SPSS软件正态性检验课件
spss 数据正态分布检验
spss 数据正态分布检验一、Z检验第一步:录入数据。
1.命名“变量视图”;2.“数据视图”中输入数据;第二步:进行分析。
第三步:设置变量;第四步:得到结果:二、相关系数检验在一项研究中,一个学生想检查生活意义和心理健康是否相关。
同意参与这项研究的30个学生测量了生活意义和心理健康。
生活意义的得分范围是10-70分(更高的得分表示更强的生活意义),心理健康的得分范围是5-35分(更高的得分表示更健康的心理状态)。
在研究中基本的兴趣问题也可以用研究问题的方式表示,例如 例题:生活意义和心理健康相关吗? 相关系数数据的例子Participant Meaning in Life Well-beingParticipant Meaning in Life Well-being1 35 192 65 273 14 194 35 355 65 346 33 3417 25 1218 55 2019 61 3120 53 2521 60 3222 35 127 54 358 20 289 25 1210 58 2111 30 1812 37 2513 51 1914 50 2515 302916 70 3123 35 2824 50 2025 39 2426 68 3427 56 2828 19 1229 56 3530 60 35说明:变量participant 包含在数据中,但不用输入SPSS 。
在spss 中输入数据及分析步骤1:生成变量1.打开spss。
2.点击“变量视图”标签。
在spss中将生成两个变量,一个是生活意义,另一个是心理健康。
变量分别被命名为meaning和wellbeing。
3.在“变量视图”窗口前两行分别输入变量名称meaning和wellbeing。
步骤2:输入数据1.点击“数据视图”,变量meaning和wellbeing出现在数据视图前两列。
2.将两个变量的数据分别输入。
如图。
SPSS统计分析1:正态分布检验.
正态分布检验一、正态检验的必要性[1]当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。
当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方法,而应采用非参数检验。
二、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
Q-Q图为佳,效率较高。
以上两种方法以3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
三、计算法1、峰度(Kurtosis)和偏度(Skewness)(1)概念解释峰度是描述总体中所有取值分布形态陡缓程度的统计量。
这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。
峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。
峰度的具体计算公式为:注:SD就是标准差σ。
峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。
偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。
这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。
SPSS统计分析1:正态分布检验
正态分布检验一、正态检验的必要性[1]当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。
当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方法,而应采用非参数检验。
二、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
三、计算法1、峰度(Kurtosis)和偏度(Skewness)(1)概念解释峰度是描述总体中所有取值分布形态陡缓程度的统计量。
这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。
峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。
峰度的具体计算公式为:注:SD就是标准差σ。
峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。
偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。
这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。
SPSS中正态分布的检验
一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U 检验。
两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。
由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。
2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。
SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。
SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。
对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。
由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。
(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。
SPSS数据正态性检验解析
SPSS数据正态性检验解析正态性检验是数据分析中的一个关键步骤,它通常用于检查一个数据集是否符合正态分布。
如果数据集符合正态分布,则可以使用更广泛的统计方法。
SPSS软件是一个广泛使用的统计分析工具,它提供了一系列的正态性检验方法,用于帮助用户评估他们的数据是否符合正态分布。
本文将介绍如何使用SPSS进行正态性检验。
正态性检验数据的正态性是指数据集在正态分布上的贴合程度。
在正态分布中,数据的均值、中位数和众数相等,数据分散程度由标准差来度量。
正态分布在自然界中非常普遍,例如,身高、体重和智力得分通常符合正态分布。
正态性检验是用于检查一个数据集是否符合正态分布的一种方法。
如果数据集的分布不是正态分布,则在分析数据时需要采取更多的措施。
一些因素导致数据不符合正态分布,例如较小的样本量、抽样偏差、异常值等。
正态性检验的目的是确定一个分布是否足够接近正态分布,以使得正态性假设在数据分析中得到保证。
正态性假设是很重要的,在大多数情况下,如果数据是接近正态分布,则可以使用更广泛的统计方法。
如果数据不符合正态分布,则需要使用非参数方法。
SPSS中的正态性检验SPSS提供了一系列正态性检验方法,用于分析数据集的正态性。
以下将分别介绍这些方法:1.直方图与正态概率图检验直方图可以通过展示数据集的频率分布来检查正态性。
用户可以通过观察直方图形状是否类似于正态分布来评估正态性。
此外,正态概率图也可以用来评估正态性。
正态概率图绘制了每个观测值在正态分布上的位置,并将这些观测值与理论正态分布进行比较。
2.基于统计值的正态性检验SPSS中的一些统计测试可以用于定量检测正态性。
例如,Shapiro-Wilk检验是一种基于统计值的正态性检验方法。
这种测试计算数据的W值,如果W值不显著,则数据符合正态分布。
其他常用的基于统计值的正态性检验方法包括Kolmogorov-Smirnov检验和Anderson-Darling检验。
3.用Q-Q图检验正态性Q-Q图是评估一个数据集是否为正态分布的一种图形方法。
SPSS检验正态分布
下面我们来瞧一组数据,并检验“期初平均分” 数据就是否呈正态分布(此数据已在SPSS里输入好)
在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版得可以找到相应位置),然后弹出左边得对话框,变量选择左边得“期初平均分”,再点下面得“图表”按钮,弹出图中右边得对话框,选择“直方图”,并选中“包括正态曲线”
设置完后点“确定”,就后会出来一系列结果,包括2个表格与一个图,我们先来瞧瞧最下面得图,见下图,
上图中横坐标为期初平均分,纵坐标为分数出现得频数。
从图中可以瞧出根据直方图绘出得曲线就是很像正态分布曲线。
如何证明这些数据符合正态分布呢,光瞧曲线还不够,还需要检验:
检验方法一:瞧偏度系数与峰度系数
我们把SPSS结果最上面得一个表格拿出来瞧瞧(见下图):
偏度系数Skewness=-0、333;峰度系数Kurtosis=0、886;两个系数都小于1,可认为近似于正态分布。
检验方法二:单个样本K-S检验
在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。
检验结果为:
从结果可以瞧出,K-S检验中,Z值为0、493,P值(sig 2-tailed)=0、968>0、05,因此数据呈近似正态分布
检验方法三:Q-Q图检验
在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图:
变量选择“期初平均分”,检验分布选择“正态”,其她选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要瞧最后一个图,见下图。
QQ Plot 中,各点近似围绕着直线,说明数据呈近似正态分布。
spss统计学正态性检验教程
正态分布的检验数据的正态分布是通过Analyze -> Descriptive Statistics -> Explore来实现的,同时该命令也可以检查异常值和极值,和进行方差齐性检验(方差齐性,本节不介绍)。
打开文件data0201-protein.sav,如下图,50种树叶中粗蛋白占干重的比例,如果检验变量protein的正态性,按Analyze -> Descriptive Statistics -> Explore打开如下对话框,把要检验的变量送入Dependent List框(可同时检验多个变量),Factor List框是分组变量(本例中无分组变量),Label Cases by框指定一个变量作为标识变量(可忽略),Display栏指定要输出的是统计量或统计图,或同时输出。
点击Statistics按钮,打开如下左对话框,选择要输出的统计量,选项Descriptives:描述统计量,选项M-estimators:集中趋势最大似然比(可忽略),选项outliers:5个最大值和最小值,选项Percentiles:第5、10、25、50、75、90、95百分位数,点击continue回到Explore对话框,点击Plots,打开如上右对话框,Boxplots框选择箱状图的格式,选项None:不输出箱状图,选项Factor levels together:变量按分组生成箱状图,并列输出(本例未分组),选项Dependents together:在一个图形中生成所有变量箱状图(本例只有一个变量),Descriptive框选择输出图形的类型;选项stem-and-leaf:茎叶图,选项Histogram:直方图;Normality plots with tests栏,输出正态概率和无趋势概率图,以及统计检验结果;Spread vs Level with Levene Test栏各选项与方差齐性检验有关,本节不介绍(只有选择分组变量时,才被激活)。
spss操作步骤讲解系列--正态性检验
正态分布及spss中的检验方法1.基本理论正态分布:又称高斯分布或上帝分布,分布形态,呈现最好和最坏的较少,较多的集中在一般如果是图形展示类似钟形。
一般问卷数据可以采用中心极限定理:在收集数据时只要收集的数据,次数足够大,数据将会趋向于正态分布,因此一般认为问卷数据满足近似正态分布。
正态性检验方法:K-S和S-W较严格和准确,但因为对数据的要求较为严格。
图形法p-p和q-q图,还有描述统计分析的偏度和峰度,非参数检验的单样本K-S检验。
图1探索方法勾选2.描述统计探索分析方法探索性分析方法的操作第一步:将数据导入spss软件后,点击分析、描述统计、探索。
图2探索性操作第一步第二步、进入图中对话框后,点击图,勾选直方图和含检验的正态性图,点击继续、确定。
图3探索性第二步然后正态性检验的结果就出来了(在正态检验中重要的是正态性检验表中的结果)。
图4探索性检验结果展示将结果粘贴复制到Excel表格中,后将整理好的结果粘贴复制到Word文档进行,由于p<0.05,表明本次数据不满足正态分布。
图5探索结果整理3.p-p图操作步骤第一步、将数据导入spss软件中,p-p图操作:点击分析、描述统计、p-p 图。
图6p-p操作步骤第一步进入图中框中后,将变量放入对应的对话框中点击确定。
图7p-p图勾选情况然后p-p图结果就出来了(根据图中点是否均匀的分布在对角线上,来判断是否满足近似正态)。
图8p-p图结果展示将p-p图结果放入Word文档中进行分析,从图中可以看出,点均分布在对角线附近,表明数据满足正态分布。
图9p-p结果整理4.Q-Q图操作步骤Q-Q图操作第一步:首先将数据导入spss中,点击分析、描述统计、Q-Q图。
图10Q-Q图操作步骤一第二步、进入图中对话框后,将对应变量放入对应框中,点击确定。
图11Q-Q图勾选情况然后Q-Q图结果就出来了(根据图中点是否均匀的分布在对角线上,来判断是否满足近似正态)。
S P S S软件正态性检验ppt课件
如果资料服从正态分布,则样本点应呈一条围 绕第一象限对角线的直线。
SPSS统计分析
正态去势P-P图(累计概率残差图)是以样 本 的实际累计频率作为横坐标,以样本的实际累计 频率与按照正态分布计算的相应累计概率差(称 为累计概率的残差)作为纵坐标,把样本表现为 直角坐标系的散点,所描绘的图形。 如果资料服从正态分布,残差散点基本在Y=0 上下均匀分布。
SPSS统计分析
单击Statistics取消所有基本统计量。
单击Charts设置选项。
SPSS统计分析
2、结果解释
SPSS统计分析
2.6 多指标的描述分析 例2-7 对data2-1中的数据分别计算各学校参与 调查学生的性别构成比 。
1、操作提示: 单击Analyze/Descriptive Statistics/ Crosstabs打开相关分析对话框,选择分析。
0.00
-.02
-.04
0.0
.2
.4
.6
.8
1.0
Observed Cum Prob
SPSS统计分析
练习3-1 对数据文件data2-1,中的体重、身高 和肺活量的资料利用P-P图法进行正态性检验 。
3.2 Q-Q图法
SPSS统计分析
正态Q-Q 概率图:是以样本的分位数(Px)
为 横坐标,以按照正态分布计算的相应理论分位数 为纵坐标,把样本表现为直角坐标系的散点,所 描绘的图形。
1 2 ( x4
x5 )
53 54 53.5 2
spss正态分布检验方法
spss正态分布检验方法SPSS正态分布检验方法。
SPSS(Statistical Package for the Social Sciences)是一种统计分析软件,广泛应用于社会科学、生物医学等领域的数据分析。
在进行数据分析时,我们经常需要对数据的分布进行检验,其中正态分布检验是一种常见的方法。
本文将介绍如何在SPSS中进行正态分布检验,以及如何解释检验结果。
首先,在SPSS中打开需要进行正态分布检验的数据文件。
在数据文件打开后,选择“分析”菜单中的“描述统计”选项,然后再选择“探索”子菜单。
在弹出的对话框中,将需要进行正态分布检验的变量移动到右侧的“变量”框中,然后点击“统计”按钮。
在“统计”对话框中,勾选“正态性”选项。
这里还可以选择其他统计量,比如偏度和峰度,以便进行更全面的正态分布检验。
点击“确定”后,SPSS将生成正态分布检验的结果。
正态分布检验的结果包括了多个统计量,其中最常用的是K-S检验(Kolmogorov-Smirnov test)和Shapiro-Wilk检验。
K-S检验是一种非参数检验,适用于任意分布的正态性检验;而Shapiro-Wilk检验对样本量有要求,适用于小样本数据的正态性检验。
在SPSS的输出结果中,我们可以看到这两种检验的统计量和p值,以及对应的判定标准。
在解释正态分布检验的结果时,我们需要关注p值的大小。
通常情况下,如果p值大于0.05,我们就可以接受原假设,即数据符合正态分布;反之,如果p值小于0.05,我们就需要拒绝原假设,认为数据不符合正态分布。
需要注意的是,正态分布检验并不是一种绝对的判定,而是基于统计学的推断,因此在解释结果时要慎重。
除了p值,我们还可以关注统计量的数值。
在K-S检验中,统计量D越小,说明数据与正态分布的偏差越小;在Shapiro-Wilk检验中,统计量W越接近1,也说明数据与正态分布的拟合程度越高。
因此,通过统计量的数值,我们也可以初步判断数据的正态性。
SPSS统计分析策略(1):正态性检验与判断
SPSS统计分析策略(1):正态性检验与判断第1讲实验性研究定量数据统计策略(1):正态性检验与判断数据分析时需要执⾏的关键步骤之⼀是判断数据的正态性(Normality)。
统计分析拿到数据后,⾸先,研究者找到研究的⽬标变量,特别是主要结局指标(Primary outcome)。
接着,评价结局指标是何种类型的(定量还是定性或者等级)。
如果是定量数据,正态性则是接下来需要研判的内容了。
数据可根据变量的属性分为正态分布数据和偏态分布数据。
此外,在实际分析中,我们往往会将数据其分为正态分布数据、近似正态分布数据和严重偏态分布数据。
正态分布数据⾮正态分布数据(偏态分布)正态分布还是⾮正态分布的研判⾮常重要。
统计分析时,如果变量值呈正态分布,统计描述采⽤均数±标准差,假设检验可采⽤t检验、F检验;如果变量值呈偏态分布,则要采⽤中位数(四分位数间距)[M(IQR),或M(P25,P75)],假设检验⽅法上,⾮参数检验更合适。
实例分析将出⽣28天的20只⼤⿏随机分成两组,分别饲以⾼蛋⽩和低蛋⽩饲料,8周后观察其体重(g)。
问两种不同饲料组别的⼤⿏体重正态性情况如何?数据见数据库weight.sav.⾼蛋⽩组:133,145,112,138,99,157,126,121,139,106,115低蛋⽩组:118,75,106,87,94,110,102,124,1301思考本案例由⼏个变量组成?研究的关键变量是什么?是什么类型的数据?2案情分析本案例包括2个变量,⼀个是⼤⿏体重(g),另外⼀个是分组变量(⾼蛋⽩组和低蛋⽩组)。
主要研究的结局指标是⼤⿏体重,定量数据。
3统计分析策略数据的正态性问题,可从两个层⾯来探讨。
第⼀个层⾯是所有⼤⿏体重值放在⼀起的整体正态性,另外⼀个层⾯是⾼蛋⽩组和低蛋⽩组两组数据各⾃正态性。
前者我称为单样本正态性,后者为两样本正态性。
SPSS 操作1正态性检验界⾯:分析—描述统计—探索2单样本正态性检验界⾯①因变量列表(dependent variable):这⼀选框选⼊检验变量、或者结局变量(是希望去探讨的⽬标变量)②图:见下图:①茎叶图和直⽅图,两者都√上。
SPSS统计分析1:正态分布检验
正态分布检验一、正态检验的必要性[1]当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。
当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方法,而应采用非参数检验。
二、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。
如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。
2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。
如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。
以上两种方法以Q-Q图为佳,效率较高。
3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。
4、箱式图判断方法:观测离群值和中位数。
5、茎叶图类似与直方图,但实质不同。
三、计算法1、峰度(Kurtosis)和偏度(Skewness)(1)概念解释峰度是描述总体中所有取值分布形态陡缓程度的统计量。
这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。
峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。
峰度的具体计算公式为:注:SD就是标准差σ。
峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。
偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。
这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。