Digital Imaging and Communication in Medicine(DICOM)
DICOM接口简介
DICOM接口简介一、简介1、DICOM接口就是通常所说的“数字口”。
“DICOM”是英文“Digital Imaging and Communication in Medicine ”的缩写。
DICOM标准是由ACR (American College of Radiology)以及NEMA(National Electrical Manufacturers Association)联合委员会,于1983年以后陆续发展而成的医疗数字影像及传输标准。
2、DICOM标准建立的目的: 推动开放式与厂牌无关的医疗数字影像的传输与交换。
促使影像储存与传输系统PACS (Picture Archiving and Communication Systems) 的发展与各种医院信息系统HIS (Hospital Information Systems) 的结合。
允许所产生的诊所资料库能广泛地经由不同地方的设备来访问DICOM。
3、对于DICOM3.0数字接口,使用标准通讯协议采集图像,图像信息完全不丢失。
用DICOM影像最大的优势还在于能调节窗宽、窗位,充分利用设备采集到的丰富信息帮助诊断。
而胶片是固定的,医生当时看时可以,调好了窗宽窗位打成胶片,病人复诊时就看不到更多的信息了。
还有,对于确实难以下结论的模糊病例,还提供了快速参考其他诊断结果的途径。
4、DICOM中有11种不同的服务类(Service Class),例如打印(Printing)、传输(Move)、存储(Store)、存档(Archiving) 等。
某一服务类中又分为使用者(User、SCU)和提供者(Provider、SCP),某一设备可能仅符合其中的某一个或某几个类。
比如:a:通常的设备操作台(Operator Console) 仅符合DICOM的存储类及传输类,它仅作为SCU而不是SCP,且不符合DICOM 3.0的打印服务类(Service Class for Printing)。
PACS系统
PACS系统pacs和PACS系统是同义词,已合并。
PACS系统是Picture Archiving and Communication Systems的缩写,意为影像归档和通信系统。
它是应用在医院影像科室的系统,主要的任务就是把日常产生的各种医学影像(包括核磁,CT,超声,各种X光机,各种红外仪、显微仪等设备产生的图像)通过各种下能够很快的调回使用,同时增加一些辅助诊断管理功能。
它在各种影像设备间传输数据和组织存储数据具有重要作用。
目录1概述2PACS系统软件的优点3PACS系统软件发展趋势4标准5结构流程1. 5.1 结构层次2. 5.2 工作流程1概述随着数字化信息时代的来临,诊断成像设备中各种先进计算机技术和数字化图像技术的应用为医学影像信息系统的发展奠定了基础。
历经逾百年发展,医学影像成像技术也从最初的X射线成像发展到现在的各种数字成像技术。
什么是医学影像信息系统医学影像信息系统简称PACS(Picture Archiving and Communication Systems),与临床信息系统(Clinical Information System, CIS)、放射学信息系统(Radiology Information System, RIS)、医院信息系统(Hospital Information System, HIS)、实验室信息系统(Laboratory Information System, LIS)同属医院信息系统。
医学影像信息系统狭义上是指基于医学影像存储与通信系统,从技术上解决图像处理技术的管理系统;临床信息系统是指支持医院医护人员的临床活动,收集和处理病人的临床医疗信息的信息管理系统;放射学信息系统是指以放射科的登记、分诊、影像诊断报告以及放射科的各项信息查询、统计等基于流程管理的信息系统;医院信息系统是指覆盖医院所有业务和业务全过程的信息管理系统;实验室信息系统是一类用来处理实验室过程信息的信息系统。
pacs的标准
pacs的标准
PACS(Picture Archiving and Communication System)是医学
影像存档和传输的标准化系统。
以下是PACS的一些标准:
1. DICOM(Digital Imaging and Communications in Medicine):DICOM是医学影像领域最常用的标准,用于在不同设备和厂
家之间传输和存储医学影像。
DICOM定义了数据格式、通信
协议和图像存储方法,确保影像的一致性和互操作性。
2. HL7(Health Level Seven International):HL7是用于医疗
信息系统(包括PACS)之间交换和共享数据的国际标准。
它
定义了一种通用的消息格式和通信协议,用于将不同系统中的患者信息和医学影像数据整合到一起。
3. IHE(Integrating the Healthcare Enterprise):IHE是一个医
疗行业联盟,旨在推动不同供应商和系统之间的互操作性。
它制定了一系列与PACS相关的技术规范和实施指南,确保不同PACS系统间的无缝集成和协作。
4. ISO(International Organization for Standardization):ISO制定了许多与医学影像和PACS相关的国际标准,例如ISO 12052(PACS安全)、ISO 13485(医疗器械质量管理体系)等。
这些标准的存在确保了不同设备和系统之间的互操作性,使得医学影像能够在不同环境中无缝传输、存储和访问。
DICOM标准及应用
DICOM标准及应用
——第一讲 DICOM标准概述
一 什么是DICOM?
DICOM是Digital Imaging and COmmunication of Medicine的缩写,是美国放射学会(American College of Radiology,ACR)和美国电器制造商协会(National Electrical Manufacturers Association,NEMA)组织制定的专门用于医学图像的存储和传输的标准名称。经过十多年的发展,该标准已经被医疗设备生产商和医疗界广泛接受,在医疗仪器中得到普及和应用,带有DICOM接口的计算机断层扫描(CT)、核磁共振(MR)、心血管造影和超声成像设备大量出现,在医疗信息系统数字网络化中起了重要的作用。
13. 第13部分: 点对点通信支持的打印管理。定义了在打印用户和打印提供方之间点对点连接时,支持DICOM打印管理应用实体通信的必要的服务和协议。点对点通信卷宗提供了与第8部分相同的上层服务,因此打印管理应用实体能够应用在点对点连接和网络连接。点对点打印管理通信也使用了低层的协议,与已有的并行图像通道和串行控制通道硬件硬拷贝通信相兼容。
7. 服务对象对(Service Object Pair,SOP): DICOM信息传递的基本功能单位。包括一个信息对象和一组DICOM消息服务元素。
PACS介绍
PACS入门知识什么是PACS(医学影像存档与通信系统)? (1)DICOM3.0标准 (3)PACS RIS HIS的区别与整合 (5)PACS 工作站基本要求 (7)PACS接入设备的几种接口技术 (8)放射介绍 (8)B超介绍 (9)什么是PACS(医学影像存档与通信系统)?什么是PACS(医学影像存档与通信系统)?PACS是英文Picture Archiving & Communication System的缩写,译为“医学影像存档与通信系统”,其组成主要有计算机、网络设备、存储器及软件。
PACS用于医院的影像科室,最初主要用于放射科,经过近几年的发展,PACS已经从简单的几台放射影像设备之间的图像存储与通信,扩展至医院所有影像设备乃至不同医院影像之间的相互操作,因此出现诸多分类叫法,如几台放射设备的联网称为Mini PACS(微型PACS);放射科内所有影像设备的联网Radiology PACS(放射科PACS);全院整体化PACS,实现全院影像资源的共享,称为Hospital PACS。
PACS与RIS和HIS的融合程度已成为衡量功能强大与否的重要标准。
PACS 的未来将是区域PACS的形成,组建本地区、跨地区广域网的 PACS网络,实现全社会医学影像的网络化。
由于PACS需要与医院所有的影像设备连接,所以必须有统一的通讯标准来保证不同厂家的影像设备能够互连,为此,1983年,在北美放射学会(ACR)的倡议下,成立了ACR-NEMA 数字成像及通信标准委员会。
众多厂商响应其倡议,同意在所生产的医学放射设备中采用通用接口标准,以便不同厂商的影像设备相互之间可以进行图像数据交流。
1985年,ACR/NEMA1.0标准版本发布;1988年,该标准再次修订;1992年,ACR /NEMA第三版本正式更名为DICOM3.0(Digital lmaging and Communication in Medicine),中文可译为“医学数字图像及通信标准”。
医学影像学专业英语X-RAY IMAGING
Right upper lobe consolidation Density in the projection of right upper lung field Upper lobe distribution No significant loss of lung volume Air bronchogram
人工对比
X-RAY IMAGING
The original fluoroscopes were rather primitive and consisted of an X-ray tube, fluorescent screen and X-ray table. The radiologist directly viewed the image on the fluorescent screen. The images were very faint; examinations were performed in a darkened room by a radiologist with darkadapted vision. Dark-adaptation was achieved by wearing red goggles for
colonoscopy, etc.) 4. Orthopaedic surgery: reduction and fixation of
fractures, joint replacements, etc. 5. Airway screening in children for tracheomalacia, and
CONVENTIONAL RADIOGRAPHY (X-RAYS; PLAIN FILMS) X-rays are a form of electromagnetic radiation. The frequency and energy of X-rays are much greater than visible light.
简述Dicom设置
简述Dicom设置一、简介1、DICOM接口就是通常所说的"数字口"。
"DICOM"是英文"Digital Imaging and Communication in Medicine"的缩写。
DICOM标准是由ACR(American College of Radiology)和NEMA(National Electrical Manufacturers Association)联合委员会,于1983年以后陆续发展而成的医疗数字影像及传输标准。
二、DICOM标准成立的目的:推动开放式与厂牌无关的医疗数字影像的传输与交换。
促推影像储存与传输体系PACS(Picture Archelloving and Communication Systems)的发展与各种医院信息体系HIS(Hospital Information Systems)的结合。
允许所产生的诊所资料库能广泛地经由差别地方的设备来访问DICOM。
3、对于DICOM3.0数字接口,施用标准通讯协议采集图像,图像信息完全不亡失。
用DICOM 影像最大的上风还在于能调节窗宽、窗位,充实利用设备采集到的丰富信息帮助诊断。
而软片是固定的,大夫当时看时可以,调好了窗宽窗位打成软片,病人复诊时就看不到更多的信息了。
还有,对于明明难以下论断的模糊病例,还提供了迅速参考其他诊断成果的路子。
4、DICOM中有11种差别的服务类(Service Class),例如打印(Printing)、传输(Move)、存储(Store)、存档(Archelloving)等。
某一服务类中又分为施用者(User、SCU)和提供者(Provider、SCP),某一设备可能仅符合其中的某一个或某几个类。
比如:a:通常的设备操作台(Operator Console)仅符合DICOM的存储类及传输类,它仅作为SCU 而不是SCP,且不符合DICOM 3.0的打印服务类(Service Class for Printing)。
PACS图像存档与通信系统PPT介绍(55页)
知识点介绍
图 像 存 档 与 通 信 系 统 , Picture Archiving and Communication System,简称PACS。本节将介 本节将介 概念。 绍 PACS概念。 概念 随着医学图像技术的发展和PACS的出现,需要 PACS 在同一终端上显示不同设备的图像,建立统一 的图像显示和传输标准,即DICOM标准 标准。 标准 的关键技术及PACS系统结 本节还将介绍 PACS的关键技术及 的关键技术及 系统结 构与功能。 构与功能。
(2)X线CT图像(Computerized Tomography,CT)是以测定X 线 图像 图像( Tomography,CT)是以测定X 射线在人体内的衰减系数为物理基础, 射线在人体内的衰减系数为物理基础, 采用投影图像重建的 数学原理,经过计算机高速运算, 数学原理 ,经过计算机高速运算, 求解出衰减系数数值在人 体某断面上的二维分布矩阵, 体某断面上的二维分布矩阵, 然后应用图像处理与显示技术 将该二维分布矩阵转变为真实图像的灰度分布, 将该二维分布矩阵转变为真实图像的灰度分布, 从而实现建 立断层图像的现代医学成像技术。概括地说, CT图像的本 立断层图像的现代医学成像技术。概括地说,X线CT图像的本 质是衰减系数成像。 质是衰减系数成像。 与传统的X线检查手段相比, 与传统的X线检查手段相比, CT具有以下优点 具有以下优点: CT具有以下优点:能获得真 正的断面图像, 正的断面图像,具有非常高 的密度分辨率,可准确测量 的密度分辨率, 各组织的X线吸收衰减值, 各组织的X线吸收衰减值,并 通过各种计算进行定量分析。 通过各种计算进行定量分析。
PACS概念及目标 第一节 PACS概念及目标
PACS概念及目标 第一节 PACS概念及目标
[临床医学]超声报告单书写
[临床医学]超声报告单书写超声报告单书写、签发、复核制度临床对超声检查的需求量大,临床医师在开具超声检查申请单时应仔细询问病史,认真进行体格检查。
超声检查申请单可手写开单亦可电子申请单形式,填写申请单时应完整填写简要病史、体检发现、其他医学影像报告与有关检验结果,并写明检查目的、要求和部位。
草率填写(应填的内容不完整)的申请单,以及手写时字迹潦草,无法辨认时常可导致检查报告的质量下降,其责任不在超声科室。
对于需行超声复查的病人,必须填写原超声号,以便与前次作相应比较。
由于超声检查报告是临床诊治的重要参考依据之一,又是法律纠纷处理中的参考资料,所以必须认真客观地详细描述检查内容,供临床医师参考。
遇特殊疑难病例时,及时与送检医师沟通检查情况。
报告中专业用词必须是统一的、科学的、通用的超声医学术语。
(一)超声检查报告单书写基本要求:1(针对性根据超声检查所见对申请单提出的问题给与有针对性的阐述,做出明确的肯定或否定的回答。
2(客观性应对病变的部位、形态、大小、数目、回声特点、动态变化及毗邻关系等进行准确的客观描述。
重要的阴性所见也应描述,供鉴别诊断参考。
3(独立性超声检查只是临床检查的一种手段,因此对超声图像的分析必须注意参考临床表现。
任何结论不能脱离临床表现,但也不能脱离声像图的客观表现去迎合临床诊断。
4(系统性有的病变在其发展过程中,声像图也会出现动态变化,有必要进行系统的超声随访来复核最初的诊断,超声诊断报告应正确地把这种变化反馈给临床。
5(科学性如不能直接用临床疾病的术语来描述病变的声像图表现,则不能只描述某幅图像的平面特点而不注意描述病变的立体形态。
6(真实性手写超声检查报告单必须字迹应工整、清晰,无错字、无涂改;计算机打印方式生成电子报告中无错字、无涂改。
只出具1次超声诊断报告单,经诊断医师签字生效。
在任何情况下不得出具不真实的超声诊断报告单。
(二)规范化超声检查报告中的结论书写要求:1(按可能性大小依次提示,以下做举例说明:(1)“符合……”:如果具有一项确诊指标加两项辅助诊断指标,可以采用“符合……”。
数字信号和模拟信号的英文缩写
数字信号和模拟信号的英文缩写Digital Signal: Advantages and Applications1. Introduction:Digital signal refers to a signal that is represented by discrete and quantized values. In contrast, analog signal represents continuous variations in amplitude and time. The processing, transmission, and storage of digital signals are widespread in today's technology-driven world due to its numerous advantages over analog signals. This paper explores the advantages and applications of digital signals in various fields.2. Advantages of Digital Signals:2.1. Noise Immunity:Digital signals are less prone to noise interference compared to analog signals. Since digital signals are encoded with discrete values, it becomes easier to differentiate between the signal and noise. Additionally, error detection and correction techniques can be implemented, allowing for reliable transmission and reproduction.2.2. Scalability:Digital signals can be efficiently scaled up or down without significant loss of quality. This scalability enables flexible transmission across different systems and platforms, making digital signals suitable for various applications.2.3. Data Compression:Digital signals can be easily compressed using various algorithms. This compression reduces the data size, making the transmissionand storage of digital signals more efficient. Consequently, digital signal processing (DSP) techniques can be employed to extract and interpret the compressed information.2.4. Storage Efficiency:Digitizing signals allows for efficient storage. The encoded digital signals can be stored in a compact and reliable format, thereby occupying less physical space compared to analog signals. Additionally, digital signals can be encrypted and protected from unauthorized access.2.5. Signal Processing:Digital signals can be manipulated and processed using advanced techniques such as filtering, equalization, and modulation. These operations enable enhanced signal quality and enable the extraction of valuable information from the signal, leading to improved communication and analysis.3. Applications of Digital Signals:3.1. Telecommunications:Telecommunication networks largely rely on digital signals for transmitting voice, video, and data. The proliferation of digital communication technologies such as fiber optics, satellite systems, and wireless networks would not have been possible without the digitization of signals.3.2. Audio and Video Processing:The entertainment industry heavily relies on digital signals for audio and video processing. Digital audio signals, represented as discrete samples, allow for high-fidelity reproduction andmanipulation. Similarly, digital video signals enable high-definition displays, video streaming, and video editing.3.3. Biomedical Engineering:Digital signals play a critical role in biomedical engineering applications. Medical imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) scan rely on digitized signals to capture and analyze internal body structures. Moreover, digital biosensors and wearable devices facilitate real-time monitoring and analysis of physiological signals for health assessments.3.4. Industrial Automation:In industrial automation processes, digital signals are extensively used for control, monitoring, and data acquisition. Digital sensors, programmable logic controllers (PLCs), and industrial networks enable efficient and reliable control of complex systems. The digitization of signals in this domain simplifies integration, enhances precision, and improves productivity.3.5. Electronic Commerce and Financial Systems:Digital signals are integral to electronic commerce and financial systems. Secure and fast transmission of financial data is facilitated through digitization. High-frequency trading, online banking, and digital payment systems make use of digital signals to execute transactions efficiently and securely.3.6. Internet of Things (IoT):The Internet of Things (IoT) ecosystem relies on digital signals for connecting various devices and enabling machine-to-machinecommunication. The numerous sensors and actuators in IoT devices generate digital signals that are processed, analyzed, and transmitted for intelligent decision-making.4. Conclusion:Digital signals have revolutionized the way information is processed, transmitted, and stored across various domains. The distinct advantages of digital signals, including noise immunity, scalability, data compression, storage efficiency, and enhanced signal processing, have made them indispensable in modern technological applications. The continued advancement in digital signal processing techniques and the increasing integration of digital signals with emerging technologies will further broaden the range of applications and drive innovation in diverse fields.。
DICOM图像浏览器
Image Viewer using Digital Imaging and Communications inMedicine (DICOM)Trupti N. BaraskarDepartment of Information Technology, Maharashtra Institute of Technology, Pune University, Maharashtra, India Email: trupti_001@, baraskartn@Mobile No. +91-9922789956, +91-20-25462867Abstract- Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.Keyword - Digital Imaging and Communication in Medicine (DICOM), National Electrical Manufacturers Association (NEMA), Information Object Definitions (IOD), Value Representation (VR).I.IntroductionDICOM stands for Digital Imaging and Communication in Medicine. The DICOM standard addresses the basic connectivity between different imaging devices and also the workflow in a medical imaging department. The DICOM standard was created by the National Electrical Manufacturers Association (NEMA) and it also addresses distribution and viewing of medical images. The standard comprises of 16 parts [1] and it is freely available at the NEMA website: ./dicom.html[2] .Within the innards of the standard are also contained a detailed specification of the file format for images. The latest version of the document is as of 2008[3]. In this article present a viewer for DICOM images DICOM Image File FormatThis present a brief description of the DICOM image file format. Like other image file formats, a DICOM file consists of a header, followed by pixel data. The header comprises of the patient name and other patient particulars and image details. Important in the image details are the image dimensions - width, height and image bits per pixel. All these details are hidden inside the DICOM file in the form of tags and their values. Before it gets into tags and values, a brief about DICOM itself and related terminology is in place. In what follows, this explains only those terms and concepts related to a DICOM file. In particular, this does not discuss the communication and network aspects of the DICOM standard. Everything in DICOM is an object - medical device, patient, etc. An object, as in object oriented programming is characterized by attributes. DICOM objects are standardized according to IODs (Information Object Definitions). An IOD is a collection of attributes describing a data object. In other words, an IOD is a data abstraction of a class of similar real world objects which defines the nature and attributes relevant to that class [4]. DICOM has also standardized on the most commonly used attributes and these are listed in the DICOM data dictionary [6]. An application which does not find a needed attribute name in this standardized list may add its own private entry, termed as a private tag; proprietary attributes are therefore possible in DICOM. Examples of attributes are study date, patient name, modality, transfer syntax UID, etc. As it can be seen, the attributes require different data types for correct representation. This “data type” is termed as Value Representation (VR) in DICOM. There are 27 such VRs defined[5], and these are AE, AS, AT, CS, DA, DS, DT, FL, FD, IS, LO, LT, OB, OF, OW, PN,SH, SL, SQ, SS, ST, TM, UI, UL, UN, US, and UT. For example, DT represents Date Time, a concatenated date time character string in the format YYYYMMDDHHMMSS.FFFFFF&ZZXX. An important characteristic of VR is its length, which should always be even. Characterizing an attribute are its tag, VR, VM (Value Multiplicity) and value. A tag is a 4 byte value which uniquely identifies that attribute. A tag is divided into two parts, the Group Tag and the Element Tag, each of which is of length 2 bytes. For example, the tag 0010 0020 (in hexadecimal) represents Patient ID, with a VR of LO (Long String). In this example, 0010 (hex) is the group tag, and 0020 (hex) is the element tag. The DICOM data dictionary gives a list of all the standardized group and element tags. Also important is to know whether a tag is mandatory or not. For data element type, five categories are defined - Type 1, Type 1C, Type 2, Type 2C, and Type 3. One more important concept is transfer syntax. In simple terms, it tells whether a device can accept the data sent by another device. EachCP1324,I nt e r nat i onal Conf e r e nc e on M e t hods and M ode l s i n Sc i e nc e and Te c hnol ogy (I CM 2ST-10)e di t e d by R. B. Pa t e l a nd B. P. Si ngh© 2010 A m e r i c a n I ns t i t ut e of Phys i c s 978-0-7354-0879-1/10/$30.00device comes with its own DICOM conformance statement, which lists all transfer syntaxes acceptableto the device. Transfer syntax tells how the transferred data and messages are encoded. Part [5 ] of the DICOM standard gives the transfer syntax as a set of encoding rules that allow application entities to unambiguously negotiate the encoding techniques (e.g., data element structure[8], byte ordering, compression) they are able to support, thereby allowing these application entities to communicate. (One more term here - Application Entity is the nameof a DICOM device or program used to uniquely identify it.)Transfer syntaxes for non-compressed images are:x Implicit VR Little Endian, with UID1.2.840.10008.1.2x Explicit VR Little Endian, with UID1.2.840.10008.1.2.1x Explicit VR Big Endian, with UID1.2.840.10008.1.2.2Images compressed using JPEG Lossy or Lossless compression techniques have their own transfer syntax UIDs. A viewer should be able to identify the transfer syntax and decode the image data accordingly; or display appropriate error messages if it cannot handle it. More points on a DICOM file, it is a binary file, which means that an ASCII-character-based text editor like notepad does not show it properly. A DICOM file may be encoded in Little Endian or Big Endian byte orders. Elements in a DICOM file are always in ascending order of tags. Private tags are always odd numbered. With this background, it is now time to develop into the DICOM File Format. A DICOM file consists of Preamble: comprising of 128 bytes, followed by, Prefix: comprising of the characters 'D', 'I', 'C', 'M', followed by, File Meta Header: This comprises, among others, of the Media SOP Class UID, Media SOP Instance UID, and the transfer syntax UID. By default, these are encoded in explicit VR, Little Endian. The data is to be read and interpreted depending upon the VR type. Data Set comprising of a number of DICOM Elements, characterized by tags and their values. The main functionality of a DICOM Image Reader is to read the different tags as per the transfer syntax and then use these values appropriately. An image viewer needs to read the image attributes - image width, height, bits per pixel and the actual pixel data. The viewer presented here can be used to view DICOM images with non-compressed transfer syntax. Open DICOM files with Explicit VR and Implicit VR Transfer Syntax, read DICOM files where image bit depth is 8 or 16 bits. Read a DICOM file with just one image inside it. Read a DICONDE file (a DICONDE file is a DICOM file with NDE - Non Destructive Evaluation - tags inside it). Display the tags in a DICOM file.Enable user to save a DICOM image as JPEG/GIF. This viewer is not intended to check whether all mandatory tags are present, open files with VR other than Explicit and Implicit - in particular, not to open JPEG compressed loss and lossless files. To read old DICOM files - requires the preamble and prefix for sure. Earlier DICOM files do not have the preamble and prefix, and just contain the string 1.2.840.10008 somewhere in the beginning. For the viewer, the preamble and prefix are necessary to read images which are not 8 bit or 16 bit in bit depth. In particular not to open color images, to read a sequence of images. Problem:Other file format used in modern times doesn’t have the facility to obtain the image of the patient and the related details together in the same document thus more storage space is required and difficulties are faced by the user.Solution:We can develop a viewer that that displays the patient details and image details in just one click and in just one file thus making it convenient for the end user. It also takes less storage space.II.Block Diagram Of DICOM FileStructureFigure 1. Block Diagram of DICOM file formatFile Header:The header consists of a 128 byte File Preamble, followed by a 4 byte DICOM prefix. The header may or may not be included in the file [9].Preamble Prefix128 bytes=??? ???4 bytes = ‘D’, ‘I’, ‘C’, ‘M’Table 1: DICOM File HeaderThe DICOM standard does not require any structure for the fixed size preamble. It is not required to be structured as a DICOM data element with a tag and a length. It is intended to facilitate access to the imagesand other data in the DICOM file by providing compatibility with a number of commonly used computer image file formats. If the File preamble is not used by an application profile or a specific implementation, all 128 bytes shall be set to 00H. This is intended to facilitate the recognition that the preamble is used when all 128 bytes are not set as specified above. The file preamble may for example contain information enabling a multi-media application to randomly access images stored in a DICOM data set. The same file can be accessed in two ways: First by a multi-media application using the preamble and second by a DICOM application which ignores the preamble. The four byte DICOM prefix shall contain the character string "DICM" encoded as uppercase characters of the ISO 8859 G0 Character Repertoire. This four byte prefix is not structured as a DICOM data element with a tag and a length.Sample output:Figure 2. Image view at DICOM file formatData Set:Data Element: A unit of information as defined by a single entry in the data dictionary [6]. An encoded Information Object Definition (IOD) attribute that is composed at a minimum three fields: Data Element Tag, Value Length, and Value Field. For some specific transfer syntaxes, a data element also contains a VR field where the value representation of that data element is specified explicitly.Data Element Tag: A unique identifier for a data element composed of an ordered pair of numbers (a group number followed by an element number).Data Element Type: Used to specify whether an attribute of an Information Object Definition. This translates to whether a Data Element of a Data Set is mandatory, mandatory only under certain conditions, or optional.Data Set: Exchanged information consisting of a structured set of Attribute values directly or indirectly related to Information Objects. The value of each Attribute in a Data Set is expressed as a Data Element. A collection of data elements ordered by increasingdata element tag number that is an encoding of the values of attributes of a real world object.Pixel Data: Graphical data (e.g., images or overlays) of variable pixel-depth encoded in the pixel data element, with value representation OW or OB. Additional descriptor data elements are often used to describe the contents of the pixel data element.Value Field: The field within a data element that contains the value(s) of that data element.Value Length: The field within a data element that contains the length of the value field of the data elementValue Representation (VR): Specifies the data type and format of the value(s) contained in the value field of a data element. A data set represents an instance of a real world information object. A data set is constructed of data elements. Data elements contain the encoded values of attributes of that object. The construction, characteristics, and encoding of a data set and its data elements are discussed here.Data Elements: A Data Element is uniquely identified by a Data Element Tag. The Data Elements in a Data Set shall be ordered by increasing Data Element Tag Number and shall occur at most once in a Data Set. There are 2 types of data elementStandard Data Elements have an even Group Number that is not (0000, eeee), (0002, eeee), (0004, eeee), or (0006, eeee). [5]Private Data Elements have an odd Group Number that is not (0001, eeee), (0003, eeee), (0005, eeee), (0007, eeee), or (FFFF, eeee).Although similar or related Data Elements often have the same Group Number; a Data Group does not convey any semantic meaningNote: A Data Element shall have one of three structures. Two of these structures contain the VR of the Data Element (Explicit VR) but differ in the way their lengths are expressed, while the other structure does not contain the VR (Implicit VR). All three structures contain the Data Element Tag, Value Length and Value for the Data Element. See Figure 2.Implicit and Explicit VR Data Elements shall not coexist in a Data Set and Data Sets nested within it. Whether a Data Set uses Explicit or Implicit VR, among other characteristics, is determined by the negotiated Transfer SyntaxFigure 3. Data set and Data elements structureData Element Field:A data element is made up of fields. Three fields are common to all three data element structures; these are the Data Element Tag, Value Length, and Value Field.A fourth field, Value Representation is only present in the two Explicit VR Data Element structures. The definitions of the fields are [6]:Data Element Tag: An ordered pair of 16-bit unsigned integers representing the group number followed by element number.Value Representation: A two byte character string contains the VR of the data element. The VR for a given data element tag shall be as defined by the data dictionary. The two characters VR shall be encoded using characters from the DICOM default character set.Value Length:A 16 or 32-bit (dependent on VR and whether VR is explicit or implicit) unsigned integer containing the explicit length of the value field as the number of bytes (even) that make up the value. It does not include the length of the data element tag, value representation, and value length fields.A 2-bit length field set to undefined length (FFFFFFFFH). Undefined lengths may be used for data elements having the Value Representation (VR) Sequence of Items (SQ) and Unknown (UN). For data elements with value representation OW or OB undefined length may be used depending n the negotiated transfer syntax.Value Field: An even number of bytes containing the Value(s) of the Data Element. The data type of value(s) stored in this field is specified by the data element's VR. The VR for a given data element tag can be determined using the data dictionary [6], or using the VR field if it is contained explicitly within the data element. The VR of standard data elements shall agree with those specified in the data dictionary. The value multiplicity specifies how many values with this VR can be placed in the value field. If the VM is greater than one, multiple values shall be delimited within the value field. The VMs of standard data elements are specified in the data dictionary value fields with undefined length are delimited through the use of sequence delimitation items and item delimitation data elements.RGB Color Model:A color in the RGB color model is described by indicating how much of each of the red, green, and blue is included. The color is expressed as an RGB triplet (r, g, b), each component of which can vary from zero to a defined maximum value. If all the components are at zero the result is black; if all are at maximum, the result is the brightest represent able white [11, 12, and 13].These ranges may be quantified in several different ways: From 0 to 1, with any fractional value in between. This representation is used in theoretical analyses, and in systems that use floating-point representations. Each color component value can also be written as a percentage, from 0% to 100%.ting, the component values are often stored as integer numbers in the range 0 to 255, the range that a single 8-bit byte can offer (by encoding 256 distinct values).High-end digital image equipment can deal with the integer range 0 to 65,535 for each primary color, by employing 16-bit words instead of 8-bit bytes. For example, the full intensity red is written in the different RGB notations as given table 2:Notation RGB tripletArithmetic(1.0, 0.0, 0.0) Percentage(100%, 0%, 0%)Digital 8-bit per channel(255, 0, 0)Table 2. RGB NotationIn this paper the digital 8-bit model as the input file is in binary for the RGB model and the ASCII code of the color has been used in almost all the algorithms of the features of the DICOM Image Viewer.III.System ArchitectureDescription:Parser: It is the first and the most important part of the project. It separates the data set and the image. The input to parser is .dcm file (i.e. a binary file) which is version 1.3, standardized by NEMA [10]. The output i.e. image and data set is then passed on to next stage. DICOM Header: The header is the part which makes DICOM different from all the other file formats. The header encompasses of patient details and image information like pixel representation, height, width, file data length etc. Thus in this stage we read patient details and image information so that they can be processed further.Display Details: The Header details which are processed in the above stage are displayed.Image Processing: In this stage, various features like Zoom In, Zoom Out, Blur, B/W inverter, Horizontal and Vertical flipping, Sharpening, Contrast, Brightness and .gif converter are incorporated. The final processed image in then passed onto the next stage.DICOM Image Viewer: The final image is displayed in this stage.IV.Implementation Images:Figure 5. Image and Text ViewerFigure 6. Invert ImageFigure 7. Blur imageFigure 8. White Inverter imageFigure 9. Zoom In ImageFigure 10. Sharpen ImageFigure 11. Flip Horizontal Image[10]Boqiang Liu, Minghui Zhu, Zhenwang Zhang, CongYin, Zhongguo Liu and Jason Gu* “Medical ImageConversion with DICOM” IEEE2007[11]Foley J., A. van Dam, Fejner S. Hughes J., Computergraphics - principles and practice, Second edition,Addison-Wesley, 1996[12]Gonzales R., R. Woods, Digital Image Processing,Adison Wesley, 1993[13]Marion A., An Introduction to Image Processing,Chapman and Hall, 1991Figure 11. Save Image FileV.ConclusionThe primary aim of this paper is to study “.dcm” fileformat and develop an image viewer with someenhanced features like Zoom, invert, brightness,sharpen and save image as “.gif” format.Implementation of algorithms e.g.. blur, horizontalflipping, vertical flipping black and white inversionetc. Benefits of the “.dcm” file format and imageviewer provides a greater leap to the present medicalscenario further helps for the future development ofvideo player for CT scan and MRI. Display the x-rayimage and the patient details together. Converts“.dcm” file to “.gif” file format. It is cost-effective inand helpful to health care industry. Because of theDICOM viewer images can be captured andcommunicated more quickly helps physician tomake diagnosis sooner and treatment decision can bemade quickly.References[1]Mario Mustra, Kresimir Delac, Mislav Grgic “Overviewof the DICOM Standard” 50th International SymposiumELMAR-2008, 10-12 September 2008, Zadar, Croatia[2]The DICOM Standard, /[3]Digital Imaging and Communications in Medicine(DICOM), NEMA Publications,"DICOM Standard",2008, available at:ftp:///medical/dicom/2008/[4]National Electrical Manufacturers Association “DigitalImaging and Communications in Medicine (DICOM)”Standards Publication PS 3.3-2004, 2009[5]National Electrical Manufacturers Association “DigitalImaging and Communications in Medicine (DICOM)”Standards Publication PS 3.5-2004, 2009[6]National Electrical Manufacturers Association “DigitalImaging and Communications in Medicine (DICOM)”Standards Publication PS 3.6-2004, 2009[7]National Electrical Manufacturers Association “DigitalImaging and Communications in Medicine (DICOM)”Standards Publication PS 3.7-2004, 2009[8]National Electrical Manufacturers Association “DigitalImaging and Communications in Medicine (DICOM)”Standards Publication PS 3.10-2004, 2009[9] “DICOM file structure.htmlCopyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.。
Dicom基础概述
• Part3:信息对象定义
– 定义了应用于数字医学图像以及相关信息(如波形,格式化报告、 放射治疗药剂等)通信的真实世界实体的抽象说明。 – 定义了标准信息对象类和复合信息对象类; – 描述了现实世界模型及在信息对象定义中反映的相应信息模型。
DICOM - 2008文档结构
• Part4:服务类描述
– 1996版增加了媒体交换标准; – 新的图像定义, 比如:X线心血管成像, X光数字乳腺 成像…… – Modality Performed Procedure Step (MPPS), 结构化报 告……
DICOM Storage & Query/Retrieve
CT,MR CR,US, Sec Capt X线心血管成像 X线荧光镜成像 核医学 新的超声图像
• Part6:数据字典
– 定义了所有的DICOM数据单元以及UIDs。
• Part7:消息交换
– 定义了DICOM消息服务单元(DIMSE),以及所有的DICOM网络服务。
DICOM - 2008文档结构
• Part8:消息交换的网络通信支持
第13章 PACS系统和DICOM标准
(1)图像信息的获取 :
• CT、MRI、DSA、CR及ECT等数字化图像信息可直 接输入 。 • X线等非数字化图像需经信号转换器转换成数字化 图像信息才能输入 。
(2)图像信息的传输方法
①公用电话线 ②光导通信 ③微波通信
(3)图像信息的储存与压缩
• 储存可用磁带、磁盘、光盘和各种记忆卡片 • 压缩方法多用间值与哈佛曼符号压缩法,影像信息 压缩1/5~1/10,仍可保持原有图像质量
DICOM 3.0 标准在1993 年定形 ,为PACS的商 业化奠定基础。 PACS 分两类:
• 放射科 PACS:通常指放射科 CR/DR,CT,MR 和 普通超声波用的。 • 专科 mini PACS:超声心脏科、心导管影像、 ECT 和 PET
(二)PACS的基本原理与结构
PACS是以计算机为中心,由图像信息的获取、 传输与存档和处理等部分组成。
PACS示意图
(三)PACS 的主要功能和应用
用图像服务计算机来管理和保存图像 医生用影像工作站来看片 用 DICOM 3.0 将医院各科室临床主治医师、 放射科医师和专科医师以及各种影像、医嘱和 诊断报告联成一网 。 用 Web、email 等现代电子通讯方式来做远程 诊断和专家会诊 用专业二维、三维分析软件辅助诊断 用专业医疗影像诊断报告软件
• PACS 本身并不产生图像,图像必须从影像设备 (Modality Scanner) 传过来 。 • 在没有 DICOM 3.0 之前,厂家用自己的图档格式和 传输协议来将图像从影像设备 (Modality Scanner) 传 到影像工作站或 mini PACS。 飞利浦和西门子定义了 SPI 格式 超声波 ACR-NEMA 2.0 和 QuickTime 混合格 式。 核医学图像交换的标准格式 Interfile 3.3。 • 结果:即使知道厂家的图像文件格式,要从他们的 机器里取出文件来也是很难的。
IHE在中国应用的研究
IHE在中国应用的研究1、DICOM[1]与HL7[2]简介DICOM(Digital Imaging and Communication in Medicine) 标准是由ACR (American College of Radiology)及NEMA(National Electrical Manufacturers Association)联合制定的一套医学图像处理及传输的标准,其目的是推动数字医疗影像的传输与交换,促进医学影像储存与传输系统(Picture Archiving and Communication Systems,PACS) 的发展与各种医院信息系统(Hospital Information Systems,HIS) 的集成。
DICOM标准立足于开放系统互联的架构,使用面向对象的方法定义了一套包含各种类型的医学诊断图像及其相关的分析、报告等信息的对象集;定义了用于信息传递、交换的服务类与命令集以及消息的标准响应;详述了唯一标识各类信息对象的技术;提供了应用于网络环境(OSI或TCP/IP)的服务支持;结构化地定义了制造厂商的兼容性声明(Conformance Statement)。
DICOM标准涵盖了数字医学图像的采集、归档、通信、显示及查询等几乎所有信息交换的协议。
DICOM标准促进了PACS与RIS、HIS等系统的集成。
HL7是医疗领域不同应用之间电子数据传输的协议,是由HL7组织制定并由ANSI批准实施的一个行业标准。
它主要的目的是要发展各型医疗信息系统间,如临床、保险、管理、行政及检验等各项电子资料的标准。
HL7从HIS接口结构层面上定义了接口标准格式,并支持使用现行的各种编码标准,如ICD-9/10、SNOMED等。
HL7采用消息传递方式实现不同模块之间的互连,十分类似于网络的信息包传递方式。
每一个消息可以细分为多个段、字段、元素和子元素。
目前,HL7的正式版本为2.4,HL7 3.0标准正在制定中。
Dicm
第一讲DICOM标准概述一什么是DICOM?DICOM是Digital Imaging and COmmunication of Medicine的缩写,是美国放射学会(American College of Radiology,ACR)和美国电器制造商协会(National Electrical Manufacturers Association,NEMA)组织制定的专门用于医学图像的存储和传输的标准名称。
经过十多年的发展,该标准已经被医疗设备生产商和医疗界广泛接受,在医疗仪器中得到普及和应用,带有DICOM接口的计算机断层扫描(CT)、核磁共振(MR)、心血管造影和超声成像设备大量出现,在医疗信息系统数字网络化中起了重要的作用。
DICOM是随着图像化、计算机化的医疗设备的普及和医院管理信息系统,特别是图像存档和通信系统(Picture Archiving and Communication System,PACS)和远程医疗系统的发展应运而生的。
当CT和MR等设备生成高质量的、形象直观的图像在医疗诊断中广泛使用时,由于不同的生产商不同型号的设备产生的图像各自采用了不同的格式,使得不同的设备之间的信息资源难以互相使用,医院PACS系统的实施具有很大的困难。
医疗信息系统随之带来许多新的问题:如何存储数据量极大的图像并能有效地管理?不同生产商的设备能否直接连接?如何能够在不同的生产商设备之间能够共享信息资源?等等。
很明显这些问题的解决方法就是采用统一的标准。
为此,美国放射学会和美国电器制造商协会在1983年成立了专门委员会,制定用于医学图像存储和通信的标准,提供与制造商无关的数字图像及其相关的通信和存储功能的统一格式,以促进PACS的发展,并提供广泛的分布式的诊断和查询功能。
ACR-NEMA1.0版本于1985年推出,随后增加了新的数据元素并对部分内容进行修改,形成2.0版本。
由于认识到标准对网络支持的不足和标准本身存在的结构性问题,ACR-NEMA 结合当时的技术条件和方法对标准作了彻底的重新制定,在1993年正式公布了新的版本,命名为DICOM3.0。
医学影像技术专业学生自我介绍英文
医学影像技术专业学生自我介绍英文I am a passionate and driven student pursuing a degree in medical imaging technology. From a young age, I have been fascinated by the human body and the incredible advancements in modern medicine. The field of medical imaging has always captivated me, as it combines my interests in science, technology, and healthcare into one dynamic discipline.As I embarked on my educational journey, I was drawn to the medical imaging technology program at this university. The curriculum's emphasis on both theoretical knowledge and practical skills aligned perfectly with my learning style and career aspirations. I was eager to delve into the intricacies of various imaging modalities, such as X-ray, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound, and to understand how these technologies contribute to the accurate diagnosis and effective treatment of medical conditions.One of the aspects of this program that I find most compelling is the opportunity to work with state-of-the-art imaging equipment. Thehands-on laboratory sessions have allowed me to develop a deep understanding of the technical aspects of these sophisticated machines, from the principles of image acquisition to the nuances of image processing and interpretation. I have been particularly fascinated by the rapid advancements in digital imaging and the integration of artificial intelligence and machine learning algorithms in the field of medical imaging.Beyond the technical skills, this program has also emphasized the importance of effective communication and patient-centered care. As a future medical imaging professional, I recognize the need to not only possess a strong grasp of the science and technology but also to cultivate empathy, compassion, and the ability to effectively collaborate with healthcare teams and provide a positive patient experience. To this end, I have actively participated in role-playing exercises and simulated clinical scenarios, honing my interpersonal skills and learning to navigate the unique challenges that may arise when working with patients from diverse backgrounds.One of the most rewarding aspects of my educational journey has been the opportunity to engage in research and clinical observerships. During my time in the program, I have had the privilege of assisting with research projects that explore the use of advanced imaging techniques in the early detection and monitoring of various medical conditions. These experiences have not onlydeepened my understanding of the field but have also ignited a passion for contributing to the advancement of medical imaging technologies.Moreover, the clinical observerships have provided me with invaluable insights into the real-world application of medical imaging in a healthcare setting. I have had the chance to observe skilled radiologists and technologists in action, witnessing firsthand how they leverage their expertise to interpret diagnostic images, communicate findings to referring physicians, and collaborate with the broader healthcare team to deliver optimal patient care. These experiences have further solidified my commitment to this field and my desire to become a competent and compassionate medical imaging professional.As I look to the future, I am excited about the countless possibilities that lie ahead in the field of medical imaging technology. I am particularly intrigued by the emerging trends in areas such as molecular imaging, which holds the potential to revolutionize the early detection and management of complex diseases. I am also eager to explore the integration of virtual and augmented reality technologies in medical imaging, as I believe these innovations can enhance the accuracy and efficiency of diagnostic procedures.Furthermore, I am deeply committed to the ongoing professionaldevelopment and lifelong learning that are essential in this rapidly evolving field. I plan to actively engage in continuing education opportunities, attend industry conferences, and stay abreast of the latest research and technological advancements. By continuously expanding my knowledge and skills, I aim to become a valuable asset to the healthcare community and to contribute to the betterment of patient outcomes.In conclusion, my journey as a medical imaging technology student has been a transformative experience. I am grateful for the opportunity to pursue my passion and to be part of a dynamic and innovative field that plays a crucial role in modern healthcare. As I look to the future, I am filled with a sense of purpose and determination to make a meaningful impact on the lives of patients and to advance the frontiers of medical imaging technology. I am confident that the knowledge and skills I have acquired through this program will serve as a strong foundation for a fulfilling and rewarding career in this exciting and ever-evolving profession.。
2024数字媒体技术专业选科要求
2024数字媒体技术专业选科要求English Answer:The number of courses required for a Digital Media Technology major in 2024 varies depending on the specific program and institution. However, there are some general requirements that are common to most programs. These requirements typically include courses in the following areas:Computer Science: This includes courses in programming, data structures and algorithms, and operating systems.Digital Media: This includes courses in digital imaging, video production, and web design.Mathematics: This includes courses in calculus, linear algebra, and statistics.Communication: This includes courses in writing,public speaking, and interpersonal communication.In addition to these general requirements, some programs may also require students to take courses in specific areas, such as computer graphics, game design, or mobile app development.The following is a sample list of courses that may be required for a Digital Media Technology major in 2024:Computer Science:Introduction to Programming.Data Structures and Algorithms.Operating Systems.Digital Media:Digital Imaging.Video Production.Web Design.Mathematics:Calculus I.Linear Algebra.Statistics.Communication:Writing for the Web.Public Speaking.Interpersonal Communication.Students who are interested in pursuing a career in Digital Media Technology should begin by researchingdifferent programs and institutions to find one that offers the courses and specializations that they are interested in. It is also important to consider the cost of the programand the job outlook for graduates.中文回答:2024年数字媒体技术专业选科要求因具体课程和学校而异。
DICOM概述
DICOM概述1 DICOM的历史及现状DICOM(Digital Imaging and Communication in Medicine) 标准最初是由ACR (the American College of Radiology)及NEMA(the National Electrical Manufacturers Association)于1983年组成的联合委员会起草,以后陆续发展成为医疗数字影像及相关信息的传输标准。
在DICOM标准正式定名之前,ACR-NEMA曾两次发表相关标准,分别为:发表于1985 年的CR/NEMA PS No.300-1985,Version1.0,,1986年⼗⽉颁为标准;1988年1⽉颁为标准的CR/NEMA PS No.300-1988,Version2.0,涵盖Version1.0以及额外的修订,包括对显⽰设备提供命令⽀持,并引⼊新的结构表⽰图像以及新的数据元素。
2006年,ACR-MEMA标准发展到第3版,并改名为DICOM标准,此标准经过其他标准化组织如IEEE,HL7,ANSI, CEN TC251和JIRA等的讨论和审查。
DICOM标准指明了不同⼚商需实现的硬件的接⼝,最⼩的软件命令集和数据格式的⼀致性集。
此标准建⽴的⽬的是推动开放式与⼚商⽆关的医疗数字影像的传输与交换,促进影像储存与传输系统PACS (Picture Archiving and Communication Systems) 的发展与各种医院信息系统HIS (Hospital Information Systems) 的结合,允许所产⽣的诊所资料库能⼴泛地经由不同地⽅的设备来访问。
⽬前DICOM 标准3.0版⽐之前的ACR-NEMA标准新增加的部分包括:1,ACR-NEMA标准原来只适应于点到点(Point to Point)的通讯环境,DICOM3.0扩充到开放式系统互联OSI(Open System InterConnection)及TCP/IP(Transmission Control Protocol/Internet protocol)⼯业标准的通讯环境。
Digital Signal Processing
Digital Signal Processing Digital Signal Processing (DSP) is an interdisciplinary field that deals with the manipulation of signals in the digital domain. It has become an essential part of modern technology, ranging from audio and video processing to medical imaging and communication systems. DSP has revolutionized the way we process and analyze signals, making it possible to extract valuable information from noisy anddistorted signals. In this essay, we will explore the importance of DSP, its applications, challenges, and future prospects. DSP has several advantages over traditional analog signal processing. One of the most significant advantages isthe ability to manipulate signals with high precision and accuracy. Digitalsignals can be processed with high speed and accuracy, making it possible toextract valuable information from complex signals. DSP also offers the ability to store and transmit signals without degradation, making it possible to preserve the quality of the signals over long distances. The use of DSP has also made it possible to implement complex algorithms that were previously impossible to implement with analog technology. DSP finds applications in a wide range of fields, including audio and video processing, image processing, communication systems, medical imaging, and control systems. In the field of audio and video processing, DSP is used to improve the quality of audio and video signals, remove noise and distortion, and compress signals for efficient storage and transmission. In the field of medical imaging, DSP is used to process and analyze medical images, making it possible to detect and diagnose diseases. In communication systems, DSPis used to process and analyze signals, making it possible to improve the quality of the signals and increase the efficiency of the communication system. Despiteits many advantages, DSP also faces several challenges. One of the mostsignificant challenges is the need for high computational power and memory. DSP algorithms require high computational power and memory, making it necessary to use specialized hardware or software to implement them. Another challenge is the need for accurate modeling of the signal and noise sources. DSP algorithms rely on accurate models of the signal and noise sources, and any errors in these modelscan lead to inaccurate results. Finally, DSP algorithms require careful tuning of parameters, and any errors in the tuning process can lead to suboptimalperformance. The future prospects of DSP are promising, with new applications emerging in fields such as artificial intelligence, robotics, and autonomous systems. DSP algorithms are being used to process and analyze data from sensors and cameras in autonomous systems, making it possible to detect and avoid obstacles, track objects, and navigate in complex environments. DSP algorithms are also being used in artificial intelligence and machine learning applications, making it possible to process and analyze large amounts of data and extract valuable information. In conclusion, DSP is an essential field that has revolutionized the way we process and analyze signals. It has several advantages over traditional analog signal processing, including high precision and accuracy, the ability to store and transmit signals without degradation, and the ability to implement complex algorithms. DSP finds applications in a wide range of fields, including audio and video processing, image processing, communication systems, medical imaging, and control systems. Despite its many advantages, DSP also faces several challenges, including the need for high computational power and memory, accurate modeling of the signal and noise sources, and careful tuning of parameters. The future prospects of DSP are promising, with new applications emerging in fields such as artificial intelligence, robotics, and autonomous systems.。
DICOM数据集与DCM文件格式
作者简介:全海英(1971-),讲师,博士研究生,主要研究方向:医学信号与图像处理、小波分析; 杨源(1976-),硕士研究生,主要研究方向:数字图像处理; 张歆东(1970-),硕士,主要研究方向:多媒体、信号处理; 郭树旭(1959-),教授,博士研究生,主要研究方向:多媒体、数字图像处理与传输、小波分析、微波通讯; 刘景鑫(1967-),工程师,主要研究方向:医学影像设备学.文章编号:1001-9081(2001)08-0145-02DICOM 数据集与DCM 文件格式全海英1,3,杨 源1,张歆东1,郭树旭1,刘景鑫2(1.吉林大学电子工程系,吉林长春130023; 2.长春市中日联谊医院,吉林长春130031;3.中国科学院长春光学精密机械与物理研究所,吉林长春130021)摘 要:该文在介绍医学信息领域的一种通用的图像及数据通讯标准DIC OM3.0的基础上,对DICOM 数据集和DC M 文件的组织形式进行了分析,并且提出了在实际应用中对DI COM 数据集的编解码接口的实施方案。
关键词:DIC OM3.0;医学图像;文件格式中图分类号:TP311.52 文献标识码:A1 前言随着信息技术的发展和计算机应用水平的不断提高,新一代医疗信息系统已逐步发展成为面向医疗服务,集成医疗信息、医学影象信息和医疗管理信息的综合化多媒体医院管理信息系统[3]。
为了便于影象信息的共享和交流,美国放射学会(American College of Radiology ,ACR )和美国国家电器制造商协会(National Electrical M anufactures Association ,NEMA )联合制定了医学数字图像通讯标准ACR /NE MA DICOM 3.0(DigitalImaging and Communications in Medicine )[1],其主要目的是为了在各种医疗影象产品之间提供一致性接口,以便更有效地在医学影象设备之间传输交换数字影象[2,3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Digital Imaging and Communication in Medicine
DICOM 3.0
DICOM是Digital Imaging and Communications in Medicine的英文缩写,即医学数字成像和通信标准。
是ACR(American College of Radiology,美国放射学会)和NEMA(National Electrical Manufactorers
Association,国家电子制造商协会)为主制定的用于数字化医学影像传送、显示与存储的标准。
在DICOM 标准中详细定义了影像及其相关信息的组成格式和交换方法,利用这个标准,人们可以在影像设备上建立一个接口来完成影像数据的输入/输出工作。
DICOM标准以计算机网络的工业化标准为基础,它能帮助更有效地在医学影像设备之间传输交换数字影像,这些设备不仅包括CT、MR、核医学和超声检查,而且还包括CR、胶片数字化系统、视频采集系统和HIS/RIS信息管理系统等。
该标准1985年产生。
目前版本为2003年发布的DICOM 3.0 2003版本。
DICOM 发展历史
1982 - ACR和NEMA联合成立了一个委员会,制定DICOM标准。
1985 - 公布1.0版本(ACR-NEMA V1.0)。
1988 - 公布2.0版本(ACR-NEMA V2.0)。
1989 - 开始同HIS/RIS 系统连接的网络工作;名字改称:DICOM,以表示本质区别于原先的标准。
1991 - 公布DICOM的1至8章。
1992 - RSNA展示第8章。
1993 - DICOM的1-9章通过,RSNA展示了全部的9个部分。
1994 - 增加第10章:Media Storage and File format。
1995 - 增加第11章、12章、13章及补充章节。
1996 - 进行了第三次修订,更名为:DICOM 3.0;发布96版,基于服务器/客户端的网络结构,采用OOP 方式进行分析和设计。
1998 - DICOM 3.0 98版,进行了若干不明确的规定、一些错误的修正,网络打印补充,控制事件补充,接纳二次采集图像。
1999 - DICOM 3.0 99版,考虑增加化验室设备的定义,考虑专向三层结构,为同HIS系统进行更多的信息共享做准备。
2001 - DICOM 3.0 2001版本
2003 - DICOM 3.0 2003版本
DICOM 3.0 标准文件内容概要
第一部分:引言与概述,简要介绍了DICOM的概念及其组成。
第二部分:兼容性,精确地定义了声明DICOM要求制造商精确地描述其产品的DICOM兼容性,即构造一个该产品的DICOM兼容性声明,它包括选择什么样的信息对象、服务类、数据编码方法等,每一个用户都可以从制造商处得到这样一份声明。
第三部分:利用面向对象的方法,定义了两类信息对象类:普通性、复合型。
第四部分:服务类,说明了许多服务类,服务类详细论述了作用与信息对象上的命令及其产生的结果。
第五部分:数据结构及语义,描述了怎样对信息对象类和服务类进行构造和编码。
第六部分:数据字典,描述了所有信息对象是由数据元素组成的,数据元素是对属性值的编码。
第七部分:消息交换,定义了进行消息交换通讯的医学图像应用实体所用到的服务和协议。
第八部分:消息交换的网络通讯支持,说明了在网络环境下的通讯服务和支持DICOM应用进行消息交换的必要的上层协议。
第九部分:消息交换的点对点通讯支持,说明了与ACR-NEMA2.0兼容的点对点通讯的服务和协议。
第十部分:用于介质交换的介质存储和文件格式。
这一部分说明了一个在可移动存储介质上医学图像信息存储的通用模型。
提供了在各种物理存储介质上不同类型的医学图像和相关信息进行交换的框架,以及支持封装任何信息对象定义的文件格式。
第十一部分:介质存储应用卷宗,用于医学图像及相关设备信息交换的兼容性声明。
给出了心血管造影、超声、CT、核磁共振等图像的应用说明和CD-R格式文件交换的说明。
第十二部分:用于介质交换的物理介质和介质格式。
它提供了在医学环境中数字图像计算机系统之间信息交换的功能。
这种交换功能将增强诊断图像和其它潜在的临床应用。
这部分说明了在描述介质存储模型之间关系的结构以及特定的物理介质特性及其相应的介质格式。
具体说明了各种规格的磁光盘,PC机上使用的文件系统和1.44M软盘,以及CD-R可刻写光盘。
第十三部分:点对点通信支持的打印管理。
定义了在打印用户和打印提供方之间点对点连接时,支持
DICOM打印管理应用实体通信的必要的服务和协议。
点对点通信卷宗提供了与第8部分相同的上层服务,因此打印管理应用实体能够应用在点对点连接和网络连接。
点对点打印管理通信也使用了低层的协议,与已有的并行图像通道和串行控制通道硬件硬拷贝通信相兼容。
第十四部分:说明了灰度图像的标准显示功能。
这部分仅提供了用于测量特定显示系统显示特性的方法。
这些方法可用于改变显示系统以与标准的灰度显示功能相匹配或用于测量显示系统与标准灰度显示功能
的兼容程度。
第十五部分:安全措施。
第十六部分:标准内容参考资源。
DICOM技术概要及特点:
◆在应用层上通过服务和信息对象主要完成五个方面的功能:
◆传输和存储完整的对象(如图像、波形和文档)。
◆请求和返回所需对象。
◆完成特殊的工作(如在胶片上打印图像)。
◆工作流的管理(支持WORKLIST和状态信息)。
◆保证可视图像(如显示和打印之间)的质量和一致性。
◆参照软件工程面向对象的的方法。
如采用实体-关联(E-R)模型、详细定义对象及其属性、服务对
象对类(SOP)、消息交换以及工作流程等。
◆通过消息、服务、信息对象及一个良好的协商机制,独立于应用的网络技术(不受具体网络平台限制),
可以点对点、点对多点、多点对点多种方式确保兼容的工作实体之间服务和信息对象能有效地通信。
不仅能实现硬件资源的共享。
而且不同于一般分布式对象或数据库管理只在低层自动存取单独的属性,而在病人、检查、结构化报告(SR)、工作流等高层管理上规范服务。
是一个基于内容的医学图像通信标准。
◆DICOM不规范应用系统的结构,也不规范具体的功能需求。
例如,图像存储只定义传输和保存所必
须的信息项目,而不说明图像如何被显示和作注解。
◆DICOM目前16章内容每章讲述某一方面的规范,各章较为独立但又互有联系。
这样便于修改扩充。
只有将所有章节紧密联系起来才能勾画出标准的体系结构和整体内容。
14种DICOM服务类
证实(verification)服务类
存储(storage)服务类
查询/检索(query/retrieve)服务类
检查内容通知(study content notification)服务类
患者管理(patient management)服务类
检查管理(study management)服务类
结果管理(results management)服务类
打印管理(print management)服务类
媒质存储(media storage) 服务类
存储责权管理(storage commitment) 服务类
基本工作列表管理(basic worklist management) 服务类
队列管理(queue management) 服务类
灰度软拷贝表达状态存储(Grayscale Softcopy Presentation State Storage)服务类
结构化报告存储(Structured Reporting Storage)服务类
DICOM和其他标准的关系
DICOM是共同合作的产物,它的发展一直关注世界其他有关标准的发展并相应采用其成果。
如:
.1993年采用TCP/IP网络协议。
.90年代与CEN一起制定某些附录。
.与日本JRIA联合并采用日本的媒体交换标准(IS&C)。
.在美国早期就与ANSI-HISPP配合制定病人信息结构。
.1999年成立DICOM-HL7联合工作组。
.1999年与ISO TC251建立A级联系。
ISO TC251已决定不再成立成像工作组,以DICOM为生物医学成像标准。
.已经采用互联网E-mail交换标准(MIME,Multipurpose Internet Mail Extensions),使得按DICOM存储的信息通过E-mail进行交换成为可能。
.正在考虑适应更为完善的分布式对象管理工具如CORBA和编程工具如XML。
采用或考虑采用当前国际工业或公认的标准作为网络和媒体存储(数据库)安全性及图像压缩的标准。
DICOM相关资料
医学影像技术、Pacs系统、DICOM3标准论坛
DICOM标准主页
/UIN/html1/radiology/pacshunt/PacsLinks.html提供了丰富的PACS和DICOM3资源的链接(xxjun 推荐提供)
不可多得系列网址--DICOM篇(来源:DICOM论坛,昊瑞提供)
不可多得系列网址--PACS篇(来源:DICOM论坛,昊瑞提供)
/ 医学影像技术网站,对各种医学影像技术做了深入浅出的介绍,可作为入门的首选。