 的方程为 . 13.抛物线y 2=x 上的点到直线x -2y +4=0的距离最小的点的坐标是________.14.[2010·浙江卷] 设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________. 15.[2010·全国卷Ⅱ] 已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM →=MB →,则p =________.三、解答题:本大题共5小题,每题14分,共70分.解答应写出文字说明,证明过程或演算步骤. 16.斜率为1的直线l 经过抛物线24y x 焦点F ,且与抛物线相交于A 、B 两点,求线段AB 的长。
高二数学同步测试—抛物线(含答案)
高二数学单元测试—抛物线一、选择题(本大题共10小题,每小题5分,共50分)1.抛物线22x y =的焦点坐标是( )A .)0,1(B .)0,41(C .)81,0( D . )41,0(2.已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为 ( ) A .y x 82= B .y x 42= C .y x 42-= D .y x 82-=3.抛物线x y 122=截直线12+=x y 所得弦长等于 ( )A .15B .152C .215D .154.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )A .y x 292-=或x y 342= B .x y 292-=或y x 342=C .y x 342= D .x y 292-=5.点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为 ( )A .0B .1C .2D .26.抛物线)0(22>=p px y 上有),,(),,(2211y x B y x A ),(33y x C 三点,F 是它的焦点,若CF BF AF ,,成等差数列,则 ( ) A .321,,x x x 成等差数列 B .231,,x x x 成等差数列 C .321,,y y y 成等差数列 D .231,,y y y 成等差数列 7.若点A 的坐标为(3,2),F 为抛物线x y 22=的焦点,点P 是抛物线上的一动点,则PF PA +取得最小值时点P 的坐标是 ( )A .(0,0)B .(1,1)C .(2,2)D .)1,21(8.已知抛物线)0(22>=p px y 的焦点弦AB 的两端点为),(11y x A ,),(22y x B ,则关系式2121x x y y 的值一定等于 ( )A .4pB .-4pC .p 2D .-p9.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P ,Q 两点,若线段PF 与FQ 的长分别是q p ,,则qp11+( )A .a 2B .a21C .a 4D .a410.若AB 为抛物线y 2=2p x (p>0)的动弦,且|AB|=a (a >2p),则AB 的中点M 到y 轴的最近距离是 ( ) A .21a B .21p C .21a +21p D .21a -21p二、填空题(本大题共4小题,每小题6分,共24分)11.抛物线x y =2上到其准线和顶点距离相等的点的坐标为 ______________. 12.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ___________.13.如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a的取值范围是 .14.A 是抛物线)0(22>=p px y 上任一点,F 是抛物线焦点,则以AF 为直径的圆与y 轴 (相交、相切、相离)15.对于顶点在原点的抛物线,给出下列条件;(1)焦点在y 轴上; (2)焦点在x 轴上; (3)抛物线上横坐标为1的点到焦点的距离等于6; (4)抛物线中垂直于轴的焦点弦长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y 2=10x 的条件是(要求填写合适条件的序号) ______. 三、解答题(本大题共6小题,共76分)16.已知以抛物线的焦点弦AB 为直径的圆与直线x=-2相切,求抛物线的标准方程,若直线AB 的倾斜角为45°,求弦AB 的长17.已知过抛物线y 2=2px 的顶点O 作互相垂直的两直线OA 、OB ,分别与抛物线相交于A 、B 两点,求证直线AB 过x 轴上的定点。
椭圆双曲线抛物线基础测试题(100分钟)
椭圆、双曲线、抛物线基础测试题1椭圆、双曲线、抛物线基础测试题时间:100分钟 满分:100分 班级 姓名 成绩一.选择题(下列各题中只有一个正确答案,每小题4分共24分)1. 到两点F 1 (0, 3 )、F 2 (0, -3 ) 的距离之和等于10的动点M 的轨迹方程是 ( ) ( A )14522=+y x ( B ) 15422=+y x ( C ) 1162522=+y x ( D ) 1251622=+y x 2. 双曲线4x 2 - 3y 2 = 12的共轭双曲线是 ( ) ( A ) 4y 2 - 3x 2 = 12 ( B ) 3x 2 - 4y 2 = 12 ( C ) 3y 2 - 4x 2 = 12 ( D ) 4x 2 - 3y 2 = 123. 顶点在原点、坐标轴为对称轴,经过点P( 1, -2 )的抛物线方程是 ( ) ( A ) y 2 = 4x ( B ) x 2 =21-y ( C ) y 2 = 4x, x 2 = 4y ( D ) y 2 = 4x, x 2 =21-y 4. 若椭圆15922=+xy ,则9等于 ( ) ( A ) 两焦点间的距离 ( B ) 一焦点到长轴一端点的距离 ( C ) 两准线间的距离 ( D ) 椭圆上一点到准线的距离5. 当曲线1422=-+ky k x 表示焦点在x 轴上的双曲线时,则 ( ) ( A ) k > 0 ( B ) k > 4 ( C ) 0 < k < 4 ( D ) k > 4或k < 06. 双曲线的两条准线把连接两焦点的线段三等分,则双曲线的离心率是 ( ) ( A )3 ( B ) 3 ( C )33 ( D ) 33± 二.填空题(每空4分,共24分)1. 抛物线x 2 = 4y + 8的焦点坐标是 .2. 离心率为2的双曲线的渐近线的夹角等于 .3. 经过两点M(3, 0 )、N( 0, -2 )的椭圆的标准方程是 .4. 若椭圆的一焦点到短轴两端点的连线垂直,则椭圆的离心率是 .5. AB 是过椭圆x 2 + 2y 2 = 4焦点F 1的弦,它与另一焦点F 2所连成三角形的周长等于 .6. 当抛物线y 2 = 4x 上一点P 到焦点F 和点A( 2, 2 )的距离之和最小时,点P 的坐标是三.解答题(5道题,共52分)1、已知双曲线的一渐近线方程是x +2y = 0, 且过点M(-6, 4 ),求双曲线的标准方程. (10分)2、求直线y = 2x + 1与抛物线x 2 - y = 1相交所得的弦长. (共10分)3、一抛物线以双曲线 191622=y x + 的右顶点为顶点,左焦点为焦点,求此抛物线的方程。
抛物线测试题
一、选择题
1、抛物线y2=-2px(p>0)的焦点为F,准线为l,则p表示()
A、F到直线l的距离
B、F到y轴的距离
C、F点的横坐标
D、F到直线l的距离的一半
2、抛物线x2+3y=0的焦点位于()
A、x轴的正半轴上
B、x轴的负半轴上
C、y轴的正半轴上
D、y轴的负半轴上
3、抛物线y=1/4x2的准线方程为()
A、x=-1
B、x=-1/16
C、y=-1
D、y=-1/16
4、动点P到A(0,2)的距离比到直线l:y=-4的距离小2,则动点P的轨迹方程为()
A、y2=4x
B、y2=8x
C、x2=4y
D、x2=8x
5、已知抛物线x2=4y的焦点F和点A(-1,8),P是抛物线上一点,则︱PA ︱+︱PF︱的最小值是()
A、16
B、12
C、9
D、6
6、一抛物线形拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m,
则水面宽为()
A、1m
B、2m
C、4.5m
D、9m
二、填空题
7、抛物线x=ay2的准线方程是x=2,则a=
8、焦点在x轴上,且焦点到准线的距离为3的抛物线的标准方程是
的弦AB,则AB的长是9、.过抛物线y2=4x的焦点F,作倾角为
3
_____________.
三、解答题
10.完成填空
11.已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.。
抛物线(原卷版)--新高二暑假讲义
第12讲抛物线新课标要求1.了解抛物线的定义、几何图形和标准方程,以及它们的简单几何性质。
2.了解抛物线的简单应用。
知识梳理1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程3.抛物线的简单几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图象性质范围x ≥0,x ≤0,y ≥0,y ≤0,名师导学知识点1求抛物线的标准方程【例1-1】根据下列条件写出抛物线的标准方程.(1)准线方程为x=-1;(2)焦点为直线3x-2y-6=0与坐标轴的交点;(3)经过点(-3,-1).【变式训练1-1】根据下列条件写出抛物线的标准方程.(1)准线方程为y=-2;(2)焦点在x轴上,焦点到准线的距离等于5;(3)过点(1,-2).知识点2根据抛物线方程求焦点坐标、准线方程【例2-1】求下列抛物线的焦点坐标及准线方程.(1)y2=-4x;(2)y=4x2;(3)3x2+2y=0;(4)y2=ax(a>0).【变式训练2-1】(1)已知抛物线x2=ay的准线方程是y=-14,则a=________.(2)(全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆x23p+y2p=1的一个焦点,则p=()A.2B.3C.4D.8知识点3抛物线定义的应用【例3-1】(1)若动点P到定点F(1,1)的距离与它到定直线l:3x+y-4=0的距离相等,则动点P的轨迹是()A.椭圆B.双曲线C.抛物线D.直线(2)已知F是抛物线y2=x的焦点,A、B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y 轴的距离为()A.3 4B.1 C.54D.74(3)(晋中市期末)已知直线l1:3x-4y-6=0,直线l2:y=-2,抛物线x2=4y上的动点P到直线l1与直线l2距离之和的最小值是()A.2B.3C.4D.338【变式训练3-1】(1)已知动圆过定点x=-p2相切,其中p>0,求动圆圆心的轨迹方程;(2)已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小.知识点4抛物线的简单几何性质【例4-1】设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为-3,那么|PF|=()A.433B.8C.833D.163【变式训练4-1】设抛物线y2=4x的焦点为F,准线为l,P为该抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为-3,则△PAF的面积为()A.23B.43C.8D.83【变式训练4-2】已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,若双曲线的离心率为2,△AOB的面积为3,求抛物线的标准方程.知识点5抛物线的焦点弦的性质及应用【例5-1】已知AB是抛物线y2=2px(p>0)的过焦点F的一条弦,设A(x1,y1),B(x2,y2),求证:(1)|AB|=x1+x2+p;(2)若AB的倾斜角为θ,则|AB|=2psin2θ;(3)x1x2=p24,y1y2=-p2;(4)1|AF|+1|BF|为定值2p.【变式训练5-1】设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.知识点6直线与抛物线的位置关系的判断【例6-1】已知抛物线的方程为y 2=2x ,直线l 的方程为y =kx +1(k ∈R ).当k 分别为何值时,直线l 与抛物线只有一个公共点;有两个公共点;没有公共点?【变式训练6-1】如果直线l 过定点M (1,2)且与抛物线y =2x 2有且只有一个公共点,求直线l 的方程.知识点7弦长、中点弦问题【例7-1】过点Q (4,1)作抛物线y 2=8x 的弦AB ,且该弦恰被Q 平分,求AB 所在的直线方程及|AB |.【变式训练7-1】(台州市月考)过抛物线y 2=mx (m >0)的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,|PQ |=54m ,则m =()A .6B .8C .10D .12知识点8抛物线中的定点、最值问题【例8-1】如图,已知△AOB 的一个顶点为抛物线y 2=2x 的顶点O ,A ,B 两点都在抛物线上,且∠AOB =90°.(1)证明:直线AB 必过一定点;(2)求△AOB 面积的最小值.【变式训练8-1】已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (2,n )(n >0)在抛物线C 上,|PF |=3,直线l 过点F ,且与抛物线C 交于A ,B 两点.(1)求抛物线C 的方程及点P 的坐标;(2)求PA →·PB →的最大值.名师导练3.3.1抛物线及其标准方程A 组-[应知应会]1.到定点F (1,-1)的距离与到直线3x -2y -5=0的距离相等的点P 的轨迹是()A .抛物线B .椭圆C .双曲线的一支D.直线2.已知抛物线y 2=2px 上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为()A .x =8B .x =-8C .x =4D .x =-43.(杭州模拟)已知抛物线x 2=4y 上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为()A.10B .4C.15D .54.若椭圆x 23+4y 2p 2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p 为()A .3B .3C.6D .65.(牡丹江一中期末)下列抛物线中,焦点到准线的距离最小的是()A .y 2=-xB .y 2=2xC .2x 2=yD .x 2=-4y6.(运城期末)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到点A (-2,1)的距离之和最小,则点P 的坐标为()-14,B C .(-2,-22)D .(-2,22)7.在抛物线y2=-2px(p>0)中,p的几何意义是____________________________________________ 8.若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的焦点,则p=________.9.(南阳市一中开学考)抛物线y2=2px(p>0)的焦点为F,A,B为抛物线上的两点,以AB为直径的圆过点F,过AB的中点M作准线的垂线,垂足为N,则|MN||AB|的最大值为________.10.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且与y轴交于点A,若△OAF(O为坐标原点)的面积为4,求抛物线的方程.11.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)在抛物线上,且2x2=x1+x3,试判断|FP1|,|FP2|,|FP3|是否成等差数列.12.(南阳一中检测)已知定点A(1,0),定直线l:x=-2,动点P到点A的距离比点P到l的距离小1.(1)求动点P的轨迹C的方程;(2)过点B(0,2)的直线l与(1)中轨迹C相交于两个不同的点M,N,若AM→·AN→<0,求直线l的斜率的取值范围.B组-[素养提升](北京十二中期中)设抛物线y2=4x上一点P到y轴的距离是2,则P到该抛物线焦点的距离是() A.1B.2C.3D.43.3.2抛物线的简单几何性质A组-[应知应会]1.若动点M(x,y)到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M的轨迹方程为()A.x+4=0B.x-4=0C.y2=8x D.y2=16x2.若抛物线y2=x上一点M到准线的距离等于它到顶点的距离,则点M的坐标为()BD3.(福州期末)设抛物线的顶点在原点,其焦点F在y轴上,又抛物线上的点A(k,-2)与点F的距离为4,则k的值为()A.4B.4或-4C.-2D.-2或24.(保定模拟)已知抛物线y2=2px(p>0)的焦点为F,F关于原点的对称点为P,过F作x轴的垂线交抛物线于M,N两点,有下列四个命题:①△PMN必为直角三角形;②△PMN不一定为直角三角形;③直线PM与抛物线相切;④直线PM不一定与抛物线相切.其中正确的命题为()A.①③B.①④C.②③D.②④5.(郑州模拟)过抛物线y2=4x的焦点作直线l交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|=()A.10B.8C.6D.46.(马鞍山市阶段测试)过抛物线C:y2=2px(p>0)的焦点F的直线l与抛物线交于M,N两点,若MF→=4FN→,则直线l的斜率为()A.±32B.±23C.±34D.±437.(凯里市期末)设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,以F为圆心,|FA|为半径的圆交l于B,D两点,若∠ABD=90°,且△ABF的面积为93,则此抛物线的方程为________.8.如图,已知抛物线y2=2px(p>0)的焦点F恰好是椭圆x2a2+y2b2=1(a>b>0)的右焦点,且两曲线的公共点连线AB过F,则椭圆的离心率是________.9.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且|AM|=17,|AF|=3,则此抛物线的标准方程为________.10.抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.11.已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.12.在平面直角坐标系xOy中,点M到点F(0,-2)的距离比它到x轴的距离大2,记点M的轨迹为C.(1)求轨迹C的方程;(2)若直线y=2x+b与轨迹C恰有2个公共点,求实数b的取值范围.B组-[素养提升](全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若AP→=3PB→,求|AB|.3.3.3直线与抛物线的位置关系A组-[应知应会]1.抛物线的对称轴为x轴,过焦点且垂直于对称轴的弦长为8,若抛物线顶点在坐标原点,则其方程为()A.y2=8x B.y2=-8xC.y2=8x或y2=-8x D.x2=8y或x2=-8y2.在抛物线y2=8x中,以(1,-1)为中点的弦所在直线的方程是()A.x-4y-3=0B.x+4y+3=0C.4x+y-3=0D.4x+y+3=03.已知直线y=kx-k及抛物线y2=2px(p>0),则()A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点4.(郑州市期中)已知F是抛物线C1:y2=2px(p>0)的焦点,曲线C2是以F为圆心,以p2为半径的圆,直线4x-3y-2p=0与曲线C1,C2从上到下依次相交于点A,B,C,D,则|AB||CD|=()A.16B.4C.8 3D.535.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB中点的横坐标为3,则抛物线的准线方程为()A.x=1B.x=2C.x=-1D.x=-26.(绵阳模拟)设抛物线y2=2px(p>0)的焦点为F,点A在y轴上,若线段FA的中点B在抛物线上,且点B到抛物线准线的距离为324,则点A的坐标为()A.(0,±2)B.(0,2) C.(0,±4)D.(0,4)7.直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则直角△ABC斜边上的高的长度为________.8.直线y=x-1被抛物线y2=4x截得的弦的中点坐标为________.9.抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线x22=1的左顶点为A,若a-y双曲线的一条渐近线与直线AM平行,则双曲线的离心率为________.10.(平顶山调研)已知点M(-1,1)和抛物线C:y2=4x,过抛物线C的焦点且斜率为k的直线与抛物线C交于A,B两点,若∠AMB=90°,求k的值.11.求过定点P(-1,1),且与抛物线y2=2x只有一个公共点的直线l的方程.12.设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与抛物线C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.B组-[素养提升](北京卷)已知抛物线C:x2=-2py经过点(2,-1).(1)求抛物线C的方程及其准线方程;(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.11/11。
二次函数3抛物线形状问题
1:在体育测试时,初三的一名高个了男同学推铅球,已知铅球所经过的路线是某抛物线图像的一部分,如果这个男同学出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)。
求:(1)求这个抛物线解析式(2)该男同学把铅球推出多远?2:某公园草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4米加设不锈钢管(如图)做成的立柱,求:(1)自己建立平面直角坐标系,求出抛物线解析式?(2)计算所需不锈钢管立柱的总长度?3:某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地面4米处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米。
求:(1)自己建立平面直角坐标系,求抛物线解析式?(2)求校门的高度4:一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈。
已知篮圈中心到地面的距离为3.05米。
求:(1)自己建立平面直角坐标系,求抛物线的解析式?(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问球出手时,他距离地面的高度是多少?5:如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为X 轴,横断面的对称轴为Y 轴。
桥拱的DG D ′部分为一段抛物线,顶点G 的高度为8米,AD 和A ′D ′是两侧高为5.5米的支柱,OA 和OA ′为两个方向的汽车通行区,宽都为15米,线段CD 和C ′D ′为两段对称的上桥斜坡,其坡比为1:4。
求:(1)求桥拱DGD ′所在抛物线的解析式及CC ′的长;(2)BE 和B ′E ′为支撑斜坡的立柱,其高都为4米,相应的AB 和A ′B ′为两个方向的行人及非机动车通行区,试求AB 和A ′B ′的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车载大型设备的顶部与地面的距离均为7米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线的标准方程与性质测试
1抛物线y 2=-2px (p>0)的焦点为F ,准线为l ,则p 表示( )
A 、F 到直线l 的距离
B 、F 到y 轴的距离
C 、F 点的横坐标
D 、F 到直线l 的距离的一半
2、抛物线x 2+3y=0的焦点位于( )
A 、x 轴的正半轴上
B 、x 轴的负半轴上
C 、y 轴的正半轴上
D 、y 轴的负半轴上
3、抛物线y=1/4x 2的准线方程为______
4、动点P 到A (0,2)的距离比到直线l :y=-4的距离小2,则动点P 的轨迹方程为_____
5、已知抛物线x 2=4y 的焦点F 和点A (-1,8),P 是抛物线上一点,则︱PA ︱+︱PF ︱的最小值是_____
6.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是______
7.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是 ( )
8、一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为____
9、平面内过点A (-2,0),且与直线x=2相切的动圆圆心轨迹方程是 ( )
10、抛物线的顶点在原点,对称轴是x 轴,抛物线上点(-5,m )到焦点距离是6,则抛物线的方
程是_____
11、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么
|AB|=_____
12、过点M (2,4)作与抛物线y 2=8x 只有一个公共点直线l 有__条
13、抛物线x=ay 2的准线方程是x=2,则a=
14、焦点在x 轴上,且焦点到准线的距离为3的抛物线的标准方程是
15、.过抛物线y 2=4x 的焦点F ,作倾角为3
π的弦AB ,则AB 的长是_______. 16、点A (0,3)、B (6,-3),线段AB 与抛物线x 2=2ay 有且仅有一个公共点,则a 的取值范围是
17.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的
距离与点P 到抛物线的准线的距离之和的最小值是 ( )
18.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,
求抛物线的方程和m 的值.
19.根据下列条件求抛物线的标准方程:
(1)抛物线的焦点是双曲线 16x 2-9y 2=144的左顶点;
(2)过点P (2,-4).
20、.已知抛物线y 2=2px(p>0),过焦点F 的弦的倾斜角为θ(θ≠0),且与抛物线相交于A 、B 两点.
(1)求证:|AB|=θ
2sin 2p ; (2)求|AB|的最小值.。