2015辽宁省大连市中考数学试1

合集下载

2015年辽宁省大连市中考数学试题(解析版)

2015年辽宁省大连市中考数学试题(解析版)

2015辽宁省大连市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A. 2 B.-2 C. 21 D.-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱 【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C .3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A. 1,2,3 B.,1,2,3 C.3,4,8 D.4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。

故选D . 4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D . 5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=xB. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x +2-2x =4.移项合并得:2=x 。

故选C .6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9-【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C .7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B .8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。

2018-2019年大连市中考数学真题(附答案)

2018-2019年大连市中考数学真题(附答案)

2018年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x64.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.37.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32x+b的图象与反比例函数y=的9.(分)(2018•大连)如图,一次函数y=k1图象相交于A(2,3),B(6,1)两点,当kx+b<时,x的取值范围为()1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= .12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣218.(分)(2018•大连)解不等式组:19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m 的值.2018年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(分)(2018•大连)﹣3的绝对值是()A.3 B.﹣3 C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(分)(2018•大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第二象限内点的符号特点进而得出答案.【解答】解:点(﹣3,2)所在的象限在第二象限.故选:B.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.3.(分)(2018•大连)计算(x3)2的结果是()A.x5B.2x3C.x9D.x6【分析】根据幂的乘方运算性质,运算后直接选取答案.【解答】解:(x3)2=x6,故选:D.【点评】本题主要考查幂的乘方,底数不变,指数相乘的性质,熟练掌握性质是解题的关键.4.(分)(2018•大连)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°【分析】先利用等腰直角三角形的性质得出∠1=45°,再利用平行线的性质即可得出结论;【解答】解:如图,∵△ABC是等腰直角三角形,∴∠1=45°,∵l∥l',∴∠α=∠1=45°,故选:A.【点评】此题主要考查了等腰直角三角形的性质,平行线的性质,求出∠1=45°是解本题的关键.5.(分)(2018•大连)一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【分析】由常见几何体的三视图即可判断.【解答】解:由三视图知这个几何体是三棱柱,故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是熟练掌握常见几何体的三视图.6.(分)(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8,故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.7.(分)(2018•大连)一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出两次摸出小球标号为偶数的情况数,即可求出概率.【解答】解:列表得:所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为,故选:D.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.8.(分)(2018•大连)如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.【点评】本题考查由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(分)(2018•大连)如图,一次函数y=kx+b的图象与反比例函数y=的1x+b<时,x的取值范围为()图象相交于A(2,3),B(6,1)两点,当k1A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6【分析】根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.x+b<时,x的取值范围为0<x<2或x 【解答】解:由图象可知,当k1>6.故选:D.【点评】此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.10.(分)(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α【分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6小题,每小题3分,共18分)11.(分)(2018•大连)因式分解:x2﹣x= x(x﹣1).【分析】提取公因式x即可.【解答】解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.(分)(2018•大连)五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是189 .【分析】根据中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189,故答案为:189.【点评】本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.(分)(2018•大连)一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为9 cm.【分析】根据弧长公式L=求解即可.【解答】解:∵L=,∴R==9.故答案为:9.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=.14.(分)(2018•大连)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.(分)(2018•大连)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是,则旗杆AB的高度约为m.(精确到.参考数据:sin53°≈,cos53°≈,tan53°≈)【分析】根据三角函数和直角三角形的性质解答即可.【解答】解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°,∵BC=DE=6m,∴AE=DE•tan53°≈6×≈,∴AB=AE+BE=AE+CD=+=≈,故答案为:【点评】此题考查了考查仰角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.16.(分)(2018•大连)如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为6﹣2.【分析】如图作A′H⊥BC于H.由△CDF∽△A′HC,可得=,延长构建方程即可解决问题;【解答】解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣,∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2,故答案为6﹣2.【点评】本题考查翻折变换、矩形的性质、勾股定理、直角三角形30度角性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(分)(2018•大连)计算:(+2)2﹣+2﹣2【分析】根据完全平方公式和零指数幂的意义计算.【解答】解:原式=3+4+4﹣4+=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(分)(2018•大连)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.19.(分)(2018•大连)如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.【分析】只要证明△BEO≌△DFO即可;【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(分)(2018•大连)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有 4 人,最喜欢篮球的学生数占被调查总人数的百分比为32 %;(2)被调查学生的总数为50 人,其中,最喜欢篮球的有16 人,最喜欢足球的学生数占被调查总人数的百分比为24 %;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.【分析】(1)依据统计图表中的数据即可得到结果;(2)依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比;(3)依据最喜欢排球的学生数占被调查总人数的百分比,即可估计该校最喜欢排球的学生数.【解答】解:(1)由题可得,被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%,故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.【点评】本题考查统计表、扇形统计图、样本估计总体等知识,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.解题的关键是灵活运用所学知识解决问题.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.(分)(2018•大连)甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.【分析】设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.(分)(2018•大连)【观察】1×49=49,2×48=96,3×47=141,...,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621, (47)3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为625 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50 .【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为900 ,并用你学过的知识加以证明.【分析】【发现】(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是a+b=50;【类比】由于m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,利用二次函数的性质即可得出m=30时,mn的最大值为900.【解答】解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为900.【点评】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握.23.(分)(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E 在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.【点评】此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.(分)(2018•大连)如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m ≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.【分析】(1)由图2结合平移即可得出结论;(2)判断出△AOB≌△CEA,得出AE=OB,CE=OA,再由图2知,点C的纵坐标是点B纵坐标的2倍,即可利用三角形ABC的面积求出OB,OA,即可得出结论;(3)分两种情况,利用三角形的面积公式或三角形的面积差即可得出结论.【解答】解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S △A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C '=S△ABC=,故答案为,(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°,∵∠BAC=90°,∴∠OAB+∠CAE=90°,∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S==AB2=×5OB2,△ABC∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3,∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得,A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=,在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM,∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C '﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,三角形的面积公式,平移的性质,相似三角形的判定和性质,构造相似三角形是解本题的关键.25.(分)(2018•大连)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.【分析】(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.想办法证明△AEC≌△AED即可;方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.想办法证明∠ACD=∠ADC即可;(2)①如图4中,结论:∠DEF=∠FDG.理由三角形内角和定理证明即可;②结论:BD=k•DE.如图4中,如图延长AC到K,使得∠CBK=∠ABC.首先证明△DFE∽△BAK,推出==,推出BK=k•DE,再证明△BCD≌△BCK,可得BD=BK;【解答】解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB,∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°,∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF,∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°,∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B,∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°,在△DFG中,∵∠GFD+∠G+∠FDG=180°,∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK,∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG,∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE【点评】本题考查三角形综合题、三角形内角和定理、三角形外角的性质、全等三角形的判定和性质.相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(分)(2018•大连)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m ﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5)(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=4,可得出点B的坐标为(m+2,4a+2m﹣5),设BD=t,则点C的坐标为(m+2+t,4a+2m﹣5﹣t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC 的值;(3)由(2)的结论结合S=2可求出a值,分三种情况考虑:①当m>2m△ABC﹣2,即m<2时,x=2m﹣2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m﹣5,即m>5时,x=2m﹣5时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.【点评】本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤5及m>5三种情况考虑.2019年辽宁省大连市中考数学真题(附答案)副标题题号一二三总分得分一、选择题(本大题共9小题,共分)1.-2的绝对值是()A. 2B. 12C. −12D. −22.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()3.A. B. C. D.4. 2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg ,将数58000用科学记数法表示为( ) A. 58×103 B. 5.8×103 C. 0.58×105 D. 5.8x1045. 在平面直角坐标系中,将点P (3,1)向下平移2个单位长度,得到的点P ′的坐标为( ) A. (3,−1) B. (3,3) C. (1,1) D. (5,1) 6. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )A. B. C.D.7. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形 8. 计算(-2a )3的结果是( )A. −8x 3B. −6x 3C. 6x 3D. 8x 3 9. 不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( )A. 23B. 12C. 13D. 1410. 如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,折痕为EF ,若AB =4,BC =8.则D ′F 的长为( )A. 2√5B. 4C. 3D. 2二、填空题(本大题共7小题,共分)11. 如图,抛物线y =-14x 2+12x +2与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 在抛物线上,且CD ∥AB .AD 与y 轴相交于点E ,过点E 的直线PQ 平行于x 轴,与拋物线相交于P ,Q 两点,则线段PQ 的长为______.。

(历年中考)辽宁省大连市中考数学试题含答案

(历年中考)辽宁省大连市中考数学试题含答案

2016 年辽宁省大连市中考数学试卷一、选择题:本大题共 8小题,每小题 3 分,共 24分 1.﹣ 3 的相反数是( ) A . B .C .3D .﹣ 32.在平面直角坐标系中,点( 1, 5)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.方程 2x+3=7 的解是( ) A .x=5 B .x=4 C . x=3.5 D .x=2A .x>﹣ 2B .x<1C .﹣ 1<x<2D .﹣2<x<1 6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4 随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于 4的概率是( )A .B .C .D .7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 8.如图,按照三AB ∥CD ,AE 平分∠CAB .AE 与 CD 相交于点 E , ∠ACD=40°,则 ∠BAE 5.不等式组 的解集是4.如图,直线140视图确定该几何体的全面积是(图中尺寸单位:cm)()二、填空题:本大题共 8小题,每小题 3 分,共 24分29.因式分解: x ﹣ 3x= .10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为 .11.如图,将△ ABC 绕点 A 逆时针旋转的到 △ADE ,点 C 和点 E 是对应点, 若∠CAE=90°,12.下表是某校女子排球队队员的年龄分布 年龄 /岁13 14 15 16 频数1173则该校女子排球队队员的平均年龄是 岁.15.如图,一艘渔船位于灯塔 P 的北偏东 30°方向,距离灯塔 18 海里的 A 处,它沿正南方 向航行一段时间后, 到达位于灯塔 P 的南偏东 55°方向上的 B 处,此时A .40π cm 2B . 65π cm 2C . 80π cm 2D . 105π cm 213.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是a 的取值范是渔船与灯塔 P的距离约为海里(结果取整数)(参考数据: sin55 °≈ 0,.8cos55°≈ 0,.6tan55 °≈1).4.20.为了解某小区某月家庭用水量的情况, 从该小区随机抽取部分家庭进行调查,据调查数据绘制的统计图表的一部分 分组 家庭用水量 x/ 吨 家庭数 /户A 0≤x ≤ 4.0 4B 4.0<x ≤ 6.513C 6.5<x ≤ 9.0D 9.0<x ≤ 11.5E11.5< x ≤ 14.06 F x>4.03根据以上信息,解答下列问题216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B ( m+2, 0)与 y 轴相交于点 在该抛物线上,坐标为( m , c ),则点 A 的坐标是 .C ,点 D三、解答题:本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分17.计算:( +1)( ﹣ 1)+(﹣2)0﹣.18.先化简,再求值:( 2a+b )2﹣a ( 4a+3b ),其中 a=1, b= . 19.如图, BD 是? ABCD 的对角线, AE ⊥BD ,CF ⊥BD ,垂足分别为 E 、F ,AE=CF .以下是根1)家庭用水量在 4.0< x ≤6.5范围内的家庭有 户,在 6.5< x ≤9.0范围内的家庭数占被调查家庭数的百分比是 %; ( 2)本次调查的家庭数为 户,家庭用水量在 9.0< x ≤11.5范围内的家庭数占被 调查家庭数的百分比是 %;3)家庭用水量的中位数落在组;四、解答题:本大题共 3小题, 21、22各 9分 23题 10分,共 28分21.A 、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速 开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶 30 千米,求甲、乙 两车的速度.222.如图,抛物线 y=x 2﹣3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C ,点 D 是直线BC 下方抛物线上一点,过点 D 作 y 轴的平行线,与直线 BC 相交于点 E ( 1)求直线 BC 的解析式; (2)当线段 DE 的长度最大时,求点 D 的坐标.23.如图, AB 是⊙O 的直径,点 C 、D 在⊙O 上, ∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上, ∠AED= ∠ABC ( 1)求证: DE 与⊙O 相切; (2)若 BF=2,DF= ,求⊙O 的半径.200 户家庭,请估计该月用水量不超过9.0 吨的家庭数. 4)若该小区共五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图 1,△ABC 中,∠ C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m< x ≤3时,函数的解析式不同)( 1)填空: BC 的长是;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D在BC 边上,∠DAB= ∠ABD, BE⊥AD ,垂足为 E,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠ BEA ,从而可证△ABF ≌△BAE (如图 2),使问题得到解决.(1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL中”的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3,△ ABC 中, AB=AC ,∠BAC=90° ,D为BC的中点, E为 DC的中点,点 F 在 AC 的延长线上,且∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长;3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D、E分别在 AB、AC 边上,且AD=kDB其中 0<k< ),∠AED= ∠BCD ,求的值(用含 k 的式子表示).26.如图,在平面直角坐标系xOy 中,抛物线 y=x2+ 与 y 轴相交于点 A,点 B 与点 O关于点 A 对称1)填空:点 B 的坐标是2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l 平行于 y轴,P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点P是否在抛物线上,说明理由;3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求2016 年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题 3 分,共24分1.﹣ 3 的相反数是()A. B.C.3 D.﹣ 3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣ 3)+3=0 .故选 C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点( 1, 5)所在的象限是()A .第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点( 1, 5)所在的象限是第一象限.故选 A .【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣, +);第三象限(﹣,﹣);第四象限( +,﹣).3.方程 2x+3=7 的解是() A.x=5 B.x=4 C . x=3.5 D .x=2 【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把 x 系数化为1,即可求出解.【解答】解: 2x+3=7 ,移项合并得: 2x=4 ,解得: x=2,故选 D点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线 AB ∥CD, AE 平分∠CAB.AE 与 CD 相交于点 E,∠ACD=40°,则∠BAE【考点】平行线的性质.【分析】先由平行线性质得出∠ACD 与∠BAC 互补,并根据已知∠ACD=4°0 计算出∠ BAC 的度数,再根据角平分线性质求出∠ BAE 的度数.【解答】解:∵AB ∥CD,∴∠ ACD+ ∠ BAC=18°0 ,∵∠ ACD=4°0 ,∴∠ BAC=18°0 ﹣ 40°=140°,∵AE 平分∠CAB ,∴∠ BAE= ∠ BAC= ×140°=70°,故选 B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③ 同旁内角互补;并会书写角平分线定义的三种表达式:若 AP 平分∠BAC ,则①∠ BAP= ∠PAC,②∠ BAP= ∠ BAC ,③∠ BAC=2 ∠BAP .5.不等式组的解集是A.x>﹣ 2 B.x<1 C.﹣ 1<x<2 D.﹣2<x<1考点】解一元一次不等式组.分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集. 解答】解: 解① 得 x>﹣2, 解② 得 x<1, 则不等式组的解集是:﹣ 2< x<1. 故选 D .【点评】 本题考查了一元一次不等式组的解法: 解一元一次不等式组时, 一般先求出其中各 不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大 中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1,2,3,4 随机摸出个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于考点】列表法与树状图法.【分析】 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与两次摸出的小球 标号的积小于 4 的情况,再利用概率公式求解即可求得答案. 解答】解:画树状图得:故选 C .【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为: 概率 =所求情况数与总情况数之比.4 的概率是( )A .B .C .D .∵共有 12 种等可能的结果,两次摸出的小球标号的积小于 4 的有 4 种情况, ∴ 两次摸出的小球标号的积小于 4 的概率是: =.7.某文具店三月份销售铅笔 100 支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )22A .100(1+x )B .100(1+x )C .100( 1+x )D .100(1+2x ) 【考点】由实际问题抽象出一元二次方程. 【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是 100( 1+x ),五月份的产量是 100(1+x )2,据此列方程即可. 【解答】解:若月平均增长率为x ,则该文具店五月份销售铅笔的支数是: 100(1+x ) 2, 故选: B .【点评】 本题考查数量平均变化率问题, 解题的关键是正确列出一元二次方程. 原来的数量 为 a ,平均每次增长或降低的百分率为 x 的话,经过第一次调整,就调整到a ×( 1±x ),再经过第二次调整就是 a ×(1±x )( 1±x )=a (1±x )2.增长用 “+”,下降用 “﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆 锥的母线长和底面半径,从而确定其表面积.【解答】 解: 由主视图和左视图为三角形判断出是锥体, 由俯视图是圆形可判断出cm )( )A .40π cm 2B . 65π cm 2C .80π cm 2D .105π cm 2这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为 10÷2=5cm ,2 2 2故表面积 =π rl+ π=rπ× 5× 8+ π=6×55π cm.故选: B.【点评】考查学生对三视图掌握程度和灵活运用同时也体现了对空间想象能力方面的能力,考查.二、填空题:本大题共8小题,每小题 3 分,共24分29.因式分解: x2﹣3x= x( x﹣3).【考点】因式分解 -提公因式法.【专题】因式分解.【分析】确定公因式是 x ,然后提取公因式即可.【解答】解: x 2﹣ 3x=x (x﹣3).故答案为: x(x﹣ 3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数 y= 的图象经过点( 1,﹣ 6),则 k 的值为﹣6 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点( 1,﹣ 6)代入反比例函数 y= ,求出 k 的值即可.【解答】解:∵反比例函数 y= 的图象经过点( 1,﹣ 6),∴ k=1×(﹣ 6) =﹣6.故答案为:﹣ 6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ ABC 绕点 A 逆时针旋转的到△ADE ,点 C和点 E是对应点,若∠ CAE=90°,【分析】由旋转的性质得: AB=AD=1 ,∠BAD= ∠CAE=90° ,再根据勾股定理即可求出 BD .【解答】解:∵将△ABC 绕点 A 逆时针旋转的到△ADE ,点C和点 E 是对应点,∴ AB=AD=1 ,∠BAD= ∠CAE=90° ,∴ BD= = = .故答案为.【点评】本题考查了旋转的性质:① 对应点到旋转中心的距离相等;② 对应点与旋转中心所连线段的夹角等于旋转角;③ 旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄 /岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是 15 岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得: (13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15 岁.故答案为: 15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形 ABCD 中, AB=5 , AC=8 ,则菱形的面积是 24【分析】直接利用菱形的性质结合勾股定理得出 BD 的长,再利用菱形面积求法得出答案.【解答】解:连接 BD ,交 AC 于点 O,考点】旋转的性∵ 四边形 ABCD 是菱形,∴AC ⊥BD ,AO=CO=4 ,∴ BO= =3,故 BD=6 ,则菱形的面积是:×6×8=24 .点评】此题主要考查了菱形的性质以及勾股定理,正确求出214.若关于 x 的方程 2x 2+x ﹣a=0 有两个不相等的实数根,则实数 a的取值范围是 a>﹣【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于 a 的一元一次不等式,解不等式即可得出结论.【解答】解:2∵关于 x 的方程 2x2+x﹣a=0 有两个不相等的实数根,2∴△ =12﹣ 4×2×(﹣ a)=1+8a>0,解得: a>﹣.故答案为: a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a> 0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔 P的北偏东 30°方向,距离灯塔 18海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P的南偏东 55°方向上的 B 处,此时渔船与灯塔 P的距离约为 11 海里(结果取整数)(参考数据:BD 的长是解题关键.sin55 °≈0,.8cos55°≈0,.6tan55°≈1).4.考点】解直角三角形的应用 - 方向角问题.分析】作 PC⊥AB 于 C,先解 Rt△ PAC ,得出 PC= PA=9 ,再解 Rt△PBC,得出PB= ≈ 11.解答】解:如图,作 PC⊥ AB 于 C,在 Rt△PAC 中,∵PA=18 ,∠A=30°,∴PC= PA= ×18=9,在 Rt△PBC中,∵ PC=9,∠ B=55°,∴ PB= ≈≈11,答:此时渔船与灯塔 P 的距离约为 11海里.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.216.如图,抛物线 y=ax 2+bx+c 与 x 轴相交于点 A 、 B( m+2, 0)与 y 轴相交于点 C,点 D 在该抛物线上,坐标为( m, c),则点 A 的坐标是(﹣ 2,0).【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据 A 、B 关于对称轴对称,可得 A 点坐标.【解答】解:由 C ( 0, c ), D ( m , c ),得函数图象的对称轴是 x= , 设 A 点坐标为( x ,0),由 A 、 B 关于对称轴 x= ,得=,解得 x= ﹣2,即 A 点坐标为(﹣ 2, 0), 故答案为:(﹣ 2,0).【点评】本题考查了抛物线与 x 轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题: 本大题共 4小题, 17、18、19各 9分 20 题 12分,共 39分 17.计算:(+1)( ﹣ 1)+(﹣2)0﹣ . 【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简 3 个考点.在计算时,需要针对每 个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:( +1)(﹣ 1) +(﹣ 2)0﹣=5﹣ 1+1﹣3 =2.【点评】 本题主要考查了实数的综合运算能力, 是各地中考题中常见的计算题型. 解决此类 题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:( 2a+b)2﹣ a( 4a+3b),其中 a=1, b= .考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 a与 b的值代入计算即可求出值.【解答】解:原式 =4a2+4ab+b2﹣4a2﹣ 3ab=ab+b2,当 a=1, b= 时,原式 = +2 .【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图, BD 是? ABCD 的对角线, AE⊥BD,CF⊥BD,垂足分别为 E、F,求证:AE=CF .【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD,根据平行线的性质得出∠ABE= ∠CDF ,求出∠AEB=∠CFD=90°,根据 AAS 推出△ ABE ≌△ CDF,得出对应边相等即可.【解答】证明:∵ 四边形 ABCD 是平行四边形,∴ AB=CD ,AB ∥CD,∴∠ ABE= ∠CDF,∵AE ⊥BD ,CF⊥BD ,∴∠ AEB= ∠ CFD=90° ,在△ ABE 和△CDF 中,,∴△ ABE ≌△ CDF( AAS ),∴AE=CF .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ ABE ≌△ CDF 是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在 4.0<x≤6.5范围内的家庭有13 户,在 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比是 30 %;( 2)本次调查的家庭数为50 户,家庭用水量在 9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是 18 %;( 3)家庭用水量的中位数落在 C 组;(4)若该小区共有 200 户家庭,请估计该月用水量不超过 9.0 吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】( 1)观察表格和扇形统计图就可以得出结果;(2)利用 C 组所占百分比及户数可算出调查家庭的总数,从而算出 D 组的百分比;( 3)从第二问知道调查户数为50,则中位数为第 25、26 户的平均数,由表格可得知落在 C组;( 4)计算调查户中用水量不超过 9.0 吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:( 1)观察表格可得 4.0< x≤6.5的家庭有 13 户, 6.5< x≤9.0范围内的家庭数占被调查家庭数的百分比为 30%;(2)调查的家庭数为: 13÷26%=50 ,6.5<x≤ 9.0的家庭数为: 50×30%=15 ,D 组 9.0<x≤ 11.5的家庭数为: 50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤ 11.5 的百分比是: 9÷50×100%=18%;(3)调查的家庭数为 50 户,则中位数为第 25、26 户的平均数,从表格观察都落在C组;故答案为:( 1)13,30;(2)50,18;( 3)C;( 4)调查家庭中不超过 9.0吨的户数有: 4+13+15=32 ,=128(户),答:该月用水量不超过 9.0 吨的家庭数为 128 户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B 两地相距 200千米,甲车从 A 地出发匀速开往 B 地,乙车同时从 B 地出发匀速开往 A 地,两车相遇时距 A 地 80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是 x 千米 /时,乙车的速度为( x+30 )千米 /时,解得, x=60,则 x+30=90 ,即甲车的速度是 60千米/时,乙车的速度是 90 千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.考点】抛物线与 x 轴的交点;二次函数的性质.分析】( 1)利用坐标轴上点的特点求出 A 、B 、C 点的坐标,再用待定系数法求得直线BC 的解析式;2)设点 D 的横坐标为 m ,则纵坐标为 (m , ),E 点的坐标为 ( m , ),解答】解:( 1)∵抛物线 y=x 2﹣ 3x+ 与 x 轴相交于 A 、B 两点,与 y 轴相交于点 C , ∴ 令 y=0,可得 x= 或 x= , ∴A ( ,0), B ( ,令 x=0 ,则 y= , ∴ C 点坐标为( 0, )设 DE 的长度为 d ,可得两点间的距离为 d=,利用二次函数的最值可得 m ,可得点 D 的坐标.0);设直线 BC 的解析式为: y=kx+b ,则有,解得:∴ 直线 BC 的解析式为: y= x ;2)设点 D 的横坐标为 m ,则纵坐标为( m , ),∴ E 点的坐∵ 点 D 是直线 BC 下方抛物线上一点,整理得, d=﹣m2+ m,a=﹣1<0,∴ 当 m= = 时, d= 时, d 最大= = = ,∴ D 点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出 D 的坐标,利用二次函数最值得 D 点坐标是解答此题的关键.23.如图, AB 是⊙O 的直径,点 C、D 在⊙O 上,∠ A=2 ∠ BCD ,点 E 在 AB 的延长线上,∠AED= ∠ABC( 1)求证: DE 与⊙O 相切;(2)若 BF=2,DF= ,求⊙O 的半径.【考点】切线的判定.【分析】( 1)连接 OD,由 AB 是⊙O的直径,得到∠ACB=90° ,求得∠A+∠ABC=90°,等量代换得到∠ BOD= ∠A ,推出∠ODE=9°0 ,即可得到结论;(2)连接 BD,过 D 作 DH⊥BF 于 H,由弦且角动量得到∠BDE= ∠BCD,推出△ACF 与△ FDB 都是等腰三角形,根据等腰直角三角形的性质得到 FH=BH= BF=1,则FH=1,根据勾股定理得到 HD= =3,然后根据勾股定理列方程即可得到结论.【解答】( 1)证明:连接 OD,∵ AB 是⊙O 的直径,∴∠ ACB=90° ,∴∠ A+ ∠ABC=90° ,∵∠ BOD=2 ∠BCD ,∠A=2∠BCD , ∴∠ BOD= ∠A , ∵∠ AED= ∠ABC , ∴∠ BOD+ ∠ AED=90° , ∴∠ ODE=9°0 , 即 OD ⊥DE ,∴DE 与⊙O 相切; (2)解:连接 BD ,过 D 作 DH ⊥BF 于 H , ∵DE 与⊙O 相切, ∴∠ BDE=∠ BCD , ∵∠ AED= ∠ABC , ∴∠ AFC=∠ DBF ,∵∠ AFC=∠ DFB , ∴△ ACF 与 △FDB 都是等腰三角形, ∴ FH=BH= BF=1,则 FH=1 ,∴ HD==3, 在 Rt △ ODH 中, OH 2+DH 2=OD 2,2 2 2 即( OD ﹣ 1)2+32=OD 2,∴ OD=5 ,五、解答题:本大题共 3小题, 24题 11 分, 25、26 各 12分,共 35分【点评】 本题考查了切线的判定和性质, 正确的作出辅助线是解题的等腰三角形的判定, 直角三角形的性质, 勾股定理, ∴⊙ O 的半径是24.如图 1,△ABC 中,∠C=90°,线段 DE 在射线 BC 上,且 DE=AC ,线段 DE 沿射线 BC 运动,开始时,点 D 与点 B 重合,点 D 到达点 C 时运动停止,过点 D 作 DF=DB ,与射线 BA 相交于点 F,过点 E 作 BC 的垂线,与射线 BA 相交于点G .设 BD=x ,四边形 DEGF 与△ABC 重叠部分的面积为 S,S关于 x 的函数图象如图 2所示(其中 0<x≤m,1<x≤m, m<x≤3时,函数的解析式不同)( 1)填空: BC 的长是 3 ;( 2)求 S 关于 x 的函数关系式,并写出 x 的取值范围.【考点】四边形综合题.【分析】( 1)由图象即可解决问题.(2)分三种情形①如图 1中,当 0≤x≤1时,作 DM ⊥AB 于 M,根据 S=S△ABC﹣S△BDF﹣S 四边形ECAG 即可解决.②如图 2中,作AN∥DF 交 BC 于 N,设 BN=AN=x ,在RT△ANC 中,利用勾股定理求出 x,再根据 S=S△ABC﹣S△BDF﹣S四边形ECAG 即可解决.③如图 3 中,根据 S= CD?CM ,求出 CM 即可解决问题.【解答】解;( 1)由图象可知 BC=3 .故答案为 3.(2)①如图 1中,当 0≤x≤1时,作 DM⊥AB 于 M,由题意 BC=3 , AC=2 ,∠C=90°,∴ AB= = ,∵∠ B=∠B,∠DMB= ∠ C=90°,∴△ BMD ∽△ BCA ,====∴DM= ∵BM=BD=DF ,DM⊥BF,∴ BM=MF ,∴ S △BDF = x 2 ∵EG ∥AC ,∴EG= (x+2 ),∴S四边形 ECAG = [2+ (x+2)]?(1﹣ x ),22∴ S=S△ ABC﹣ S △BDF ﹣ S 四边形 ECAG =3﹣x ﹣ [2+ (x+2)]?(1﹣x )=﹣ x + x+ .作 AN ∥DF 交 BC 于 N ,设 BN=AN=x ,③如图 3 中,当 <x ≤3时, ∵DM ∥AN ,∴ = ,∴ CM= (3﹣x ),综上所述 S=② 如图 ②中,在 RT △ ANC 中, ∵AN 2=CN 2+AC 2, ∴x 2=22+(3﹣x ) 2,∴ x= ,∴当 1< x ≤ 时,2S=S △ABC ﹣S△BDF =3﹣ x ,∴S= CD?CM= (3﹣x ) 2,【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图 1,△ABC 中, AB=AC ,点 D 在 BC 边上,∠DAB= ∠ABD, BE ⊥ AD ,垂足为 E ,求证: BC=2AE .小明经探究发现,过点 A 作 AF⊥BC,垂足为 F,得到∠AFB= ∠BEA ,从而可证△ABF ≌△ BAE (如图 2),使问题得到解决.( 1)根据阅读材料回答:△ABF 与△BAE 全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“ AAS”或“ HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图 3, △ ABC 中, AB=AC ,∠BAC=90°,D 为 BC 的中点, E 为 DC 的中点,点 F 在 AC 的延长线上,且 ∠ CDF= ∠ EAC ,若 CF=2,求 AB 的长; (3)如图 4,△ABC 中,AB=AC ,∠BAC=12°0 ,点 D 、E 分别在 AB 、AC 边上,且 AD=kDB(其中 0<k< ), ∠AED= ∠BCD ,求 的值(用含 k 的式子表示).【考点】相似形综合题.【分析】( 1)作 AF ⊥ BC ,判断出 △ABF ≌△ BAE ( AAS ),得出 BF=AE ,即可;( 2)先求出 tan ∠DAE= ,再由 tan ∠ F=tan ∠ DAE ,求出 CG ,最后用 △DCG ∽△ ACE 求 出 AC ;( 3)构造含 30°角的直角三角形,设出 DG ,在 Rt △ABH ,Rt △ ADN ,Rt △ABH 中分别用 a ,k 表示出 AB=2a ( k+1 ),BH= a (k+1),BC=2BH=2 a ( k+1),CG= a (2k+1 ),DN= ka ,最后用 △NDE ∽△ GDC ,求出 AE ,EC 即可. 【解答】证明:( 1)如图 2,∵BE ⊥AD ,∴∠AFB= ∠BEA , 在△ ABF 和△BAE 中,作 AF ⊥BC ,,∴△ ABF≌△ BAE (AAS ),∴ BF=AE∵ AB=AC ,AF ⊥BC,∴BF= BC ,∴ BC=2AE ,故答案为 AAS( 2)如图 3,在 Rt△ABC 中, AB=AC ,点 D 是 BC 中点,∴ AD=CD ,∵点 E是 DC 中点,∴DE= CD= AD ,∴ tan ∠ DAE= ∵ AB=AC ,∠BAC=90° ,点 D 为 BC 中点,∴∠ ADC=9°0 ,∠ ACB= ∠DAC=4°5 ,∴∠ F+∠CDF=∠ACB=45° ,∵∠ CDF=∠ EAC ,∴∠ F+∠ EAC=45° ,∵∠ DAE+ ∠EAC=45° ,∴∠ F=∠DAE ,∴ tan∠ F=tan ∠ DAE= ,,∴,∴,∴ CG= ×2=1,∵∠ ACG=9°0 ,∠ ACB=45° ,∴∠ DCG=4°5 ,∵∠ CDF=∠ EAC ,∴△ DCG∽△ ACE,∴,∴ AC=4 ; ∴ AB=4 ; 3)如图 4,过点 D 作 DG ⊥BC ,设 DG=a , 在 Rt △BGD 中, ∠B=30°, ∴ BD=2a , BG= a , ∵ AD=kDB ,∴ AD=2ka , AB=BD+AD=2a+2ka=2a ( k+1 ), 过点 A 作 AH ⊥BC , 在 Rt △ABH 中, ∠B=30°. ∴ BH= a (k+1), ∵ AB=AC ,AH ⊥BC , ∴ BC=2BH=2 a ( k+1), ∴ CG=BC ﹣BG= a ( 2k+1), 过 D 作 DN ⊥ AC 交 CA 延长线与 N , ∵∠ BAC=12°0 , ∴∠ DAN=6°0 ,∴ AN=ka , DN= ka , ∵∠ DGC= ∠ AND=9°0 ,∠AED= ∠BCD , ∴△ NDE ∽△ GDC .∴∠∴,∴,∴ NE=3ak (2k+1),∴ EC=AC ﹣ AE=AB ﹣AE=2a ( k+1)﹣ 2ak( 3k+1) =2a(1﹣ 3k2),【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.226.如图,在平面直角坐标系 xOy中,抛物线 y=x2+ 与y轴相交于点 A,点B与点 O 关于点 A 对称( 1)填空:点 B 的坐标是( 0,);(2)过点 B 的直线 y=kx+b (其中 k<0)与 x轴相交于点 C,过点 C 作直线 l平行于 y轴, P是直线 l 上一点,且 PB=PC,求线段 PB 的长(用含 k 的式子表示),并判断点 P 是否在抛物线上,说明理由;( 3)在( 2)的条件下,若点 C关于直线 BP 的对称点 C′恰好落在该抛物线的对称轴上,求此时点 P 的坐标.考点】二次函数综合题.分析】( 1)由抛物线解析式可求得 A 点坐标,再利用对称可求得 B 点坐标; 2)可先用 k 表示出 C 点坐标,过 B 作 BD ⊥l 于点 D ,条件可知 P 点在 x 轴上方,设 P 点纵坐标为 y ,可表示出 PD 、PB 的长,在 Rt △PBD 中,利用勾股定理可求得 y ,则可求出PB 的长,此时可得出 P 点坐标,代入抛物线解析式可判断 P 点在抛物线上; ∠ OBC=∠ CBP= ∠C ′BP=60°,则可求得OC 的长, 代入抛物线解析式可求得 P 点坐标. 解答】解:∴A (0, ), ∵点 B 与点 O 关于点 A 对称, ∴BA=OA= ,∴OB= ,即 B 点坐标为( 0, ), 故答案为:( 0, ); (2)∵B 点坐标为( 0, ),∴ 直线解析式为 y=kx+ ,令 y=0 可得 ∴OC= ﹣ , ∵ PB=PC , ∴点 P 只能在 x 轴上方, 如图 1,过 B 作 BD ⊥l 于点 D ,设 PB=PC=m ,3)利用平行线和轴对称的性质可得到 1)∵抛物线 y=x 2+ 与 y 轴相交于点 A ,kx+ =0,解得 x=﹣ ,∵l ∥y 轴, ∴∠ OBC= ∠PCB , 又 PB=PC , ∴∠ PCB=∠ PBC , ∴∠ PBC=∠OBC ,又 C 、C ′关于 BP 对称,且 C ′在抛物线的对称轴上,即在 ∴∠ PBC=∠ PBC ′,∴∠ OBC= ∠CBP=∠C ′BP=60°, 在 Rt △OBC 中, OB= ,则 BC=1则 BD=OC= ﹣ , CD=OB= , ∴PD=PC ﹣CD=m ﹣ ,在 Rt △PBD 中,由勾股定理可得 PB 2=PD 2+BD 2,即 m 2=(m ﹣ )(﹣)∴ PB + , 2+( )2,解得 m= + ,∴P 点坐标为(﹣),当 x= ﹣ 时,代入抛物线解析式可得 y= + , ∴点 P 在抛物线上; y 轴上, 3)如图 2,连接CC ′,∴OC= ,即 P 点的横坐标为,代入抛物线解析式可得 y=()2+ =1,∴P 点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于 PC 的长的方程是解题的关键,在( 3)中求得∠OBC= ∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.222.如图,抛物线 y=x2﹣3x+ 与 x轴相交于 A、B 两点,与 y 轴相交于点 C,点 D 是直线BC 下方抛物线上一点,过点 D 作 y轴的平行线,与直线 BC 相交于点 E( 1)求直线 BC 的解析式;( 2)当线段 DE 的长度最大时,求点 D 的坐标.。

2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)

2024年辽宁省中考适应性测试(一)数学试卷(本试卷共23小题满分120分考试时长120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效参考公式:抛物线顶点坐标为第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A. B. C. D.2.下列几何体中,俯视图是三角形的是( )A.B . C. D.3.在标准大气压下,液态氧、液态氮、酒精、水四中液体的沸点如下表:液体液态氧液态氮酒精水沸点78100其中沸点最低的液体为( )A.液态氧 B.液态氮C.酒精D.水4.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中是中心对称图形的是( )A. B. C.D.5.下列运算正确的是()A. B.C.D.6.下列命题是真命题的是( )A.相等的角是对顶角 B.若,则D.同旁内角互补,两直线平行()20y ax bx c a =++≠24,24b ac b aa ⎛⎫-- ⎪⎝⎭50.35810⨯335.810⨯53.5810⨯43.5810⨯/℃183-196-()235y y =222(2)4xy x y -=2222x x x ⋅=623x x x ÷=||||a b =a b =2=-7.在平面直角坐标系中,线段是由线段经过平移得到的,点的对应点为,点B 的坐标为,则点的坐标为( )A. B. C. D.8.为了丰富校园生活,培养学生特长,学校开展了特色课程.小明与小华从感兴趣的“花样跳绳”,“天文地理”,“艺术插花”,“象棋博弈”4门课程中随机选择一门学习.小明与小华恰好选中同一门课程的概率为( )A.B.C.D.9.如图,直线,直线依次交,,于点A ,B ,C ,直线依次交,,于点D ,E ,F ,若,,则的长为( )A.8B.6C.4D.310.已知等腰三角形的周长是8,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A. B. C. D.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:_____________.12.如图,菱形中,交于O ,于E ,连接,若,则的度数为_____________.A B ''AB (2,1)A -(3,4)A '(1,3)B --B '(4,3)-(4,3)-(4,0)(6,6)--116141312123////l l l AC 1l 2l 3l DF 1l 2l 3l 35AB AC =6DE =EF 29y -=ABCD AC BD CE AB ⊥OE 110DAB ∠=︒OEC ∠︒13.如果关于x 的方程有两个相等的实数根,则___________.14.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能,如“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,.若“矩”的边,边,则树高为______.图1图215.如图,拋物线交x 轴正半轴于点A ,交y 轴于点B ,线段轴交拋物线于点C ,,则的面积是__________.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)(5分)计算:(2)(5分)解方程:.17.(8分)某学校为打造书香校园,计划购进甲、乙两种课外书.购买1本甲种书和2本乙种书共需125元;购买2本甲种书和5本乙种书共需300元.(1)求甲、乙两种书的单价;(2)学校决定购买甲、乙两种书共50本,且两种书的总费用不超过2000元,那么该校最多可以购买多少本乙种书?18.(8分)为了解甲、乙两校九年级学生英语人机对话的学习情况,每个学校随机抽取20个学生进行测试,测试后对学生的成绩进行了整理和分析.信息一:220x x m ++=m =AFE 1.5m AB = 6.2m BD =30cm EF a ==60cm AF b ==CD m 233(0)y ax ax a =-+<BD y ⊥25DC BD =ACD △()()23433-⨯+-+2820x x -+=绘制成了如下两幅统计图.(数据分组为:A 组:,B 组:,C 组:,D 组:)甲校成绩的频数分布直方图乙校成绩的扇形统计图信息二:甲校学生的测试成绩在C 组的是:80,82.5,82.5,85,85.5,89,89.5,82.5,85.信息三:甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数众数甲校83.2a 82.5乙校80.68180根据以上信息,回答下列问题:(1)扇形统计图中C 组所在的圆心角度数为_______,乙校学生的测试成绩位于D 组的人数为_______人,表格中_________,在此次测试中,甲校小明和乙校小华的成绩均为82分,则两位同学谁在各自学校测试成绩中的排名更靠前?并说明理由;(2)假设甲校学生共有400人参加此次测试,估计甲校成绩超过86分的人数.19.(8分)星海广场是亚洲最大的城市广场,某店专门销售某种品牌的星海广场纪念品,成本为30元/件,每天销售y 件与销售单价x 元(x 为整数)之间的一次函数关系如图所示,其中.(1)求y 与x 之间的函数表达式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?20.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图1是政府给贫困户新建的房屋,如图2是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,为了测量房屋的高度,在地面上C 点测得6070x ≤<7080x ≤<8090x ≤<90100x ≤≤︒a =3060x <≤AB屋顶A 的仰角为,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走到达点D 时,又测得屋檐E 点的仰角为,房屋的顶层横梁,,交于点G (点C ,D ,B 在同一水平线上).图1图2(1)求屋顶到横梁的距离(结果精确到);(2)求房屋的高(结果精确到).(参考数据,,)21.(8分)如图1,为的直径,C 为外一点.图1图2(1)尺规作图:作直线与相切,切点D 在弧上(保留作图痕迹,不写作法);(2)如图2,为的直径,直线与相切于点D,连接、、,若,,的长.22.(12分)如图,在中,,点D 在边上(不与点C 重合),将绕点D 旋转,得到,其中点C 的对应点为点E ,点A 的对应点为点F .图1图2图3(1)如图1,点D 与点B 重合,将绕点D 逆时针方向旋转,当点E 落在边上时,与的交点为G ,求证:;30︒8m 63.5︒12m EF =//EF CB AB EF AG 0.1m AB 1m sin 63.50.89︒≈cos 63.50.45︒≈tan 63.5 2.00︒≈ 1.73≈AB O e O e CD O e AmB AB O e CD O e AD BD AC 45C ∠=︒4sin 5ADC ∠=AC =BD ABC △AB AC =BC ADC △FDE △ADC △AC EF AB AG EG =(2)如图2,点D 是边上任一点(不与点A 、B 重合),将绕点D 逆时针方向旋转,当点E 落在边上时,连接,求证:;(3)若,D 为中点.①将绕点D 逆时针方向旋转,点E 落在边上,连接并延长与的延长线交于点P ,求的长;②将绕点D 顺时针方向旋转,当经过点C 时,连接并延长与的延长线交于点Q ,请直接写出的长.23.(13分)定义,在平面直角坐标系中,对于任意两点,,若点满足,,那么称点T 是点A ,B 的“伴A 融合点”,例如:,,当点满足,时,则点是点A ,B 的“伴A 融合点”.(1)已知点,,点T 是点A ,B 的“伴A 融合点”,则点T 的坐标为___________;(2)已知点,,,请说明其中一个点是另两个点的伴哪个点的“融合点”?(3)已知点是直线上在第一象限内的一动点,是抛物线上一动点,点是点Q ,P 的“伴Q 融合点”,试求出T 中y 关于x 的函数表达式(表达式中含a ),并判断所有点中是否存在最高点?若存在,求出最高点的坐标;若不存在,说明理由;(4),为(3)中y 关于x 的函数表达式所对应的图像上两点,若点M ,N 之间的图象(包括点M ,N )的最高点与最低点纵坐标的差为,求a 的值.AB ADC △AC BF //BF AC AB =2BC =BC ADC △AC AF CB PF ADC △EF AF BC QF (,)A a b (,)B m n (,)T x y a mx a+=b ny b +=(1,2)A -(3,4)B (,)T x y 1321x -+==--2432y +==(2,3)T -(2,4)A -(2,8)B -(2,6)C -(1,2)D --(1,2)E -(,)Q a b y x =(,)P m n 22y x =-(,)T x y (,)T x y ()11,M y -()21,N a y -26a2024年辽宁省中考适应性测试数学(一)答案及评分标准一、选择题:1.D ;2.B ;3.B ;4.A ;5.B ;6.D ;7.C ;8.B ;9.C ;10.D.二、填空题:11.;12.35;13.1;14. 4.6;15. 3.15.解析:在中,当时,,.轴交抛物线于点C ,,令,,.,,,,,.三、解答题:16.解:(1)原式4分;5分(2),,,,6分8分,.10分17.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意得,,2分解得,,3分答:甲种书的单价是25元,乙种书的单价是50元;4分(2)设该校购买m 本乙种书,则购买本甲种书,根据题意得,,6分解得,,7分答:该校最多可以购买30本乙种书.8分18.解:(1)144,4,,3分小明的成绩为82分,在甲校中位数85.25分以下,而小华的成绩82分,在乙校中位数81分以上,因此小华的成绩排名在前.5分()()33y y +-233y ax ax =-+0x =3y =(0,3)B ∴BD y ⊥ 3C B y y ∴==2333ax ax -+=10x ∴=23x =(3,3)C ∴3BC ∴=25DC BD = 2(3)5DC DC ∴=+2DC ∴=12332ACDS ∴=⨯⨯=△1293=-++-+=1a = 8b =-2c =224(8)412560b ac ∴-=--⨯⨯=>4x ∴==14x ∴=+24x =-212525300x y x y +=⎧⎨+=⎩2550x y =⎧⎨=⎩(50)m -()2550502000m m -+≤30m ≤85.25a =(2)(人),7分答:估计甲校400学生中成绩超过86分的大约有180人.8分19.解:(1)设y 与x 的函数表达式为,直线经过点,,,2分解得:.3分y 与x 之间的函数表达式为;4分(2)设每天利润为w 元,则,,6分,抛物线开口向下,,当时,7分.8分答:当销售单价为50元时,每天获取的利润最大,最大利润是4000元.20.解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,,,,,在中,,,,,2分.3分答:屋顶到横梁的距离约为3.5米;(2)如图,过E 作于H ,设米,在中,,,,,4分2740018020+⨯=y kx b =+ y kx b =+(40,300)(55,150)4030055150k b k b +=⎧∴⎨+=⎩10700k b =-⎧⎨=⎩∴10700y x =-+(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000x x x -+-=--+100-< ∴3060x <≤ ∴50x =4000w =最大 AB //EF BC AG EF ∴⊥11126m 22EG FG EF ===⨯=30AEG ACB ∠=∠=︒Rt AGE △90AGE ∠=︒30AEG ∠=︒6EG =tan AG AEG EG ∠=tan 6tan 306AG EG AEG ∴=∠==︒⨯2 1.73 3.46 3.5m ≈⨯=≈AG EH CB ⊥EH x =Rt EDH △90EHD ∠=︒63.5EDH ∠=︒tan EH EDH DH ∠=tan tan 63.52EH x xDH EDH ∴==≈︒∠在中,,,,,5分,,解得:(米),7分四边形为矩形,(米),(米).8分答:房屋的高约为10米.21.解:(1)如图1,直线即为所求作;2分说明:连接,分别以点C ,点O 为圆心,大于为半径作弧,两弧分别交于点M ,N ,作直线交于点E ,以E 为圆心,长为半径作弧,交弧与点D ,作直线.图1图2(2)如图2,过点A 作于点E ,则,连接,为的切线,是的半径,,,3分为的直径,,4分,即,,,,5分,,,6分,,,,,,,7分在中,根据勾股定理,.8分22.解:(1)证明:,,,.1分旋转得到,,,.,,,Rt ECH △90EHC ∠=︒30ECH ∠=︒tan EH ECH CH ∠=tan tan 30EH xCH ECH ∴===∠︒8CH DH CD -== 82x-=1.730.58x x -= 6.5x ≈ EHBG 6.5EH BG ∴==3.46 6.59.9610AB AG BG ∴=+=+=≈AB CD CO 12CO MN CO EO AmB CD AE CD ⊥90AEC AED ∠=∠=︒OD CD O e OD O e CD OD ∴⊥90ODC ∴∠=︒AB O e 90ADB ∴∠=︒ADO ODB ADO ADC ∴∠+∠=∠+∠ODB ADC ∠=∠OD OB = ODB B ∴∠=∠B ADC ∴∠=∠45C ∠=︒ sin sin 45AE C AC ∴==︒=AC =4AE ∴=4sin 5ADC ∠=45AE AD ∴=5AD ∴=B ADC ∠=∠ 90ADB ∠=︒4sin 5AD B AB ∴==254AB ∴=Rt ABD △154BD ===AB AC = ABC C ∴∠=∠180A ABC C ∠+∠+∠=︒2180A C ∴∠+∠=︒ABC △FBE △C BEF ∴∠=∠BC BE =BEC C ∴∠=∠BEC BEF C ∴∠=∠=∠180BEC BEF AEF ∠+∠+∠=︒ 2180AEF C ∴∠+∠=︒,;2分(2)同理(1)得,.,旋转得到,,.3分,即..4分,,.,;5分(3)①,,D 为中点,,,,在中,根据勾股定理得.6分如图1,连接,.旋转得到,,.,,..,,,.7分,,,根据勾股定理得8分旋转得到,,,又,,,.,,即.9分由(2)得,,四边形为矩形,,,,,10分A AEF ∴∠=∠AG EG ∴=GAE GEA ∠=∠AG EG =AB AC = ADC △FDE △AC FE ∴=AB FE ∴=AB AG FE EG ∴-=-BG FG =GFB GBF ∴∠=∠2180AGE GAE ∠+∠=︒ 2180BGF GBF ∠+∠=︒AGE BGF ∠=∠GAE GBF ∴∠=∠//BF AC ∴AB AC ==2BC =BC AD BC ∴⊥90ADC ∴∠=︒112BD CD BC ===Rt ADC △2AD ===BE BF ADC △FDE △DC DE ∴=DA DF =BD DE ∴=C DEC ∴∠=∠DBE DEB ∠=∠180DBE DEB DEC C ∠+∠+∠+∠=︒ 22180DEB DEC ∴∠+∠=︒90DEB DEC ∴∠+∠=︒90BEC ∴∠=︒BE AC ∴⊥1122ABC S BC AD AC BE =⋅=⋅ △22∴⨯=BE ∴=AE ===ADC △FDE △90FDE ADC ∴∠=∠=︒ADF EDC ∴∠=∠DF DA = 1802ADFDAF DFA ︒-∠∴∠=∠=1802EDCC ︒-∠∠= C DAF ∴∠=∠90C DAC ∠+∠=︒ 90DAF DAC ∴∠+∠=︒90PAC ∠=︒//BF AC 90AFB ∴∠=︒∴AFBE BF AE ∴==AF BE ==//BF AC PFB PAC ∴△∽△PF BFPA AC∴==PF ∴=图1图212分解析:绕点D 顺时针旋转得到,,,,,,.又,..,,,即,又,,,即.,.,,,.即.四边形为矩形,同理①:.,.,,,.ADC △FDE △DE DC ∴=DEC DCE ∠=∠DA DF=DAF DFA ∴∠=∠ACD DEC ∠=∠DEC DCE ACD ∴∠=∠=∠90ADC FDE∠=∠=︒ ADF CDE ∴∠=∠AFD DCE ACD ∴∠=∠=∠DAC DFE ∠=∠ 90ACD DAC ∠+∠=︒ 90AFD DFE ∴∠+∠=︒90AFE ∠=︒BAD DAC ∠=∠ DAF DFA ∠=∠90BAD DAF ∴∠+∠=︒90BAF ∠=︒BD ED = DBE DEB ∴∠=∠1802BDE BED ︒-∠∴∠=1802EDC DEC -∠︒∠=180BDE EDC ∠+∠=︒18018022BDE EDC BED DEC ︒-∠-∠︒∴∠+∠=+360()3601809022BDE EDC -︒︒︒∠+∠-===︒90BEF ∠=︒∴ABEF 1122ABC S BC A AD B BE ⨯=⨯=△4∴=BE ∴=EC ===EF AB ==FC ∴=-=AF BE ==//FC AB QFC QAB ∴△∽△..23.解:(1),,;1分(2),,,,3分又,点D 是点C ,E 的“伴E 融合点”;4分(3)是直线上在第一象限内的一动点,,,,点是抛物线上一动点,,.点是点Q ,P 的“伴Q 融合点”,,,5分,,,6分,,,抛物线开口向下,有最大值1.的最高点的坐标为;7分(4),,.抛物线的开口向下,对称轴为直线,最高点为.①当时,,即时,点M 、N 在抛物线对称轴左侧,y 随x 的增大而增大,,点M 、N 之间的图象的最高点为N ,最低点为M .,FC FQ AB AQ ∴==FQ ∴=2(2)02x +-==4814y -+==--(0,1)T ∴-(1,2)E - (2,6)C -1211-+=-- 2(6)22+-=-(1,2)D -- ∴(,)Q a b y x =b a ∴=0a >(,)Q a a ∴(,)P m n 22y x =-22n m ∴=-()2,2P m m ∴- (,)T x y a m x a +∴=22a m y a -=ax a m ∴=+m ax a ∴=-2222()11m ax a y a a-=-=-22222(4111)ax ax x a a =-=+-+--()()222212221112y a x x a a x x a ∴=--+-=--+-+-222(1)2122(1)1a x a a a x =--++-=--+0a > 20a ∴-<∴(,)T x y ∴(1,1)22(1)1y a x =--+ 0a >20a -<1x =(1,1)11a -≤2a ≤02a <≤11a ->- ∴2222(11)12(11)16a a a a ⎡⎤∴---+----+=⎣⎦,,,,(舍),,;9分②若,即时,若,则,.当时,最高点为,最低点为..,.都不符合题意,舍去;11分③若,则最高点为,最低点为.,.,..13分综上,a 的值为1.222(2)1816a a a a --++-=222(2)86a a a a --+=0a > 22(2)86a a ∴--+=10a ∴=21a =1a ∴=11a ->2a >12y y =111(1)a --=--4a ∴=24a <≤(1,1)()11,M y -2212(11)16a a ⎡⎤∴----+=⎣⎦10a =243a =4a >(1,1)()21,N a y -2212(11)16a a a ⎡⎤∴----+=⎣⎦2740a a -+=1a =2a =a ∴=。

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。

2015年大连市中考数学试题分析(转载)

2015年大连市中考数学试题分析(转载)

听教育局相关人员分析:2015大连中考题难度咋样?[转载]听教育局相关人员分析:2015大连中考题难度咋样?中考刚刚结束,考生们暂时放松,正等待着成绩的发布。

而对即将升入初三的学生及其家长们来说,则格外关注今年中考命题特点和难易程度。

记者在采访中了解到,市教育部门、初三考生及初中老师等多方均反映今年的中考试题难度适中、科学合理,并且贴近生活。

昨日,针对广大学生及家长们关心的中考各科试卷命题原则、特点等,记者采访了大连市教育局相关人员。

数学:体现理念关注核心促进发展1.充分体现课程理念试卷充分体现新课程倡导的由“双基(基础知识、基本技能)”到“四基(基础知识、基本技能、基本思想和基本活动经验)”,由“双能(分析问题和解决问题能力)”到“四能(发现问题、提出问题、分析问题和解决问题的能力)”的基本理念。

试卷高度重视对数学思想方法的考查,同时,试卷更加关注对统领各个“思想”的“转化思想”的考查,重视考查学生化繁为简、化难为易、化未知为已知的能力。

试卷不仅综合考查学生分析问题和解决问题能力,而且还考查学生发现问题的能力。

值得一提的是,对学生“四能”中的“发现问题”能力的考查,是大连市初中毕业升学考试数学试卷中的一个创新点。

2.重点关注内容核心试卷在注重考查初中阶段数学基础知识和基本技能、保证考查知识的覆盖面的同时,更加关注对函数与方程、基本图形的性质与图形间的基本关系、统计与概率等核心内容,重点考查考生对重要数学内容的本质意义的理解水平和运用能力。

例如,第24题以直角三角形一直角边上两个点的运动引起一个等腰直角三角形大小变化,进而引起两个三角形重叠部分面积变化为背景,直接考查在变化过程中的两个变量之间的内在的、本质的联系——单值对应关系,即函数关系。

第25题以两个三角形的特殊位置关系为背景,重点考查三角形全等的判定与性质、相似三角形的判定与性质、等腰三角形的性质、三角形内角和定理、勾股定理等核心知识点。

2023年辽宁省大连市中考数学真题(原卷版和解析版)

2023年辽宁省大连市中考数学真题(原卷版和解析版)

大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a=++≠的顶点为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6B.6C.-16 D.162.如图所示的几何体中,主视图是()A.B.C.D.3.如图,直线,45,20AB CD ABE D∠=∠=︒︒∥,则E∠的度数为()A.20︒B.25︒C.30︒D.35︒4.某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为()A.40.1710⨯ B.51.710⨯ C.41.710⨯ D.31710⨯5.下列计算正确的是()A.22= B.3336+= C.842= D.)323263-=-6.将方程13311x x x+=--去分母,两边同乘()1x -后的式子为()A.()1331x x +=- B.()1313x x+-=- C.133x x-+=- D.()1313x x+-=7.已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.圆心角为90︒,半径为3的扇形弧长为()A.2πB.3πC.32π D.12π9.已知抛物线221y x x =--,则当03x ≤≤时,函数的最大值为()A .2- B.1- C.0D.210.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10︒二、填空题(本题共6小题,每小题3分,共18分)11.93x >-的解集为_______________.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.13.如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD ︒∠==,点F 为BC 中点,则EF的长为_______________.14.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.16.如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:21123926a a a a -⎛⎫+÷+-+⎝⎭.18.某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A 供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B 供应商供应材料的纯度(单位:%)如下:727572757877737576777178797275Ⅲ.A B 、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A7575743.07Ba75bc根据以上信息,回答下列问题:(1)表格中的=a _______________,b =_______________,c =_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?19.如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DE AC AE ==,180ACF AED ∠+∠=︒.求证:AB AD =.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.23.如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF 交AB 于点G .若35,4AD DE ==,求DG 的长.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.26.如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2-,点B 的横坐标为1,抛物线22:C y x bx c =-++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ''交抛物线1C 于点P ,交抛物线2C 于点Q .当点E '为线段PQ 的中点时,求m 的值;③抛物线2C 与边ED A C ''''、分别相交于点M N 、,点M N 、在抛物线2C 的对称轴同侧,当2103MN =时,求点C '的坐标.大连市2023年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效.2.本试卷共五大题,26小题,满分150分.考试时间为120分钟.参考公式:抛物线()20y ax bx c a=++≠的顶点为24,24b ac ba a⎛⎫-- ⎪⎝⎭.一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有1个选项正确)1.-6的绝对值是()A.-6B.6C.-16 D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6.故选:B.2.如图所示的几何体中,主视图是()A.B.C.D.【答案】B 【解析】【分析】根据主视图是从正面看得到的图形解答即可.【详解】解:从正面看看到的是,故选:B .【点睛】本题考查了三视图的知识,属于简单题,熟知主视图是从物体的正面看得到的视图是解题的关键.3.如图,直线,45,20AB CD ABE D ∠=∠=︒︒∥,则E ∠的度数为()A.20︒B.25︒C.30︒D.35︒【答案】B 【解析】【分析】先根据平行线的性质可得45ABE BCD ∠∠==︒,再根据三角形的外角性质即可得.【详解】解:,45AB CD ABE ∠=︒ ∥,45ABE BCD ∴=∠=∠︒,20D ∠=︒ ,25BCD D E ∠-∠==∴∠︒,故选:B .【点睛】本题考查了平行线的性质、三角形的外角性质,熟练掌握平行线的性质是解题关键.4.某种离心机的最大离心力为17000g .数据17000g 用科学计数法表示为()A.40.1710⨯ B.51.710⨯ C.41.710⨯ D.31710⨯【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数.【详解】解:417000 1.710=⨯.故选:C .【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.5.下列计算正确的是()A.0=B.+=C.= D.)26-=-【答案】D【解析】【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=,故该选项不正确,不符合题意;C.=D.)26-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.6.将方程13311x x x+=--去分母,两边同乘()1x -后的式子为()A.()1331x x +=- B.()1313x x +-=- C.133x x-+=- D.()1313x x +-=【答案】B【解析】【分析】根据解分式方程的去分母的方法即可得.【详解】解:13311x x x+=--,两边同乘()1x -去分母,得()1313x x +-=-,故选:B .【点睛】本题考查了解分式方程,熟练掌握去分母的方法是解题关键.7.已知蓄电池两端电压U 为定值,电流I 与R 成反比例函数关系.当4A I =时,10ΩR =,则当5A I =时,R 的值为()A.6ΩB.8ΩC.10ΩD.12Ω【答案】B【解析】【分析】利用待定系数法求出U 的值,由此即可得.【详解】解:由题意得:UR I =,∵当4A I =时,10ΩR =,104U∴=,解得40U =,40R I ∴=,则当5A I =时,()Ω4085R ==,故选:B .【点睛】本题考查了反比例函数,熟练掌握待定系数法是解题关键.8.圆心角为90︒,半径为3的扇形弧长为()A.2πB.3πC.32π D.12π【答案】C【解析】【分析】根据弧长公式180n rl π=(弧长为l ,圆心角度数为n ,圆的半径为r ),由此计算即可.【详解】解:该扇形的弧长90331801802n r l πππ⨯===,故选:C .【点睛】本题考查了扇形的弧长计算公式180n r l π=(弧长为l ,圆心角度数为n ,圆的半径为r ),正确记忆弧长公式是解答此题的关键.9.已知抛物线221y xx =--,则当03x ≤≤时,函数的最大值为()A.2- B.1- C.0 D.2【答案】D【解析】【分析】把抛物线221y x x =--化为顶点式,得到对称轴为1x =,当1x =时,函数的最小值为2-,再分别求出0x =和3x =时的函数值,即可得到答案.【详解】解:∵()222112y x x x =--=--,∴对称轴为1x =,当1x =时,函数的最小值为2-,当0x =时,2211y x x =--=-,当3x =时,232312y =-⨯-=,∴当03x ≤≤时,函数的最大值为2,故选:D【点睛】此题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.10.某小学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取100名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10︒【答案】D【解析】【分析】A.随机选取100名学生进行问卷调查,数量100就是样本容量,据此解答;B.由扇形统计图中喜欢篮球的占比解答;C.用总人数乘以40%即可解答;D.先用1减去足球、篮球、乒乓球的占比得到排球的占比,再利用360︒乘以排球的占比即可解答.【详解】解:A.随机选取100名学生进行问卷调查,数量100就是样本容量,故A正确;B.由统计图可知,最喜欢篮球的人数占被调查人数的30%,故B正确;C.最喜欢足球的学生为10040%40⨯=(人),故C正确;D.“排球”对应扇形的圆心角为360(140%30%20%)36010%36︒⨯---=︒⨯=︒,故D错误故选:D.【点睛】本题考查扇形统计图及其相关计算、总体、个体、样本容量、样本、用样本估计总体等知识,是基础考点,掌握相关知识是解题关键.二、填空题(本题共6小题,每小题3分,共18分)11.93x>-的解集为_______________.【答案】3x>-【解析】【分析】根据不等式的性质解不等式即可求解.【详解】解:93x>-,解得:3x>-,故答案为:3x>-.【点睛】本题考查了求不等式的解集,熟练掌握不等式的性质是解题的关键.12.一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为_______________.【答案】1 2【解析】【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为2142P ==,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.13.如图,在菱形ABCD 中,AC BD 、为菱形的对角线,60,10DBC BD ︒∠==,点F 为BC 中点,则EF 的长为_______________.【答案】5【解析】【分析】根据题意得出BDC 是等边三角形,进而得出10DC BD ==,根据中位线的性质即可求解.【详解】解:∵在菱形ABCD 中,AC BD 、为菱形的对角线,∴AB AD DC BC ===,AC BD ⊥,∵60DBC ∠=︒,∴BDC 是等边三角形,∵10BD =,∴10DC BD ==,∵E 是BD 的中点,点F 为BC 中点,∴152EF DC ==,故答案为:5.【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.14.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为_______________.【答案】1+1+【解析】【分析】根据勾股定理求得AB ,根据题意可得BC AB ==,进而即可求解.【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===,∴BC AB ==,∴1OC OB BC =+=,O为原点,OC 为正方向,则C 点的横坐标为1+;故答案为:1+.【点睛】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.15.我国的《九章算术》中记载道:“今有共买物,人出八,盈三;人出七,不足四.问有几人.”大意是:今有人合伙购物,每人出8元钱,会多3钱;每人出7元钱,又差4钱,问人数有多少.设有x 人,则可列方程为:_______________.【答案】8374x x -=+【解析】【分析】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,根据题意列出一元一次方程即可求解.【详解】设有x 人,每人出8元钱,会多3钱,则物品的钱数为:()83x -元,每人出7元钱,又差4钱,则物品的钱数为:()74+x 元,则可列方程为:8374x x -=+故答案为:8374x x -=+.【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键.16.如图,在正方形ABCD 中,3AB =,延长BC 至E ,使2CE =,连接AE ,CF 平分DCE ∠交AE 于F ,连接DF ,则DF 的长为_______________.【答案】4【解析】【分析】如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,由CF 平分DCE ∠,可知45FCM FCN ∠=∠=︒,可得四边形CMFN 是正方形,FM AB ∥,设FM CM NF CN a ====,则2ME a =-,证明EFM EAB ∽,则FM ME AB BE =,即2332a a -=+,解得34a =,94DN CD CN =-=,由勾股定理得DF =【详解】解:如图,过F 作FM BE ⊥于M ,FN CD ⊥于N ,则四边形CMFN 是矩形,FM AB ∥,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=︒,∴=CM FM ,∴四边形CMFN 是正方形,设FM CM NF CN a ====,则2ME a =-,∵FM AB ∥,∴EFM EAB ∽,∴FM ME AB BE =,即2332a a -=+,解得34a =,∴94DN CD CN =-=,由勾股定理得4DF ==,故答案为:4.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.三、解答题(本题共4小题,其中17题9分,18、19、20题各10分,共39分)17.计算:21123926a a a a -⎛⎫+÷+-+⎝⎭.【答案】23a -【解析】【分析】先计算括号内的加法,再计算除法即可.【详解】解:21123926a a a a -⎛⎫+÷ ⎪+-+⎝⎭()()()()()312333323a a a a a a a ⎡⎤--=+÷⎢⎥+-+-+⎢⎥⎣⎦()()()223323a a a a a --=÷+-+()()()232332a a a a a +-=⋅+--23a =-【点睛】此题考查了分式的混合运算,熟练掌握分式的运算法则和顺序是解题的关键.18.某服装店的某件衣服最近销售火爆.现有A B 、两家供应商到服装店推销服装,两家服装价格相同,品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料,通过特殊操作检验出其纯度(单位:%),并对数据进行整理、描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:727572757877737576777178797275Ⅲ.A B、两供应商供应材料纯度的平均数、中位数、众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息,回答下列问题:(1)表格中的=a_______________,b=_______________,c=_______________;(2)你认为服装店应选择哪个供应商供应服装?为什么?【答案】(1)75,75,6(2)服装店应选择A供应商供应服装.理由见解析.【解析】【分析】(1)根据平均数、众数、方差的计算公式分别进行解答即可;(2)根据方差的定义,方差越小数据越稳定即可得出答案.【小问1详解】解:B供应商供应材料纯度的平均数为1(72375478277273767179)75 15⨯⨯+⨯+⨯+⨯++++=,故75a=,75出现的次数最多,故众数75b=,方差22222222 1[3(7275)4(7575)2(7875)2(7775)(7375)(7675)(7175)(7975)]6 15c=-+-+-+-+-+-+-+-=故答案为:75,75,6【小问2详解】解:服装店应选择A供应商供应服装.理由如下:由于A、B平均值一样,B的方差比A的大,故A更稳定,所以选A供应商供应服装.【点睛】本题考查了方差、平均数、中位数、众数,熟悉相关的统计量的计算公式和意义是解答此题的关键.19.如图,在ABC 和ADE V 中,延长BC 交DE 于F ,,BC DE AC AE ==,180ACF AED ∠+∠=︒.求证:AB AD =.【答案】证明见解析【解析】【分析】由180ACF AED ∠+∠=︒,180ACF ACB ∠+∠=︒,可得ACB AED ∠=∠,证明()SAS ABC ADE △≌△,进而结论得证.【详解】证明:∵180ACF AED ∠+∠=︒,180ACF ACB ∠+∠=︒,∴ACB AED ∠=∠,∵BC DE =,ACB AED ∠=∠,AC AE =,∴()SAS ABC ADE △≌△,∴AB AD =.【点睛】本题考查了全等三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20.为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求20202022-年买书资金的平均增长率.【答案】20%【解析】【分析】设20202022-年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ⨯+建立方程,解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x ,由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =-<(不符合题意,舍去),答:20202022-年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.如图所示是消防员攀爬云梯到小明家的场景.已知,,AE BE BC BE CD BE ⊥⊥∥,10.4m, 1.26m AC BC ==,点A 关于点C 的仰角为70︒,则楼AE 的高度为多少m (结果保留整数.参考数据:sin700.94,cos700.34,tan70 2.75︒︒≈︒≈≈)【答案】楼AE 的高度为11m【解析】【分析】延长CD 交AE 于点F ,依题意可得 1.26m EF BC ==,在Rt ACF ,根据sin AF AC ACF =⋅∠,求得AF ,进而根据AE AF EF =+,即可求解.【详解】解:如图所示,延长CD 交AE 于点F ,∵,,AE BE BC BE CD BE ⊥⊥∥,∴ 1.26mEF BC ==在Rt ACF 中,70ACF ∠=︒,10.4m AC =,∵sin AF ACF AC∠=,∴sin 10.4sin 7010.40.949.776mAF AC ACF =⋅∠=⨯︒≈⨯=∴9.776 1.2611m AE AF EF =+=+≈,答:楼AE 的高度为11m .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.22.为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了50m ,女生跑了80m ,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m /s ,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时120s .已知x 轴表示从开始匀速跑步到停止跑步的时间,y 轴代表跑过的路程,则:(1)男女跑步的总路程为_______________.(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)1000m(2)315m【解析】【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以2,即可求解(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,求得女生的速度,进而得出解析式为 3.580y x =+,联立求得30s x =,进而即可求解.【小问1详解】解:∵开始时男生跑了50m ,男生的跑步速度为4.5m /s ,从开始匀速跑步到停止跑步共用时100s .∴男生跑步的路程为50 4.5100500+⨯=m ,∴男女跑步的总路程为50021000m ⨯=,故答案为:1000m .【小问2详解】解:男生从开始匀速跑步到停止跑步的直线解析式为:50 4.5y x =+,设女生从开始匀速跑步到停止跑步的直线解析式为:80y kx =+,依题意,女生匀速跑了50080420-=m ,用了120s ,则速度为420120 3.5÷=m/s ,∴ 3.580y x =+,联立50 4.53.580y xy x =+⎧⎨=+⎩解得:30x =将30x =代入50 4.5y x=+解得:185y =,∴此时男、女同学距离终点的距离为500185315-=m .【点睛】本题考查了一次函数的应用,根据题意求得函数解析式是解题的关键.23.如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF 交AB 于点G .若4AD DE ==,求DG 的长.【答案】(1)90︒;(2).【解析】【分析】(1)根据圆周角定理证明两直线平行,再利用平行线的性质证明角度相等即可;(2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可.【小问1详解】∵AB 是O 的直径,∴90ACB ∠=︒,∵AD 平分CAB ∠,∴12BAD BAC ∠=∠,即2BAC BAD ∠=∠,∵OA OD =,∴BAD ODA ∠=∠,∴2BOD BAD ODA BAD ∠=∠+∠=∠,∴BOD BAC ∠=∠,∴OD AC ,∴90OEB ACB ∠=∠=︒,∴90BED ∠=︒,【小问2详解】如图,连接BD ,设OA OB OD r ===,则4OE r =-,228AC OE r ==-,2AB r =,∵AB 是O 的直径,∴90ADB ∠=︒,在Rt ADB 中,有勾股定理得:222BD AB AD =-由(1)得:90BED ∠=︒,∴90BED BEO ∠=∠=︒,由勾股定理得:222BE OB OE =-,222BE BD DE =-,∴22222222BD AB AD BE DE OB OE DE =-=+=-+,∴()(()22222244r r r -=--+,整理得:22350r r --=,解得:7r =或5r =-(舍去),∴214AB r ==,∴BD ==,∵AF 是O 的切线,∴AF AB ⊥,∵DG AF ,∴DG AB ⊥,∴11··22ABD S AD BD AB DG == ,∴·23521414AD BD DG AB ===【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)4,83(2)2218402331424443t t S t t t ⎧⎛⎫-+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩【解析】【分析】(1)根据函数图象即可求解.(2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB 与DPB 的重叠面积为S ,分别求解即可.【小问1详解】解:当0=t 时,P 点与O 重合,此时83ABO S S == ,当4t =时,0S =,即P 点与B 点重合,∴4OB =,则()4,0B ,故答案为:4,83.【小问2详解】∵A 在y x =上,则45OAB ∠=︒设(),A a a ,∴1184223AOB S OB a a =⨯⨯=⨯⨯= ∴43a =,则44,33⎛⎫⎪⎝⎭A 当403t ≤≤时,如图所示,设DP 交OA 于点E ,∵45OAB ∠=︒,DP OB ⊥,则EP OP t==∴28132S t =-当443t <≤时,如图所示,∵()4,0B ,44,33⎛⎫ ⎪⎝⎭A 设直线AB 的解析式为y kx b =+,∴404433k b k b +=⎧⎪⎨+=⎪⎩解得:212b k =⎧⎪⎨=-⎪⎩,∴直线AB 的解析式为122y x =-+,当0x =时,2y =,则()0,2C ,∴2OC =,∵21tan 42DP OC CBO PD OB ∠====,∵4BP t =-,则122DP t =-,∴12DPB S S DP BP ==⨯ ()()222111144242244t t t t =⨯⨯-=-=-+,综上所述:2218402331424443t t S t t t ⎧⎛⎫-+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<≤ ⎪⎪⎝⎭⎩.【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键.25.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.【答案】(1)见解析;(2)3572+;问题2:BC =【解析】【分析】(1)根据等边对等角可得ABC C ∠=∠,根据折叠以及三角形内角和定理,可得BDE A ∠=∠1802C =︒-∠,根据邻补角互补可得180EDC BDE ∠+∠=︒,即可得证;(2)连接AD ,交BE 于点F ,则EF 是ADC △的中位线,勾股定理求得,AF BF ,根据BE BF EF =+即可求解;问题2:连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,根据已知条件可得BM CD ∥,则四边形CGMD 是矩形,勾股定理求得AD ,根据三线合一得出,MD CG ,根据勾股定理求得BC 的长,即可求解.【详解】(1)∵等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到∴ABC C ∠=∠,BDE A ∠=∠1802C =︒-∠,∵180EDC BDE ∠+∠=︒,∴2EDC ACB ∠=∠;(2)如图所示,连接AD ,交BE 于点F ,∵折叠,∴EA ED =,AF FD =,122AE AC ==,AD BE ⊥,∵E 是AC 的中点,∴EA EC =,∴1322EF CD ==,在Rt AEF 中,72AF ==,在Rt ABF 中,572BF ===,∴3572BE BF EF =+=;问题2:如图所示,连接AD ,过点B 作BM AD ⊥于点M ,过点C 作CG BM ⊥于点G ,∵AB BD =,∴AM MD =,12ABM DBM ABD ∠=∠=∠,∵2BDC ABD ∠=∠,∴BDC DBM ∠=∠,∴BM CD ∥,∴CD AD ⊥,又CG BM ⊥,∴四边形CGMD 是矩形,则CD GM =,在Rt ACD △中,1CD =,4=AD ,AD ===,∴152AM MD ==,152CG MD ==在Rt BDM 中,72BM ===,∴75122BG BM GM BM CD =-=-=-=,在Rt BCG 中,BC ===.【点睛】本题考查了等腰三角形的性质,折叠的性质,勾股定理,矩形的性质与判定,熟练掌握以上知识是解题的关键.26.如图,在平面直角坐标系中,抛物线21:C y x =上有两点A B 、,其中点A 的横坐标为2-,点B 的横坐标为1,抛物线22:C y x bx c =-++过点A B 、.过A 作AC x ∥轴交抛物线1C 另一点为点C .以12AC AC 、长为边向上构造矩形ACDE .(1)求抛物线2C 的解析式;(2)将矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上.①求n 关于m 的函数关系式,并直接写出自变量m 的取值范围;②直线A E ''交抛物线1C 于点P ,交抛物线2C 于点Q .当点E '为线段PQ 的中点时,求m 的值;③抛物线2C 与边E D A C ''''、分别相交于点M N 、,点M N 、在抛物线2C 的对称轴同侧,当2103MN =时,求点C '的坐标.【答案】(1)224y x x =--+(2)①()2404n m m m =-+<<;②5172m =;③5959,636C ⎛⎫' ⎪ ⎪⎝⎭或5959,636C ⎛⎫'- ⎪ ⎪⎝⎭【解析】【分析】(1)根据题意得出点()2,4A -,()1,1B ,待定系数法求解析式即可求解;(2)①根据平移的性质得出()2,4C m n '--,根据点C 的对应点C '落在抛物线1C 上,可得()224m n -=-,进而即可求解;②根据题意得出()()222,442,24,P m m m Q m m m --++----+,求得中点坐标,根据题意即可求解;③连接MN ,过点N 作NG E D ''⊥于点G ,勾股定理求得23MG =,设N 点的坐标为()2,24a a a --+,则22,263M a a a ⎛⎫---+ ⎪⎝⎭,将22,263M a a a ⎛⎫---+ ⎪⎝⎭代入224y x x =--+,求得56a =,求得559,636N ⎛⎫ ⎪⎝⎭,进而根据C '落在抛物线1C 上,将5936y =代入21:C y x =,即可求解.【小问1详解】解:依题意,点A 的横坐标为2-,点B 的横坐标为1,代入抛物线21:C y x=∴当2x =-时,()224y =-=,则()2,4A -,当1x =时,1y =,则()1,1B ,将点()2,4A -,()1,1B ,代入抛物线22:C y x bx c =-++,∴()222411b c b c ⎧---+=⎪⎨-++=⎪⎩解得:24b c =-⎧⎨=⎩∴抛物线2C 的解析式为224y x x =--+;【小问2详解】①解:∵AC x ∥轴交抛物线21:C y x =另一点为点C ,当4y =时,2x =±,∴()2,4C ,∵矩形ACDE 向左平移m 个单位,向下平移n 个单位得到矩形A C D E '''',点C 的对应点C '落在抛物线1C 上∴()2,4C m n '--,()224m n-=-整理得24n m m=-+∵0,0m n >>∴04m <<∴()2404n m m m =-+<<;②如图所示,。

【配套K12】中考数学 专题复习六 求最短路径问题

【配套K12】中考数学 专题复习六 求最短路径问题

中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

2015年中考数学试卷解析分类汇编(第1期)专题37_操作探究

精心整理操作探究一、选择题1.(2015?浙江宁波,第12题4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长A.b,②③-①将a+将2c∴故选A.2.(2015?浙江省绍兴市,第10题,4分)挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒 考点:规律型:图形的变化类..分析:仔细观察图形,找到拿走后图形下面的游戏棒,从而确定正确的选项. 解答:解:仔细观察图形发现: 第1第2第3第4第5第6故选二.1.(中CD =_______________________________【答案】2或4+第16题【考点】剪纸问题;多边形内角和定理;轴对称的性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.【分析】∵四边形纸片ABCD 中,∠A =∠C =90°,∠B =150°,∴∠C =30°. 如答图,根据题意对折、裁剪、铺平后可有两种情况H ,设∴设在Rt 易证BCD EHB ∆∆∽,∴CD BCHB EH =,即1CD =∴224CD +==+综上所述,CD =2或4+2.(2015?浙江省绍兴市,第13题,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。

小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。

如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲cm考点:等边三角形的判定与性质..专题:应用题.∴△∴3.(t、t1等边三角型的边长为a≈2,等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8;圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t2>t3>t1.故答案为:t2>t3>t1.点评:本题考查了轨迹,利用相等的面积求出相应的周长是解题关键.4.(A与点出=2,则∴,∴=故=.故答案为:.点评:此题考查了翻折变换、勾股定理及矩形的性质,难度一般,解答本题的关键是判断出RT△AOE∽RT△ABC,利用相似三角形的性质得出OE的长.三.解答题1.(2015?浙江省台州市,第24题)定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且段(3D(4,△和△H 是2.(的顶点形所(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式。

大连各区试题

大连各区试题

大连甘井子区2014-2015学年(初一数学)期末质量检测大连甘井子区2014-2015学年(初一英语)期末质量检测大连甘井子区2014-2015学年(初一语文)期末质量检测大连市沙河口区2014-2015上学年初一期末考试试卷【包括语、数、英】大连沙河口区2014-2015学年(初一数学)期末质量检测大连沙河口区2014-2015学年(初一英语)期末质量检测大连沙河口区2014-2015学年(初一语文)期末质量检测大连市西岗区2014-2015上学年初一期末考试试卷【包括语、数、英】大连西岗区2014-2015学年(初一数学)期末质量检测大连西岗区2014-2015学年(初一英语)期末质量检测大连西岗区2014-2015学年(初一语文)期末质量检测大连中山区2014-2015学年(初一数学)期末质量检测大连中山区2014-2015学年(初一英语)期末质量检测大连中山区2014-2015学年(初一语文)期末质量检测大连各区2014-2015学年下学期(初一数学)期末考试试题集锦大连中山区2014-2015学年下学期(初一数学)期末考试试题大连沙河口区2014-2015学年下学期(初一数学)期末考试试题大连西岗区2014-2015学年下学期(初一数学)期末考试试题大连甘井子区2014-2015学年下学期(初一数学)期末考试试题大连高新区2014-2015学年下学期(初一数学)期末考试试题大连市甘井子区2014-2015上学年初二期末考试试卷【包括语、数、英、物】大连甘井子区2014-2015学年(初二数学)期末质量检测大连甘井子区2014-2015学年(初二物理)期末质量检测大连甘井子区2014-2015学年(初二英语)期末质量检测大连甘井子区2014-2015学年(初二语文)期末质量检测大连市沙河口区2014-2015上学年初二期末考试试卷【包括语、数、英、物】大连沙河口区2014-2015学年(初二语文)期末质量检测大连沙河口区2014-2015学年(初二英语)期末质量检测大连沙河口区2014-2015学年(初二物理)期末质量检测大连沙河口区2014-2015学年(初二数学)期末质量检测大连市中山区2014-2015上学年初二期末考试试卷【包括语、数、英、物】大连中山区2014-2015学年(初二数学)期末质量检测大连中山区2014-2015学年(初二语文)期末质量检测大连中山区2014-2015学年(初二英语)期末质量检测大连中山区2014-2015学年(初二物理)期末质量检测大连市西岗区2014-2015上学年初二期末考试试卷【包括语、数、英、物】大连西岗区2014-2015学年(初二语文)期末质量检测大连西岗区2014-2015学年(初二物理)期末质量检测大连西岗区2014-2015学年(初二英语)期末质量检测大连西岗区2014-2015学年(初二数学)期末质量检测大连各区2014-2015学年下学期(初二数学)期末考试试题集锦大连中山区2014-2015学年下学期(初二数学)期末考试试题大连沙河口区2014-2015学年下学期(初二数学)期末考试试题大连西岗区2014-2015学年下学期(初二数学)期末考试试题大连甘井子区2014-2015学年下学期(初二数学)期末考试试题大连高新区2014-2015学年下学期(初二数学)期末考试试题大连市甘井子区2014-2015上学年初三期末考试试卷【包括语、数、英、物、化】大连市甘井子区2014-2015学年上学期((初三英语)期末质量检测大连市甘井子区2014-2015学年上学期((初三语文)期末质量检测大连市甘井子区2014-2015学年上学期(初三数学)期末质量检测大连市甘井子区2014-2015学年上学期(初三物理)期末质量检测大连市甘井子区2014-2015学年上学期(初三化学)期末质量检测大连市中山区2014-2015学年上学期(初三英语)期末质量检测大连市中山区2014-2015学年上学期(初三语文)期末质量检测大连市中山区2014-2015学年上学期(初三数学)期末质量检测大连市中山区2014-2015学年上学期(初三物理)期末质量检测大连市中山区2014-2015学年上学期(初三化学)期末质量检测大连市西岗区2014-2015上学年初三期末考试试卷【包括语、数、英、物、化】大连市西岗区2014-2015学年上学期(初三英语)期末质量检测大连市西岗区2014-2015学年上学期(初三语文)期末质量检测大连市西岗区2014-2015学年上学期(初三数学)期末质量检测大连市西岗区2014-2015学年上学期(初三物理)期末质量检测大连市西岗区2014-2015学年上学期(初三化学)期末质量检测大连市沙河口区2014-2015学年上学期(初三英语)期末质量检测大连市沙河口区2014-2015学年上学期(初三语文)期末质量检测大连市沙河口区2014-2015学年上学期(初三数学)期末质量检测大连市沙河口区2014-2015学年上学期(初三物化合卷)期末质量检测2015年大连市中考各科试题集锦(精编含答案)2015年大连中考英语试题2015大连市中考物理试题2015大连市中考化学试题2015大连市中考语文试题2015大连市中考数学试题2015大连市中考化学试题及答案2015年辽宁大连中考数学试题及答案2015年大连市中考语文试题及答案2015大连市中考物理真题答案2015年辽宁省大连市中考数学一模试卷2015年辽宁省大连市中考数学一模试卷答案2015年大连市中考数学二模试卷2015年大连市中考数学二模试卷参考答案2015年4月大连市高新区一模数学试卷2015年大连市甘井子区一模数学试卷2015年大连市沙河口区一模数学试卷2015年大连市沙河口区一模数学试卷答案2015年辽宁省大连市甘井子区中考数学二模试卷大连中考数学“动点问题”专题复习卷大连中考数学“几何证明”专题复习卷大连中考数学“二次函数”专题复习卷大连中考真题之圆题大连中考模拟题之圆题大连中考真题之抛物线题大连中考真题之几何综合题大连市2012-2015数学模拟题之几何综合题大连中考真题之动点题。

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。

2015年中考数学试题及答案(Word版)

2015年中考数学试题及答案(Word版)

2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。

2015年中考数学试题_数与式_专题命题分析_车宏路_栾长伟

2015年中考数学试题_数与式_专题命题分析_车宏路_栾长伟

(B) 1
考查学生是否会用科学记数法.
(C) -1
(D) 6
【考法评析】 此题考查了简单的有理数的混合运
二、突出对数与式运算能力的考查
算,试题结构单一. 选项 B、选项 C 的设置意图主要
考虑学生在运算顺序和运算符号方面容易出错,突出
运算能力主要是指能够根据法则和运算律正确地 考查学生掌握运算法则和运算顺序的程度.
时命题者结合学生学习中经常出现的概念、性质相互
混淆的错误而针对性地设置问题,具有较好的效度.
此类问题还可以做如下编制.
问题 3:若 x + y - 3 + 姨2x - y = 0,则 x - y 的
值为 ( ).
(A) -1
(B) 1
(C) 3
(D) -3
【命题意图】 此题考查绝对值、二次根式概念、非
(C) 14 °C
(D) -14 °C
14
2016 年第 1—2 期
中考指南
ZHONGKAOZHINAN
【考法评析】 题目背景源于教材,贴合实际,使得 式 x2 - 2x + 3 的值为

学生理解题意障碍不大,较好地考查了学生运用有理
【考法评析】 此题表面上考查了求代数式的值,学
数解决问题的能力.
图2
(1)注重对实数有关概念的考查.
例 1 (辽宁·大连卷) -2 的绝对值是 ( ).
(A) 2
(B) -2
(C)
1 2
(D)

1 2
【考法评析】 直接考查绝对值的概念,考查概念的
收稿日期:2015—12—30 作者简介:车宏路 (1977— ) 男,中学高级教师,大连市甘井子区教师进修学校中教部副主任,初中数学教研员,主要从事 数学教育与中学数学教学研究.

辽宁省鞍山市中考数学试题(含解析)-人教版初中九年级全册数学试题

辽宁省鞍山市中考数学试题(含解析)-人教版初中九年级全册数学试题

2015年某某省某某市中考数学试卷一、单项选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.﹣5的倒数是()A.5 B.C.﹣ D.252.下列图形不是轴对称图形的是()A.B.C.D.3.若y=有意义,则x的取值X围是()A.x≠4 B.x≤4 C.x≥4 D.x<44.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.三角形任意两边之差小于第三边5.某校开展“中国梦•快乐阅读”的活动,为了解某班同学寒假的阅读情况,随机调查了10名同学,结果如下表:阅读量/本 4 5 6 9 人数 3 4 2 1关于这10名同学的阅读量,下列说法正确的是()C.平均数是5.3本D.方差是36.如图,在▱ABCD中,AB=4,∠A=120°,DE平分∠ADC交BC于点E,则△CDE的周长为()A.4+8 B.4+4 C.2+8 D.2+47.已知二次函数y=ax2+bx+c(a,b,c为常数a≠0)的图象如图所示,下列结论正确的是()A.2a+b<0 B.4a+2b+c>0C.m(am+b)>a+b(m为大于1的实数)D.3a+c<08.如图,点O在线段AB上,AO=1,OB=2,OC为射线,且∠BOC=120°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC作匀速直线运动.设运动时间为t秒,当△ABP为直角三角形时,t的值为()A.t=1 B.t=1或C.t=D.t=1或二、填空题(共8小题,每小题3分,满分24分)9.据有关部门统计,2014年全国骚扰高达270亿通,数据270亿可用科学记数法表示为.10.分解因式:m3﹣2m2+m=.11.一个角的余角是54°38′,则这个角的补角是.12.近年来食品安全问题备受人们的关注,某海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适用(填“全面调查”或“抽样调查”).13.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为.(结果保留π)14.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB,OC,点E在线段BC上(点E不与B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为.15.如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D 恰好在反比例函数y=(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为.16.如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AG 是∠DAE的平分线,分别交DE,BC于点F,G,连接CE,∠GAC=25°,下面结论正确的是(填序号).①∠BAD=∠CAE;②tan∠ABE=;③AG∥CE;④2AF+CE=BE;⑤AD=CG.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知α是锐角,且cos(α﹣15°)=,计算﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1的值.18.现在人们学习、工作、生活压力较大,身体常常处于亚健康状态,为了缓解压力,人们往往会通过不同的方式减压,某高校学生社团对本校部分老师的减压方式进行了调查(教师可根据自己的情况必选且只选其中一项),并将调查结果分析整理后制成了统计图:(1)这次抽样调查中,一共抽查了多少名教师?(2)请补全条形统计图.(3)请计算,扇形统计图中,“K歌”所对应的圆心角是多少度?(4)请根据调查结果估计该校550名教师采用“美食”减压的人数是多少?19.在一个不透明的盒子里,装有五个乒乓球,分别标有数字﹣3,﹣2,﹣1,﹣,﹣,这些乒乓球除所标数字不同外其余均相同,先从盒子中随机摸出一个乒乓球,记下数字不放回,再从剩下的乒乓球中随机摸出一个,记下数字.(1)用画树状图或列表的方法,求出两次摸出的数字之积不大于1的概率;(2)若直线y=﹣x﹣3与两个坐标轴围成△AOB,请直接写出以第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)的概率.20.如图,▱ABCD的对角线相交于点O,点E,F,P分别是OB,OC,AD的中点,分别连接EP,EF,PF,EP与AC相交于点G,且AC=2AB.(1)求证:△APG≌△FEG;(2)求证:△PEF为等腰三角形.21.近两个月,由于受到“中东呼吸综合症”的影响,赴韩旅游的人数明显减少.某旅行社为了吸引游客,决定将赴韩旅游的人均费用下调300元.下调后,总费用同样是25200元,赴韩旅游的人数却可以比过去增加2人.求该旅游社下调后的赴韩旅游的人均费用是多少元?22.如图,一艘海上巡逻船在A地巡航,测得A地在观测站B的南偏东45°方向上,在观测站C的南偏西60°方向上,观测站B在观测站C的正西方向,此时A地与观测站B的距离为20海里.(1)求A地与观测站C的距离是多少海里?(2)现收到故障船D的求救信号,要求巡逻船从A地马上前去救援(C,A,D共线).已知D船位于观测站B的南偏西15°方向上,巡逻船的速度是12海里/小时,求巡逻船从A地到达故障船D处需要多少时间?(结果保留小数点后一位,参考数据≈1.41,≈1.73,≈2.24)23.⊙O是△ABC的外接圆,∠ABC=90°,弦BD=BA,BE是⊙O的切线交DC的延长线于点E.(1)求证:BE⊥CE;(2)若BC=,⊙O的半径为,求线段CD的长度.24.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获得W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?25.如图1所示,在菱形ABCD和菱形AEFG中,点A,B,E在同一条直线上,P是线段CF的中点,连接PD,PG.(1)若∠BAD=∠AEF=120°,请直接写出∠DPG的度数及的值.(2)若∠BAD=∠AEF=120°,将菱形ABCD绕点A顺时针旋转,使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上,如图2,此时,(1)中的两个结论是否发生改变?写出你的猜想并加以说明.(3)若∠BAD=∠AEF=180°﹣2α(0°<α<90°),将菱形ABCD绕点A顺时针旋转到图3的位置,求出的值.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c为常数a≠0)与x轴,y轴分别交于A,B,C三点,已知A(﹣1,0),B(3,0),C(0,3),动点E从抛物线的顶点点D出发沿线段DB向终点B运动.(1)求抛物线解析式和顶点D的坐标;(2)过点E作EF⊥y轴于点F,交抛物线对称轴左侧的部分于点G,交直线BC于点H,过点H作HP ⊥x轴于点P,连接PF,求当线段PF最短时G点的坐标;(3)在点E运动的同时,另一个动点Q从点B出发沿直线x=3向上运动,且速度均为每秒1个单位长度,当点E到达终点B时点Q也随之停止运动,设点E的运动时间为t秒,试问存在几个t值能使△BEQ为等腰三角形?并直接写出相应t值.2015年某某省某某市中考数学试卷参考答案与试题解析一、单项选择题(共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项符合题目要求)1.﹣5的倒数是()A.5 B.C.﹣ D.25【考点】倒数.【分析】利用倒数的意义直接选择答案即可.【解答】解:﹣5的倒数是﹣.故选:C.【点评】此题考查倒数的意义,掌握倒数的意义是解决问题的关键.2.下列图形不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.【点评】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若y=有意义,则x的取值X围是()A.x≠4 B.x≤4 C.x≥4 D.x<4【考点】函数自变量的取值X围.【专题】计算题.【分析】根据负数没有平方根及0不能做分母,求出x的X围即可.【解答】解:要使y=有意义,则有4﹣x>0,即x<4,故选D.【点评】此题考查了函数自变量的取值X围,函数自变量的X围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.下列命题是真命题的是()A.过一点有且只有一条直线与已知直线平行B.对角线相等且互相垂直的四边形是正方形C.平分弦的直径垂直于弦,并且平分弦所对的弧D.三角形任意两边之差小于第三边【考点】命题与定理.【分析】根据垂径定理及正方形的性质对各选项进行逐一判断即可.【解答】解:A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、符合三角形的三边关系,是真命题,故本选项正确.故选D.【点评】本题考查的是命题与定理,熟知垂径定理及正方形的性质是解答此题的关键.5.某校开展“中国梦•快乐阅读”的活动,为了解某班同学寒假的阅读情况,随机调查了10名同学,结果如下表:阅读量/本 4 5 6 9 人数 3 4 2 1关于这10名同学的阅读量,下列说法正确的是()C.平均数是5.3本D.方差是3【考点】方差;加权平均数;中位数;众数.【分析】根据众数、中位数、平均数以及方差的计算公式分别进行解答即可得出答案.【解答】解:A、阅读5本的学生有4人,人数最多,则众数是5本,故本选项错误;B、共有10名同学,中位数是=5,故本选项错误;C、平均数是(4×3+5×4+6×2+9×1)÷10═5.3(本),故本选项正确;D、方差是: [3×(4﹣5.3)2+4×(5﹣5.3)2+2×(6﹣5.3)2+(9﹣5.3)2]=2.01,故本选项错误;故选C.【点评】此题考查了众数、中位数、平均数以及方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2];众数是一组数据中出现次数最多的数;中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.6.如图,在▱ABCD中,AB=4,∠A=120°,DE平分∠ADC交BC于点E,则△CDE的周长为()A.4+8 B.4+4 C.2+8 D.2+4【考点】平行四边形的性质;含30度角的直角三角形;勾股定理.【分析】由四边形ABCD是平行四边形,可得CD=AB=4,∠A=∠C=120°,AD∥BC,得∠ADE=∠DEC,∠DCF=60°又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,根据30°角的直角三角形的性质求得CF=2,然后根据勾股定理求得DF,进而得出ED=4,所以求得△CDE的周长为4+8.【解答】解:作DF⊥BC,交BC的延长线于F,∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C=120°,AB=CD=4,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD,∴∠DEC=∠EDC=30°,∴∠DCF=60°,∴∠CDF=30°,∴CF=CD=2,∴DF==2,∴DE=2DF=4,∴△CDE的周长为4+8.故选:A.【点评】此题考查了平行四边形的性质、角平分线的定义、等腰三角形的判定定理、勾股定理以及30°角的直角三角形的性质.注意当有平行线和角平分线出现时,会出现等腰三角形.7.已知二次函数y=ax2+bx+c(a,b,c为常数a≠0)的图象如图所示,下列结论正确的是()A.2a+b<0 B.4a+2b+c>0C.m(am+b)>a+b(m为大于1的实数)D.3a+c<0【考点】二次函数图象与系数的关系.【分析】根据图象得出函数对称轴进而分别利用函数图象与坐标轴交点得出对应函数关系的大小关系.【解答】解:A、由图象可得:x=﹣=1,则2a+b=0,∴2a+b<0错误;B、由图象可得:抛物线与x轴正半轴交点大于2,故4a+2b+c<0,故此选项错误;C、∵x=1时,二次函数取到最小值,∴m(am+b)=am2+bm>a+b,故此选项正确;D、由选项A得:b=﹣2a,当x=﹣1时,y=a﹣b+c=3a+c>0,故此选项错误.故选:C.【点评】此题主要考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.8.如图,点O在线段AB上,AO=1,OB=2,OC为射线,且∠BOC=120°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC作匀速直线运动.设运动时间为t秒,当△ABP为直角三角形时,t的值为()A.t=1 B.t=1或C.t=D.t=1或【考点】勾股定理的逆定理;一元二次方程的应用;勾股定理.【专题】几何动点问题.【分析】根据题意分三种情况考虑:当∠PAB=90°;当∠APB=90°;当∠ABP=90°,根据△ABP为直角三角形,分别求出t的值即可.【解答】解:如图1,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60°,∴∠APO=30°,∴OP=2OA=2,∵OP=2t,∴t=1;如图2,当∠APB=90°,过P作PD⊥AB,∵∠OPD=120°﹣90°=30°,∴OD=OP=t,PD=OP•sin∠POD=t,∴AD=AO﹣OD=1﹣t,在Rt△ABP中,根据勾股定理得:AP2+BP2=AB2,即(2+t)2+(t)2+(t)2+(1﹣t)2=32,解得:t=(负值舍去);当∠ABP=90°时,此情况不存在;综上,当t=1或t=时,△ABP是直角三角形.故选B.【点评】此题考查了勾股定理、锐角三角函数以及一元二次方程的解法,本题利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.二、填空题(共8小题,每小题3分,满分24分)9.据有关部门统计,2014年全国骚扰高达270亿通,数据270亿可用科学记数法表示为×1010.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×1010.×1010.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:m3﹣2m2+m= m(m﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:m3﹣2m2+m=m(m2﹣2m+1)=m(m﹣1)2.故答案为m(m﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.一个角的余角是54°38′,则这个角的补角是144°38′.【考点】余角和补角;度分秒的换算.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.12.近年来食品安全问题备受人们的关注,某海关想检验一批进口食品的防腐剂含量是否符合国家标准,这种调查适用抽样调查(填“全面调查”或“抽样调查”).【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,由此分析得出答案即可.【解答】解:由于食品数量庞大,且抽测具有破坏性,适用抽样调查.故答案为:抽样调查.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】圆锥的计算;由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.14.如图,在矩形ABCD中,AB=3,BC=2,O是AD的中点,连接OB,OC,点E在线段BC上(点E不与B、C重合),过点E作EM⊥OB于M,EN⊥OC于N,则EM+EN的值为.【考点】矩形的性质;勾股定理.【分析】过B作BH⊥OC于H,过E作EM⊥BH于M,由四边形EGHN是矩形,得到EN=HM,根据矩形的性质得到∠A=∠D=90°,AB=CD,证得△ABO≌△CDO,得到OB=OC,推出△BEM≌△BEG,得到BG=EM,等量代换得到BH=EM+EN,由△BCH∽△CDO,得到比例式,即可得到结论.【解答】解:过B作BH⊥OC于H,过E作EG⊥BH于G,则四边形EGHN是矩形,∴EN=HM,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵O是AD的中点,∴AO=DO,在△ABO与△CDO中,,∴△ABO≌△CDO,∴OB=OC,∴∠OBC=∠OCB,∴∠GEB=∠OCB,在△BEM与△BGE中,,∴△BEM≌△BEG,∴BG=EM,∴BH=EM+EN,∵AD∥BC,∴∠DOC=∠OCB,∵∠D=∠BHC=90°,∴△BCH∽△CDO,∴,∵OC==,∴BH=,∴EM+EN的值为:.【点评】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.15.如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D 恰好在反比例函数y=(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为10 .【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】设正方形的边长为a,A(t,t),则OB=AB=t,AC=CD=a,于是可表示出C(t,t﹣a),D (t+a,t﹣a),利用等腰直角三角形的性质得OA=t,AD=a,则由OA2﹣AD2=20可得t2﹣a2=10,然后根据反比例函数图象上点的坐标特征得k=(t+a)(t﹣a)=t2﹣a2=10.【解答】解:设正方形的边长为a,A(t,t),则OB=AB=t,AC=CD=a,∴C(t,t﹣a),D(t+a,t﹣a),∴OA=t,AD=a,∵OA2﹣AD2=20,∴(t)2﹣(a)2=20,∴t2﹣a2=10,∵点D在反比例函数y=的图象上,∴k=(t+a)(t﹣a)=t2﹣a2=10.故答案为10.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了正方形的性质和反比例函数图象上点的坐标特征.16.如图,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AG 是∠DAE的平分线,分别交DE,BC于点F,G,连接CE,∠GAC=25°,下面结论正确的是①③④(填序号).①∠BAD=∠CAE;②tan∠ABE=;③AG∥CE;④2AF+CE=BE;⑤AD=CG.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】计算题;图形的全等.【分析】根据已知一对直角相等,利用等式的性质得到∠BAD=∠CAE,再由两对边相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应边相等,对应角相等得到CE=BD,∠CAE=∠BAD,由题意确定出三角形ABF为直角三角形,求出∠ABE度数,进而求出tan∠ABE的值;根据题意确定出一对内错角相等,进而得到AG与CE平行,利用直角三角形斜边上的中线等于斜边的一半得到ED=2AF,再由CE=DB,根据BE=ED+DB,等量代换得到2AF+CE=BE;AD不一定等于CG.【解答】解:∵∠DAE=∠BAC=90°,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,即∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∠CAE=∠BAD,选项①正确;∵AG平分∠DAE,∴∠GAE=∠GAD=45°,∵∠GAC=20°,∴∠CAE=∠BAD=20,∴∠BAF=∠DAF+∠DAB=70°,∵AD=AE,F为DE中点,∴AG⊥DE,在Rt△ABF中,∠ABF=20°,故tan∠ABE≠,即选项②错误;∵∠ACE=∠GAC=20°,∴AG∥CE,选项③正确;∵AF=DE,即DE=2AF,CE=BD,∴BE=ED+DB=2AF+CE,选项④正确;AD不一定等于CG,选项⑤错误,故答案为:①③④【点评】此题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(共10小题,满分102分,解答应写出必要的文字说明、证明过程或演算步骤)17.已知α是锐角,且cos(α﹣15°)=,计算﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1的值.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用特殊角的三角函数值,求得α,进一步按照运算顺序,化简二次根式,计算0指数幂,负整数指数幂,特殊角的三角函数值,最后合并即可.【解答】解:∵cos(α﹣15°)=,∴α﹣15°=30°,∴α=45°,则﹣6cosα+(3﹣π)0﹣tanα﹣()﹣1=3﹣3+1﹣1﹣2=﹣2.【点评】此题考查实数的运算,特殊角的三角函数,掌握运算顺序与计算方法是解决问题的关键.18.现在人们学习、工作、生活压力较大,身体常常处于亚健康状态,为了缓解压力,人们往往会通过不同的方式减压,某高校学生社团对本校部分老师的减压方式进行了调查(教师可根据自己的情况必选且只选其中一项),并将调查结果分析整理后制成了统计图:(1)这次抽样调查中,一共抽查了多少名教师?(2)请补全条形统计图.(3)请计算,扇形统计图中,“K歌”所对应的圆心角是多少度?(4)请根据调查结果估计该校550名教师采用“美食”减压的人数是多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据旅游的人数共16人,占总人数的32%求出总人数即可;(2)求出运动和美食的人数,补全条形统计图即可;(3)根据K歌人数求出其圆心角的度数即可;(4)求出总人数与k歌人数所占百分比的积即可.【解答】解:(1)∵旅游的人数共16人,占总人数的32%,∴16÷32%=50(名).答:一共抽查了50名教师;(2)∵喜欢运动的人数占28%,∴50×28%=14(人),∴美食人数=50﹣14﹣16﹣7﹣5=8(人).条形统计图如图;(3)∵“K歌”的人数是7人,∴×360°=50.4°.答:“K歌”所对应的圆心角是50.4度;(4)550×=88(人).答:该校550名教师采用“美食”减压的人数是88人.【点评】本题考查的是条形统计图,熟知条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来是解答此题的关键.19.在一个不透明的盒子里,装有五个乒乓球,分别标有数字﹣3,﹣2,﹣1,﹣,﹣,这些乒乓球除所标数字不同外其余均相同,先从盒子中随机摸出一个乒乓球,记下数字不放回,再从剩下的乒乓球中随机摸出一个,记下数字.(1)用画树状图或列表的方法,求出两次摸出的数字之积不大于1的概率;(2)若直线y=﹣x﹣3与两个坐标轴围成△AOB,请直接写出以第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)的概率.【考点】列表法与树状图法.【分析】(1)根据题意画出树状图,即可得到所有可能的结果,进一步计算得出两次摸出的数字之积不大于1的概率;(2)求得与x、y轴交点的坐标分别为(﹣3,0)(0,﹣3),进一步求得第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)的概率即可.【解答】解:(1)画树状图如下:共有20种情况,其中两次摸出的数字之积不大于1的有(﹣3,﹣)、(﹣2,﹣)、(﹣2,﹣)、(﹣1,﹣)、(﹣1,﹣)、(﹣,﹣2)、(﹣,﹣1)、(﹣,﹣)、(﹣,﹣3)、(﹣,﹣2)、(﹣,﹣1),(﹣,﹣)共12种情况P(积不大于1)==;(2)第一次摸出的数字为横坐标,第二次摸出的数字为纵坐标的点在△AOB内部(不包括边界)共有:(﹣2,﹣)、(﹣2,﹣)、(﹣1,﹣)、(﹣1,﹣)、(﹣,﹣2)、(﹣,﹣1)、(﹣,﹣)、(﹣,﹣2)、(﹣,﹣1),(﹣,﹣)10种情况,P(在△AOB内部)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.如图,▱ABCD的对角线相交于点O,点E,F,P分别是OB,OC,AD的中点,分别连接EP,EF,PF,EP与AC相交于点G,且AC=2AB.(1)求证:△APG≌△FEG;(2)求证:△PEF为等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定;直角三角形斜边上的中线;平行四边形的性质.【专题】证明题.【分析】(1)利用三角形的中位线求得EF∥BC,EF=BC,中点得出AP=AD,结合平行四边形的性质得出AP=EF,AP∥EF,求得∠APG=∠GEF,∠PAG=∠GFE,证得结论;(2)连接AE,求出AB=AO,得出AE⊥BD,求出EP=AD,求出EF=BC,根据AD=BC求出即可.【解答】证明:(1)∵E,F分别是OB,OC的中点,∴EF∥BC,EF=BC,∵P是AD的中点,∴AP=AD,在平行四边形ABCD中,AD=BC,AD∥BC,∴AP=EF,AP∥EF,∴∠APG=∠GEF,∠PAG=∠GFE,在△APG和△FEG中,,∴:△APG≌△FEG.(2)连接AE,∵四边形ABCD是平行四边形,∴AD=BC,AC=2OA=2OC,∵AC=2AB,∴OA=AB,∵E为OB中点,∴AE⊥BD(三线合一定理),∴∠AED=90°,∵P为AD中点,∴AD=2EP(直角三角形斜边上的中线等于斜边的一半),∵BC=AD,∴BC=2EP,∵E、F分别是OB、OC中点,∴BC=2EF,∴EP=EF.【点评】本题考查了三角形全等的判定与性质,平行四边形性质,直角三角形斜边上中线性质,等腰三角形性质,三角形的中位线性质的应用,题目综合性比较强.21.近两个月,由于受到“中东呼吸综合症”的影响,赴韩旅游的人数明显减少.某旅行社为了吸引游客,决定将赴韩旅游的人均费用下调300元.下调后,总费用同样是25200元,赴韩旅游的人数却可以比过去增加2人.求该旅游社下调后的赴韩旅游的人均费用是多少元?【考点】分式方程的应用.【分析】可设该旅游社下调后的赴韩旅游的人均费用是x元,根据等量关系:赴韩旅游的人数比过去增加2人,列出方程求解即可.【解答】解:设该旅游社下调后的赴韩旅游的人均费用是x元,依题意有﹣2=,解得x1=1800,x2=﹣2100,经检验:x1=1800,x2=﹣2100都是原方程的解.x2=﹣2100<0,不符合实际舍去.答:该旅游社下调后的赴韩旅游的人均费用是1800元.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.如图,一艘海上巡逻船在A地巡航,测得A地在观测站B的南偏东45°方向上,在观测站C的南偏西60°方向上,观测站B在观测站C的正西方向,此时A地与观测站B的距离为20海里.(1)求A地与观测站C的距离是多少海里?(2)现收到故障船D的求救信号,要求巡逻船从A地马上前去救援(C,A,D共线).已知D船位于观测站B的南偏西15°方向上,巡逻船的速度是12海里/小时,求巡逻船从A地到达故障船D处需要多少时间?(结果保留小数点后一位,参考数据≈1.41,≈1.73,≈2.24)【考点】解直角三角形的应用﹣方向角问题.【分析】(1)过点A作AE⊥BC于点E,过点B作BF⊥BC于点B,过点B作BF⊥BC于点B,过点C 作CG⊥BC于点C,在Rt△ABE中,利用边角关系求得答案即可;(2)过点A作AH⊥BD于点H,在Rt△ABH和Rt△ABH中,利用边角关系求得答案即可.【解答】解:如图,(1)过点A作AE⊥BC于点E,过点B作BF⊥BC于点B,过点B作BF⊥BC于点B,过点C作CG⊥BC 于点C,∵∠ABF=45°,∠ACG=60°,∴∠ABC=45°,∠ACB=30°,在Rt△ABE中,AE=AB•sin45°=20×=20,∴AC=2AE=40(海里).。

中考初中数学圆的最值问题含答案分析

中考初中数学圆的最值问题含答案分析

数学组卷圆的最值问题一.选择题(共7小题)1.(2014春•兴化市月考)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是()A.m≥0 B.C.D.2.(2013•武汉模拟)如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA 长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3 B.6 C. D.3.(2014•武汉模拟)如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C 两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.2 B.3 C.D.34.(2015•黄陂区校级模拟)如图,扇形AOD中,∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和D 重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P在弧AD上运动时,r的值满足()A.0<r<3 B.r=3 C.3<r<3D.r=35.(2010•苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A.2 B.1 C.D.6.(2013•市中区模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是()A.63 B.31C.32 D.307.(2013•枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.90°B.60°C.45°D.30°二.填空题(共12小题)8.(2013•武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE 交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.9.(2015•黄陂区校级模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M 为BD的中点,在D点运动过程中,线段CM长度的取值范围是.10.(2012•宁波)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.11.(2015•峨眉山市一模)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=10,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.若⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则半径r的取值范围是:.12.(2013•长春模拟)如图,在△ABC中,∠C=90°,AC=12,BC=5,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则PQ长的最小值为.13.(2013•陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.14.(2013•咸宁)如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(点Q为切点),则切线PQ的最小值为.15.(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.16.(2011•苏州校级一模)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.则线段AB的最小值是.17.(2015秋•江阴市校级期中)如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正方形ABCD的周长为28,且DE=4,则sin∠ODE=.18.(2014春•兴化市校级月考)如图所示,已知A(1,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.19.(2015•泰兴市二模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.三.解答题(共5小题)20.(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.21.(2014春•泰兴市校级期中)如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:(1)求证:BE⊥AG;(2)求线段DH的长度的最小值.22.已知:如图,AB是⊙O的直径,在AB的两侧有定点C和动点P,AB=5,AC=3.点P在上运动(点P不与A,B重合),CP交AB于点D,过点C作CP的垂线,与PB的延长线交于点Q.(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长.O A D B C E FOD CE A B 23.(2013•日照)问题背景:如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B ′,连接AB ′与直线l 交于点C ,则点C 即为所求.(1)实践运用:如图(b ),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为 .(2)知识拓展:如图(c ),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB 上的动点,求BE+EF 的最小值,并写出解答过程.24.(2012•苏州)如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x(2<x <4).(1)当x=时,求弦PA 、PB 的长度;(2)当x 为何值时,PD •CD 的值最大?最大值是多少?25、如图,在等腰Rt △ABC 中,∠C=90°,AC =BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F,在此运动变化的过程中,线段EF 长度的最小值为 .26、如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE,则⊙O 半径的最小值为( ).A 。

2024年辽宁省大连市部分学校中考数学一模试卷+答案解析

2024年辽宁省大连市部分学校中考数学一模试卷+答案解析

2024年辽宁省大连市部分学校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.甲袋大米的和乙袋大米的相比较( )A. 甲袋大米的重B. 乙袋大米的重C. 一样重D. 无法比较2.下列手机中的图标是轴对称图形的是( )A. B.C. D.3.如图是正方体的展开图,把展开图折叠成正方体后,与“学”字一面相对面上的字是( )A. 核B. 心C. 素D. 养4.下列运算正确的是( )A. B.C. D.5.一元二次方程根的情况是( )A. 有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根6.解方程去分母,两边同乘后的式子为( )A. B.C. D.7.一次函数当,时,它的图象大致为( )A. B. C. D.8.《四元玉鉴》是我国古代的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的总售价为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210文购买椽的数量为x株,则符合题意的方程是( )A. B. C. D.9.如图,线段DE交线段BC于点E,,若,,则等于( )A.B.C.D.10.如图,在中,分别以A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点D,E,连结DE,交BC于点若,的周长为10,则BC的长为( )A. 6B. 7C. 8D. 9二、填空题:本题共5小题,每小题3分,共15分。

11.计算的结果等于______.12.学习电学知识后,小婷同学用四个开关A、B、C、D,一个电源和一个灯泡设计了一个电路图,现任意闭合其中两个开关,则小灯泡发光的概率等于______.13.如图,已知点A的坐标为,点B在x轴上,把沿x轴向右平移到,若四边形AEFB 的面积为6,则点E的坐标为______.14.如图,在平面直角坐标系中,点A在第一象限,轴于点B,反比例函数的图象与线段AB交于点C,且,则的面积为______.15.如图,在四边形ABCD中,,,,,现给出以下结论:①可能是等腰三角形,②可能是等腰三角形,③可能是直角三角形,④线段AC,BD不可能互相垂直,其中正确的是______写出所有正确结论的序号三、解答题:本题共8小题,共75分。

2015中考数学模拟试题含答案

2015中考数学模拟试题含答案

2015年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分.) 1. 2 sin 60°的值等于 A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第12题图)(第17题图)(第18题图)(第7题图)° (第11题图)22-1n m mn m n -÷+)(20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分。

中考第一次模拟测试《数学试卷》含答案解析

中考第一次模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( )A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A415B.13C.25D.3511. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC,则DEDF的值为( )A. 32B.23C.25D.3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m 2B. 63 m 2C. 64 m 2D. 66 m 2二 、填空题:13. 分解因式:x 3y ﹣2x 2y+xy=______.14. 函数y=12-x x 的自变量x 的取值范围是_____. 15. 化简221(1)11x x -÷+-的结果是 . 16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .18. 已知⊙O 的半径为5,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 是⊙O 的切线,C 是切点,连接AC ,若∠CAB =30°,则BD 的长为____.三 、计算题:19. 解方程组: 3(1)4(4)05(1)3(5)x y y x ---=⎧⎨-=+⎩20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为( )A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x ﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323x x x +>⎧⎪⎨-+≥⎪⎩①②由①得:x >﹣0.5,由②得:x ≤0,则不等式组的解集是﹣0.5<x ≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD等腰三角形①若BD=BC=3在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222=-=-=CG CD DG325∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据”购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。

2015年中考数学试题及答案(解析版)

2015年中考数学试题及答案(解析版)

中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。

)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015辽宁省大连市中考数学试卷
(满分150分,考试时间120分钟)
一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.﹣2的绝对值是( )
A . 2
B .-2
C . 21
D .-2
1
2. 如图是某几何体的三视图,则该几何体是( )
(第2题)
A .球
B .圆柱
C .圆锥
D .三棱柱
3.下列长度的三条线段能组成三角形的是( )
A . 1,2,3
B .,1,2,3
C .3,4,8
D .4,5,6
4.在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )
A.(1,2)
B.(3,0)
C.(3,4)
D.(5,2)
5.方程4)1(2x 3=-+x 的解是( ) A. 52=x B. 65=x C.2=x D.1=x
6. 计算()2x 3-的结果是( )
A. 2x 6
B.2x 6-
C.2x 9
D.2
x 9-
7.
A. 16
B.14
C.4
D.3
8. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )
A.3-1
B.3+1
C.5-1
D.5+1
二、填空题(本大题共8小题,每小题3分,满分24分.)
9.比较大小:3__________ -2(填>、<或=)
10.若a=49,b=109,则ab-9a 的值为:__________.
11.不等式2x+3<-1的解集是:__________.
12.如图,已知AB ∥CD ,∠A =56°,∠C =27°则∠E 的度数为__________.
(第12题)
13.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,将这枚骰子连续掷两次,其点数之和为7的概率为:__________.
14. 在□ABCD 中,点O 是对角线AC 、BD 的交点,AC 垂直于BC ,且AB=10cm ,AD=8cm ,则OB=___________cm .
(第14题)
15.如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32°,底部C 的俯角为45°,观测点与楼的水平距离AD 为31cm ,则楼BC 的高度约为_______m(结果取整数)。

(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
(第15题)
16.在平面直角坐标系中,点A 、B 的坐标分别是(m,3)、(3m-1,3).若线段AB 与直线y=2x+1相交,则m 的取值范围为__________.
三、解答题(本大题共4个小题,其中17、18、19题每小题9分,20题12分,共39分)
17.计算:()()021241313⎪⎭⎫ ⎝⎛-+-+ 18.解方程046x 2=--x
19.在□ABCD 中,点E 、F 在AC 上,且∠ABE=∠CDF ,
求证:BE=DF.
(第19题)
20、某地区共有1800名初三学生,为解决这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分。

(第20题)
根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有_________人,达到优秀的人数占本次测试人数的百分比为____%.
(2)本次测试学生人数为_________人,其中,体质健康成绩为及格的有________人,不及格的人数占本次测试总人数的百分比是__________%.
(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数。

四、解答题(本大题共3个小题,其中21、22题每小题9分,23题10分,共28分)
21. 甲乙两人制作某种机械零件。

已知甲每小时比乙多做3个,甲做96个所用时间与乙做
84个所用时间相等,求甲乙两人每小时各做多少个零件?
22. 如图,在平面坐标系中,∠AOB=90°,AB ∥x 轴,OB=2,双曲线y=x
k 经过点B.将△AOB 绕点B 逆时针旋转,使点O 的对应点D 落在X 轴的正半轴上。

若AB 的对应线段CB 恰好经过点O.
(1)点B 的坐标和双曲线的解析式。

(2)判断点C 是否在双曲线上,并说明理由。

(第22题)
23.如图,AB 是圆O 的直径,点C 、D 在圆O 上,且AD 平分∠CAB.过点D 作AC 的垂线,
与AC 的延长线相交于E,与AB 的延长线相交于点F.
(1)求证:EF 与圆O 相切;
(2)若AB=6,AD=42,求EF 的长。

(第23题)
五、解答题(本大题共3个小题,其中24题11分,25、26题每题12分,共35分)
24. 如图1,在△ABC 中,∠C=90°,点D 在AC 上,且CD>DA,DA=2.点P 、Q 同时从D 点出发,以相同的速度分别沿射线DC 、射线DA 运动。

过点Q 作AC 的垂线段QR,使QR=PQ,联接PR.当点Q 到达A 时,点P 、Q 同时停止运动。

设PQ=x.△PQR 和△ABC 重合部分的面积为S.S 关于x 的函数图像如图2所示(其中0<x ≤
78,7
8<x ≤m 时,函数的解析式不同)
(1)填空:n 的值为___________;
(2)求S 关于x 的函数关系式,并写出x 的取值范围。

图1 图2
答图1 答图2
25.如图,在△ABC 中,点D 、E 、F 分别在AB 、BC 、AC 上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如图1,当DE=DF 时,图1中是否存在于AB 相等的线段?若存在,请找出并加以证明。

若不存在说明理由。

(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD 的长(用含k,m 的式子表示)。

(第25题图1) (第25题图2)
26.如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y 轴的正半轴上,
顶点B 的坐标为(2m,m ),翻折矩形OABC,使点A 与点C 重合,得到折痕DE.设点B 的对应点为F,折痕DE 所在直线与y 轴相交于点G ,经过点C 、F 、D 的抛物线为c bx ax ++=2y 。

(1)求点D 的坐标(用含m 的式子表示)
(2)若点G 的坐标为(0,-3),求该抛物线的解析式。

(3)在(2)的条件下,设线段CD 的中点为M ,在线段CD 上方的抛物线上是否存在点
P,使PM=21
EA?若存在,直接写出P 的坐标,若不存在,说明理由。

(第26题图)。

相关文档
最新文档