2015年江苏省高考数学试卷

合集下载

2015年江苏省高考数学试卷及答案(word版本)

2015年江苏省高考数学试卷及答案(word版本)

数学I试题参考公式:圆柱的体积公式:V_±= Sh ,其中S 是圆柱的底面积,h 为高.圆锥的体积公式:V 0_=^Sh ,其中S 是圆锥的底面积,h 为高._、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1•已知集合A={1,2, 3},B={2,4, 5},则集合AUB 中元素的个数为踿银踿2.已知一组数据4, 6, 5, 8, 7, 6,那么这组1只白球,1只红球,2只黄球•从中一次随机摸出2只球,则这2只球颜6•已知向量 a = (2,1),b = (1,-2) •若 ma + nb = (9,-8)( m,n 沂 R ),则m -n 的值为银•7.不等式2x2-x <4的解集为银•9•现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个•若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新12. 在平面直角坐标系xOy中,P为双曲线x2 - y2 = 1右支上的一个动点.若点P到直线 x - y + 1 = 〇的距离大13. 已知函数/(%)= |lm:|,g(%)= ji^^i _ 2 。

:’ 则方程 |/(>) + |= 1 实根的个数为 ▲.14设向量a k = (cosk仔 .k仔 k仔—,sin — + cos —) (k =0, 1,2, 66612),则移(a^ak + 1)的值为摇二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)在AABC 中,已知从= 2,A(:= 3,A =60o.(1) 求BC的长;(2) 求sin2C的值.16. (本小题满分14分)如图,在直三棱柱ABC-AAq中,已知AC丄BC, •设的中点为 D,B'nBC^E.求证:(1)DE//平面AA";(2)BC\17. (本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为11, 12,山区边界曲线为C,(3) 是否存在力,d及正整数n,k,使得a『,a2n +k,a n + 2k,a4n + 3k依次构成等比数列?并说明理由.数学I试题参考答案一、 填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.52.63.S56.-37. {x - 1<x<2}(或(-1,2))10. (x - 1)2+y2=211.2〇12. ^二、 解答题本小题主要考查余弦定理、正弦定理,同角三角函数关系与二倍角公式,考查运算求解能力.满分14分.解:⑴由余弦定理知,BC 2=AB2+AC2- 2AB • AC -cosA= 4 + 9 - 2x2x3x+ = 7,所以BC= 7.AB BC4. 75. 68.39. 713.414. 9 3 (2)由正弦定理知,.C- . A,smC sinA因为AB<BC,所以C为锐角AB 2sin60o ^21⑵①由(1)知,y=1〇〇〇(5臆x 臆20),则点P 的坐标为(t ,1〇〇)〇),x t设在点P 处的切线1交x ,y 轴分别于A ,B 点,y' = - 2〇〇)〇,x1000 2000 31 3000,贝丨J 1 的万程为 y - -^= - -^(x - t ),由此得 A(y ,0),B(0,m /,3t 、2一,3000、2 3 12 4x106 rc …故/(0=( 2 ) + ( t 2 ) = 2 t 2+ t4,tE[5,20].当te(5, 10 2)时,g'(t) < 0, g ⑴是减函数;当t E (10 2, 20)时,g '(t ) >0, g ⑴是增函数.从而,当t =10 2时,函数g ⑴有极小值,也是最小值,所以g(t)min = 300, 此时/(t)min = 15 3.答:当t = 10 2时,公路1的长度最短,最短长度为15 3千米.18.本小题主要考查椭圆的标准方程与几何性质、直线的方程、直线与直线、直线与椭圆位置关当 a<0时,XE(-¥,0)U(-Z3a, +¥)时,/,(x)>0,X E(0, -Z3a)时,/,(x) <0,所以函数/(x)在(-¥,0), (-23a, + ¥)上单调递增,在(0, - 23a)上单调递减.(2)由⑴知,函数/(x)的两个极值为/(0)= b,/(-23a) = 247a3+b ,则函数/(x)有三个 零点等价于/(0)•/(-23a) = b(247a3+b) <0,从而a> 0,士3〈“〇或<a < 0,0 < b < - 27 a3 ■又 b = c - a,所以当 a >0时,27“3 - a + c >0或当 a <0时,27“3 - a + c <0. 设g(a) =247a3-a +c,因为函数/(x)有三个零点时,a的取值范围恰好是 (-¥,-3)U(1,3 )胰(2 ,+¥),贝 IJ在(-¥, - 3)上 g(a) < 0,且在(1, 3 )U(3 , + ¥)上 g(a) > 0 均恒成立,从而g(- 3) = c - 1臆0,且g( 2 ) = c - 1逸0,因此 c = l.此时,/(x) = x3+ ax 2+1- a = (x + 1) [x2+ (a - 1)x + 1 - a],化简得2k[ln(1 +2t) -ln(1+ t)]= n[2ln(1 + t) -ln(1 +2t)],且 3k[ln(1 +31) -ln(1 + t)] = n[3ln(1 + t) -ln(1 +31)].再将这两式相除,化简得ln( 1 + 31)ln( 1 + 21) + 3ln( 1 + 21)ln( 1 + t) = 4ln( 1 + 31)ln( 1 + t) ( ** ).令g( t) = 4ln(l + 3 t)ln(1 + t) - ln(1 + 31 )ln(1 + 2t) - 3ln(1 + 2t )ln(1 + t), 则忆()2 [ (1 +3t)2ln(1 +3t) -3 (1 +2t)2ln(1+2t) +3 (1 + t)2ln(1 + t)]则g(t)=(1 + t)(1 +2t)(1 +3t) .令渍(t)= (1 + 3t)2ln(1 +31) - 3 (1 +2t)2ln(1 + 2t) + 3 (1 + t)2ln(1 + t),则渍'(t)=6[(1 + 3t)ln(1 + 3t) - 2(1 +2t)ln(1+ 2t) + (1 + t)ln(1+ t)].令渍i(t) =渍'(t),贝l j 渍1(t)=6 [3ln(1+3t) - 4ln( 1 +2t) +ln(1 + t)].令渍2(t)=渍1(t),则渍2(t)=(1+ t)(1+122t)(1 +31) >〇*由 g(0)=渍(0)=渍 1(0)=渍 2(0)=0,渍2(t)>0,知渍2(t),渍1(t),渍⑴,g(t)在(-了,0)和(0,+ ¥)上均单调.故g(t)只有唯一零点t=0,即方程(**)只有唯一解t = 〇,故假设不成立.所以不存在^,d及正整数n,k,使得<,k+数学域(附加题)参考答案21.【选做题】[选修4-1:几何证明选讲]本小题主要考查圆的基本性质和相似三角形等基础知识,考查推 理论证能力.满分10分.证明:因为AB=AC ,所以蚁ABD =蚁C.又因为蚁C =蚁E ,所以蚁ABD =蚁E,又Z 似E为公共—,可知…AWLB.[选修4-2:矩阵与变换]本小题主要考查矩阵的特征值与特征向量的概念等基础知识,考 查运算求解能力.满分10分.解:由已知,得A 琢=-’ 2即x 11x - 1即{尤2+/-_2^0,令:r=1,解得2=1, X = L所以m = (1, 1, 1)是平面PCD的一个法向量.AD • m J3从而 cos〈AD,m业IA寅Im3,3所以平面PAB与平面PCD所成二面角的余弦值为3(2)因为B P=(-1,0,2),设B Q=ABp= (-A,0,2A) (0臆姿臆1),又CB= (0,-1,0),贝IJcQ= CB+B Q= (-A,_1,2A),又D P=(0,一2,2),1+2A从而 c〇s〈 CQ, DP〉= CQ Dp= .CQDP 10A2+ 2= (k+1) +2+(k +1) - 1+(k +3) - \结论成立;3)若k + l=6t + 2,贝lj k = 6t + 1,此时有f( k + 1)= f( k)+2 = k + 2 ^^^^ + 2= (k+ 1) + 2 + k+ 1+ (k + 1) -2,结论成立;4)若k + 1=6t + 3,贝ij k = 6t + 2,此时有f( k + 1)= f( k) +2= k + 2 + ^^^ + 2=(k+ 1) +2+ (k+ 1) - 1 +结论成立;5)若k + 1=6t + 4,贝lj k = 6t + 3,此时有f( k + 1)= f( k) +2= k+ 2+ k21+3+2= (k+1) + 2+k+1+(k+ 1) -1,结论成立;6)若k + 1=6t + 5,贝ij k = 6t + 4,此时有k k —1f(k + 1)=f(k) + 1=k + 2 + 全 + ^^+ 1=(k +1) + 2 +(k+1)-1+(k+ 3)-2,结论成立.综上所述,结论对满足n逸6的自然数n均成立.。

2015年江苏省高考数学试卷及答案 Word版

2015年江苏省高考数学试卷及答案 Word版

2015年江苏省高考数学试卷一、填空题1.已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______. 7.不等式224x x -<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。

10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 。

12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 。

13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。

14.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则∑=+⋅1201)(k k k a a 的值为 。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(★★★★)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为 5 .2.(★★★★)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .3.(★★★★)设复数z满足z 2=3+4i(i是虚数单位),则z的模为.4.(★★★)根据如图所示的伪代码,可知输出的结果S为 7 .5.(★★★★)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(★★★★)已知向量=(2,1),=(1,-2),若m +n =(9,-8)(m,n∈R),则m-n的值为 -3 .7.(★★★)不等式2 <4的解集为(-1,2).8.(★★★★)已知tanα=-2,tan(α+β)= ,则tanβ的值为 3 .9.(★★★)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(★★★★)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x-1)2+y 2=2 .2211.(★★★)设数列{a n}满足a 1=1,且a n+1-a n=n+1(n∈N *),则数列{ }的前10项的和为.12.(★★★)在平面直角坐标系xOy中,P为双曲线x 2-y 2=1右支上的一个动点,若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为.13.(★★)已知函数f(x)=|lnx|,g(x)= ,则方程|f(x)+g (x)|=1实根的个数为 4 .14.(★★)设向量=(cos ,sin +cos )(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(★★★★)在△ABC中,已知AB=2,AC=3,A=60o.(1)求BC的长;(2)求sin2C的值.16.(★★★)如图,在直三棱柱ABC-A 1B 1C 1中,已知AC⊥BC,BC=CC 1,设AB 1的中点为D,B 1C∩BC 1=E.求证:(1)DE∥平面AA 1C 1C;(2)BC 1⊥AB 1.17.(★★★)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l 1,l 2的距离分别为5千米和40千米,点N到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y= (其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(★★★)如图,在平面直角坐标系xOy中,已知椭圆+ =1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(★★)已知函数f(x)=x 3+ax 2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪(1,)∪(,+∞),求c的值.20.(★★)设a 1,a 2,a 3.a 4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2 ,2 ,2 ,2 依次构成等比数列;(2)是否存在a 1,d,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d及正整数n,k,使得a 1n,a 2n+k,a 3n+2k,a 4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(★★★)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(★★)已知x,y∈R,向量= 是矩阵的属于特征值-2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(★★★)已知圆C的极坐标方程为ρ2+2 ρsin(θ- )-4=0,求圆C的半径.[选修4-5:不等式选讲】24.(★★★)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(★★★)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD= ,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(★★★)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N *),设S n={(a,b)|a 整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为 5 .考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7 .考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解解:根据题意,记白球为A,红球为B,黄球为C1、C2,则答:一次取出2只球,基本事件为AB、AC、AC2、BC1、BC2、C1C2共6种,1其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点本题考查了用列举法求古典概型的概率的应用问题,是基础题目.评:6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3 .平面向量的基本定理及其意义.考点:专平面向量及应用.题:直接利用向量的坐标运算,求解即可.分析:解解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)答:可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.点评:7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考指、对数不等式的解法.点:函数的性质及应用;不等式的解法及应用.专题:分利用指数函数的单调性转化为x2﹣x<2,求解即可.析:解解;∵2<4,答:∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度评:不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为 3 .考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx ﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2 .考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为 4 .考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4.故答案为:4. 点评: 本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为 .考点:数列的求和.专题:等差数列与等比数列;平面向量及应用. 分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解解:答:=+=++++=++=++,∴(a k•a k+1)=+++++++…+ ++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln (1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C 的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f (x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.数学归纳法.考点:综合题;点列、递归数列与数学归纳法.专题:分(1)f(6)=6+2++=13;析:(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解解:(1)f(6)=6+2++=13;答:(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)重庆万州区教育事业单位考试资料 页脚内容21 +2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立. 综上所述,结论对满足n≥6的自然数n 均成立. 点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏高考数学试题及答案

2015年江苏高考数学试题及答案

(第4题图)绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅰ参考公式:圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.圆锥的体积公式:V 圆柱=13Sh ,其中S 是圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为 ▲ . 2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 ▲ . 3.设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为 ▲ . 4.根据如图所示的伪代码,可知输出的结果S 为 ▲ .5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球, 从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ .6.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值 为 ▲ .7.不等式2x 2-x<4的解集为 ▲ .8.已知tan α=-2,tan(α+β)=17,则tan β的值为 ▲ .9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将 它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新 的底面半径为 ▲ .10.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 ▲ .11.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n}的前10项和为 ▲ .12.在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则是实数c 的最大值为 ▲ .13.已知函数f (x )=|l n x |,g (x )=⎩⎨⎧ 0 ,0<x ≤1,|x 2-4|-2, x >1.,则方程|f (x )+g (x )|=1实根的个数为 ▲ .14.设向量a k =(cos k π6,sin k π6+cos k π6)(k =0,1,2,… ,12),则∑11k =0(a k ·a k +1)的值为 ▲ .(第16题图)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; ` (2)求sin2C 的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE //平面AA 1C 1C ; (2)BC 1⊥AB 1.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连 接两条公路的山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C , 计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5 千米和40千米,点N 到l 1,l 2,的距离分别为20千米和2.5千米,以l 1,l 2,所在的直线分别为 x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b (其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.MNl 2l 1xy O C Pl(第17题图)18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平 分线分别交直线l 和AB 于点P ,C ,若PC =2AB , 求直线AB 的方程.19.(本小题满分16分)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).(1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关常数),当函数f (x )有三个不同零点时,a 的取值 范围恰好是(-∞,-3)∪(1,32)∪(32,+∞),求c 的值.20.(本小题满分16分)设a 1,a 2,a 3,a 4是各项为正数且公差为d(d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次成等比数列,并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n+2k,a 4n+3k依次成等比数列?并说明理由.(第18题图)A(第21—A 图)绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数 学 Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在△ABC 中,AB =AC ,△ABC 的外接圆圆O 的弦AE 交BC 于点D .求证:△ABD ∽△AE B .B .[选修4-2:矩阵与变换](本小题满分10分)已知x ,y ∈R ,向量α=⎣⎡⎦⎤ 1 -1是矩阵A =⎣⎡⎦⎤x 1y 0的属性特征值-2的一个特征向量,矩 阵A 以及它的另一个特征值.PA BCDQ (第22题)C .[选修4-4:坐标系与参数方程] (本小题满分10分)已知圆C 的极坐标方程为ρ2+22ρsin (θ-π4)-4=0,求圆C 的半径.D .[选修4-5:不等式选讲] (本小题满分10分)解不等式x +|2x +3|≥2.[必做题]第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答.解答应写出 文字说明、证明过程或演算步骤.22.如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2.P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长.23.已知集合X ={1,2,3},Y n ={1,2,3,···,n }(n ∈N *),设S n ={(a ,b )|a 整除b ,或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素个数. (1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.。

2015年江苏高考数学试卷及参考答案清晰版

2015年江苏高考数学试卷及参考答案清晰版

数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.22.63.4.75. 566.-37.8.3{}x x<︱-1<2(或(-1,2))10. 11. 13.4 14. 22(1)2x y -+=2011二、解答题15.本小题主要考查余弦定理、正弦定理,同角三角函数关系与二倍角公式,考查运算求解能力.满分14分。

解:(1)由余弦定理知,,2221C C 2C cos 4922372B =AB +A -AB⋅A ⋅A =+-⨯⨯⨯=则.()()()()()()()()()()222213ln 13312ln 1231ln 111213t t t t t t g t t t t ⎡⎤++-+++++⎣⎦'=+++令,()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++则.()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦令,则.()()1t t ϕϕ'=()()()()163ln 134ln 12ln 1t t t t ϕ'=+-+++⎡⎤⎣⎦令,则.()()21t t ϕϕ'=()()()()212011213t t t t ϕ'=>+++由,,()()()()1200000g ϕϕϕ====()20t ϕ'>知,,,在和上均单调.()2t ϕ()1t ϕ()t ϕ()g t 1,03⎛⎫- ⎪⎝⎭()0,+∞故只有唯一零点,即方程()只有唯一解,故假设不成立.()g t 0t =**0t =所以不存在,及正整数,,使得,,,依次构成等比数列.1a d n k 1n a 2n k a +23n k a +34n k a +数学Ⅱ(附加题)参考答案21.[选做题]A .(选修4—1:几何证明选讲)本小题主要考查圆的基本性质和相似三角形等基础知识,考查推理论证能力.满分10分。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)(2015•江苏)不等式2<4的解集为.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC 于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.。

2015年 江苏高考数学真题完整解析版

2015年 江苏高考数学真题完整解析版

2015²江苏卷(数学)1.A1[2015·江苏卷] 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.1.5 [解析] 因为A ∪B ={1,2,3,4,5},所以A ∪B 中元素的个数为5. 2.I2[2015·江苏卷] 已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.2.6 [解析] x =16³(4+6+5+8+7+6)=6.3.L4[2015·江苏卷] 设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 3.5 [解析] 因为z 2=3+4i ,所以|z 2|=|z |2=|3+4i|=9+16=5,所以|z |= 5. 4.L2[2015·江苏卷] 根据如图1-1所示的伪代码,可知输出的结果S 为________.S ←1I ←1While I<8 S ←S +2 I ←I +3 End While Print S图1-14.7 [解析] 第一次循环得S =1+2=3,I =1+3=4<8;第二次循环得S =3+2=5,I =4+3=7<8;第三次循环得S =5+2=7,I =7+3=10>8,退出循环,故输出的S =7.5.K2[2015·江苏卷] 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.5.56[解析] 方法一:以1表示白球,以2表示红球,以3,4表示2只黄球,则随机摸出2只球的所有基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,2只球颜色不同的基本事件有5个,故所求概率P =56.方法二:2只球颜色不同的对立事件是2只球颜色相同,有1种情况,故所求概率P =1-16=56. 6.F2[2015·江苏卷] 已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.6.-3 [解析] 因为m a +n b =(2m +n ,m -2n )=(9,-8),所以⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,解得⎩⎪⎨⎪⎧m =2,n =5,故m -n =-3. 7.E3[2015·江苏卷] 不等式2x 2-x <4的解集为________.7.{x |-1<x <2}(或(-1,2)) [解析] 因为2x 2-x <4=22,所以x 2-x <2,解得-1<x <2,故不等式的解集为(-1,2).8.C5[2015·江苏卷] 已知tan α=-2,tan(α+β)=17,则tan β的值为________.8.3 [解析] 因为β=(α+β)-α,所以tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17+21-27=3.9.G7[2015·江苏卷] 现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.9.7 [解析] 设新的底面半径为r ,则13π³52³4+π³22³8=13πr 2³4+πr 2³8 ,即283πr 2=1003π+32π,解得r =7. 10.H4[2015·江苏卷] 在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.10.(x -1)2+y 2=2 [解析] 由直线mx -y -2m -1=0得m (x -2)-(y +1)=0,故直线过点(2,-1).当切线与过(1,0),(2,-1)两点的直线垂直时,圆的半径最大,此时有r =1+1=2,故所求圆的标准方程为(x -1)2+y 2=2.11.D4[2015·江苏卷] 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.11.2011[解析] 因为a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,故∑n =110 1a n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=2011. 12.H6、H10[2015·江苏卷] 在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.12.22[解析] 不妨设点P (x 0,x 20-1)(x 0≥1),则点P 到直线x -y +1=0的距离d =||x 0-x 20-1+12.令u (x )=x -x 2-1=1x +x 2-1,则u (x )是单调递减函数,且u (x )>0.当x →+∞时,u (x )→0,所以d >22,故c max =22. 13.B8、B9[2015·江苏卷] 已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.13.4 [解析] 当0<x ≤1时,由||f (x )+g (x )=1得||ln x =1,解得x =1e或x =e(舍去).当x >1时,由||f (x )+g (x )=1得||ln x =3-||x 2-4或||ln x =1-||x 2-4.分别在同一个坐标系中作出函数y =||ln x 与y =3-||x 2-4的图像(如图1)和函数y =||ln x 与y =1-||x 2-4的图像(如图2).图1图2当x >1时,它们分别有1个、2个交点,故x >1时,方程有3个实根. 综上,方程||f (x )+g (x )=1共有4个不同的实根.14.C7、F3[2015·江苏卷] 设向量a k =⎝⎛⎭⎫cos k π6,sin k π6+cos k π6(k =0,1,2,…,12),则k =011(a k ²a k +1)的值为________.14.93 [解析] 因为a k ²a k +1=cosk π6cos (k +1)π6+⎝⎛⎭⎫sin k π6+cos k π6⎣⎡⎦⎤sin (k +1)π6+cos (k +1)π6=2cos k π6cos (k +1)π6+sin k π6sin (k +1)π6+sin k π6cos (k +1)π6+cos k π6sin(k +1)π6=cos k π6cos (k +1)π6+cos π6+sin (2k +1)π6=12cos (2k +1)π6+sin (2k +1)π6+334, 所以k =011(a k ²a k +1)=12³334+12k =011c os (2k +1)π6+k =011s in (2k +1)π6=9 3.15.C8[2015·江苏卷] 在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.15.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2³2³3³12=7,所以BC =7.(2)由正弦定理知,AB sin C =BC sin A ,所以sin C =AB BC ²sin A =2sin 60°7=217. 因为AB <BC ,所以C 为锐角,则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ²cos C =2³217³277=437. 16.G4、G5[2015·江苏卷] 如图1-2,在直三棱柱ABC - A 1B 1C 1中,已知AC ⊥BC ,BC=CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.图1-216.证明:(1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C . (2)因为三棱柱ABC - A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1. 又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1, BC ⊂平面BCC 1B 1,BC ∩CC 1=C , 所以AC ⊥平面BCC 1B 1.又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C .因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1. 17.B10、B11[2015·江苏卷] 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路.记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l .如图1-3所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米.以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy .假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值.(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式f (t ),并写出其定义域. ②当t 为何值时,公路l 的长度最短?求出最短长度.图1-317.解:(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5). 将其分别代入y =ax 2+b,得⎩⎨⎧a25+b=40,a400+b =2.5,解得⎩⎪⎨⎪⎧a =1000,b =0.(2)①由(1)知,y =1000x 2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎫t ,1000t 2. 设点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2000x 3,则l 的方程为y -1000t 2=-2000t 3(x -t ),由此得A ⎝⎛⎭⎫3t 2,0,B ⎝⎛⎭⎫0,3000t 2. 故f (t )=⎝⎛⎭⎫3t 22+⎝⎛⎭⎫3000t 22=32t 2+4³106t4,t ∈[5,20].②设g (t )=t 2+4³106t 4,则g ′(t )=2t -16³106t 5.令g ′(t )=0,解得t =10 2.当t ∈[5,102)时,g ′(t )<0,g (t )是减函数;当t ∈(102,20]时,g ′(t )>0,g (t )是增函数.从而,当t =102时,函数g (t )有极小值,也是最小值,所以g (t )min =300,此时f (t )min=15 3.故当t =102时,公路l 的长度最短,最短长度为153千米.18.H5、H10[2015·江苏卷] 如图1-4,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.图1-418.解:(1)由题意,得c a =22,且c +a 2c =3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入椭圆方程,得(1+2k 2)x 2-4k 2x +2(k 2-1)=0,则x 1,2=2k 2±2(1+k 2)1+2k 2,C点的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =(x 2-x 1)2+(y 2-y 1)2=(1+k 2)(x 2-x 1)2= 22(1+k 2)1+2k 2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意,从而k ≠0,故直线PC 的方程为y +k 1+2k 2=-1k ⎝⎛⎭⎫x -2k 21+2k 2,则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k (1+2k 2),从而PC =2(3k 2+1)1+k 2|k |(1+2k 2).因为PC =2AB ,所以2(3k 2+1)1+k 2|k |(1+2k 2)=42(1+k 2)1+2k 2,解得k =±1,此时直线AB 的方程为y =x -1或y =-x +1. 19.B9、B12[2015·江苏卷] 已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b =c -a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,求c 的值. 19.解:(1)f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a3.当a =0时,因为f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增;当a >0时,若x ∈⎝⎛⎭⎫-∞,-2a 3∪(0,+∞),则f ′(x )>0,若x ∈⎝⎛⎭⎫-2a3,0,则f ′(x )<0, 所以函数f (x )在⎝⎛⎭⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝⎛⎭⎫-2a3,0上单调递减; 当a <0时,若x ∈(-∞,0)∪⎝⎛⎭⎫-2a 3,+∞,则f ′(x )>0,若x ∈⎝⎛⎭⎫0,-2a3,则f ′(x )<0, 所以函数f (x )在(-∞,0),⎝⎛⎭⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎫0,-2a3上单调递减. (2)由(1)知,函数f (x )的两个极值分别为f (0)=b ,f ⎝⎛⎭⎫-2a 3=427a 3+b ,则函数f (x )有三个零点等价于f (0)·f ⎝⎛⎭⎫-2a 3=b ⎝⎛⎭⎫427a 3+b <0,从而 ⎩⎪⎨⎪⎧a >0,-427a 3<b <0或⎩⎪⎨⎪⎧a <0,0<b <-427a 3. 又b =c -a ,所以当a >0时,427a 3-a +c >0或当a <0时,427a 3-a +c <0.设g (a )=427a 3-a +c .因为函数f (x )有三个零点时,a 的取值范围恰好是(-∞,-3)∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞,所以在(-∞,-3)上g (a )<0,且在⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞上g (a )>0均恒成立, 从而g (-3)=c -1≤0,且g ⎝⎛⎭⎫32=c -1≥0,因此c =1.此时,f (x )=x 3+ax 2+1-a =(x +1)[x 2+(a -1)x +1-a ].因为函数f (x )有三个零点,所以x 2+(a -1)x +1-a =0有两个异于-1的不等实根, 所以Δ=(a -1)2-4(1-a )=a 2+2a -3>0, 且(-1)2-(a -1)+1-a ≠0,解得a ∈(-∞,-3)∪⎝⎛⎭⎫1,32∪⎝⎛⎭⎫32,+∞. 综上,c =1.20.D2、D3、D5[2015·江苏卷] 设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列.(1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由.(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k 4依次构成等比数列?并说明理由.20.解:(1)证明:因为2a n +12a n=2a n +1-a n =2d (n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列.(2)令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =da ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝⎛⎭⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,得t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14.显然t =-14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)假设存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k 4依次构成等比数列, 则a n 1(a 1+2d )n +2k=(a 1+d )2(n +k ), 且(a 1+d )n +k (a 1+3d )n +3k =(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1,并令t =da 1⎝⎛⎭⎫t >-13,t ≠0, 则(1+2t )n +2k =(1+t )2(n +k ),且(1+t )n +k (1+3t )n +3k =(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ),化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )],且k [3ln(1+3t )+ln(1+t )-4ln(1+2t )]=n [2ln(1+2t )-ln(1+t )-ln(1+3t )]. 再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t )=4ln(1+3t )ln(1+t )(**).令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=2[(1+3t )2ln (1+3t )-3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )](1+t )(1+2t )(1+3t ).令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ′1(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )]. 令φ2(t )=φ′1(t ),则φ′2(t )=12(1+t )(1+2t )(1+3t )>0.由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝⎛⎭⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立,所以不存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k3,a n +3k 4依次构成等比数列. 21.N1[2015·江苏卷] A .[选修4-1:几何证明选讲]如图1-5,在△ABC 中,AB =AC ,△ABC 的外接圆⊙O 的弦AE 交BC 于点D .求证:△ABD ∽△AEB .图1-5N2B .[选修4-2:矩阵与变换]已知x ,y ∈R ,向量α=⎣⎢⎡⎦⎥⎤1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.N3C .[选修4-4:坐标系与参数方程]已知圆C 的极坐标方程为ρ2+22ρsin ⎝⎛⎭⎫θ-π4-4=0,求圆C 的半径.N4D.[选修4-5:不等式选讲]解不等式x +|2x +3|≥2.21.A.证明:因为AB =AC ,所以∠ABD =∠C . 又因为∠C =∠E ,所以∠ABD =∠E , 又∠BAE 为公共角,所以△ABD ∽△AEB .B .解:由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-22,则⎩⎪⎨⎪⎧x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎡⎦⎥⎤-1120. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.C .解:以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝⎛⎭⎫22sin θ-22cos θ-4=0,化简得ρ2+2ρsin θ-2ρcos θ-4=0,则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.D .解:原不等式可化为⎩⎪⎨⎪⎧x <-32,-x -3≥2或⎩⎪⎨⎪⎧x ≥-32,3x +3≥2,解得x ≤-5或x ≥-13.综上,原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-5或x ≥-13. 22.G11、G12[2015·江苏卷] 如图1-6,在四棱锥P - ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.图1-622.解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A - xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2), 设平面PCD 的一个法向量为m =(x ,y ,z ), 所以m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1, 所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)由BP →=(-1,0,2),可设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),所以CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →²DP →|CQ →||DP →|=1+2λ10λ2+2 . 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910, 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|取得最大值为31010. 因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255. 23.M3[2015·江苏卷] 已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.23.解:(1)f (6)=13.(2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝⎛⎭⎫n 2+n 3,n =6t ,n +2+⎝⎛⎭⎫n -12+n -13,n =6t +1,n +2+⎝⎛⎭⎫n 2+n -23,n =6t +2,n +2+⎝⎛⎭⎫n -12+n 3,n =6t +3,n +2+⎝⎛⎭⎫n 2+n -13,n =6t +4,n +2+⎝⎛⎭⎫n -12+n -23,n =6t +5(t ∈N *). 下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立. ②假设n =k (k ≥6)时结论成立,那么n =k +1时,f (k +1)在f (k )的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:(i)若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3 =(k +1)+2+k +12+k +13,结论成立; (ii)若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立; (iii)若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2 =(k +1)+2+k +12+(k +1)-23,结论成立; (iv)若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2 =(k +1)+2+(k +1)-12+k +13,结论成立; (v)若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k 3+2 =(k +1)+2+k +12+(k +1)-13,结论成立; (vi)若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1 =(k +1)+2+(k +1)-12+(k +1)-23,结论成立. 综上所述,结论对满足n ≥6的自然数n 均成立.。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.那么这组数据的平均数为:3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.|z||z|=|3+4i|=故答案为:4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为..故答案为:.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.解:向量,m+n,解得7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).28.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.=,=9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.解:由题意可知,原来圆锥和圆柱的体积和为:则新圆锥和圆柱的体积和为:,解得:故答案为:10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.d=,,11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.=+2+1=..{.{项的和为故答案为:.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.的距离,即故答案为:13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak •a k+1)的值为.答=+:+,++++++.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.×=7.==cosC==×16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.y=,利用导数,确定单调性,即可求出当y=,,y=,,﹣()=t=10,)时,10时,函数=15时,公路1518.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.=,=3,,即有椭圆方程为+y==()==()|PC|==19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.(﹣+b(﹣+b时,时,=或﹣.,﹣)∪(,))上单调递增,在(﹣)∪(﹣,,﹣)时,(﹣,)上单调递减;(﹣+b(﹣(时,时,),,)∪(,()∪(20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.)证明:∵=2,,,依次构成等比数列;t=(﹣<,不是上面方程的解,矛盾,所以假设不成立,t=,[>)在(﹣,三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.A=,可得=2,即,即A=【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.ρ﹣[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.”“<,或.时,原不等式化为,≥时,原不等式化为【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.,>≤,,∴=,=,得,,得=,>=;)∵=λ==,则===,>=,>≤,即=,的最大值为,BP==,∴BP=26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.+=13=6+2+=13.=6+2+=13+2+,+1=k+2++ ++2=k+2++ ++2=k+2++ ++2=k+2++ ++2=k+2++ +。

2015年江苏省高考数学试卷及答案 Word版

2015年江苏省高考数学试卷及答案 Word版

2015年江苏省高考数学试卷 一、填空题 1.已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为_______.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.4.根据如图所示的伪代码,可知输出的结果S 为________.5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.6.已知向量()21a =,,()2a =-1,,若()()98ma nb mn R +=-∈,,则m-n 的值为______.7.不等式224x x -<的解集为________.8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。

若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为 。

10.在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 。

11.数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{n a 的前10项和为 。

12.在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

若点P 到直线01=+-y x 的距离对c 恒成立,则是实数c 的最大值为 。

13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。

14.设向量)12,,2,1,0)(6cos 6sin ,6(cos =+=k k k k a k πππ,则∑=+⋅1201)(k k k a a 的值为 。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A ∪B 中元素的个数为 . 2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 . 3.(5分)设复数z 满足z 2=3+4i (i 是虚数单位),则z 的模为 . 4.(5分)根据如图所示的伪代码,可知输出的结果S 为 .5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 6.(5分)已知向量a →=(2,1),b →=(1,﹣2),若m a →+n b →=(9,﹣8)(m ,n ∈R ),则m ﹣n 的值为 . 7.(5分)不等式2x 2−x <4的解集为 .8.(5分)已知tanα=﹣2,tan (α+β)=17,则tanβ的值为 .9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .10.(5分)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 .11.(5分)设数列{a n }满足a 1=1,且a n +1﹣a n =n +1(n ∈N *),则数列{1a n }的前10项的和为 .12.(5分)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2=1右支上的一个动点,若点P 到直线x ﹣y +1=0的距离大于c 恒成立,则实数c 的最大值为 .13.(5分)已知函数f (x )=|lnx |,g (x )={0,0<x ≤1|x 2−4|−2,x >1,则方程|f (x )+g (x )|=1实根的个数为 . 14.(5分)设向量a k →=(cos kπ6,sin kπ6+cos kπ6)(k=0,1,2,…,12),则∑11k=0(a k •a k +1)的值为 .二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.16.(14分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知AC ⊥BC ,BC=CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y=a x 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.19.(16分)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b=c ﹣a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,32)∪(32,+∞),求c 的值.20.(16分)设a 1,a 2,a 3.a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量α→=[1−1]是矩阵[x1y0]的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2√2ρsin(θ﹣π4)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:52.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:4+6+5+8+7+66=6.故答案为:6.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为√5.【解答】解:复数z满足z2=3+4i,可得|z||z|=|3+4i|=√32+42=5,∴|z|=√5.故答案为:√5.4.(5分)根据如图所示的伪代码,可知输出的结果S为7.【解答】解:模拟执行程序,可得S=1,I=1满足条件I <8,S=3,I=4 满足条件I <8,S=5,I=7 满足条件I <8,S=7,I=10不满足条件I <8,退出循环,输出S 的值为7. 故答案为:7.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 56.【解答】解:根据题意,记白球为A ,红球为B ,黄球为C 1、C 2,则 一次取出2只球,基本事件为AB 、AC 1、AC 2、BC 1、BC 2、C 1C 2共6种, 其中2只球的颜色不同的是AB 、AC 1、AC 2、BC 1、BC 2共5种;所以所求的概率是P=56,故答案为:56.6.(5分)已知向量a →=(2,1),b →=(1,﹣2),若m a →+n b →=(9,﹣8)(m ,n ∈R ),则m ﹣n 的值为 ﹣3 .【解答】解:向量a →=(2,1),b →=(1,﹣2),若m a →+n b →=(9,﹣8) 可得{2m +n =9m −2n =−8,解得m=2,n=5,∴m ﹣n=﹣3. 故答案为:﹣3.7.(5分)不等式2x 2−x <4的解集为 (﹣1,2) .【解答】解;∵2x 2−x <4,∴x 2﹣x <2, 即x 2﹣x ﹣2<0, 解得:﹣1<x <2故答案为:(﹣1,2)8.(5分)已知tanα=﹣2,tan (α+β)=17,则tanβ的值为 3 .【解答】解:tanα=﹣2,tan (α+β)=17,可知tan (α+β)=tanα+tanβ1−tanαtanβ=17,即−2+tanβ1+2tanβ=17, 解得tanβ=3. 故答案为:3.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 √7 .【解答】解:由题意可知,原来圆锥和圆柱的体积和为:13×25π×4+4π×8=196π3. 设新圆锥和圆柱的底面半径为r ,则新圆锥和圆柱的体积和为:13×4πr 2+8πr 2=28πr 23.∴28πr 23=196π3,解得:r =√7.故答案为:√7.10.(5分)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 (x ﹣1)2+y 2=2 .【解答】解:圆心到直线的距离d=√2=√1+2m+1m≤√2, ∴m=1时,圆的半径最大为√2, ∴所求圆的标准方程为(x ﹣1)2+y 2=2. 故答案为:(x ﹣1)2+y 2=2.11.(5分)设数列{a n }满足a 1=1,且a n +1﹣a n =n +1(n ∈N *),则数列{1a n}的前10项的和为2011. 【解答】解:∵数列{a n }满足a 1=1,且a n +1﹣a n =n +1(n ∈N *),∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n +…+2+1=n(n+1)2.当n=1时,上式也成立,∴a n =n(n+1)2. ∴1a n =2n(n+1)=2(1n −1n+1). ∴数列{1a n }的前n 项的和S n =2[(1−12)+(12−13)+⋯+(1n −1n+1)]=2(1−1n+1) =2n n+1. ∴数列{1a n }的前10项的和为2011.故答案为:2011.12.(5分)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2=1右支上的一个动点,若点P 到直线x ﹣y +1=0的距离大于c 恒成立,则实数c 的最大值为 √22. 【解答】解:由题意,双曲线x 2﹣y 2=1的渐近线方程为x ±y=0, 因为点P 到直线x ﹣y +1=0的距离大于c 恒成立,所以c 的最大值为直线x ﹣y +1=0与直线x ﹣y=0的距离,即√22. 故答案为:√22.13.(5分)已知函数f (x )=|lnx |,g (x )={0,0<x ≤1|x 2−4|−2,x >1,则方程|f (x )+g (x )|=1实根的个数为 4 .【解答】解:由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1. g (x )与h (x )=﹣f (x )+1的图象如图所示,图象有2个交点g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4.14.(5分)设向量a k →=(coskπ6,sin kπ6+cos kπ6)(k=0,1,2,…,12),则∑11k=0(a k •a k +1)的值为 9√3 .【解答】解:a k →⋅a k+1→=cos kπ6⋅cos (k+1)π6+(sin kπ6+cos kπ6)(sin (k+1)π6+cos (k+1)π6) =cos kπ6⋅cos(k+1)π6+sin kπ6sin (k+1)π6+sin kπ6cos (k+1)π6+cos kπ6sin (k+1)π6+cos kπ6cos (k+1)π6=cos π6+sin 2k+16π+12(cos 2k+16π+cos π6)=32×√32+sin 2k+16π+12cos 2k+1π6, ∴∑11k=0(a k •a k +1)=12×3√34+(sin π6+sin 3π6+sin 5π6+sin 7π6+sin 9π6+sin 11π6+sin 13π6+…+sin 23π6)+12(cos π6+cos 3π6+cos 5π6+cos 7π6+cos 9π6+cos 11π6+cos 13π6+…+cos 23π6)=9√3+0+0 =9√3.故答案为:9√3.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.【解答】解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB•ACcosA=4+9﹣2×2×3×12=7, 所以BC=√7.(2)由正弦定理可得:ABsinC =BCsinA ,则sinC=ABBC ⋅sinA =√7=√217,∵AB <BC ,BC=√7,AB=2,角A=60°,在三角形ABC 中,大角对大边,大边对大角,√7>2,∴角C <角A ,角C 为锐角.sinC >0,cosC >0则cosC=√1−sin 2C =√1−37=2√77.因此sin2C=2sinCcosC=2×√217×2√77=4√37.16.(14分)如图,在直三棱柱ABC ﹣A 1B 1C 1中,已知AC ⊥BC ,BC=CC 1,设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC 1⊥AC ;因为BC=CC 1,所以矩形BCC 1B 1是正方形, 所以BC 1⊥平面B 1AC ; 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.【方法二】根据题意,A 1C 1⊥B 1C 1,CC 1⊥平面A 1B 1C 1,以C 1为原点建立空间直角座标系,C 1A 1为x 轴,C 1B 1为y 轴,C 1C 为z 轴,如图所示; 设BC=CC 1=a ,AC=b ,则A (b ,0,a ),B 1(0,a ,0),B (0,a ,a ),C 1(0,0,0); ∴AB 1→=(﹣b ,a ,﹣a ),BC 1→=(0,﹣a ,﹣a ), ∴AB 1→•BC 1→=﹣b ×0+a ×(﹣a )﹣a ×(﹣a )=0, ∴AB 1→⊥BC 1→, 即AB 1⊥BC 1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y=a x 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.【解答】解:(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5),将其分别代入y=a x +b ,得{a25+b =40a 400+b=2.5,解得{a =1000b =0,(2)①由(1)y=1000x (5≤x ≤20),P (t ,1000t),∴y′=﹣2000t3,∴切线l 的方程为y ﹣1000t 2=﹣2000t3(x ﹣t )设在点P 处的切线l 交x ,y 轴分别于A ,B 点,则A (3t 2,0),B (0,3000t2),∴f (t )=√(3t 2)2+(3000t2)2=32√t 2+4×106t 4,t ∈[5,20];②设g (t )=t 2+4×106t4,则g′(t )=2t ﹣16×106t =0,解得t=10√2, t ∈(5,10√2)时,g′(t )<0,g (t )是减函数;t ∈(10√2,20)时,g′(t )>0,g (t )是增函数,从而t=10√2时,函数g (t )有极小值也是最小值, ∴g (t )min =300, ∴f (t )min =15√3,答:t=10√2时,公路l 的长度最短,最短长度为15√3千米.18.(16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为√22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.【解答】解:(1)由题意可得,e=c a =√22,且c +a2c=3,解得c=1,a=√2,则b=1,即有椭圆方程为x 22+y 2=1;(2)当AB ⊥x 轴,AB=√2,CP=3,不合题意;当AB 与x 轴不垂直,设直线AB :y=k (x ﹣1),A (x 1,y 1),B (x 2,y 2), 将AB 方程代入椭圆方程可得(1+2k 2)x 2﹣4k 2x +2(k 2﹣1)=0,则x 1+x 2=4k 21+2k 2,x 1x 2=2(k 2−1)1+2k 2,则C (2k 21+2k 2,−k 1+2k 2),且|AB |=√1+k 2•√(x 1+x 2)2−4x 1x 2=2√2(1+k 2)1+2k 2, 若k=0,则AB 的垂直平分线为y 轴,与左准线平行,不合题意;则k ≠0,故PC :y +k 1+2k =﹣1k (x ﹣2k 21+2k ),P (﹣2,2+5k 2k(1+2k )),从而|PC |=2(3k 2+1)√1+k 2|k|(1+2k 2),由|PC |=2|AB |,可得2(3k 2+1)√1+k 2|k|(1+2k )=4√2(1+k 2)1+2k ,解得k=±1,此时AB 的方程为y=x ﹣1或y=﹣x +1.19.(16分)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ). (1)试讨论f (x )的单调性;(2)若b=c ﹣a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,32)∪(32,+∞),求c 的值.【解答】解:(1)∵f (x )=x 3+ax 2+b , ∴f′(x )=3x 2+2ax , 令f′(x )=0,可得x=0或﹣2a 3.a=0时,f′(x )>0,∴f (x )在(﹣∞,+∞)上单调递增; a >0时,x ∈(﹣∞,﹣2a 3)∪(0,+∞)时,f′(x )>0,x ∈(﹣2a 3,0)时,f′(x )<0,∴函数f (x )在(﹣∞,﹣2a 3),(0,+∞)上单调递增,在(﹣2a 3,0)上单调递减;a <0时,x ∈(﹣∞,0)∪(﹣2a 3,+∞)时,f′(x )>0,x ∈(0,﹣2a 3)时,f′(x )<0,∴函数f (x )在(﹣∞,0),(﹣2a 3,+∞)上单调递增,在(0,﹣2a3)上单调递减;(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f (﹣2a 3)=427a 3+b ,则函数f (x )有三个不同的零点等价于f (0)>0,且f (﹣2a3)<0,∴b >0且427a 3+b <0,∵b=c ﹣a , ∴a >0时,427a 3﹣a +c >0或a <0时,427a 3﹣a +c <0.设g (a )=427a 3﹣a +c ,∵函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,32)∪(32,+∞), ∴在(﹣∞,﹣3)上,g (a )<0且在(1,32)∪(32,+∞)上g (a )>0均恒成立,∴g (﹣3)=c ﹣1≤0,且g (32)=c ﹣1≥0,∴c=1,此时f (x )=x 3+ax 2+1﹣a=(x +1)[x 2+(a ﹣1)x +1﹣a ], ∵函数有三个零点,∴x 2+(a ﹣1)x +1﹣a=0有两个异于﹣1的不等实根,∴△=(a ﹣1)2﹣4(1﹣a )>0,且(﹣1)2﹣(a ﹣1)+1﹣a ≠0,解得a ∈(﹣∞,﹣3)∪(1,32)∪(32,+∞),综上c=1.20.(16分)设a 1,a 2,a 3.a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由; (3)是否存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k 依次构成等比数列?并说明理由. 【解答】解:(1)证明:∵2a n+12a n=2a n+1−a n =2d ,(n=1,2,3,)是同一个常数,∴2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)令a 1+d=a ,则a 1,a 2,a 3,a 4分别为a ﹣d ,a ,a +d ,a +2d (a >d ,a >﹣2d ,d ≠0)假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列, 则a 4=(a ﹣d )(a +d )3,且(a +d )6=a 2(a +2d )4,令t=d a ,则1=(1﹣t )(1+t )3,且(1+t )6=(1+2t )4,(﹣12<t <1,t ≠0),化简得t 3+2t 2﹣2=0(*),且t 2=t +1,将t 2=t +1代入(*)式,t (t +1)+2(t +1)﹣2=t 2+3t=t +1+3t=4t +1=0,则t=﹣14,显然t=﹣14不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)假设存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k 依次构成等比数列,则a 1n (a 1+2d )n +2k =(a 1+d )2(n +k ),且(a 1+d )n +k (a 1+3d )n +3k =(a 1+2d )2(n +2k ),分别在两个等式的两边同除以a 12(n +k ),a 12(n +2k ),并令t=d a 1,(t >−13,t ≠0), 则(1+2t )n +2k =(1+t )2(n +k ),且(1+t )n +k (1+3t )n +3k =(1+2t )2(n +2k ), 将上述两个等式取对数,得(n +2k )ln (1+2t )=2(n +k )ln (1+t ), 且(n +k )ln (1+t )+(n +3k )ln (1+3t )=2(n +2k )ln (1+2t ), 化简得,2k [ln (1+2t )﹣ln (1+t )]=n [2ln (1+t )﹣ln (1+2t )], 且3k [ln (1+3t )﹣ln (1+t )]=n [3ln (1+t )﹣ln (1+3t )], 再将这两式相除,化简得,ln (1+3t )ln (1+2t )+3ln (1+2t )ln (1+t )=4ln (1+3t )ln (1+t ),(**) 令g (t )=4ln (1+3t )ln (1+t )﹣ln (1+3t )ln (1+2t )+3ln (1+2t )ln (1+t ),则g′(t )=2(1+t)(1+2t)(1+3t)[(1+3t )2ln (1+3t )﹣3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t )],令φ(t )=(1+3t )2ln (1+3t )﹣3(1+2t )2ln (1+2t )+3(1+t )2ln (1+t ), 则φ′(t )=6[(1+3t )ln (1+3t )﹣2(1+2t )ln (1+2t )+3(1+t )ln (1+t )], 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln (1+3t )﹣4ln (1+2t )+ln (1+t )],令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t)(1+2t)(1+3t)>0,由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t )>0,知g (t ),φ(t ),φ1(t ),φ2(t )在(﹣13,0)和(0,+∞)上均单调,故g (t )只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立, 所以不存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n +k ,a 3n +2k ,a 4n +3k 依次构成等比数列.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC 中,AB=AC ,△ABC 的外接圆⊙O 的弦AE 交BC 于点D .求证:△ABD ∽△AEB .【解答】证明:∵AB=AC ,∴∠ABD=∠C ,又∵∠C=∠E ,∴∠ABD=∠E ,又∠BAE 是公共角,可知:△ABD ∽△AEB .【选修4-2:矩阵与变换】22.(10分)已知x ,y ∈R ,向量α→=[1−1]是矩阵[x 1y 0]的属于特征值﹣2的一个特征向量,求矩阵A 以及它的另一个特征值.【解答】解:由已知,可得A α→=﹣2α→,即[x 1y 0] [1−1]=[x −1y ]=[−22],则{x −1=−2y =2,即{x =−1y =2, ∴矩阵A=[−1120],从而矩阵A 的特征多项式f (λ)=(λ+2)(λ﹣1), ∴矩阵A 的另一个特征值为1.【选修4-4:坐标系与参数方程】 23.已知圆C 的极坐标方程为ρ2+2√2ρsin (θ﹣π4)﹣4=0,求圆C 的半径.【解答】解:圆的极坐标方程为ρ2+2√2ρsin (θ﹣π4)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x 2+y 2﹣2x +2y ﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=√6.[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【解答】解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥−13,或x≤﹣5,即原不等式的解集为{x|x≥−13,或x≤﹣5}.解法2:令|2x+3|=0,得x=−3 2.①当x≥−32时,原不等式化为x+(2x+3)≥2,即x≥−13,所以x≥−1 3;②x<−32时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥−13,或x≤﹣5}.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=π2,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.【解答】解:以A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A ﹣xyz 如图,由题可知B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)∵AD ⊥平面PAB ,∴AD →=(0,2,0),是平面PAB 的一个法向量, ∵PC →=(1,1,﹣2),PD →=(0,2,﹣2),设平面PCD 的法向量为m →=(x ,y ,z ),由{m →⋅PC →=0m →⋅PD →=0,得{x +y −2z =02y −2z =0, 取y=1,得m →=(1,1,1),∴cos <AD →,m →>=AD →⋅m →|AD →||m →|=√33, ∴平面PAB 与平面PCD 所成两面角的余弦值为√33; (2)∵BP →=(﹣1,0,2),设BQ →=λBP →=(﹣λ,0,2λ)(0≤λ≤1),又CB →=(0,﹣1,0),则CQ →=CB →+BQ →=(﹣λ,﹣1,2λ),又DP →=(0,﹣2,2),从而cos <CQ →,DP →>=CQ →⋅DP →|CQ →||DP →|=√2, 设1+2λ=t ,t ∈[1,3],则cos 2<CQ →,DP →>=2t 25t 2−10t+9=29(1t −59)2+209≤910, 当且仅当t=95,即λ=25时,|cos <CQ →,DP →>|的最大值为3√1010, 因为y=cosx 在(0,π2)上是减函数,此时直线CQ 与DP 所成角取得最小值.又∵BP=√12+22=√5,∴BQ=25BP=2√55.26.(10分)已知集合X={1,2,3},Y n ={1,2,3,…,n )(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,B ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.【解答】解:(1)f (6)=6+2+62+63=13; (2)当n ≥6时,f (n )={ n +2+(n 2+n 3),n =6t n +2+(n−12+n−13),n =6t +1n +2+(n 2+n−23),n =6t +2n +2+(n−12+n 3),n =6t +3n +2+(n 2+n−13),n =6t +4n +2+(n−12+n−23),n =6t +5. 下面用数学归纳法证明:①n=6时,f (6)=6+2+62+63=13,结论成立; ②假设n=k (k ≥6)时,结论成立,那么n=k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:1)若k +1=6t ,则k=6(t ﹣1)+5,此时有f (k +1)=f (k )+3=(k +1)+2+k+12+k+13,结论成立;2)若k +1=6t +1,则k=6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k 3+1=(k +1)+2+(k+1)−12+(k+1)−13,结论成立; 3)若k +1=6t +2,则k=6t +1,此时有f (k +1)=f (k )+2=k +2+k−12+k−13+2=(k +1)+2+k+12+(k+1)−23,结论成立; 4)若k +1=6t +3,则k=6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k−23+2=(k +1)+2+(k+1)−12+k+13,结论成立; 5)若k +1=6t +4,则k=6t +3,此时有f (k +1)=f (k )+2=k +2+k−12+k 3+2=(k +1)+2+k+12+(k+1)−13,结论成立; 6)若k +1=6t +5,则k=6t +4,此时有f (k +1)=f (k )+2=k +2+k 2+k−13+2=(k +1)+2+(k+1)−12+(k+1)−23,结论成立. 综上所述,结论f (n )=n +[n 2]+[n 3]+2,对满足n ≥6的自然数n 均成立.。

(完整word)2015年江苏省高考数学试卷答案与解析.doc

(完整word)2015年江苏省高考数学试卷答案与解析.doc

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015?江苏)已知集合A={1 , 2, 3}, B={2 , 4, 5},则集合AU B中元素的个数为 _考点:并集及其运算.专题:集合.分析:求出A U B,再明确元素个数解答:解:集合A={1 , 2, 3} , B={2 , 4, 5},则A U B={1 , 2, 3, 4,5};所以AUB中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015?江苏)已知一组数据4, 6, 5, 8, 7, 6,那么这组数据的平均数为_6_考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4, 6, 5, 8, 7, 6,那么这组数据的平均数为:44-6+548+7^6 =6>6故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015?江苏)设复数z满足z2=3+4i ( i是虚数单位),则z的模为一. 考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i ,可得lzllzl=l3+4il=Jj莓梓巧,A lzl=^故答案为:•街点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015?江苏)根据如图所示的伪代码,可知输出的结果S为7WTulft Z<Sgg 4 2冲+ 3End ^hile Print S考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I, S的值,当1=10时不满足条件IV 8,退出循环,输出S的值为7・解答:解:模拟执行程序,可得S = 1, 1=1满足条件1< 8, S=3, 1=4满足条件1< 8, S=5, 1=7满足条件I < 8, S=7, 1=1不满足条件1<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015?江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为虫・考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可. 解答:解:根据题意,记白球为A,红球为B,黄球为Cl、C2,则一次取出2只球,基本事件为AB、AC1、AC 2、BC1、BC2、C1C2共6不申,其中2只球的颜色不同的是AB、AC 1、AC 2、BC1、BC2共5种;所以所求的概率是P伞.故答案为:卫.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5 分)(2015?江苏)已知向量3= ( 2, 1) , b= ( 1, - 2),若( 9, - 8) ( m, neR),则m - n的值为_H—考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析: 解答: 直接利用向量的坐标运算,求解即可.解:向量-2),点评2n可得,解得m=2, n=5,考查计算能力.< 4的解集为(- 1, 2).8. (5分)(2015?江苏)已知3 2, tan考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2 - x< 2,求解即可.解答:x2 -K解;V2 <4,2・・・x - x< 2,7即x - x - 2< 0,解得:- 1< x<2故答案为:(- 1, 2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:〒解:tan a = - 2, tan ( a + 3 )'=,可知(an( a + 0)L- tan ^ tanP =T,即l+2tan® = 7,解得tan B =3. 故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.7.9. (5分)(2015?江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个, 若将它们重新制作成总押只与高均保持不变, 但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为考点:棱柱、棱锥、棱台的体积.2 11.(5 分)(2015?江)数列{a 1}足 a*),数列{ 丄}的前10的和 20—考点:数列的求和;数列推式.:等差数列与等比数列. 分析:務別J数歹 I {a n1n+1 n}足 a =1,且 a a =n+l (n WN 利用“裂求和”即可得出. *),利用“累加求和”可得an n解答:解:•* an=n二 当 n 》2 ,n (n+1)当n=l ,上式也成立,解答:解:由意可知,原来和柱的体和: 吉心5冗1, 0)心且与直 mx y(x 1) ?+y 2=2分析:求出心到直的距离 d 的解答::算;空位置关系与距离.分析:由 意求出原来柱和 的体,出新的柱和 的底面半径r,求出体,由前后体相等列式求得r.新和柱的底面半径 r,新和柱的体和: —X4K r 2+8^ r ?二竺仝 |3 3•••空£$竺,解得:rWr-33故答案:低 点:本 考了柱与 的体公式,是基的算.10. ( 5分)(2015?江)在平面直角坐系 xOy 中,以点( 2m 1=0 ( mWR )相切的所有中,半径最大的的准方程考点:的准方程;的切方程.:算;直与.故答案:(x1) +y=2 . 点:本 考所的准方程,考点到直的距离公式,考学生的算能力,比基.解:心到直的距离 x 1) +y =2.a n n. (n+1)2[(「扣20故答案为:n 项和公7 7 12. (5x -y+l=』-占)• ・・・数列{ 1 }的前n 项的和S =n2n ~n+l数列{—-)的前io 项的和为22.务1120点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前 查了推理能力与计算能力,属于中档题.右支上的一个动点,若点P 到直线x- y+l=0的距离大于c 恒成立,则实数c 的最大值为 丄 考点:双曲线的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x - y =1的渐近线方程为 x±y=o, c 的最大值为直线 的距离. 解答:解:由题意,双曲线x 2- y 2=l 的渐近线方程为x±y=0 , 因为点P 到直线x- y+l=0的距离大于c 恒成立,所以c 的最大值为直线x-y+l=0与直线x- y=0的距离,即 故答案为:愛.|2点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.a o<x<i13. ( 5分)(2015?江苏)已知函数亍(x) =llnxl , g ( x) 4.,则方程| x 24 | =2, X^>1If ( x) +g ( x) 1=1实根的个数为4 .考点:根的存在性及根的个数判断. 专题:综合题;函数的性质及应用.分析::由lf(x)+g(x) 1=1可得g (x) = - f ( X)± 1 ,分别作出函数的图象,即可得出 结论. 解答:解:由 If ( x) +g ( x) 1 = 1 可得 g ( x) = - f ( X) ± 1 .g( X)与h ( x) = - f ( x) +1的图象如图所示,图象有两个交点;-4」Jg(x)与(f) ( x) = f(x) 1的象如所示,象有两个交点;•4_-S L所以方程lf( x) +g ( x) 1=1根的个数 4.故答案:4.点:本考求方程lf( x)+g(x)l=l根的个数,考数形合的数学思想,考学生分析解决的能力, 属于中档•—k开上兀fi G罠14.(5 分)(2015?江)向量=(cos ° , sin ° +cos ° ) ( k=0, 1, 2,…,12),11£ _皿_k=0( ak?ak+i)的・考数列的求和.点■等差数列与等比数列;平面向量及用.■■分利用向量数量运算性、两角和差的正弦公式、化和差公式、三角函数的周期性即可析得出.解解:=k 兀飞.k 冗 (k+1)冗 sin~g- cos-------------- ----kTT (k+1)兀kH(k+1) cos 可・cos p+sirr ---- 一 kTl . (k+1)兀kTl (k+n Kcos p sin 1GOJs QOS g2・3H ・咔・97T,+5开C05_T.¥开丄・11兀 sinrV 11兀丄 I -.13H 1-+化和差公6 | ・k 兀 k 兀、厂.(k+1)兀siri ——+cos —— J ( sm --------- ---- cos --6 6 6 6 7T —+JI_3、范・ 2k+1l 1 2H1TT二、解答(本大共 6小,共 90分,解答 写出文字明、明程或演算步)15. ( 14 分)(2015?江)在 AABC 中,已知 AB=2 , AC=3 , A=60 ° .(1) 求BC 的; (2) 求 sin2C 的.考点:余弦定理的用;二倍角的正弦. :解三角形.・ 2k+L 仃」/ _2k+l “丄 n .= COS"^S1 _— n+7; ^cos -17+COS —''分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数,然后利用一倍角公式求解即可.解答・•解:(1)由余弦定理可得:BC 2=AB 2+AC 2 2AB ?ACcosA=4+8 2X2X3^: =7, 所以BC=听.(2)由正弦定理可得:••• AB < BC , C 角,16.( 14ABC -A [B则cosC=71- sin2C=^l -孑等•因此sin2C=2sinCcosC=2 ・7 7 7点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE〃AC ,即证DE〃平面AA1C1C;(2)先由直三棱柱得出CC1丄平面ABC ,即证AC丄CC1;再证明AC丄平面BCC1B 1, 即证BC 1丄AC ;最后证明BC1丄平面B 1AC ,即可证出BC 1丄AB 1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE〃AC;又因为DE ?平面AA 1C1C, AC ?平面AA 1C1C,所以DE 〃平面AA 1C1C;(2)因为棱柱ABC・A 1B1C1是直三棱柱,所以CC1丄平面ABC ,因为AC ?平面ABC ,所以AC丄CC1;又因为AC丄BC,CC1?平面BCC 1B1,BC ?平面BCC冷\BC ACC1=C,所以AC丄平面BCC 1B 1;又因为BC 1?平面平面BCC 1B1,所以BC 1丄AC ;因为BC=CC 1,所以矩形BCC 1B1是正方形,所以BC 1丄平面B1AC ;又因为AB 1?平面B1AC , 所以BC 1±AB 1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015?江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为11, 12,山区边界曲线为C,计划修建的公路为1,如图所示,M, N为C的两个端点,测得点M到11, 12的距离分别为5千米和40千米,点N到11, 12的距离分别为20千米和2.5千米,以12, 11在的直线分别为x, y轴,建立平面直角坐标系xOy ,假设曲线C符合函数尸」_,+b (其中a, b为常数)模型.(1)求a, b的值;(2)设公路1与曲线C相切于P点,P的横坐标为t.①请写出公路1长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路1的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M, N的坐标分别为(5, 40) ,(20, 2.5),将其分别代入yf ,x2+b 建立方程组,即可求a, b的值;(2)① 求出切线1的方程,可得A, B的坐标,即可写出公路1长度的函数解析式f(t),并写出其定义域;、 2 4X105②设g (t) --- ,利用导数,确定单调性,即可求出当{为何值时,公路1 的长度最短,并求岀最短长度.(20, 2.5),解答:解:(1)由题意知,点M, N的坐标分别为(5,(b= 0 =40 25+将其解得(2)v ,10QQ 2 X (5Wx W20):•寸-200・・・切y- 1000t 2_设在点PSt 2 ' .・・2=3t 2 +4XlQt e[5,②设g (t)t 4 6・,(t)iq/2)t e ( 5,o ,g((t) <0,t )是减函,20)时, g f( t) >x 2 y 218. (16分)(2015?江苏)如图,在平面直角坐标系xOy^4,已知椭圆a 2+b 2=l ( a>b> 0)的离心率为 2 ,且右焦点F 到左准线1的距离为3.(1) 求椭圆的标准方程;(2)过F 的直线与椭圆交于 A, B 两点,线段AB 的垂直平分线分别交直线1和AB 于点P,C,若PC=2琴鼻求直线 AB 的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程. 专题:直线与圆;圆锥曲线的定义、性质与方程. 分析:(1)运用离心率公式和准线方程,可得a, c 的方程,解得a, c,再由a, b, c 的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和屮点坐标公式,即可得到所求直线的方程.1 0a= V2则b=l ,即有椭圆方程将AB 方程代入椭圆方程可得(CP=3,不合题意;(x - 1) , A (xi, yi) , B ( X2, y2), 2AB : y=k 22 2 -4k x+21) =0,2(k 2 L+2k 22 娠 tl+k 2) 1+2 k 2若k=0 ,则AB 的垂直平分线为 y 轴,与左从而IPCd |k|(1+丄(2k 2l+2P (- 2」共二解答:解:(l)由题意可得,e2且c+生3,解得c=l,c此时AB 的方程为 y=x - 1或y= - x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用, 属于中档题. 19. (16 分)(2015?江苏)已知函数 f ( x) -x'+ax'+b (a, beR). (1)试讨论f ( x)的单调性;(2)若b=c-a (实数c 是与a 无关的常数),当函数f ( x)有三个不同的零点时,a 的取值 范围恰好是(- g, - 3) U (1上)U (J, +8),求c 的值.>2 2考点:利用导数研究函数的单调性;函数零点的判定定理. 专题:综合题;导数的综合应用.2(3k 2+ l)右+/4^2 <l+k 2) |k| (l+2k 2)~lt2k 2由 IPCI=2IABI,可得,解得k= ± 1,则Xl+X),且X1X2=严丿IABI =分析: (1)求导f (x)的单2a). _3 ?2(2)由(1)知,函数f ( X)的两个极值为f ( 0) =b, f (-+b,则函a=0 时,f ' ( x) > 0,・・・ f(X)在a> 0 时, xe (- )U( 0,・・・函数f2a(X)在(-8,-,(0, +8)a< 0 时, xe ( - < 0, ・・・函数f(X)在(-8,0), 2*(2)由 (1)知,函数f ( x)的两个极值为 f ( 0)二b, f (-2a-詈)上单调递减; 4 3+b,则函f( X)有三2a f ( o) f(・爷)=b(寻「27 +b) < 0, T b=c - a, 4 3・•・a> 0时,设 g ( a) 一 a+c, •・・函数8,U (T +°・••在(- 8,- 3)上,g+ 8)上g (a) > 0均恒成f ( x)有三个不同的零点等价于 f ( 0) f ( - g?) =b (吕 J +b) < 0,进一步转化为3274 14 T4 3a> 0 时,—a ' - a+c> 0 或 a V 0 时,—a" - a+c< 0・设 g ( a )- a+c,利用条件即可求c 的值.解答:解:(1) V f ( x) =x ^+ax^+b ,f z(x) =3x +2ax,令 f' (x) =0 ,可得 x=0 或3< 0,立,• • C = 1 y,f‘( x)此时f ( x) =x、+ax +1 - a= ( x+l ) [x + ( a - 1) x+1 - a],•・・函数有三个零点,9x_+ (a - 1) x+1 - a=0有两个异于-1的不等实根,•••△=( a 一1) z - 4 ( 1 - a) > 0,且(一1) — ( a - 1) +1 - aHO,20. ( (1) 证(2015?辽苏)设 a , a , ",2 幻,2 ", 22 al 1 2 ,,d,使得a , a (3)是否存在 说明理由.解答: 解解得 aG (- 8, 一 3) U ( 1,虽)U +8),2综上C = 1・点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.12 3 4a ・a 是各项为正数且公差为 d ( dHO)的等差数列.5依次构成等比数列; as 3, a/依次构成等比数列?并说明理由; nn+kn+2k n+3kai, d 及正整数n, k,使得ai , a2 , a3, a4依次构成等比数列?并考点:等比关系的确定;等比数列的性质. 专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;7 3 4(2) 利用反证法,假设存在 an d 使得ai, a22, a3', af 依次构成等比数列,推岀矛 盾,否定假设,得到结论;(3) 利用反证法,假设存在 ai, d 及正整数n, k,使得ai a2n+k , a 3 n +2k, a 4n+3k 依 次构成等比数列,得到 ai n( al+2d ) n+2k 二(al+2d )2 n+k,且(al+d) n+k( al+3d )n+3k(ai+2d) 2(n+2k),利用等式以及对数的性质化简整理得到g( i +3t ) In ( l+2t) +3In (l+2t) In ( 1+t) =4In (l+3t) In ( 1+t) ,( ** ),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.n 監十1 . ——=2^n &a =2d, (n=l , 2, 3,)是同一个常数,/. 2 '】,2叫,2 %,2幻依次构成等比数列;(2) 令 al+d=a,则 al, a2, a3, a4 分别为 a - d, a, a+d, a+2d ( a> d, a> - 2d, d#0)假设存在ai i 22, a33, a4°依次构成等比数列,・d 便却a ・、43624则 a = ( a - d) ( a+d),且(a+d) =a ( a+2d),令 t=—,则 1= (1 - t ) ( 1+t ) 3,且(1+t) 6= ( l+2t) 4 ,(t< 1, tHO), 化简得 t ^+2t 2 - 2=0 ( * ),且 t^=t+l ,将 t^=t+l 代入(*)式,t ( t+I ) +2 ( t+l ) - 2=t^+3t=t4-14-3t=4t4-l =0 ,贝!J t= -显然匸-寺是上面方程的解,矛盾,所以假设不成立,7 34因此不存在ai, d,使得ai, a2 ,町',昭 依次构成等比数列. (3) 假设存在ai i n , a2n+K , a3n+2K , a4n+3K ^次构成等比数,d 及正整数n, k,使得a列,( ) ( ) rmi n / 小八 n+2K ( 小八 2 n+K 口 / 八 n+K z “、n+3K ( c i 、2 n+2K 则 ai ( ai+2d) = ( ai+2d) ,且(ai+d) ( ai+3d ) = ( ai+2d ) ,2 ' n+k ?2 ' n+2k ?d_ 1分别在两个等式的两边同除以=a 1 , ai ,并令吨;,(t> "3, tHO),则(l+2t )n+2k=( 1O (/ n-In ( (1+t 1+t ) ]=],+2t)In ( l++31n ( 1+t) , 则 g‘ z2[(l+3t) _ln ( (1+t) (l+2t) (l+3t)29 l+3t) - 3 ( l+2t) In ( l+2t)7 (1+t ) In ( 1+t ),则' (t 令 1号)-4)'> o,0) 1 (t), 2 2再将这两式相除,化简得,三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括 21・24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或 演算步骤【选修 4-1:几何证明选讲】21. ( 10分)(2015?江苏)如图,在AABC 中,AB=AC , △ ABC 的外接圆OO 的弦AE 交 BC 于点D.求证:△ ABD s △ AEB •考点:相似三角形的判定. 专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:・/AB=AC ,・\ ZABD= ZC,又 T Z C=Z E, A Z ABD= Z E,又 Z BAE 是公共 角,22. ( 10分)(2015?江苏)已知~ax1 y 三R,向量X 1特征值-2的-1y 0是矩阵的属于分析: 通过令矩解答: 解:由已知,可得【选修P +2 P sin ( 7T -4=0,求可知:△ ABD s △ AEB .点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.考点:特征值与特征向量的计算.-1 1・・.矩阵A =L2 0一从而矩阵A 的特征多项式f (入)=(入+2) ( x - 1), ・・・矩阵A 的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于屮档题.考点:简单曲线的极坐标方程. 专题:计算题;坐标系和参数方程.分析:先根据X 二p cos H , y= PsinB,厂求岀圆的直用坐标方程,求出半径. 解答:2寸空-y2解:圆的极坐标方程为 P +2 P sin ( H -) - 4=0 ,可得 P - 2 P cos B +2 P sin B -4=0 ,2 2化为直角坐标方程为 x +y - 2x+2y - 4=0 , 化为标准方程换(x- 1) ?+( y+i )2=6, 圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x= P cos B , y= P sin 0 ,比较基础,[选修4・5:不等式选讲】24. ( 2015?江苏)解不等式 X +I2X +3I N2.考点:绝对值不等式的解法. 专题:不等式.【选修4-2:矩阵与变换】 -个特征向量,求矩阵 A 以及它的另一个特征值. 矩阵和变换.I a 利用A = - 2--- *1 ---- -- a a分析:思路1 (公式法):利用If ( X) I2g ( X) ? f ( X) 2g ( X),或f (x) W - g ( x); 思路2 (零点分段法):对x的值分“XV0”进行讨论求解.2 2解答:解法1: x+l2x+引22变形为I2x+引22 - X,得2X+3M2 - X,或2x+3 2 -( 2 -x) , BP-i ,或xW - 5,3即原不等式的解集为(xlX 2— 3,或XW - 5}・3解法2:令I2x+:3I=O,得只=一卫.2①当寸,原不等式化为x+ ( 2x+3) 22,即x>-l,2 3所以x± -丄;3②x< 一爭'原不等式化为X・(2x+3 ) 22,即xW・5,所以xW - 5.综上,原不等式的解集为{xlx事-丄,或xW - 5}.3点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:If ( x) I2g (x) ? f (x) Mg ( x),或f ( x) W ・ g (x) ; If ( x) iWg (x) ?-g( x) Wf ( x) Wg ( x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤ABCD为直角梯形, ZABC=25.( 10分)(2015?江苏)如图,在四棱锥P - ABCD中,已知PA丄平面ABCD ,且四边形TT2[(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算. 专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A - xyz . ( 1 ) 所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝3•・・PG1, - 2) ,PD= (0, 2,・ 2),x, y, z),cos < AD,・・・平设1+2 7 则COS入t [1, 3],2t 2<CQ,_______ 2 ______ F9_g (丄一知t /*9,icos<CQ ,.DP> I 的最人值为10勺F-10t+9因为 y=co对值,计算即可;(2)利用换元法可得COS 2<CQ, DP> 总,结合函数y=cosx 在(0,—)上的单调10 2性,计算即得结论.解答:解:以A 为坐标原点,以 AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A - xyz 如 图,由题可知 B ( 1, 0, 0) , C (1, 1, 0) , D ( 0, 2, 0) , P ( 0, 0, 2).(1 ) VAD 丄平面PAB ,・••石二(0, 2, 0),是平面PAB 的一个法向量,(0, - i, o),贝CQ=CB+BQ=( - 入,(0, - 2, 2),从而 cos<C0,DP> =兀)上是减函数,此时直线 CQ 与DP 所成角取得最小值. 又•・・B P £] 2 + 2? 並,・•・BQ# BP=由巨逻专得 广K +卩- 2z=01 n\ • PD 二 0] ^2y — 2z 二Q设平面PCD 的法向量为IT取 y== 1,得 IF ( 1 ‘ 1,1),(2)0,当且点:本 考求二面角的三角函数,考用空向量解决 的能力,注意解方法的累,属于中档.*26. ( 10 分)(2015?江)已知集合 X={1 , 2, 3), Yn={l , 2, 3,…,n) (n^N ), Sn={( a, b) 或整除a, aex, B ey n },令f( n)表示集合Sn 所含元素的个数.(1) 写出f(6)的;(2) 当26,写出f(n)的表达式,并用数学 法明.la 整除b考点:数学法.:合;点列、数列与数学法. 分析•( 1) f (6) =6+2+ +|=咼;(2)根据数学法的明步,分,即可明・ 角军答: 口 •解:(1) f(6) =6+2+3;(2)当 n>6 , f(n)=n+24-〔专申 f «=6t n+2f,n=6t+ln n _ 2n+2+ (刁—-—)« n-6t+2 z Jn+24-〔二^丄 晋),n=6t43 n+2f (詈 4^二)• n=61+4 n+2f (”;1 l ";2) , n=6H5下面用数学法明:①"6, f( 6) =6+2++購成立;②假n=k( k>6),成立,那么n=k+l , Sk+i 在Sk 的基上新增加的元素在(1, k+1 (2, k+1 ),(3, k+1 )中生,分以下情形: 1)若 k+l=6t , k=6 (t1)+5 ,此有 f( k+l)=f (k) +3=( k+l)+2+― ),1 k+132)若 k+l=6t+l ,则 k=6t+l ,此时有 f ( k+1 ) =f ( k) +l=k+2+—2T1=(k+1)+2+(k+1) 2-1(k+1) -1"nr"1,结论成立;3)若 k+l=6t+2 ,则 k=6t+l ,此时有 (k+1=f(k) +2=k+2+ □ +k-l^3~+2= ( k+1 ) +2+k+1 (k+1 )-2 ~2,结论成立;4)若 k+l=6t+3 ,则 k=6t+2 ,此时有 (k+1 =f ( k)+2=k+2+g ¥2 3+2= ( k+1(k+1) "1 k+1 2 」3,结论成立;+2+5)若 k+l=6t+4 ,则 k=6t+3 ,此时有 (k+1 =f ( k)k - 1 k+2=k +2+— E+2= ( k+1+2+吐 1 (k+1)~2,结论成立;6)若 k+l=6t+5 ,则 k=6t+4 ,此时有 (k+1 =f ( k) +2= ( k+1+2+ (k+1〕- 1 (k+1) " 2" * 3n26的自然数n 均成立.2 | ' 综上所述,结论对满足,结论成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,可知输出的结果S为.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)不等式2<4的解集为.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.【分析】求出A∪B,再明确元素个数【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.【分析】直接求解数据的平均数即可.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.【点评】本题考查数据的均值的求法,基本知识的考查.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【分析】直接利用复数的模的求解法则,化简求解即可.【解答】解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.【点评】本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)根据如图所示的伪代码,可知输出的结果S为7.【分析】模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.【解答】解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.【点评】本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【分析】根据题意,把4个小球分别编,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.【分析】直接利用向量的坐标运算,求解即可.【解答】解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.【点评】本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)不等式2<4的解集为(﹣1,2).【分析】利用指数函数的单调性转化为x2﹣x<2,求解即可.【解答】解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)【点评】本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.【分析】直接利用两角和的正切函数,求解即可.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.【分析】由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.【点评】本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.【分析】求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.【解答】解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.【分析】双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.【分析】:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.【点评】本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.【解答】解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【分析】(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.【点评】本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【分析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角座标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1.【点评】本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.【分析】(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.【解答】解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【分析】(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【解答】解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.【分析】(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f (x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a >0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.【解答】解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)>0,且f(﹣)<0,∴b>0且+b<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.【点评】本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.【分析】(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.【解答】解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.【点评】本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【分析】直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.【解答】证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.【点评】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【分析】利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.【解答】解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.【点评】本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.【分析】先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.【解答】解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【分析】思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.【解答】解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.【点评】本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符.若含有一个绝对值符,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g (x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于取两边,小于取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz 如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.【分析】(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.【解答】解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;在S k的基础上新增加的元素在②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论f(n)=n+[]+[]+2,对满足n≥6的自然数n均成立.【点评】本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏高考数学试卷

2015年江苏高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.根据如图所示的伪代码,可知输出的结果S为.5.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.不等式2<4的解集为.8.已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x ﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n=12.在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2=1右支上的一个动点,若点P 到直线x ﹣y+1=0的距离大于c 恒成立,则实数c 的最大值为.13.已知函数f (x )=|lnx|,g (x )=,则方程|f (x )+g (x )|=1实根的个数为 4 .考点: 根的存在性及根的个数判断. 专题: 综合题;函数的性质及应用. 分析: :由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1,分别作出函数的图象,即可得出结论. 解答: 解:由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1.g (x )与h (x )=﹣f (x )+1的图象如图所示,图象有两个交点;==.∴数列{}的前10项的和为.故答案为:.点评: 本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.考点: 双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析: 双曲线x 2﹣y 2=1的渐近线方程为x ±y=0,c 的最大值为直线x ﹣y+1=0与直线x ﹣y=0的距离.解答:解:由题意,双曲线x 2﹣y 2=1的渐近线方程为x ±y=0, 因为点P 到直线x ﹣y+1=0的距离大于c 恒成立,所以c 的最大值为直线x ﹣y+1=0与直线x ﹣y=0的距离,即.故答案为:.点评: 本题考查双曲线的性质,考查学生的计算能力,比较基础.g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考点:特征值与特征向量的计算.专题:矩阵和变换.分析:利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.点评:本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏高考数学试卷(含附加题)

2015年江苏高考数学试卷(含附加题)
(1)写出 的值;
(2)当 时,写出 的表达式,并用数学归纳法证明。
【答案】.
【解析】
【答案】
【解析】
13.已知函数 , ,则方程 实根的个数为。
【答案】
【解析】
14.设向量 ,则 的值为。
【答案】.
【解析】
二.解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明.证明过程或演算步骤.
15.(本小题满分14分)
在△ABC中,角A,B,C的对边分别为AB=2,AC=3,A=60o
一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.
1.设集合A={1,2,3 },B={2,4,5 },则A∪B中元素的个数.
【答案】
【解析】
2.已知一组数据4、6、5、8、7、6,那么这组数的平均数为.
【答案】
【解析】
3.若复数 z 满足z2=3+4i (i是虚数单位),则复数z 的模_________________
【答案】
【解析】
4.根据如图所示的伪代码,可知输出的结果S为___________
s←1
I←1
WhileI<8
s←s+2
I←I+3
End While
Print s
【答案】
【解析】
5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随
机摸出2只球,则这两只球颜色不同的概率是▲.
A.(几何证明选讲选做题)
A、(本小题满分10分)
如图,在 中, , 的外接圆圆O的弦 交 于点D
求证:
【答案】
【解析】
B.(矩阵与变换选做题)(本小题满分10分)

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B 中元素的个数为 5 .考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答: 解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B 中元素的个数为5;故答案为:5点评: 题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .考点: 众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6. 故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z 满足z 2=3+4i (i 是虚数单位),则z 的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7 .考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答: 解:模拟执行程序,可得S=1,I=1满足条件I <8,S=3,I=4满足条件I <8,S=5,I=7满足条件I <8,S=7,I=10不满足条件I <8,退出循环,输出S 的值为7. 故答案为:7.点评: 本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 .考点:古典概型及其概率计算公式. 专题:概率与统计.分析: 根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解解:根据题意,记白球为A ,红球为B ,黄球为答: C 1、C 2,则一次取出2只球,基本事件为AB 、AC 1、AC 2、BC 1、BC 2、C 1C 2共6种,其中2只球的颜色不同的是AB 、AC 1、AC 2、BC 1、BC 2共5种;所以所求的概率是P=.故答案为:.点评: 本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m +n =(9,﹣8)(m ,n ∈R ),则m ﹣n 的值为 ﹣3 .考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答: 解:向量=(2,1),=(1,﹣2),若m +n =(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评: 本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2) .考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用. 分析: 利用指数函数的单调性转化为x 2﹣x <2,求解即可.解答: 解;∵2<4,∴x 2﹣x <2,即x 2﹣x ﹣2<0,解得:﹣1<x <2故答案为:(﹣1,2)点评: 本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan (α+β)=,则tanβ的值为 3 .考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答: 解:tanα=﹣2,tan (α+β)=,可知tan (α+β)==,即=, 解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积. 专题:计算题;空间位置关系与距离.分析: 由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r ,求出体积,由前后体积相等列式求得r .解答: 解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r , 则新圆锥和圆柱的体积和为:. ∴,解得:.故答案为:.点评: 本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 (x ﹣1)2+y 2=2 .考点:圆的标准方程;圆的切线方程. 专题:计算题;直线与圆.分析: 求出圆心到直线的距离d 的最大值,即可求出所求圆的标准方程.解答: 解:圆心到直线的距离d==≤, ∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x ﹣1)2+y 2=2.故答案为:(x ﹣1)2+y 2=2.点评: 本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为.考数列的求和;数列递推式.点:专题:等差数列与等比数列.分析: 数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),利用“累加求和”可得a n =.再利用“裂项求和”即可得出. 解答: 解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),∴当n≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=+n+…+2+1=. 当n=1时,上式也成立, ∴a n =. ∴=2. ∴数列{}的前n 项的和S n ===. ∴数列{}的前10项的和为.故答案为:.点评: 本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2=1右支上的一个动点,若点P 到直线x ﹣y+1=0的距离大于c 恒成立,则实数c 的最大值为 .考点:双曲线的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程. 分析: 双曲线x 2﹣y 2=1的渐近线方程为x±y=0,c 的最大值为直线x ﹣y+1=0与直线x ﹣y=0的距离. 解答: 解:由题意,双曲线x 2﹣y 2=1的渐近线方程为x±y=0,因为点P 到直线x ﹣y+1=0的距离大于c 恒成立, 所以c 的最大值为直线x ﹣y+1=0与直线x ﹣y=0的距离,即. 故答案为:.点评: 本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f (x )=|lnx|,g (x )=,则方程|f (x )+g (x )|=1实根的个数为 4 .考点:根的存在性及根的个数判断. 专题:综合题;函数的性质及应用. 分析: :由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1,分别作出函数的图象,即可得出结论. 解答: 解:由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1.g (x )与h (x )=﹣f (x )+1的图象如图所示,图象有两个交点;g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4.点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos ,sin +cos )(k=0,1,2,…,12),则(a k •a k+1)的值为.考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分利用向量数量积运算性质、两角和差的正弦公式、析: 积化和差公式、三角函数的周期性即可得出. 解答: 解:=+=++++=++ =++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦.专题:解三角形. 分析: (1)直接利用余弦定理求解即可.(2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可.解答: 解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===, ∵AB<BC ,∴C 为锐角, 则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC ﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC 1⊥AC;最后证明BC 1⊥平面B 1AC ,即可证出BC 1⊥AB 1.解答: 证明:(1)根据题意,得;E 为B 1C 的中点,D 为AB 1的中点,所以DE∥AC;又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE∥平面AA 1C 1C ;(2)因为棱柱ABC ﹣A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 因为AC ⊂平面ABC , 所以AC⊥CC 1; 又因为AC⊥BC, CC 1⊂平面BCC 1B 1, BC ⊂平面BCC 1B 1, BC∩CC 1=C ,所以AC⊥平面BCC 1B 1; 又因为BC 1⊂平面平面BCC 1B 1, 所以BC 1⊥AC;因为BC=CC 1,所以矩形BCC 1B 1是正方形, 所以BC 1⊥平面B 1AC ; 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.点本题考查了直线与直线,直线与平面以及平面与评:平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用. 专题:综合题;导数的综合应用. 分析: (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a ,b 的值;(2)①求出切线l 的方程,可得A ,B 的坐标,即可写出公路l 长度的函数解析式f (t ),并写出其定义域; ②设g (t )=,利用导数,确定单调性,即可求出当t 为何值时,公路l 的长度最短,并求出最短长度.解答: 解:(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P (t ,),∴y′=﹣,∴切线l 的方程为y ﹣=﹣(x ﹣t )设在点P 处的切线l 交x ,y 轴分别于A ,B 点,则A (,0),B (0,), ∴f (t )==,t ∈[5,20];②设g (t )=,则g′(t )=2t ﹣=0,解得t=10,t ∈(5,10)时,g′(t )<0,g (t )是减函数;t ∈(10,20)时,g′(t )>0,g (t )是增函数,从而t=10时,函数g (t )有极小值也是最小值,∴g(t )min =300, ∴f(t )min =15,答:t=10时,公路l 的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的离心率为,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.考点: 直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程. 分析: (1)运用离心率公式和准线方程,可得a ,c 的方程,解得a ,c ,再由a ,b ,c 的关系,可得b ,进而得到椭圆方程;(2)讨论直线AB 的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答: 解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y 2=1;(2)当AB⊥x 轴,AB=,CP=3,不合题意; 当AB 与x 轴不垂直,设直线AB :y=k (x ﹣1),A (x 1,y 1),B (x 2,y 2),将AB 方程代入椭圆方程可得(1+2k 2)x 2﹣4k 2x+2(k 2﹣1)=0, 则x 1+x 2=,x 1x 2=,则C (,),且|AB|=•=, 若k=0,则AB 的垂直平分线为y 轴,与左准线平行,不合题意; 则k≠0,故PC :y+=﹣(x ﹣),P (﹣2,), 从而|PC|=, 由|PC|=2|AB|,可得=,解得k=±1,此时AB 的方程为y=x ﹣1或y=﹣x+1.点本题考查椭圆的方程和性质,主要考查椭圆的离评: 心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).(1)试讨论f (x )的单调性;(2)若b=c ﹣a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c 的值.考点: 利用导数研究函数的单调性;函数零点的判定定理.专题: 综合题;导数的综合应用.分析: (1)求导数,分类讨论,利用导数的正负,即可得出f (x )的单调性;(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f (﹣)=+b ,则函数f (x )有三个不同的零点等价于f (0)f (﹣)=b (+b )<0,进一步转化为a >0时,﹣a+c >0或a <0时,﹣a+c <0.设g (a )=﹣a+c ,利用条件即可求c 的值.解答: 解:(1)∵f(x )=x 3+ax 2+b , ∴f′(x )=3x 2+2ax ,令f′(x )=0,可得x=0或﹣.a=0时,f′(x )>0,∴f(x )在(﹣∞,+∞)上单调递增;a >0时,x ∈(﹣∞,﹣)∪(0,+∞)时,f′(x )>0,x ∈(﹣,0)时,f′(x )<0,∴函数f (x )在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a <0时,x ∈(﹣∞,0)∪(﹣,+∞)时,f′(x )>0,x ∈(0,﹣)时,f′(x )<0,∴函数f (x )在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f (﹣)=+b ,则函数f (x )有三个不同的零点等价于f (0)f (﹣)=b (+b )<0,∵b=c﹣a ,∴a>0时,﹣a+c >0或a <0时,﹣a+c<0.设g (a )=﹣a+c ,∵函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞), ∴在(﹣∞,﹣3)上,g (a )<0且在(1,)∪(,+∞)上g (a )>0均恒成立,∴g(﹣3)=c ﹣1≤0,且g ()=c ﹣1≥0,∴c=1,此时f (x )=x 3+ax 2+1﹣a=(x+1)[x 2+(a ﹣1)x+1﹣a],∵函数有三个零点,∴x 2+(a ﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a ﹣1)2﹣4(1﹣a )>0,且(﹣1)2﹣(a ﹣1)+1﹣a≠0,解得a ∈(﹣∞,﹣3)∪(1,)∪(,+∞), 综上c=1.点评: 本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a 1,a 2,a 3.a 4是各项为正数且公差为d (d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列?并说明理由.考点: 等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析: (1)根据等比数列和等差数列的定义即可证明; (2)利用反证法,假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列,得到a 1n (a 1+2d )n+2k =(a 1+2d )2(n+k ),且(a 1+d )n+k (a 1+3d )n+3k =(a 1+2d )2(n+2k ),利用等式以及对数的性质化简整理得到ln(1+3t )ln (1+2t )+3ln (1+2t )ln (1+t )=4ln (1+3t )ln (1+t ),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答: 解:(1)证明:∵==2d ,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a 1+d=a ,则a 1,a 2,a 3,a 4分别为a﹣d ,a ,a+d ,a+2d (a >d ,a >﹣2d ,d≠0) 假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a ﹣d )(a+d )3,且(a+d )6=a 2(a+2d )4,令t=,则1=(1﹣t )(1+t )3,且(1+t )6=(1+2t )4,(﹣<t <1,t≠0),化简得t 3+2t 2﹣2=0(*),且t 2=t+1,将t 2=t+1代入(*)式,t (t+1)+2(t+1)﹣2=t 2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)假设存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k (1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln (1+2t )+3(1+t )2ln (1+t ),则φ′(t )=6[(1+3t )ln (1+3t )﹣2(1+2t )ln (1+2t )+3(1+t )ln (1+t )],令φ1(t )=φ′(t ),则φ1′(t )=6[3ln (1+3t )﹣4ln (1+2t )+ln (1+t )],令φ2(t )=φ1′(t ),则φ2′(t )=>0,由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t )>0,知g (t ),φ(t ),φ1(t ),φ2(t )在(﹣,0)和(0,+∞)上均单调,故g (t )只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x ,y ∈R ,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A 以及它的另一个特征值.考点:特征值与特征向量的计算. 专题:矩阵和变换. 分析: 利用A =﹣2,可得A=,通过令矩阵A 的特征多项式为0即得结论.解答:解:由已知,可得A =﹣2,即==, 则,即, ∴矩阵A=, 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ﹣1), ∴矩阵A 的另一个特征值为1.点评: 本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C 的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C 的半径.考点: 简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析: 先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答: 解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x 2+y 2﹣2x+2y ﹣4=0,化为标准方程为(x ﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析: 思路1(公式法):利用|f (x )|≥g(x )⇔f (x )≥g(x ),或f (x )≤﹣g (x );思路2(零点分段法):对x 的值分“x≥”“x <”进行讨论求解. 解答: 解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x , 得2x+3≥2﹣x ,或2x+3≥﹣(2﹣x ),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=. ①当x≥时,原不等式化为x+(2x+3)≥2,即x≥, 所以x≥; ②x<时,原不等式化为x ﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f (x )|≥g(x )⇔f (x )≥g(x ),或f (x )≤﹣g (x );|f(x )|≤g(x )⇔﹣g (x )≤f(x )≤g(x ).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P ﹣ABCD 中,已知PA⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.考点: 二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析: 以A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A ﹣xyz .(1)所求值即为平面PAB 的一个法向量与平面PCD 的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos 2<,>≤,结合函数y=cosx 在(0,)上的单调性,计算即得结论.解答: 解:以A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A ﹣xyz 如图,由题可知B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)∵AD⊥平面PAB ,∴=(0,2,0),是平面PAB 的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD 的法向量为=(x ,y ,z ),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点本题考查求二面角的三角函数值,考查用空间向评: 量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n ={1,2,3,…,n )(n ∈N *),设S n ={(a ,b )|a 整除b 或整除a ,a ∈X ,B ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n≥6时,写出f (n )的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析: (1)f (6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f (6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f (k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立. 综上所述,结论对满足n≥6的自然数n 均成立. 点评: 本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)(2015•江苏)不等式2<4的解集为.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.那么这组数据的平均数为:3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.|z||z|=|3+4i|=故答案为:4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为..故答案为:.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.解:向量,m+n,解得7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).28.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.=,=9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.解:由题意可知,原来圆锥和圆柱的体积和为:则新圆锥和圆柱的体积和为:,解得:故答案为:10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.d=,,11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.=...{.{项的和为故答案为:.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.的距离,即故答案为:13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak •a k+1)的值为.答=+:+,++++++.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.×=7.==cosC==×16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.y=,利用导数,确定单调性,即可求出当y=,,y=,,﹣()=t=10,)时,10时,函数=15时,公路1518.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.=,=3,,即有椭圆方程为+y==()==()|PC|==19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.(﹣+b(﹣+b时,时,=或﹣.,﹣)∪(,))上单调递增,在(﹣)∪(﹣,,﹣)时,(﹣,)上单调递减;)+b)<且时,时,),,)∪(,()∪(20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.)证明:∵=2,,,依次构成等比数列;t=(﹣<,不是上面方程的解,矛盾,所以假设不成立,t=,[>)在(﹣,三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.A=,可得=2,即,即A=【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.ρ﹣[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.”“<,或.时,原不等式化为,≥时,原不等式化为【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.,>≤,,∴=,=,得,,得=,>=;)∵=λ==,则===,>=,>≤,即=,的最大值为,BP==,∴BP=26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.+=13=6+2+=13.=6+2+=13+2+,++1= ++2=k+2++ ++2=k+2++ ++2=k+2++ ++2=k+2++ +参与本试卷答题和审题的老师有:sdpyqzh;qiss;w3239003;742048;sxs123;刘长柏;孙佑中;双曲线;whgcn;cst;尹伟云(排名不分先后)菁优网2015年9月9日。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,可知输出的结果S为.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)不等式2<4的解集为.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.【分析】求出A∪B,再明确元素个数【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.【分析】直接求解数据的平均数即可.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.【点评】本题考查数据的均值的求法,基本知识的考查.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【分析】直接利用复数的模的求解法则,化简求解即可.【解答】解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.【点评】本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)根据如图所示的伪代码,可知输出的结果S为7.【分析】模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.【解答】解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.【点评】本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.【分析】直接利用向量的坐标运算,求解即可.【解答】解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.【点评】本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)不等式2<4的解集为(﹣1,2).【分析】利用指数函数的单调性转化为x2﹣x<2,求解即可.【解答】解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)【点评】本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.【分析】直接利用两角和的正切函数,求解即可.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.【分析】由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.【点评】本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.【分析】求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.【解答】解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.【分析】双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.【分析】:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.【点评】本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.【解答】解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【分析】(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.【点评】本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【分析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角座标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1.【点评】本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.【分析】(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.【解答】解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【分析】(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【解答】解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.【分析】(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.【解答】解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)>0,且f(﹣)<0,∴b>0且+b<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.【点评】本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.【分析】(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)1+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.【解答】解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.【点评】本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【分析】直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.【解答】证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE 是公共角,可知:△ABD∽△AEB.【点评】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【分析】利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.【解答】解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.【点评】本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.【分析】先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.【解答】解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【分析】思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.【解答】解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.【点评】本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)已知集合X={1,2,3},Y n ={1,2,3,…,n )(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,B ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.【分析】(1)f (6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.【解答】解:(1)f (6)=6+2++=13;(2)当n ≥6时,f (n )=.下面用数学归纳法证明:①n=6时,f (6)=6+2++=13,结论成立;②假设n=k (k ≥6)时,结论成立,那么n=k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论f(n)=n+[]+[]+2,对满足n≥6的自然数n均成立.【点评】本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5.00分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B 中元素的个数为.2.(5.00分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5.00分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5.00分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5.00分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5.00分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5.00分)(2015•江苏)不等式2<4的解集为.8.(5.00分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5.00分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5.00分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5.00分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5.00分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5.00分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5.00分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14.00分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14.00分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14.00分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16.00分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16.00分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16.00分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10.00分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O 的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10.00分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10.00分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.26.(10.00分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n ∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案一、填空题(本大题共14小题,每小题5分,共计70分)1.5;2.6;3.;4.7;5.;6.﹣3;7.(﹣1,2);8.3;9.;10.(x ﹣1)2+y2=2;11.;12.;13.4;14.;二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.;16.;17.;18.;19.;20.;三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.;【选修4-2:矩阵与变换】22.;【选修4-4:坐标系与参数方程】23.;[选修4-5:不等式选讲】24.;【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.;26.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)根据如图所示的伪代码,可知输出的结果S为.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)不等式2<4的解集为.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.【分析】求出A∪B,再明确元素个数【解答】解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5【点评】题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.【分析】直接求解数据的平均数即可.【解答】解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.【点评】本题考查数据的均值的求法,基本知识的考查.3.(5分)设复数z满足z2=3+4i(i是虚数单位),则z的模为.【分析】直接利用复数的模的求解法则,化简求解即可.【解答】解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.【点评】本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)根据如图所示的伪代码,可知输出的结果S为7.【分析】模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.【解答】解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.【点评】本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=,故答案为:.【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.【分析】直接利用向量的坐标运算,求解即可.【解答】解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.【点评】本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)不等式2<4的解集为(﹣1,2).【分析】利用指数函数的单调性转化为x2﹣x<2,求解即可.【解答】解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)【点评】本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.【分析】直接利用两角和的正切函数,求解即可.【解答】解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.【点评】本题考查两角和的正切函数,基本知识的考查.9.(5分)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.【分析】由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.【解答】解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.【点评】本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.【分析】求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.【解答】解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.【点评】本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.【分析】数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.【解答】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.【分析】双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.【解答】解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.【分析】:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.【解答】解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有2个交点g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.【点评】本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.【解答】解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.【分析】(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.【解答】解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+9﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,BC=,AB=2,角A=60°,在三角形ABC中,大角对大边,大边对大角,>2,∴角C<角A,角C为锐角.sinC>0,cosC>0则cosC===.因此sin2C=2sinCcosC=2×=.【点评】本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【分析】(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)【方法一】先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.【方法二】建立空间直角坐标系,利用向量数量积证明异面直线垂直.【解答】证明:(1)如图所示,由据题意得,E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)【方法一】因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.【方法二】根据题意,A1C1⊥B1C1,CC1⊥平面A1B1C1,以C1为原点建立空间直角座标系,C1A1为x轴,C1B1为y轴,C1C为z轴,如图所示;设BC=CC1=a,AC=b,则A(b,0,a),B1(0,a,0),B(0,a,a),C1(0,0,0);∴=(﹣b,a,﹣a),=(0,﹣a,﹣a),∴•=﹣b×0+a×(﹣a)﹣a×(﹣a)=0,∴⊥,即AB1⊥BC1.【点评】本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题.17.(14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.【分析】(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.【解答】解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.【点评】本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.【分析】(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【解答】解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.【分析】(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.【解答】解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)>0,且f(﹣)<0,∴b>0且+b<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.【点评】本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.【分析】(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k 依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.【解答】解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.【点评】本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【分析】直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.【解答】证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE 是公共角,可知:△ABD∽△AEB.【点评】本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【分析】利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.【解答】解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.【点评】本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.【分析】先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.【解答】解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.解不等式x+|2x+3|≥2.【分析】思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.【解答】解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≤﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.【点评】本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ 的长.【分析】以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.【解答】解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.【点评】本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或b整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.【分析】(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.【解答】解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;在S k的基础上新增加的②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论f(n)=n+[]+[]+2,对满足n≥6的自然数n均成立.【点评】本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

相关文档
最新文档