红外谱图解析基本知识
红外光谱谱图分析PPT课件
.
22
• 图9
.
23
• 图10
.
24
• 图11
.
25
• 图9a IRtutor1.1 1-heptyne, 1-庚-炔 ,forth P.1 of 4
.
26
• 图10a IRTutor, IRTutor1.1, Heptylcyanide, 庚氰化物, 1st , p.2 of 4
振动频率 770-730(很强)710-690(强) 770-735(很强) 810-750(很强) 710-690 860-800(很强)
900-860(中等) 1,2,4 – 三取代还有820-805吸收带 1,3,5 – 三取代还有860-810 (强)
和730-650(强)吸收带 1,2,3,5 – 四取代还有850-840吸收带
红外光谱谱图分析(1)
.
1
• 一.几个基本概念 • 二.有关基团的特征频率 • 三.影响基团频率位移的因素
1.分子内部结构 2.分子外部环境的影响 3.同位素位移 • 四. 红外与拉曼关系 • 五.近红外 • 六.远红外
.
2
一 几个基本概念
1.红外及拉曼光谱基本原理, 基频
2.特征基团频率与指纹频率 3.基频、倍频、合频和费米
v0
E1
v2
电子能级跃迁
5
4 3 2 1 0
v1
振动能级跃迁
v0
E0
E = hn 其中 h 为普朗克常数 (6.626 × 10-34 焦耳·秒)
n 为频率
.
5
图2
Anti-stokes
红外光谱图解析方法大全
红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。
二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。
2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。
3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。
红外光谱谱图解析完整版
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1
红外光谱图解析方法大全
红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Q = n4+1+(n3-n i)/2 其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n i:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1 为不饱和碳C-H 伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1 一般为饱和C-H 伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);( 4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;( 5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820, 2720和1750~1700cm-1的三个峰,说明醛基的存在。
二、熟记健值1. 烷烃:C-H 伸缩振动( 3000-2850cm-1) C-H 弯曲振动( 1465-1340cm-1) 一般饱和烃C-H 伸缩均在3000cm-1 以下,接近3000cm-1 的频率吸收。
2. 烯烃:烯烃C-H 伸缩(3100~3010cm-1),C=C 伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动( 1000~675cm-1)。
3. 炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4. 芳烃:芳环上C-H 伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。
手把手教你红外光谱谱图解析
手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
红外光谱基本原理与谱图解析
对于不对称分子而言,其分子振动必然能够带来偶极矩的变化,因此,其具有红外活性。
分子类型 同核双原子分子 非同核双原子对称性分子
O
C CH3
Q C=O
1663
O
C CH3
CH3 1693
(3) 偶极场效应 偶极场效应是互相靠近的基团之间通过空间起作用的,一般,基团之间的空间位置越靠 近,偶极场效应也越明显。
案例一
G-
G- O G-
Cl
Cl
C
H
H
HH
1755
G-
G- O
Cl
H
C
H
Cl
HH
1742
O
H
H
Байду номын сангаас
C
Cl
Cl
HH
1728
案例二
−CH3
−CH2
−CH = C − H Ph − H ≡ C − H
2960(νas);2870(νs) 2930(νas);2850(νs) 2850 3100 ∼ 3000 3030
3300
3.1.2 三键、累积三键伸缩振动区(2500 ∼ 1900 cm−1)
1、C ≡ C (1) RC ≡ CH : 2140 ∼ 2100 cm−1 (2) R1C ≡ CR2 : 2260 ∼ 2190 cm−1 R1 = R2 时,无红外活性。
通常,分子的跃迁方式和电磁波的能量相关,图 2所示的是分子在各光波区内的主要跃迁 方式:
红外光谱谱图解析
型的烯烃。 芳烃的C—H弯曲振动主要是900~650 cm-1处的面外弯曲振动,对确定
苯的取代类型很有帮助。
19:06:26
②C—O伸缩振动 这类振动产生的吸收带常常是该区中的最强峰。 醇的C—O在1260~1000 cm-1;酚的C—O1350~1200 cm-1; 醚的C—O在1250~1100 cm-1;饱和醚常在1125 cm-1出现; 芳香醚多靠近1250 cm-1。
19:06:26
酸酐的C=O
双吸收峰:1820~1750 cm-1 ,两个羰基振动偶合裂分; 线性酸酐:两吸收峰高度接近,高波数峰稍强; 环形结构:低波数峰强;
19:06:26
羧酸的C=O
1820~1750 cm-1 , 氢键,二分子缔合体;
19:06:26
(4)确定好可能基团后,对指纹区的谱带进行分析
19:06:26
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
19:06:26
3、再根据谱带的位置、强度、宽度等特征,推测官能团可能与什么取 代基相连接。
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X
红外光谱谱图解析
红外光谱谱图的解析更带有经验性、灵活性。
解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱 带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关
峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合,
12:15:11
(二)计算不饱和度
定义: 不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。如: 乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。
计算: 可按下式进行不饱和度的计算:
UN= (2 + 4n6 + 3n5 + 2n4 + n3 – n1 )/ 2 n6,n5, n4 , n3 , n1 分别为分子中六价,五价,……,一价元素数目。
-(CH2)nn
12:15:11
a)由于支链的引入,使CH3的对称变形振动发生变化。 b)C—C骨架振动明显
H C C H3 C H3
C H3 C
CH3 δ
s
C—C骨架振动
1385-1380cm-1
1372-1368cm-1 1391-1381cm-1 1368-1366cm-1 1405-1385cm-1
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=104
cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区 25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
104 ( m)
由
(cm1 )
可知,2.5~15.4μm波长范围对应于4000cm-
红外光谱谱图解析
对称 υ s(CH3) 2870 ㎝-1
变形振动 甲基
13:26:40
对称δ s(CH3)1380㎝-1
不对称 υ as(CH3) 2960㎝-1
不对称δ as(CH3)1460㎝-1
二、解析红外光谱图
13:26:40
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
—CH2—CO—CH2— 1715 cm-1 酮
—CH2—CO—O—
1735 cm-1 酯
—CH2—CO—NH— 1680 cm-1 酰胺
13:26:40
(四)从分子中减去己知基团所占用的原子,从分子的总不饱和度中 扣除已知基团占用的不饱和度。根据剩余原子的种类和数目以及剩余的 不饱和度,并结合红外光谱,对剩余部分的结构做适当的估计
13:26:40
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-
4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区 25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
由 (cm1)
10 4
( m)
可知,2.5~15.4μm波长范围对应于4000cm-
红外(IR)谱图解析基础知识
红外谱图解析基础知识(一)、基团频率区和指纹区1、基团频率区中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。
这种振动基团频率和特征吸收峰与整个分子的结构有关。
当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。
这种情况就像人的指纹一样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
基团频率区可分为三个区域:(1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。
当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。
C-H的伸缩振动可分为饱和和不饱和的两种。
饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。
如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。
红外光谱谱图解析Ppt讲课文档
伸缩振动 亚甲基:
变形振动
亚甲基
202222//44//1133
第六页,共六十九页。
甲基的振动形式
伸缩振动 甲基:
对称
υs(CH3) 2870 ㎝-1
不对称
υas(CH3) 2960㎝-1
变形振动 甲基
202222//44//1133
对称δs(CH3)1380㎝-1
不对称δas(CH3)1460㎝-1
202222//44//1133
第四页,共六十九页。
2、为什么红外光谱图纵坐标的范围为4000~400 cm-1?
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区
25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
202222//44//1133
第二页,共六十九页。
一、认识红外光谱图
202222//44//1133
第三页,共六十九页。
1、红外光谱图
峰强:Vs(Very strong):很
强;s(strong):强;
m(medium):中强;
w(weak):弱。
峰形:表示形状的为宽峰、尖峰、肩峰
、双峰等类型
常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz学会 谱图集、API光谱图集、DMS光谱图集。
202222//44//1133
第十四页,共六十九页。
1、红外光谱信息区
常见的有机化合物基团频率出现的范围:4000 670 cm-1
依据基团的振动形式,分为四个区:
(1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S)
红外谱图解析综述
砜
as13501290cm-1 s11651120cm-1 (强)
亚砜
10701030cm-1 (强)
(6)P=O:(图15A峰3,4) P=O 13001140cm-1 (接近单键区)
9
红外谱图解析综述
4. X-Y键伸缩振动和X-H键变形振动区(1650650cm-1) X,Y为除了H以外的其它原子,主要包括C-O,Si-O,C-C,C-N,
有机酸OH和CH伸缩振动偶合引起的一系列多重峰(32002500cm-1) (图8C峰1,图16C峰1)
O-H的伸缩振动可作为判断醇,酚,酸的重要依据。 (2)C-H的伸缩振动频率
饱和的 C-H在3000cm-1以下(30002700cm-1) 不饱和的 C-H在3000cm-1以上(33003000cm-1)
1C峰 CH CH3
CH3
3)。叔丁基 1D峰
C
CCC HHH 333
sCH3裂分成1395(m),1365(s)(图
3)。以此可判断化合物的支化情况。
D:-CH2-n的面外摇摆峰,n4时出现720cm-1吸收峰。可判断是 否是长链化合物。(图1A、B峰4,图7C峰6、D峰5,图9C峰4、D峰
5)
12
O R-C-OH
O R -C -H
1740 1730 1700缔合1760游离
O R-C-OM
O R -C-N H 2
1650(酰胺谱带I) 16001500和1400
O= =O
1667
8
红外谱图解析综述
如果C=O基与双键,苯环共轭。C=O基的伸缩振动频率比上述相应位置 要低,强度增加。在解析光谱时必须注意。(图8A峰2,B峰4,C峰2,D峰 1酮羰基,峰2羧酸盐羰基,图9A峰2,B峰3,C峰2,D峰3,图10A峰2,B峰1,C 峰2,D峰1,图11A峰3,B峰3,C峰2酰胺谱带Ⅰ,图16B峰3,C峰2)
红外光谱谱图解析PPT讲稿
1~650cm-1。大多数有机化合物及许多无机化合物的化学键振动均
落在这一区域 。
13:05:12
3、分子中基团的基本振动形式 basic vibration of the group in molecular
(1)两类基本振动形式 伸缩振动 亚甲基:
变形振动 亚甲基
13:05:12
甲基的振动形式
例: 2800 3000 cm-1 —CH3 特征峰; 1600 1850 cm-1 — C=O 特征峰;
基团所处化学环境不同,特征峰出现位置变化:
—CH2—CO—CH2— 1715 cm-1 酮
—CH2—CO—O—
1H— 1680 cm-1 酰胺
13:05:12
当浓度较大时,发生缔合作用,峰形较宽。
目。 作用: 由分子的不饱和度可以推断分子中含有双键,三键,环,芳环的 数目,验证谱图解析的正确性。 例: C9H8O2
UN = (2 +29 – 8 )/ 2 = 6
13:05:12
(三)从特征频率区中确定主要官能团取代基
与一定结构单元相联系的、在一定范围内出现的化学键振动频率— —基团特征频率(特征峰);
红外光谱谱图解析课件
13:05:12
概述 introduction
分子中基团的振动和转动能级跃迁产生:振-转光谱 辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
近红外区:低能电子 跃迁、含氢原子团伸 缩振动的合频吸收; 稀土、过渡金属
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-
4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区 25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
红外图谱分析方法大全
红外光谱图解析一、分析红外谱图(1)首先依据谱图推出化合物碳架类型,根据分子式计算不饱和度。
公式:不饱和度=F+1+(T-O)/2其中:F:化合价为4价的原子个数(主要是C原子);T:化合价为3价的原子个数(主要是N原子);O:化合价为1价的原子个数(主要是H原子)。
F、T、O分别是英文4,3 1的首字母,这样记起来就不会忘了举个例子:例如苯(C6H6),不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度。
(2)分析3300~2800cm^-1区域C-H伸缩振动吸收,以3000 cm^-1为界,高于3000cm^-1为不饱和碳C-H伸缩振动吸收,有可能为烯、炔、芳香化合物吗,而低于3000cm^-1一般为饱和C-H伸缩振动吸收。
(3)若在稍高于3000cm^-1有吸收,则应在2250~1450cm^-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔—2200~2100 cm^-1烯—1680~1640 cm^-1芳环—1600、1580、1500、1450 cm^-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm^-1的频区,以确定取代基个数和位置(顺反,邻、间、对)。
(4)碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820、2720和1750~1700cm^-1的三个峰,说明醛基的存在。
解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的。
二、记住常见常用的健值1.烷烃3000-2850 cm-1C-H伸缩振动1465-1340 cm-1C-H弯曲振动一般饱和烃C-H伸缩均在3000 cm-1以下,接近3000 cm-1的频率吸收。
2.烯烃3100~3010 cm-1烯烃C-H伸缩1675~1640 cm-1C=C伸缩烯烃C-H面外弯曲振动(1000~675cm^1)。
红外光谱谱图解析
• 倍频峰又分为一级倍频峰、二级倍频峰等 等。当非谐振子从n = 0向n = 2振动能级 跃迁时所吸收光的频率称为一级倍频峰, 从n = 0向n = 3振动能级跃迁时所吸收光 的频率称为二级倍频峰 • 一级倍频峰很弱,二级倍频峰更弱
• 一级倍频峰的波数并非正好等于基频峰波 数的两倍。一级倍频总是小于基频的两倍, 这是因为非谐振子振动能级是不等距的, 其能级间隔随着振动量子数n的增加而慢慢 减小
6
倍频峰 (Overtone)
• 根据谐振子选择定则,谐振子只能在相邻的 两个振动能级之间跃迁, 即Δn=±1。而且 各个振动能级之间的间隔都是相等的
• 实际分子不是谐振子。量子力学证明,非谐 振子的选择定则不再局限于Δn=±1。Δn可 以等于其它整数,即Δn=±1,±2, ±3,……。也就是说,对于非谐振子,可以 从振动能级n = 0向n = 2或n = 3,或向更高 的振动能级跃迁。非谐振子的这种振动跃迁 称为倍频振动。倍频振动频率称为倍频峰
苯的拉曼光谱
反对称伸缩振动
(Asymmetric Stretching Vibration)
直线形三原子基团反对称伸缩振动
弯曲形三原子基团反对称伸缩振动 H2O,-CH2-,-NH2,-NO2
CO2
平面形四原子基团反对称伸缩振动
四面体形五原子基团反对称伸缩振动
NO3-,BO3-,CO32-
NH4+,SO42+,PO43+ ,SiO42-
H N O O H
H
平面型 硝酸钠中的NO3- 的对称伸缩振动 1071cm-1(拉曼活性)
四面体型 甲基-CH3的对称伸缩振动 2872±5cm-1
O
S
O O
O
红外光谱谱图解析
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
当浓度较大时,发生缔合作用,峰形较宽。
注意区分 —NH伸缩振动: 3500 3100 cm-1
18:02:04
3515cm-1
2895 cm-1
3640cm-1
3350cm-1
2950cm-1
18:02:04
乙醇在四氯化碳中不同浓度的IR图
0.01M
0.1M 0.25M 1.0M Nhomakorabea②饱和碳原子上的—C—H
C-H,N-H,O-H
1500
1000 500 指纹区
三、各类化合物的红外光谱特征
18:02:04
1、烷烃(CH3,CH2,CH)(C—C,C—H )
3000cm-1
CH3
δas1460 cm-1 δs1380 cm-1
重 叠
CH2 δs1465 cm-1
CH2 r 720 cm-1(水平摇摆)
CH2 对称伸缩2853cm-1±10 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10
-(CH2)nn
18:02:04
a)由于支链的引入,使CH3的对称变形振动发生变化。 b)C—C骨架振动明显
H C C H3 C H3
C H3 C
红外谱图基础知识
第一节:概述1、红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量(△E=0.05-1.0ev)较紫外光(△E=1-20ev)低,当红外光照射分子时不足以引起分子中价电子能级的跃迁,而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱又称为分子振动光谱或振转光谱。
2、红外光谱的特点:特征性强、适用范围广。
红外光谱对化合物的鉴定和有机物的结构分析具有鲜明的特征性,构成化合物的原子质量不同、化学键的性质不同、原子的连接次序和空间位置不同都会造成红外光谱的差别。
红外光谱对样品的适用性相当广泛,无论固态、液态或气态都可进行测定。
3、红外光谱波长覆盖区域:0.76 mm ~ 1000mm.红外光按其波长的不同又划分为三个区段。
(1)近红外:波长在0.76-2.5mm之间(波数12820-4000cm-1)(2)中红外:波长在2.5-25mm(在4000-400 cm-1)通常所用的红外光谱是在这一段的(2.5-15mm,即4000-660 cm-1)光谱范围,本章内容仅限于中红外光谱。
(3)远红外:波长在25~1000mm(在400-10 cm-1)转动光谱出现在远红外区。
4、红外光谱图:当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要吸收能量,从原来的振动能级跃迁到能量较高的振动能级,将分子吸收红外光的情况用仪器记录,就得到红外光谱图。
5、红外光谱表示方法:(1)红外光谱图红外光谱图以透光率T %为纵坐标,表示吸收强度,以波长l ( mm) 或波数s (cm-1)为横坐标,表示吸收峰的位置,现主要以波数作横坐标。
波数是频率的一种表示方法(表示每厘米长的光波中波的数目)。
通过吸收峰的位置、相对强度及峰的形状提供化合物结构信息,其中以吸收峰的位置最为重要。
(2)将吸收峰以文字形式表示:如下图可表示为,3525cm-1(m),3097cm-1(m),1637cm-1(s)。
这种方法指出了吸收峰的归属,带有图谱解析的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由= 0跃迁至= 2时,△= 2,则L = 2,即吸收的红外线谱线(L)是分子振动频率的二倍,产生的吸收峰称为二倍频峰。
基频峰(0→1)2885.9 cm-1最强
二倍频峰(0→2)5668.0 cm-1较弱
基团频率区可分为三个区域
(1) 4000 ~2500 cm-1X-H伸缩振动区,X可以是O、N、C或S等原子。
O-H基的伸缩振动出现在3650 ~3200 cm-1范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。
当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1出现一个宽而强的吸收峰。
3 .气体样品
气体样品可在玻璃气体池内进行测定,它的两端粘有红外透光的NaCl或KBr窗片。先将气体池抽真空,再将试样注入。
红外光谱法对试样的要求
红外光谱的试样可以是液体、固体或气体,一般应要求:
1、试样应该是单一组份的纯物质,纯度应>98%或符合商业规格,才便于与纯物质的标准光谱进行对照。多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。
2、试样中不应含有游离水。水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。
红外谱图解析基本知识
基团频率区
中红外光谱区可分成4000 cm-1~1300(1800)cm-1和1800(1300)cm-1~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1~ 1300 cm-1之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。
胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1,因此,可能会对O-H伸缩振动有干扰。
C-H的伸缩振动可分为饱和和不饱和的两种:
饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。如-CH3基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1附近,但强度很弱。
区域
波长范围(m)
波数范围(cm-1)
频率(Hz)
近红外
0.78-2.5
12800-4000
3.81014-1.21014
中红外
2.5-50
4000-200
1.21014-6.01012
远红外
50-1000
200-10
6.01012-3.01011
常用
2.5-15
4000-670
1.21014-2.01013
(2) 900 ~ 650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。
利用上区域中苯环的C-H面外变形振动吸收峰和2000~ 1667cm-1区域苯的倍频或组合频吸收峰,可以共同配合确定苯环的取代类型。
红外光谱
红外光区划分:通常将红外波谱区分为近红外(near-infrared),中红外(middle-infrared)和远红外(far-infrared)。
3、试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。
制样的方法
1.固体试样
(1) 压片法
将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)107Pa压力在油压机上压成透明薄片,即可用于测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。
在1800 cm-1(1300 cm-1)~600 cm-1区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。
叁键ºCH上的C-H伸缩振动出现在更高的区域(3300 cm-1)附近。
(2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CºC、-CºN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。
对于炔烃类化合物,可以分成R-CºCH和R¢-C ºC-R两种类型:
指纹区
(1) 1800(1300)cm-1~ 900 cm-1区域是C-O、C-N、C-F、C-P、C-S、P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。
其中:1375 cm-1的谱带为甲基的dC-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1,是该区域最强的峰,也较易识别。
当样品受到频率连续变化的红外光照射时,分子吸收某些频率的辐射,产生分子振动能级和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。
物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。
分子吸收红外辐射后,由基态振动能级(=0)跃迁至第一振动激发态(=1)时,所产生的吸收峰称为基频峰。因为(振动量子数的差值)△=1时,L=,所以基频峰的位置(L)等于分子的振动频率。
(2) 石蜡糊法
将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。
(Байду номын сангаас) 薄膜法
主要用于高分子化合物的测定。可将它们直接加热熔融后涂制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。
当样品量特别少或样品面积特别小时,采用光束聚光器,并配有微量液体池、微量固体池和微量气体池,采用全反射系统或用带有卤化碱透镜的反射系统进行测量。
不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。
苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。
不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。
R-CºCH的伸缩振动出现在2100~2140 cm-1附近;
R¢-C ºC-R出现在2190~2260 cm-1附近;
R-C ºC-R分子是对称,则为非红外活性。
-C ºN基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C ºN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C ºN基越近,-C ºN基的吸收越弱,甚至观察不到。
三倍频峰(0→3)8346.9 cm-1很弱
四倍频峰(0→4)10923.1 cm-1极弱
五倍频峰(0→5)13396.5 cm-1极弱
除此之外,还有合频峰(1+2,21+2,),差频峰(1-2,21-2,)等,这些峰多数很弱,一般不容易辨认。倍频峰、合频峰和差频峰统称为泛频峰。
红外光谱特点
1)红外吸收只有振-转跃迁,能量低;
2 .液体和溶液试样
(1) 液体池法
沸点较低,挥发性较大的试样,可注入封闭液体池中,液层厚度一般为0.01~1mm。
(2) 液膜法
沸点较高的试样,直接滴在两片盐片之间,形成液膜。
对于一些吸收很强的液体,当用调整厚度的方法仍然得不到满意的谱图时,可用适当的溶剂配成稀溶液进行测定。一些固体也可以溶液的形式进行测定。常用的红外光谱溶剂应在所测光谱区内本身没有强烈的吸收,不侵蚀盐窗,对试样没有强烈的溶剂化效应等。
(3) 1900~1200 cm-1为双键伸缩振动区
该区域重要包括三种伸缩振动:
C=O伸缩振动出现在1900~1650 cm-1,是红外光谱中特征的且往往是最强的吸收,以此很容易判断酮类、醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰基吸收带由于振动耦合而呈现双峰
苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围,是C-H面外和C=C面内变形振动的泛频吸收,虽然强度很弱,但它们的吸收面貌在表征芳核取代类型上有一定的作用。
2)应用范围广:除单原子分子及单核分子外,几乎所有有机物均有红外吸收;
3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定分子基团、分子结构;
4)定量分析;
5)固、液、气态样均可用,且用量少、不破坏样品;
6)分析速度快;
7)与色谱等联用(GC-FTIR)具有强大的定性功能;
试样的处理和制备