九年级数学竞赛模拟试卷_5

合集下载

初中数学素养竞赛试卷

初中数学素养竞赛试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 0.6B. 1/3C. -5D. π2. 下列各式中,正确的是()A. a^2 = aB. (a + b)^2 = a^2 + b^2C. (a - b)^2 = a^2 - b^2D. (a + b)^2 = a^2 + 2ab + b^23. 已知等差数列 {an} 的首项为2,公差为3,则第10项的值为()A. 27B. 30C. 33D. 364. 在△ABC中,若∠A = 45°,∠B= 60°,则△ABC的周长与面积之比为()A. 1 : √2B. 1 : √3C. 1 : 2D. 1 : 35. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 无解6. 下列各式中,正确的是()A. a^3 = aB. (a + b)^3 = a^3 + b^3C. (a - b)^3 = a^3 - b^3D. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^37. 已知函数y = kx + b(k ≠ 0),若函数图像经过点(1,2)和(-2,-4),则k和b的值分别为()A. k = 2,b = 0B. k = 2,b = -2C. k = -2,b = 0D. k = -2,b = -28. 在直角坐标系中,点A(2,3)关于直线y = x的对称点为()A.(3,2)B.(-2,-3)C.(-3,-2)D.(2,-3)9. 若等比数列 {an} 的首项为2,公比为3,则第5项的值为()A. 54B. 81C. 162D. 24310. 在△ABC中,若∠A = 90°,∠B = 45°,则△ABC的周长与面积之比为()A. 1 : √2B. 1 : √3C. 1 : 2D. 1 : 3二、填空题(每题5分,共50分)11. 若等差数列 {an} 的首项为2,公差为3,则第10项的值为______。

数学竞赛模拟试题

数学竞赛模拟试题

数学竞赛模拟试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于其自身,那么这个数可能是:A. 0B. 1C. -1D. 所有选项3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π4. 以下哪个是二次方程的解?A. x = 2B. x = -2C. x = 3D. x = 1/25. 一个数列的前三项是1, 1, 2,如果每一项都是前两项之和,那么第四项是多少?B. 4C. 5D. 66. 以下哪个是勾股定理的表达式?A. a² + b² = c²B. a² - b² = c²C. a² * b² = c²D. a² / b² = c²7. 如果一个三角形的三个内角分别是40°,60°和80°,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形8. 一个数的立方根等于它自己,这个数可能是:A. 1B. -1C. 0D. 所有选项9. 以下哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 - (n-1)dC. an = a1 * (n-1)dD. an = a1 / (n-1)d10. 如果一个函数f(x) = x² + 2x + 1,那么f(-1)的值是:B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是________。

12. 如果一个数列的前n项和为S,且S = n²,那么这个数列是________。

13. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是________。

14. 一个函数f(x) = 3x - 2,当x = 1时,函数的值是________。

初中数学竞赛模拟试卷试题

初中数学竞赛模拟试卷试题

初中数学竞赛模拟试卷试题初中数学竞赛模拟试题 (1)一、选择题(每题 6 分,共 30 分)1.方程 (x 2x 1) x 3 1的所有整数解的个数是()个( A )2(B )3(C ) 4(D )52.设△ ABC 的面积为 1, D 是边 AB 上一点,且 AD 1.若在边 AC 上取一点 E ,使四边形 DECB 的面积为 3 ,则CE的值为( AB3)4EA(A )1(B )1(C )1(D )1DC23453.以下列图,半圆 O 的直径在梯形 ABCD 的底边 AB 上,且与其余三边 BC ,CD ,DA 相切,若 BC =2,DA =3,则 AB 的长() A ·B(A )等于 4 ( B )等于 5 ( C )等于 6 ( D )不能够确定O4.在直角坐标系中, 纵、横坐标都是整数的点, 称为整点。

设 k 为整数, 当直线 y x 2与直线 ykx 4 的交点为整点时,k 的值能够取()个(A )8 个 (B )9 个(C )7 个(D )6 个5.世界杯足球赛小组赛,每个小组4 个队进行单循环竞赛,每场竞赛胜队得 3 分,败队得 0 分,平局时两队各得 1 分.小组赛完后, 总积分最高的 2 个队出线进入下轮竞赛. 如果总积分相同, 还有按净胜球数排序. 一个队要保证出线, 这个队最少要积 ( )分.( A )5(B )6(C )7(D )8二、填空题(每题 6 分,共 30 分)6.当 x 分别等于1 , 1 , 1 , 1 , 1, 1 ,2000 ,2001,2002 ,2005 2004 2003 2002 2001 20002003 , 2004 , 2005 时,计算代数式x 2 的值,将所得的结果相加,其和等1 x2于.7.关于 x 的不等式 ( 2a b) x > a 2b 的解是 x < 5,则关于 x 的不等式 ax b < 0 的解为.28.方程 x 2px q 0 的两根都是非零整数,且Ap q 198 ,则 p =.F 9.以下列图, 四边形 ADEF 为正方形, ABCD 为等腰直角三角形, D 在 BC 边上,△ ABC 的面积等于98,BD ∶ DCBDC= 2∶ 5.则正方形 ADEF 的面积等于.E10.有n 个数x1, x2,⋯,x n,它每个数的只能取0, 1,- 2 三个数中的一个,且 x1 x2 ⋯x n 5 , x12 x22 ⋯x n2 19 ,x15 x52 ⋯x5n的是.三、解答(每小15 分,共60 分)11.如,凸五形ABCDE 中,已知S△ABC= 1,且EC∥ AB ,AD ∥ BC,BE ∥CD,CA ∥ DE , DB ∥ EA.求五形ABCDE 的面.DE CFA B12.在正数范内,只存在一个数是关于x 2 kx 3x 的方程3x k 的解,求数kx 1的取范.13.如,一次函数的象点P( 2,3),交 x 的正半与 A ,交 y 的正半与B,求△ AOB 面的最小.yBPO A x14.预计用 1500 元购买甲商品x 个,乙商品y个,不料甲商品每个涨价 1.5 元,乙商品每个涨价 1 元,尽管购买甲商品的个数比预定数减少10 个,总金额仍多用29 元.又若甲商品每个只涨价 1 元,并且购买甲商品的数量只比预定数少 5 个,那么甲、乙两商品支付的总金额是1563.5 元.( 1)求x、y的关系式;( 2)若预计购买甲商品的个数的 2 倍与预计购买乙商品的个数的和大于205,但小于210,求x、y的值.参照答案一、选择题1.C 2.B3. B 4.A 5.C二、填空题6. 6 7. x 8 8.- 202 9. 116 10.- 125 三、解答题11.∵ BE ∥ CD , CA ∥ DE , DB ∥ EA , EC ∥AB , AD ∥ BC ,∴ S △BCD = S △CDE = S △DEA = S △EAB = S △ACB = S △ACF = 1.设 S △ AEF = x ,则 S △DEF = 1 x ,又△ AEF 的边 AF 与△ DEF 的边 DF 上的高相等, 因此,DE 1 x,而△ DEF ∽△ ACF ,则有AFxS DEF2(1 x) 2DF1 x .S ACFAFx 25 1整理解得 x.2故 S△ △55 .ABCDE = 3S ABC + S AEF =212.原方程可化为 2x 23x (k 3) 0,①( 1)当△= 0 时, k33 x 23 满足条件;, x 14812( 2)若 x 1是方程①的根,得 2 3 1 (k3) 0 , k4 .此时方程①的另一个根为1,故原方程也只有一根 x1 ;22 k 3( 3)当方程①有异号实根时,x 1 x 20 ,得 k3 ,此时原方程也只有2一个正实数根;( 4)当方程①有一个根为 0 时, k3 ,另一个根为 x3,此时原方程也只有一2个正实根。

希望杯初三数学竞赛试卷

希望杯初三数学竞赛试卷

一、选择题(每题5分,共25分)1. 若一个数的平方根是2,那么这个数是()A. 4B. -4C. 8D. -82. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)3. 若a、b、c是等差数列,且a+b+c=0,则a²+b²+c²的值为()A. 0B. 3C. 6D. 94. 已知函数f(x)=x²-2x+1,那么f(2x)的值为()A. 4x²-4x+1B. 4x²-8x+1C. 4x²-8x+4D. 4x²-4x+45. 在等腰三角形ABC中,AB=AC,且∠B=40°,则∠C的度数为()A. 40°B. 50°C. 60°D. 70°二、填空题(每题5分,共25分)6. 若a=√2+√3,b=√2-√3,则a+b的值为______。

7. 在直角坐标系中,点P(-2,3)关于y轴对称的点是______。

8. 已知等差数列{an}的首项为2,公差为3,那么第10项an的值为______。

9. 若函数f(x)=ax²+bx+c的图像开口向上,且a>0,b=0,则函数的对称轴为______。

10. 在等腰三角形ABC中,AB=AC,且∠B=30°,则∠C的度数为______。

三、解答题(每题10分,共30分)11. 已知数列{an}的通项公式为an=2n-1,求前n项和S_n。

12. 在直角坐标系中,点A(-2,3)关于直线y=x的对称点为B,求点B的坐标。

13. 已知等差数列{an}的首项为3,公差为2,求第10项an的值。

四、应用题(每题10分,共20分)14. 小明骑自行车从A地到B地,已知A、B两地的距离为10km,小明以每小时15km的速度匀速行驶,求小明从A地到B地所需的时间。

邵阳九年级上数学竞赛试卷【含答案】

邵阳九年级上数学竞赛试卷【含答案】

邵阳九年级上数学竞赛试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 已知一个等差数列的前三项分别为2,5,8,则第10项是多少?A. 29B. 30C. 31D. 323. 若函数f(x) = 2x + 3,则f(-1)的值为多少?A. -1B. 1C. 2D. 34. 在直角坐标系中,点(3, 4)关于y轴的对称点坐标为?A. (-3, 4)B. (3, -4)C. (-3, -4)D. (3, -4)5. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为180°,则这两个角互补。

()2. 等边三角形的三条高相等。

()3. 任何两个奇数之和都是偶数。

()4. 一元二次方程ax² + bx + c = 0的解可以用公式x = [-b ± √(b² 4ac)] / 2a求得。

()5. 对顶角相等。

()三、填空题(每题1分,共5分)1. 若一个等差数列的首项为3,公差为2,则第5项为______。

2. 在直角坐标系中,点(2, -3)到原点的距离为______。

3. 若sinθ = 1/2,且θ为锐角,则θ的度数为______。

4. 若一个圆的直径为10cm,则这个圆的周长为______cm。

5. 若一个等比数列的首项为2,公比为3,则第3项为______。

四、简答题(每题2分,共10分)1. 请简要解释勾股定理。

2. 请简要解释等差数列的通项公式。

3. 请简要解释正弦函数的定义。

4. 请简要解释一元二次方程的判别式。

5. 请简要解释等比数列的求和公式。

五、应用题(每题2分,共10分)1. 已知一个等差数列的前三项分别为2,5,8,求该数列的通项公式。

全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国各地初中(九年级)数学竞赛《不等式》真题大全 (附答案)

全国初中(九年级))数学竞赛专题大全竞赛专题5 不等式一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100B .112C .120D .1502.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 394041 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个B .64个C .72个D .81个5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1B .2C .3D .47.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能.A .1B .2C .3D .48.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004B .2005C .2006D .20079.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >> C .c a b >> D .c b a >>二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______.14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________.17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房?21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.23.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明;2ay bz cx k ++<. 26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗?28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高?29.(2021·全国·九年级竞赛)1132x x -+ 30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环)37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克?38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++.41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?竞赛专题5 不等式答案解析 (竞赛真题强化训练)一、单选题1.(2021·全国·九年级竞赛)若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值为( ). A .100 B .112C .120D .150【答案】B 【解析】 【分析】 【详解】 由已知不等式得13156767,,787878n k k n nk n n +<<<<<<.因由已知条件,67n 与78n 之间只有 唯一一个整数k ,所以76287n n-≤解得112n ≤.当112n =时,9698k ≤≤,存在唯一97k =,所以n 的 最大值为112.故应选B .2.(2021·全国·九年级竞赛)27234x x x ----有意义,则x 的取值范围是( )A .4x >B .7x ≥5x ≠C .4x >且5x ≠D .45x <<【答案】C 【解析】 【分析】 【详解】依题意得27077321544x x x x x x x x ⎧⎧-≥≤≥⎪⎪-≠⇒≠≠⎨⎨⎪⎪>>⎩⎩或且,4x ⇒>且5x ≠.故选C .3.(2021·全国·九年级竞赛)某校初一运动队为了备战校运动会需要购置一批运动鞋.已知该运动队有20名同学,统计表如下表,由于不小心弄脏了统计表,下表中阴影部分的两个数据看不到. 鞋码 38 39 40 41 42 人数 532下列说法正确的是( ).A .这组鞋码数据中的中位数是40,众数是39 B .这组鞋码数据中的中位数与众数一定相等 C .这组鞋码数据中的平均数p 满足3940p ≤≤ D .以上说法都不对 【答案】C 【解析】 【分析】 【详解】设穿39码和40码的学生分别有x 人和y 人,则()2052310x y +=-++=.(1)若y x ≥,即穿40码的人数最多时,中位数和众数都等于40,故选A 错;(2)若5x y ==,则中位数1(3940)39.52=+=,众数为39和40,中位数不等于众数,故选B 错;(3)平均数[]13853940(10)41342239.75220xp x x =⨯++⨯-+⨯+⨯=-,且010x ≤≤,于是39.2539.75p <≤,满足3940p ≤≤,故选C 正确.所以应选C .4.(2021·全国·九年级竞赛)如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,那么适合这个不等式组的有序对(),a b 共有( ). A .17个 B .64个 C .72个 D .81个【答案】C 【解析】 【分析】 【详解】 解 因98ax b x ⎧≥⎪⎪⎨⎪<⎪⎩中x 的整数值仅为1,2,3,所以01,34,98a b <≤<≤即9a <≤, 2432b <≤,故a 可取1,2,…,9这9个值,b 可取25,26,….32这8个值,所以有序对(),a b 有8972⨯=个.故选C .5.(2021·全国·九年级竞赛)若不等式054ax ≤+≤的整数解是1,2,3,4,则a 的取值范围是( ). A .54a -B .1a <-C .514a -≤<-D .54a -【答案】C 【解析】 【分析】 【详解】解 由054ax ≤+≤得51ax -≤≤-,且已知0x >,所以0a <,15ax a ≤-≤-. 又不等式054ax ≤+≤的整数解是1,2,3,4,所以101a <-≤,且545a≤-<解得 1a ≤-且5114a -<-≤,故514a -≤<-,所以选C .6.(2021·全国·九年级竞赛)2009x y 且0x y <<,则满足此等式的不同整数对(,)x y 有( )对. A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】 【详解】选C .理由:由20094941=⨯,得200941= 又0x y <<2009200941641241541341441===20094114761641025369656===因此,满足条件的整数对(,)x y 为(41,1476),(164,1025),(369,656).共有3对.7.(2021·全国·九年级竞赛)有两个四位数,它们的差是534,它们平方数的末四位数相同.则较大的四位数有( )种可能. A .1 B .2C .3D .4【答案】C 【解析】 【分析】 【详解】理由:设较大的四位数为x ,较小的四位数为y ,则534x y -=, ① 且22x y -能被10000整除.而22()()x y x y x y -=+-2672()x y =⨯+,则x y +能被5000整除.令()5000x y k k ++=∈N . ②由式①②解得2500267,2500267.x k y k =+⎧⎨=-⎩ 考虑到x ,y 均为四位数,于是,100025002679999,100025002679999,k k ≤+≤⎧⎨≤-≤⎩解得126755832500625k ≤≤. k 可取1,2或3.从而,x 可取的值有3个:2767,5267,7767.8.(2021·全国·九年级竞赛)一个正方形纸片,用剪刀沿一条不过顶点的直线将其剪成两部分,拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分,又从得到的3部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分,……,如此下去,最后得到34个六十二边形和一些多边形纸片,则至少要剪的刀数是( ). A .2004 B .2005C .2006D .2007【答案】B 【解析】 【分析】 【详解】解 (算两次方法)依题意,用剪刀沿不过顶点的直线剪成两部分时,所得各张多边形(包括三角形)的纸片的内角和增加了2180360⨯︒=︒,剪过k 刀后,可得(1)+k 个多边形,这些多边形的内角总和为360360(1)360k k ︒+⨯︒=+⨯︒.另一方面,因为这1k +个多边形中有34个为六十二边形,它们的内角总和为34(622)1802040180⨯-⨯=⨯︒︒,余下的多边形(包括三角形)有13433k k +-=-个,其内角总和至少为(33)180k -⨯︒,于是(1)3602040180(33)180k k +⨯︒≥⨯︒+-⨯︒,解得2005k ≥.其次,我们按如下方式剪2005刀时,可得到符合条件的结论.先从正方形剪下1个三角形和1个五边形,再将五边形剪成1个三角形和1个六边形,…,如此下去,剪了58刀后,得到1个六十二边形和58个三角形,取出其中33个三角形,每个各剪一刀,又可得到33个四边形和33个三角形,对这33个四边形,按上述方法各剪58刀,便得到33个六十二边形和3358⨯个三角形,于是共剪了583333582005++⨯=(刀),故选B .9.(2021·全国·九年级竞赛)若正数a ,b ,c 满足不等式1126352351124c a b c a b c a b a c b ⎧<+<⎪⎪⎪<+<⎨⎪⎪<+<⎪⎩则a ,b ,c 的大小关系是( )A .a b c <<B .b c a <<C .c a b <<D .不确定【答案】B 【解析】 【分析】 【详解】解 由已知条件及加法的单调性得1126352251124c c a b c c c a a a b c a a b b a b c b b ⎧+<++<+⎪⎪⎪+<++<+⎨⎪⎪+<++<+⎪⎩,即1736582371524c a b c c a a b c a b a b c b ⎧<++<⎪⎪⎪<++<⎨⎪⎪<++<⎪⎩①②③由①,②得17816176366c a b c a a a <++<=< (传递性),所以a c >. 由①,③得7673222b a bc c c c <++<=< (传递性),所以b c <.可见,a ,b ,c 的大小关系是a c b >>,故选B . 10.(2021·全国·九年级竞赛)设114,,11(1)r a b c r r r r r r r ≥=-==++++的是( ). A .a b c >> B .b c a >>C .c a b >>D .c b a >>【答案】D 【解析】 【分析】 【详解】 解:因111221r r r ≥<+=+,故 ()(111a b r r r r r r =+<=+++, 1111r r r r c b r r r x +-+->=+⋅+.所以c b a >>. 故选:D . 二、填空题11.(2021·全国·九年级竞赛)设a ,b 为正整数,且2537a b <<则b 取最小值时a b +=_____ 【答案】17 【解析】 【分析】 【详解】由已知条件得32,57a b b a >>.令32,57A a b B b a =-=-,则A ,B 均为正整数,解出52,737310a A B b A B =+=+≥+=.当1,1A B ==时等号成立,故b 的最小值为10,这时527a =+=,17a b +=.故应填17.12.(2021·全国·九年级竞赛)已知实数x ,y 满足234x y -=且0,1x y ≥≤,则x y -的最大值是______,最小值是_______. 【答案】 4352【解析】 【分析】 【详解】 434370222y x ++≤=≤=. 又243x y -=所以24433x x x y x -+-=-=.故当0x =时,x y -取最小值43;当72x =时,x y -取最大值175(4)322+=所以应填45,32.13.(2021·全国·九年级竞赛)已知01a ≤≤,且满足122918303030a a a ⎡⎤⎡⎤⎡⎤++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ([]x 表示不超过x 的最大整数),则[]10a 的值等于_______. 【答案】6 【解析】 【分析】 【详解】 因122902303030a a a <+<+<<+<,所以1229,,,303030a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦每一个等于0或1.由题设知其中恰有18个等于1, 所以12111213290,1303030303030a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+==+=+=+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦于是111201,123030a a <+<≤+<,解得1183019,61063a a ≤<≤<所以[]106a =.故应填6. 14.(2021·全国·九年级竞赛)若化简2269x x x --+25x -,则满足条件是x 的取值围是_________. 【答案】23x ≤≤ 【解析】 【分析】 【详解】由()2226923232(3)25x x x x x x x x x x --+=--=---=---=-,得2030x x -≥⎧⎨-≤⎩即23x ≤≤.故填23x ≤≤.15.(2021·全国·九年级竞赛)[]x 表示不超过x 的最大整数(例如[]3.23=).已知正整数n 小于2006,且362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦,则这样的n 有___________个. 【答案】334 【解析】 【分析】 【详解】解 设[]6n m =则(01)6na a m =≤+<从而66n m a =+.当102a ≤<时, 22(021)3n m a a =+≤<,故23n m ⎡⎤=⎢⎥⎣⎦.于是由362n n n⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得662332m a m m m a ++==+,从而0a =.此时(6204)06133n m m =<≤≤. 当112a ≤<,223n m a =+由212222m m a m +≤+<+得213n m ⎡⎤=+⎢⎥⎣⎦代入 362n n n ⎡⎤⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦得2133m m m a ++=+,得13a =,与112a ≤<矛盾,舍去. 故所有的n 共有334个.16.(2021·全国·九年级竞赛)不等式2242x ax a +<的解是___________. 【答案】67a a x -<<(当0a >时);76a ax <<-(当0a <时);无解(当0a =时).【解析】 【分析】 【详解】解 原不等式化为()()670x a x a +-<,方程()()670x a x a +-=的两根为6a -和7a.若0a >,则67a a -<不等式的解为67a ax -<<; 若0a <,则76a a <-不等式的解为76a a x <<-; 若0a =,则67a a-=,不等式无解. 故应填:67a a x -<< (当0a >时); 76a ax <<-(当0a <时);无解(当0a =时). 17.(2021·全国·九年级竞赛)已知正整数m 和n 有大于1的最大公约数,并且满足3371m n +=,则mn =________. 【答案】196 【解析】 【分析】 【详解】理由:设k 是m ,n 的最大公约数,则m 和n 可以表示为,m ka n kb ==(1k >,a ,b 均为正整数).于是,()3323()371753m n ka kb k k a b +=+=+==⨯.因为1k >且7与53都是质数,23232k a b k a k k +>≥>, 所以7k =且2353k a b +=,即34953a b ⨯+=.由a ,b 是正整数,得1,4a b ==. 所以7,28m n ==.故728196mn =⨯=.18.(2021·全国·九年级竞赛)长沙市某中学100名学生向某“希望学校”捐书1000本,其中任意10人捐书总数不超过190本,那么捐书最多的某同学最多能捐书_________本. 【答案】109 【解析】 【分析】 【详解】设100名学生捐书数分别是12100,,,a a a ,不妨设其中100a 为最大,于是100101000a +=()129100a a a a +++++()101118100a a a a ++++()192027100a a a a +++++(91a +++)9299100a a a +++190190190≤+++111902090=⨯=,所以100109a ≤.另一方面,当12999a a a ====,100109a =时,满足题目要求,故捐书最多的人最多能捐书109本.19.(2021·全国·九年级竞赛)已知由小到大的10个正整数1210,,,a a a 的和是2000,那么5a 的最大值是_________,这时10a 的值应是_________. 【答案】 329 335或334 【解析】 【分析】 【详解】要使10a 最大,必须1a ,2a ,3a ,4a 及6a ,7a ,8a ,9a ,10a 尽量小.又因为1210a a a <<<,且1a ,2a ,3a ,4a 的最小可能值依次为1,2,3,4,于是有2000123≥+++56104a a a ++++,即56101990a a a +++≤.又651a a ≥+,752a a ≥+,853a a ≥+,954a a ≥+,1055a a ≥+,故51990615a ≥+,51975132966a ≤=.又5a 为正整数,所以5329a ≤,于是6710a a a +++=199********-=.又761a a ≥+,862a a ≥+,963a a ≥+,1064a a ≥+,故65101661a +≤,616515a ≤=13305,且6a 为正整数,所以6330a ≤,而651330a a ≥+=,所以6330a =,要7a ,8a ,9a 最小得7331a =,8332a =,9333a =,这时101661a =-()6789335a a a a +++=.但如果取1a ,2a ,3a ,4a 依次为1,2,3,5,那么同样可得569,,,a a a 取上述值,这时10334a =.故应填5a 的最大值是329,这时10a 的值应是335或334. 三、解答题20.(2021·全国·九年级竞赛)某宾馆底楼客房比二楼客房少5间,某旅游团有48人.若全部安排底楼,每间房间住4人,房间不够;每间住5人,则有房间没有住满5人.又若全部安排住2楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人.问该宾馆底楼有多少间客房? 【答案】宾馆的底楼有客房10间 【解析】 【分析】 【详解】设底楼有x 间客房,则2楼有()5+x 间客房. 简4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩依题意可得不等式组解不等式组得9.611x <<.又x 为正整数,所以10x =. 答:宾馆的底楼有客房10间.21.(2021·全国·九年级竞赛)一座大楼有4部电梯,如果每部电梯可停靠三层(不一定连续三层,也不一定停最低层),对大楼中的任意两层,至少有一部电梯可在这两层停靠.问:这座大楼最多有几层? 【答案】这座大楼最多有5层【解析】 【分析】 【详解】设大楼有n 层,则楼层对的个数为(1)2n n -每架电梯停3层,有3232⨯=个楼层对, 所以(1)43,(1)242n n n n -⨯≥-≤,且n 为正整数,所以5n ≤.设置4部电梯使它们停靠的楼层分别为 ()()()()1,4,5,2,4,5,3,4,5,1,2,3满足题目要求,故这座大楼最多有5层.22.(2021·全国·九年级竞赛)解方程22424x x x x ⎡⎤+-=⎢⎥⎣⎦.【答案】4x =-或45【解析】 【分析】 【详解】原方程中显然0x ≠,故原方程可化为2241()2x x ⎡⎤+-=⎢⎥⎣⎦.又2222221()21()2()1x x x ⎡⎤⎡⎤⎡⎤+-=+-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,故原方程可化为224[()]1x x=+,所以4x 为整数,设4n x =(n 为整数),原方程又化为2[]14n n =+.于是2124n n n +≤<+,即222(12)2(12)440,2(13)2(12)4802(13)2(13)n n n n n n n n ⎧≤≥+⎧--≥⎪⇒≤≤⎨⎨--<<<⎩⎪⎩或 或.2(12)2(13n <<).又n 为整数,所以1n =-或5n =,故4x =-或4523.(2021·全国·九年级竞赛)证明:对任意实数x 及任意正整数n 有[][]121n x x x x nx n n n -⎡⎤⎡⎤⎡⎤+++++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.【答案】见解析 【解析】 【分析】 【详解】设[]x x α=-,则01a ≤≤,于是存在小于n 的正整数r ,使1r rn nα-≤<故[][]1r rx x x n n-+<<+, 故当0k n r ≤≤-时,[][][][]11r k r n rx x x x x n n n n--≤+≤+<++=-, 故[](0)k x x k n r n ⎡⎤+=≤≤-⎢⎥⎣⎦当11n r k n -+≤≤-时,[][][][][]1111111r n r k r n r x x x x x x n n n n n n--+--+=++≤+<++=++<+, 故[]1(11)k x x n r k n n ⎡⎤+=+-+≤≤-⎢⎥⎣⎦,于是[]1111[]()(n n r n r x x x x x x x n n n n n ---+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++=++++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦[][]21)(1)(1)(1)[]1n r n x x n r x r x n x r n n -+-⎡⎤⎡⎤++++=-++-+=+-⎢⎥⎢⎥⎣⎦⎣⎦①. 又因为[][]1n x r nx n x r +-≤≤+,所以[][]1nx n x r =+-②. 由①及②便知要证等式成立.24.(2021·全国·九年级竞赛)已知01,01,01a b c <<<<<<,证明: ()()()1,1,1a b b c c a ---中至少有一个不大于14. 【答案】见解析 【解析】 【分析】 【详解】 (1)1(1)22a a a a +--≤=11(1)(1)22b bc c --≤三式平方后相乘得 31(1)(1)(1)()4a b b c c a -⋅-⋅-≤故()()()1,1,1a b b c c a ---中至少有一个不大于14.25.(2021·全国·九年级竞赛)设正数a ,b ,c ,x ,y ,x 满足a x b y c z k +=+=+=,证明; 2ay bz cx k ++<. 【答案】见解析 【解析】 【分析】 【详解】因3()()()()()()k a x b y c z abc xyz ay c z bz a x cx b y =+++=+++++++()()abc xyz k ay bz cx k ay bx cx =++++>++.又0k >,所以2ay bz cx k ++<.26.(2021·全国·九年级竞赛)已知实数a ,b ,c 满足0,10a b c ac ++==,证明1110a b c++<.【答案】见解析 【解析】 【分析】 【详解】因10abc =,故a ,b ,c 都不为零.又2222()2()0a b c a b c ab bc ca ++=+++++=且2220a b c ++>,所以0ab bc ca ++<,于是1110bc ca ab a b c abc++++=<. 27.(2021·全国·九年级竞赛)下图是某单位职工年龄(取正整数)的频率分布图(每组可含最低年龄但不含最高值),根据图中提供的信息回答下列问题:(1)该厂共有多少职工?(2)年龄不小于38但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么42岁以上的职工有多少人?(4)有人估计该单位职工的平均年龄在39岁与42岁之间,问这个估计正确吗? 【答案】(1)50;(2)60%;(3)15人;(4)正确 【解析】 【分析】 【详解】(1)职工人数47911106350=++++++=;(2)年龄不小于38但小于44岁职工人数占职工总数的百分比为91110100%60%50++⨯=; (3)年龄在42岁以上职工人数()1063415=++-=(人); (4)设该厂职工的年龄平均值为n ,则11(34436738940114210446463)199239.84395050n ≥⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=>且11(36438740942114410466483)209241.84425050n <⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=<,故所作的估计是正确的.28.(2021·全国·九年级竞赛)某人到花店买花,他只有24元,打算买6支玫瑰和3支百合,但发现钱不够,只买了4支玫瑰和5支百合,这样还剩下2元多钱.请你算一算:2支玫瑰和3支百合哪个价格高? 【答案】2支玫瑰的价格高于3支百合的价格. 【解析】 【分析】 【详解】解 设玫瑰每支x 元,百合每支y 元,依题意得632445242x y x y +>⎧⎨+=-⎩①② 32⨯-⨯②①得918y <,故2y <. 53⨯-⨯①②得1854x >,故3x >.答:2支玫瑰的价格高于3支百合的价格.29.(2021·全国·九年级竞赛)1132x x -+ 【答案】8313x ---≤≤【解析】 【分析】 【详解】解 首先,由1030x x -≥⎧⎨+≥⎩得31x -≤≤.1132x x -≥+① 数上式两边均非负(当31x -≤≤时),两边平方后,整理得 9843x x --≥+②于是980x --≥,即98x ≤-结合31x -≤≤得938x -≤≤-.并且②式两边平方,得2(98)16(3)x x ≥--+,整理得264128330x x ++≥.③因方程264128330x x ++=的两根为1,2831x -±= 所以③的解为831x --≤或831x -+≥结合938x -≤≤-得原不等式的解为8313x ---≤≤30.(2021·全国·九年级竞赛)解不等式:2243414143x x x x x x x x +-->-++-- 【答案】1144x -<<或364x -<<634x <【解析】 【分析】 【详解】解 不等式两边乘以4,化简为5115(1)(1)(1)(1)43414143x x x x +-->+--++-- 移项、整理得22151169161x x ->--,移项、通分得2224(646)0(169)(161)x x x -<--, 可化为222(646)(169)(161)0x x x ---<,即222139()()()0163216x x x ---<. 如右图得2116x <或2393216x <<,解得1144x -<<或364x -<<634x <<31.(2021·全国·九年级竞赛)求满足下列条件的最小正整数n ,使得对这样的n ,有唯一的正整数k ,满足871513n n k <<+. 【答案】15 【解析】 【分析】 【详解】因n ,k 为正整数,所以0,0n n k >+>. 由题中不等式得151387n k n +>>,即1513187k n >+>所以7687k n >>,故76,87k n k n ><. 令760,780A k n B n k =-≥=-≥,可解出87,76n A B k A B =+=+. 又因为A ,B 均为正整数,1,1A B ≥≥,所以8715n ≥+=.当且仅当1,1A B ==时n 取最小值15,这时k 有唯一值716113⨯+⨯=. 故所求n 的最小值为15.32.(2021·全国·九年级竞赛)解不等式: 2256154x x x x -+≤++.【答案】41x -≤<-或4x <-或15x ≥.【解析】 【分析】 【详解】解 移项,通分整理得1020(1)(4)x x x -+≤++故得(Ⅰ) 1020(1)(4)0x x x -+≥⎧⎨++<⎩,或(Ⅱ)1020(1)(4)0x x x -+≤⎧⎨++>⎩.解(I ) 1541x x ⎧≤⎪⎨⎪-<<-⎩,∴41x -≤<-. 解(Ⅰ)1541x x x ⎧≥⎪⎨⎪--⎩或∴4x <-或15x ≥. 综上所述得,原不等式的解为41x -≤<-或4x <-或15x ≥.33.(2021·全国·九年级竞赛)解不等式21311x x x x -+>-+. 【答案】1x <-或1x > 【解析】 【分析】 【详解】解 移项通分得(21)(1)(3)(1)0(1)(1)x x x x x x -+-+->-+,即220(1)(1)x x x x -+>-+. 因22172()024xx x,故上述不等式化为()()110,1x x x -+>∴<-或1x >. 34.(2021·全国·九年级竞赛)如果二次不等式:28210ax ax ++<的解是71x -≤<-,求a 的值. 【答案】3a =【解析】 【分析】 【详解】解 依题意,1,7--是方程28210ax ax ++=的两个根,且0a >,由韦达定理得 2(1)(7)a-⨯-=,所以3a =. 35.(2021·全国·九年级竞赛)某校参加全国数,理,化,计算机比赛的人数分别是20,16,x ,20人.已知这组数据的中位数和平均数相等,求这组数据的中位数. 【答案】18或20. 【解析】 【分析】 【详解】(1)当16x ≤时,平均数为564x x +=,中位数为2016182+=.由56184x+=,解得16x =,满足16x ≤;(2)当1620x ≤≤时,平均数564x x +=,中位数为202x +.由562042x x++=,解得16x =,不符合1620x <<;当20x ≥时,平均数为564x x +=,中位数为2020202+=.由56204x+=,解得24x =,符合20x ≥.因此,所求中位数为18或20.36.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6次、第7次,第8次,第9次射击中,分别得到9.0环、8.4环、8.1环、9.3环,他的前9次射击所得平均环数高于前5次射击所得平均环数,如果要使10次射击的平均环数超过8.8环,那么他第10次射击至少要得多少环?(每次射击环数精确到0.1环) 【答案】第10次至少要射9.9环 【解析】 【分析】 【详解】设前9次射击共得x 环,依题意得1(9.08.48.19.3)95x x -+++>,解得78.3x <,故78.30.178.2x ≤-=.依题目要求,第10次射击至少要达到的环数为()8.8100.178.29.9⨯+-=(环). 答:第10次至少要射9.9环37.(2021·全国·九年级竞赛)今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60g,60g,47g ,现要配制成浓度为7%的盐水100g .间甲盐水最多可用多少克?最少可用多少克? 【答案】甲种盐水最多可用49g ,最少可用35g 【解析】【分析】【详解】设3种盐水应分别取,,xg yg zg ,1005%8%9%1007%060060047x y z x y z x y z ++=⎧⎪++=⨯⎪⎪≤≤⎨⎪≤≤⎪≤≤⎪⎩,解得20043100y x z x =-⎧⎨=-⎩所以02004600310047x x ≤-≤⎧⎨≤-≤⎩, 解得3549x ≤≤.答:甲种盐水最多可用40g ,最少可用35g .38.(2021·全国·九年级竞赛)求证:对任意的实数x ,y ,[2][2][][][]x y x x y y ++++.【答案】见解析.【解析】【分析】【详解】设[],[]x x y y n αββ=+=+=+,其中0,1αβ≤<,m ,n 为整数.(1)若110,022αβ≤<≤<,则021,021,01αβαβ≤<≤<≤+<.这时有 [2][2][22][22]22x y m m m n αβ+=+++=+,[][][]x x y y +++[][()()][]m a m n n αββ=+++++++()22m m n n m n =+++=+,所以[2][2][][][]x y x x y y +=+++.(2)若111,122αβ≤<≤<,则122,122,12αβαβ≤<≤<≤+<.这时有 [2][2][22][22]2121x y m n m n αβ+=+++=+++222m n =++,[][][][][()()][]x x y y m m n n ααββ+++=+++++++()1221m m n n m n =++++=++.所以[2][2][][][]x y x x y y +>+++.(3)若110,122αβ≤<≤<(111,022αβ≤<≤<的情况类似),这时有021α≤<,13122,22βαβ≤<≤+<,这时有[2][2][22][22]221x y m a n m n β+=+++=++,[][][][()()]221x x y y m m n a n m n β+++=+++++++.综上所述,不论何种情况,都有[2][2][][][]x y x x y y +≤+++.39.(2021·全国·九年级竞赛)某个学生参加军训,进行打靶训练,必须射击10次,在第6、第7、第8、第9次射击中,分别得了9.0环,8.4环,8.1环,9.3环,他的前9次射击所得环数的平均值高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环,那么他在第10次射击中最少要得多少环?(每次射击所得环数都精确到0.1环)【答案】第10次最少要得9.9环.【解析】【分析】【详解】9.设前5次射击所得平均环数为a ,第10次击中x 环,依题意59.08.48.19.39a a ++++<, ① 59.08.48.19.38.810a x +++++<. ② 由①得8.7a <,从而558.70.143.4a ≤⨯-=.由②得8834.8553.243.49.8x a >--≥-=,所以9.9x ≥,即第10次最少要得9.9环.40.(2021·全国·九年级竞赛)已知x ,y ,z 都是正数,证明:32()()()()()()x y x z y z y x z x z y +≤++++++. 【答案】见解析【解析】【分析】【详解】 (0,0)2a b ab a b +≥≥得 []()()()()11()2()()2()()x x y x z x x y x z x x x y x z x y x z x y x z +++++=⋅=+++++++①. 1()2()()y y y x y zy x y z ≤+++++②. 1()2()()z z z x z yz x z y ≤+++++③由①+②+③即得要证不等式. 41.(2021·全国·九年级竞赛)某饮料厂生产A 、B 两种矿泉水,每天生产B 种矿泉水比A 种矿泉水多10吨,A 种矿泉水比B 种矿泉水每天多获利润2000元,其中A 种矿泉水每吨可获利润200元,B 种矿泉水每吨可获利润100元.(1)问:该厂每天生产A 种,B 种矿泉水各多少吨?(2)由于江水受到污染,市政府要求该厂每天必须多生产10吨矿泉水,该厂决定响应市政府的号召,在每天的利润不超过原利润的情况下不少于8000元,该厂每天生产A 种矿泉水最多多少吨?【答案】(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.【解析】【分析】【详解】解 (1)设该厂每天生产A 种矿泉水x 吨,则该厂每天生产B 种矿泉水10x +吨,依题意得()200100102000x x -+=,解得30,1040x x =+=.(2)设该厂每天生产A 吨矿泉水y 吨,依题意得该厂每天共生产30401080++=吨矿泉水且()10000200100808000y y ≥+-≥,其中100002003010040=⨯+⨯为该厂原来每天获得的利润,解上述不等式得020y ≤≤.答:(1)该厂每天生产A 种矿泉水30吨,B 种矿泉水40吨.(2)该厂每天最多生产A 种矿泉水20吨.42.(2021·全国·九年级竞赛)要使不等式2320x x -+≤①与不等式2(1)(3)20m x m x -+--<②无公共解,求m 的取值范围.【答案】0m ≥【解析】【分析】【详解】解 ①化为()()120x x --<,故①的解为12x <<.②化为()()1210m x x ⎡⎤⎣⎦-+-<.③(1)当1m =,③为()210x -<,即1x <,符合题意.(2)当10m ->,即1m 时,③的解为211x m -<<-符合题意. (3)当10m -<,即1m <时,又分两种情形讨论: 若211m <-,即1m <-时,③的解为21x m <-或1x >,不符合题意; 若211m >-,即1m >-时,③的解为1x <或21x m>-. 要使①与②无公共解,必须221m ≥-即0m ≥,结合1m <得01m ≤<. 综上所述,得到要使①与②无公共解,m 的取值范围是0m ≥.43.(2021·全国·九年级竞赛)已知三个非负数a ,b ,c ,满足325a b c ++=和231a b c +-=.若37m a b c =+-,求m 的最大值和最小值.【答案】m 的最大值为111-;m 的最小值为57- 【解析】【分析】【详解】 解 由325,231a b c a b c ++=+-=可解出73,711a c b c =-=-,于是()()37373711732m a b c c c c c =+-=-+--=-.由0,0,0a b c ≥≥≥得73071100c c c -≥⎧⎪-≥⎨⎪≥⎩解得37711c ≤≤. 所以m 的最大值为71321111m =⨯-=-,m 的最小值为353277m =⨯-=-. 44.(2021·全国·九年级竞赛)某班学生到公园进行活动,划船的有22人,乘电动车的有20人,乘过山车的有19人,既划船又乘电动车的有9人,既乘电动车又乘过山车的有6人,既划船又乘过山车的有8人,并且有4人没有参加上述3项活动中任何一项活动,问这个班学生人数的可能值是多少?【答案】这个班的学生人数可能是42,43,44,45,46,47,48.【解析】【分析】【详解】解 设3项活动都参加了的学生有n 人,于是由容斥原理I 知至少参加了一项活动人数为222019(968)38n n ++-+++=+.所以,这个班的学生人数为38442n n ++=+.另一方面参加了两项活动的学生人数分别是9,6,8,所以06n ≤≤,故424248n ≤+≤.综上所述,这个班的学生人数可能是42,43,44,45,46,47,48.。

初中数学竞赛模拟试卷(含答案和解析)

初中数学竞赛模拟试卷(含答案和解析)

初中数学竞赛模拟试题011.已知等比数列2341,2,2,2,2,…和等差数列2,7,12,17,22,…,将同时出现这两个数列中的数按从小到大的顺序排成一个新的数列{}n x ,记1002k x =,则_________k =. 解:由2,7,12,17,22,…,知,等差数列第k 个数表示为()251k +-,所以模5余2的数,等比数列第m 个数为12m -,两个数列同时出现在{}n x 中,所以()12512m k -+-=,那么12k -也是模5余2的数,那么{}n x 为()411592,2,2,,2a -+ ,()410011397k =⨯-+=.2.设锐角△ABC 的三个内角分别为A ,B ,C ,BC 的中点为M ,若cot A x =,cot B y =,则 cot _________BAM ∠=(用关于x ,y 的代数式表示结果)解:cot 2APA h =,cot BQ B h =,cot AQ BAM h∠=, ∵AQ AP PQ AP BQ =+=+ ∴cot 222AQ AP BQ BQ BQAP AP BAM x y h h h h hh +∠===+=⨯+=+.3.符号[]x 表示不超过x 的最大整数,则不等式[][]352018x x +=的解集是________. 解:∵[]3133x x x -<≤,[]5155x x x -<≤,∴[][]31513535x x x x x x -+-<+≤+, 即8220188x x -<≤,252.25252.5x ≤<,令()2520.250.5x a a =+≤<代入[][]352018x x +=得:[][]2016352018a a ++=,即[][]352a a +=,∴1235a ≤<,∴1225225235x ≤<4.将12个不同的物体分成3堆(不分顺序),每堆4个,则不同的分法总类为_____.解:4441284445775C C C A⨯⨯=.BC5.圆的内接四边形ABCD 中,12BD =,30ABD CBD ︒∠=∠=,则ABCD 的面积等于_______.解:∵ABD CBD ∠=∠,∴AD CD =,∴AD CD =, 又∵QD CD =,∴△AQD ≌△CPD ,∴AQD CPD S S ∆∆=, ∴11262DP =⨯=,BP ==∴1=22ABCD S ⨯⨯四边形6.如果m ,n 为正实数,分成220x mx n ++=和方程220x nx m ++=都有实数根,那么m n +的最小值是________.解:21420m n ∆=-⨯≥,∴28m n ≥;()22240n m ∆=-≥,∴2n m ≥,2m n ≤≤(),0m n >,∴2n ≥,∴48n n ≥,2n ≥,∴28m n ≥,216m ≥,∴4m ≥,∴426m n +≥+=,∴m n +的最小值为6.7.方程2237x y x xy y +=-+的所有正整数解为________.解:由2237x y x xy y+=-+得2237x y ax xy y a +=⎧⎨-+=⎩,2973a a xy -=,∴3|a , ∵()24x y xy +≥∴2297943a a a -≥⨯,即97943a a -≥⨯,289a ≤,∴3a =∴920x y xy +=⎧⎨=⎩,∴45x y =⎧⎨=⎩或54x y =⎧⎨=⎩,即()(),4,5x y =,()5,4.6P A C。

奥林匹克数学竞赛试卷初三

奥林匹克数学竞赛试卷初三

一、选择题(每题5分,共25分)1. 下列哪个数是质数?A. 12B. 13C. 14D. 152. 一个正方形的边长为5cm,它的面积是多少平方厘米?A. 25B. 50C. 75D. 1003. 已知x^2 + 4x + 4 = 0,则x的值为:A. -2B. 2C. 4D. 64. 一个数列的前三项分别是1,3,7,那么这个数列的第四项是:A. 9B. 11C. 13D. 155. 下列哪个图形是轴对称图形?A. 矩形B. 正方形C. 圆D. 三角形二、填空题(每题5分,共25分)6. 5的平方根是_________。

7. 3^3的值是_________。

8. (-2)×(-3)×(-4)的值是_________。

9. 一个等边三角形的边长为6cm,它的周长是_________cm。

10. 已知a + b = 7,a - b = 3,则a的值是_________。

三、解答题(每题10分,共30分)11. (1)求下列各数的平方根:- 16- 25- 49(2)求下列各数的立方根:- 27- 64- 12512. (1)已知一个数列的前三项分别是2,4,8,求这个数列的第四项。

(2)已知一个数列的公差是3,第一项是5,求这个数列的第六项。

13. (1)已知一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。

(2)已知一个等边三角形的边长为6cm,求这个三角形的面积。

四、附加题(10分)14. (1)已知一个数列的前三项分别是3,6,9,求这个数列的第四项。

(2)已知一个数列的公差是2,第一项是1,求这个数列的第十项。

答案:一、选择题:1. B2. A3. A4. B5. C二、填空题:6. ±27. 278. -249. 1810. 5三、解答题:11. (1)-4,±5,±7(2)3,4,512. (1)12(2)2313. (1)40cm^2(2)18cm^2四、附加题:14. (1)15(2)21。

九年级初中竞赛数学试卷

九年级初中竞赛数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -2B. 0C. 2D. -1/22. 若m和n是方程x^2 - 3x + 2 = 0的两个根,则m+n的值是()A. 3B. 2C. 1D. 03. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A. (-2,3)B. (2,-3)C. (-2,-3)D. (2,3)4. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x - 55. 若a、b、c是等差数列的连续三项,且a+b+c=21,则b的值为()A. 7B. 14C. 21D. 286. 在等腰三角形ABC中,AB=AC,且∠BAC=60°,则∠B的度数是()A. 30°B. 45°C. 60°D. 90°7. 若a^2 + b^2 = 1,且a+b=0,则ab的值为()A. 0B. 1C. -1D. 28. 下列方程中,有唯一解的是()A. x^2 - 4x + 4 = 0B. x^2 - 4x + 5 = 0C. x^2 - 4x + 6 = 0D. x^2 - 4x + 8 = 09. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1,-2),则a的值是()A. 1B. -1C. 2D. -210. 在梯形ABCD中,AD∥BC,AB=CD,AD=8cm,BC=12cm,则梯形的高是()A. 6cmB. 8cmC. 10cmD. 12cm二、填空题(每题5分,共50分)11. 已知等差数列{an}的第一项为2,公差为3,则第10项an=__________。

12. 若函数y = kx + b的图像过点(2,-1),则k+b=__________。

13. 在直角坐标系中,点P(-3,4)到原点O的距离是__________。

数学竞赛试题试卷及答案

数学竞赛试题试卷及答案

数学竞赛试题试卷及答案一、选择题(每题5分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是3. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是:A. 5B. 6C. 7D. 84. 以下哪个表达式的结果不是整数?A. 2^3B. 5 ÷ 2C. 3 × 4D. 8 ÷ 4二、填空题(每题4分,共16分)5. 圆的周长公式是_________。

6. 一个数的绝对值是它到0的距离,即|-5| = _______。

7. 如果a和b是互质数,那么它们的最大公约数是_________。

8. 一个数列的前三项为2, 4, 6,这是一个等差数列,其公差是_________。

三、解答题(每题14分,共56分)9. 证明:对于任意正整数n,n^3 - n 总是能被3整除。

10. 解方程:2x + 5 = 15。

11. 一个长方体的长、宽、高分别是a、b、c,求其表面积和体积。

12. 给定一个函数f(x) = 3x^2 - 4x + 5,求其在x=2时的值。

四、附加题(每题6分,共6分)13. 一个圆的半径是5,求其内接正方形的面积。

答案:一、选择题1. B2. D3. A4. B二、填空题5. C = 2πr6. 57. 18. 2三、解答题9. 证明:n^3 - n = n(n^2 - 1) = n(n-1)(n+1)。

由于n、n-1、n+1是三个连续的整数,根据连续整数的性质,其中必定有一个是3的倍数,所以n^3 - n能被3整除。

10. 解:2x + 5 = 15,移项得2x = 10,除以2得x = 5。

11. 表面积:2(ab + bc + ac),体积:abc。

12. 代入x=2得f(2) = 3*(2)^2 - 4*2 + 5 = 12 - 8 + 5 = 9。

初中竞赛数学5. 解读绝对值(含答案)

初中竞赛数学5. 解读绝对值(含答案)

5.解读绝对值知识纵横绝对值(absolute value)是初中代数中的一个基本概念,是学习相反数、•有理数(rational number)运算及后续算术根的基础。

•绝对值又是初中代数中的一个重要概念,在解代数式化简求值、解方程(组)、解不等(组)等问题有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面入手:1.去绝对值的符号法则:│a │=(0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩2.绝对值基本性质 ①非负性:│a │≥0;②│ab │=│││b │;③|a b |=||||a b (b ≠0);④│a 2│=│a 2│=a 2;⑤│a+b │≤│a │+│b │;⑥││a │-│b ││≤│a-b │≤│a │+│b │.3.绝对值的几何意义从数轴上看,│a │表示数a 的点到原点的距离(长度,非负);│a-b │表示数a 、•数b 的两点间的距离.例题求解【例1】(1)已知│a │=1,│b │=2,│c │=3,且a>b>c,那么a+b-c=_______. (北京市“迎春杯”竞赛题)(2)已知a 、b 、c 、d 是有理数,│a-b │≤9,│c-d │≤16,且│a-b-c+d │=25,那么│b-a │-│d-c │=________. (第14届“希望杯”邀请赛试题)思路点拨 (1)由已知条件求出a 、b 、c 的值,注意条件a>b>c 的约束;(2)若注意到9+16=25这一条件,结合绝对值的性质,问题可获解.解:(1)2或0(2)因│a-b │≤9,│c-d │≤16,故│a-b │+│c-d │≤9+16=25,•又因为25=│a-b-c+d │=│(a-b)+(d-c)│≤│a-b │+│d-c │≤25,所以│a-b │=9,│c-d │=16,故原式=9-16=-7.【例2】如果a 、b 、c 是非零有理数,且a+b+c=0,那么||a a +||b b +||c c +||abc abc 的所有可能的值为( )A.0B.1或-1C.2或-2D.0或-2(2003年山东省竞赛题)思路点拨根据a、b的符号所有可能情况,脱去绝对值符号,这是解本例的关键. 解:A【例3】已知│ab-2│与│b-1│互为相反数,试求代数式1 ab +1(1)(1)a b+++1(2)(2)a b+++┅+1(2002)(2002)a b++的值.思路点拨运用相反数、绝对值、非负数的概念与性质,先求出a、b的值。

初中数学竞赛试卷题

初中数学竞赛试卷题

一、选择题(每题5分,共50分)1. 若一个数的平方等于它本身,则这个数是()A. 0和1B. 0和-1C. 0、1和-1D. 0、1和22. 下列各数中,有理数是()A. √3B. √4C. πD. √-13. 若a、b是实数,且a²+b²=1,则下列各式中正确的是()A. a+b=1B. a²-b²=1C. a-b=1D. a²+b²=24. 下列函数中,一次函数是()A. y=2x+3B. y=3x²+2x-1C. y=x+√xD. y=2x³+3x²-15. 下列各式中,同类项是()A. 2a²+3bB. a²b+2ab²C. a²+3b²D. a²b²+2ab6. 下列各式中,完全平方公式正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²-2ab+b²D. (a-b)²=a²+2ab-b²7. 下列各式中,方程正确的是()A. 2x+3=7B. 2x²+3x-7=0C. x³+2x²-5x+1=0D. 2x²-3x+1=08. 下列各式中,不等式正确的是()A. 2x+3>7B. 2x²+3x-7<0C. x³+2x²-5x+1>0D. 2x²-3x+1<09. 下列各式中,分式正确的是()A. 2x+3/xB. x²+3x-7/xC. x+2/x²D. x²-3x+1/x10. 下列各式中,函数的定义域是()A. y=2x+3B. y=3x²+2x-1C. y=x+√xD. y=2x³+3x²-1二、填空题(每题5分,共50分)11. 若a、b是实数,且a²+b²=0,则a=________,b=________。

安徽省初中数学竞赛试卷

安徽省初中数学竞赛试卷

安徽省初中数学竞赛试卷一、选择题(每题1分,共5分)1. 下列数中,是无理数的是()A. √9B. √16C. √2D. √12. 下列函数中,奇函数是()A. y = x²B. y = x³C. y = |x|D. y = x² + 13. 下列等式中,正确的是()A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a b)² = a² 2ab + b²D. a² b² = (a + b)(a b)4. 一个等差数列的前三项分别是1、3、5,则第10项是()A. 19B. 21C. 23D. 255. 下列图形中,面积和周长都不变的是()A. 正方形B. 长方形C. 圆D. 三角形二、判断题(每题1分,共5分)1. 两个负数相乘,结果是正数。

()2. 平行线的性质是同位角相等。

()3. 一元二次方程的解一定是实数。

()4. 任何数乘以0都等于0。

()5. 对角线互相垂直的四边形一定是矩形。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a²+ b² = _______。

2. 已知一个等差数列的公差为2,首项为1,第5项是_______。

3. 若一个圆的半径为r,则其面积S = _______。

4. 一元二次方程ax² + bx + c = 0(a ≠ 0)的判别式是_______。

5. 两个平行线的同旁内角之和等于_______。

四、简答题(每题2分,共10分)1. 简述三角形中位线的性质。

2. 请写出勾股定理的内容。

3. 什么是算术平方根?4. 如何判断一个数是否为有理数?5. 请列举三种常见的统计图。

五、应用题(每题2分,共10分)1. 小明家的花园是一个长方形,长是宽的2倍,如果宽是6米,求花园的面积。

全国初中生数学竞赛试卷

全国初中生数学竞赛试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是无理数的是()A. √4B. πC. 2.323232...D. 3.1415926535...2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10的值为()A. 21B. 22C. 23D. 243. 在直角坐标系中,点A(2,3),B(-1,4),则线段AB的中点坐标为()A. (1,3.5)B. (1,4)C. (2,3.5)D. (2,4)4. 一个正方体的棱长为a,那么它的表面积为()A. 6a²B. 4a²C. 3a²D. 2a²5. 已知一次函数y=kx+b的图象经过点(1,2)和(3,6),则该函数的解析式为()A. y=2x+1B. y=2x-1C. y=1x+2D. y=1x-26. 在△ABC中,角A、B、C的对边分别为a、b、c,若a²+b²=2c²,则△ABC是()A. 等腰三角形B. 直角三角形C. 钝角三角形D. 等边三角形7. 已知圆的半径为r,则该圆的周长为()A. 2πrB. πrC. πr²D. 2r8. 在下列各式中,错误的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)(a-b)=a²-b²D. (a+b)²=a²-2ab+b²9. 若一个数列的前三项分别为2,4,8,则该数列的通项公式为()A. an=2nB. an=4nC. an=8nD. an=2^n10. 已知一元二次方程x²-5x+6=0的两个根为x₁和x₂,则x₁+x₂的值为()A. 5B. 6C. 10D. 12二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项a1=5,公差d=3,则第n项an=________。

陕西省西安市铁一中滨河中学2022年九年级下学期五模数学试题(含答案与解析)

陕西省西安市铁一中滨河中学2022年九年级下学期五模数学试题(含答案与解析)
【详解】解: E、G分别是AD、BD的中点,FH分别是BC、AC的中点,


同理: ,
四边形EGFH是平行四边形,
AB=CD,
GE=GF,
四边形EGFH是菱形
∠ABD= 20°,∠BDC= 70°, ,
, ,



FE平分 ,
故选::A.
【点睛】本题考查菱形判断与性质,求菱形内角,掌握菱形的判定与性质,会利用菱形的性质求角度是解题关键.
【5题答案】
【答案】D
【解析】
【分析】根据图象在坐标平面内的位置关系知m−2<0且m+3>0,据此可以求得m的取值范围.
【详解】解:如图所示,一次函数y=(m−2)x+3的图象经过第一、二、四象限,
∴m−2<0且m+3>0,
解得:-3<m<2.
故选:D.
【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
7.在平面直角坐标系中,将抛物线C: 绕原点旋转180°后得到抛物线C',在抛物线C′上,当x<1时,y随x的增大而增大,则m的取值范围是( )
A.m≥5B.m≤5C.m≥﹣5D.m≤﹣5
二.填空题(共6小题,每小题3分,计18分)
8.不等式5x﹣2>3的解集为_____.
9.已知扇形的弧长为2πcm,半径为4cm,则此扇形的面积为_____cm2.
12.如图,直线y=﹣ x+3与x,y轴交于A、B两点,以AB为边在第一象限作矩形ABCD,矩形的对称中心为点M,若双曲线 (x>0)恰好过点C、M,则k=_____.

湖北九年级数学竞赛试卷

湖北九年级数学竞赛试卷

湖北九年级数学竞赛试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪一个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 若一个等差数列的首项为3,公差为2,则第10项为()。

A. 19B. 21C. 23D. 254. 下列哪一个图形不是轴对称图形?()A. 正方形B. 等边三角形C. 圆D. 梯形5. 若sinθ = 1/2,且θ是锐角,则cosθ = ()。

A. 1/2B. √3/2C. √2/2D. 1/√2二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。

()2. 任何数与0相乘的结果都是0。

()3. 一个等差数列的任意两个相邻项的差是相同的。

()4. 在直角坐标系中,一个点的横坐标和纵坐标相同,则该点在直线y=x上。

()5. 若两个角的和为90度,则这两个角互为余角。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为10,腰长为13,则其底角为____度。

2. 若一个圆的半径为r,则其周长为____。

3. 若一个等差数列的首项为5,公差为3,则第8项为____。

4. 若sinA = 1/2,且A是锐角,则cosA = ____。

5. 若一个正方形的对角线长为10,则其边长为____。

四、简答题(每题2分,共10分)1. 简述等差数列的定义。

2. 简述勾股定理的内容。

3. 简述正弦函数的定义域和值域。

4. 简述平行线的性质。

5. 简述一次函数的图像特点。

五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长是60,求长方形的长和宽。

2. 一个等差数列的前三项分别是2,5,8,求该数列的第10项。

3. 一个正方形的对角线长为10,求正方形的面积。

4. 若sinA = 3/5,且A是锐角,求cosA的值。

初中奥林匹克数学竞赛题

初中奥林匹克数学竞赛题

初中奥林匹克数学竞赛题以下是初中奥数系列综合模拟试卷及答案。

初中奥数系列综合模拟试卷:1.题目2.题目3.题目4.题目5.题目6.题目7.题目8.题目9.题目10.题目11.题目12.题目13.题目14.题目15.题目16.题目17.题目18.题目19.题目20.题目21.题目22.题目23.题目24.题目25.题目26.题目27.题目初中奥数系列综合模拟试卷答案:3 4 56 78 9 1011 12 1314 15 1617 18 1920 21 2223 24 25 26 27题目1:预计购买甲商品个,乙商品个,总共花费元。

但是,甲商品每个涨价1.5元,乙商品每个涨价1元,且购买甲商品的个数比预定数减少10个,最终总金额比预计多29元。

如果甲商品每个只涨价1元,且购买甲商品的数量只比预定数少5个,那么甲、乙两商品支付的总金额是1563.5元。

1)求甲、乙商品个数的关系式;2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求甲、乙商品个数及总共花费的金额。

答案解析:1)设甲商品原价为x元,乙商品原价为y元,则有:预计总金额。

涨价后总金额。

根据题意,可以列出方程组:2)设甲商品购买的个数为a,乙商品购买的个数为b,则有:预计总金额。

涨价后总金额。

根据题意,可以列出方程组:由于a、b均为正整数,因此只能取a=14,b=6,此时满足题目要求。

因此,甲、乙商品的关系式为:甲商品个数=14-0.5乙商品个数,总共花费的金额为:1563.5元。

初中数学竞赛试卷及答案解析

初中数学竞赛试卷及答案解析

初中数学竞赛试卷及答案解析一、选择题1.已知函数f(x) = 2x - 3,求f(4)的值。

A. 2B. 5C. 6D. 7答案:C. 6解析:将x = 4代入函数f(x) = 2x - 3,得到f(4) = 2(4) - 3 = 8 - 3 = 5。

因此,答案为C. 6。

2.下列哪个不是三角形的内角?A. 90度B. 120度C. 180度D. 270度答案:C. 180度解析:三角形的内角之和总是等于180度。

因此,180度不是三角形的内角,而是一条直线的内角。

答案为C. 180度。

3.已知a = 3,b = 4,c = 5,求三角形的周长。

A. 6B. 12C. 15D. 20答案:C. 15解析:三角形的周长等于三条边的长度之和。

因此,周长 = a + b +c = 3 + 4 + 5 = 12。

答案为C. 15。

4.若x + 3 = 7,则x的值是多少?A. 2B. 3C. 4D. 5答案:A. 2解析:将x + 3 = 7转化为x = 7 - 3,得到x的值为2。

因此,答案为A. 2。

5.已知正方形的周长为20cm,求正方形的边长。

A. 4cmB. 5cmC. 10cmD. 20cm答案:B. 5cm解析:正方形的周长等于4倍的边长。

因此,边长 = 周长 / 4 = 20 /4 = 5。

答案为B. 5cm。

二、填空题1.已知等差数列的首项a₁ = 2,公差d = 3,求该数列的第10项。

答案:28解析:根据等差数列的通项公式an = a₁ + (n - 1) * d,代入a₁ = 2,d = 3,n = 10,得到a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 28。

2.若x² + 3x + k是一个完全平方数,则k的值为多少?答案:9/4解析:对于一个完全平方数,它的因式分解必然是两个相同的因式相乘。

根据已知的二次项系数求平方根的方法,可以得到k = (b/2a)² = (3/2)² = 9/4。

长郡中学初三数学竞赛试卷

长郡中学初三数学竞赛试卷

一、选择题(每题5分,共20分)1. 若一个等差数列的前三项分别为2,5,8,则该数列的第四项为()。

A. 11B. 12C. 13D. 142. 已知函数f(x) = x^2 - 3x + 2,则函数的对称轴为()。

A. x = 1B. x = 2C. x = 3D. x = 43. 在直角坐标系中,点A(2,3)关于直线y = x的对称点为()。

A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)4. 一个正方形的对角线长为10,则该正方形的面积为()。

A. 50B. 100C. 200D. 2505. 已知等腰三角形的底边长为8,腰长为10,则该三角形的面积为()。

A. 32B. 40C. 48D. 64二、填空题(每题5分,共20分)6. 若a,b,c成等差数列,且a + b + c = 15,则b的值为______。

7. 函数f(x) = (x - 1)^2 + 3在x = 2时取得最小值,最小值为______。

8. 在△ABC中,AB = 5,BC = 6,AC = 7,则△ABC的面积是______。

9. 已知数列{an}的前n项和为Sn,若a1 = 2,且an = 2an-1 + 1,则S5 =______。

10. 若等差数列{an}的公差为d,且a1 + a3 + a5 = 21,a2 + a4 + a6 = 39,则d = ______。

三、解答题(每题20分,共60分)11. (20分)已知函数f(x) = 2x - 3,求函数f(x)的图像与x轴、y轴的交点坐标。

12. (20分)已知等腰三角形ABC的底边BC长为8,腰长为10,求三角形ABC的周长。

13. (20分)已知数列{an}的前n项和为Sn,若a1 = 1,且an = 3an-1 - 2,求S10。

四、附加题(30分)14. (10分)已知等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,求Sn 的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学竞赛模拟试卷
(2012.11)
一、选择题(共5小题,每小题6分,共30分)
1.使代数式y =1
x 11
x 2++的值为整数的全体自然数x 的和是( )
A.5
B.6
C.12
D.22 2.方程|x |-
x 4=x
|x |3实数根的个数为( ) A.1 B.2 C.3 D.4
3. 如图,正方形ABCD 的边AB 在x 轴的正半轴上,C (2,1),D (1,1).反比例函数y =x
k
的图像与边BC 交于点E ,与边CD 交于点F .已知BE :CE =3:1,则DF :FC 等于( )
A.4:1
B.3:1
C. 2:1
D. 1:1 4.如图,∠XOY = 90°,OW 平分∠XOY ,P A ⊥OX ,PB ⊥OY , PC ⊥OW .若OA +OB +OC =1,则OC 的长( ) A.2-
2 B. 2-1 C. 6-2 D.2
3 -3
5.在自变量x 的取值范围59≤x ≤60内,二次函数y =x 2+x +2
1
的函数值中整数的个数是( ) A.59 B.120 C.118 D.60 二、填空题(共5小题,每小题6分,共30分)
6.若
20 10a b b c ==,,则a b b c
++的值为 ______________. 7.若实数a ,b 满足2
1202
a a
b b -++=,则a 的取值范围是_________.
8.加油站A 和商店B 在马路MN 的同一侧(如图),A 到MN 的距离大于B 到
MN 的距离,AB =7米,一个行人P 在马路MN 上行走,问:当P 到A 的
距离与P 到B 的距离之差最大时,这个差等于 _米.
9.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =,
BC =4-CD =AD 边的长为________________. 10. 如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直
线l 的函数表达式是 . 三、解答题(共3小题,每小题20分,共60分)
11.设实数a ,b 满足:2
2
31085100a ab b a b -++-=,求u =2
9722a b ++的最小值.
12.在平面直角坐标系xoy 中,我们把横坐标为整数,纵坐标为完成平方数的点称为“好点”,求二次函数y =(x -90)2-4907的图像上的所有“好点”的坐标。

13.如图,在四边形ABCD 中,ND MN AM ==,FC EF BE ==,四边形ABEM ,MEFN ,NFCD 的面积
分别记为1S ,2S 和3S ,求 3
12
S S S +的值。

参考答案
一、选择题(共5小题,每小题6分,共30分) 1.D
由于y = =x -1+1x 12+,为使1
x 12
+为整数,则自然数x 可取0,1,2,3,5,11,其和为22. 2.A
当x >0时,x -4/x =3,x 2-3x -4=0,x 1=4,x 2=-1(舍); 当x <0时,-x -4/x =-3,x 2-3x +4=0,Δ<0,无实根.
综上,原方程只有一个实数根x =4. 3.D 4.B
延长CP 交OY 于点D ,易知BD =PB =OA .则OA +OB =OB +BD =OD = 2OC . 故1=OA +OB +OC =1
21
+OC ,即OC =2 -1. 5.B .
注意到y =x 2+x +
21 =(x +21 )2+41
,当x >-21 时,y 随x 的增大而增大.
由于59≤x ≤60,则592+59+21≤y ≤602+60+21 ,即 3 54021≤y ≤3 660 2
1
.
此范围共含有整数3 660-3 541+1=120个. 二、填空题(共5小题,每小题6分,共30分)
6.由题设得1
201210
11
1110
a a
b b b
c b +++===
+++. 7.因为b 是实数,所以关于b 的一元二次方程2
1
202
b ab a -+
+= 21
()41(2)2
a a ∆--⨯⨯+=≥0, 解得a ≤2-或 a ≥4.
8. 7
9. 如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .
由已知可得BE =AE
,CF
=DF =
于是 EF =4
过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得
AD =
=
2+
10.如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l .
设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩
+,

解得 1311.3k b ⎧
=-⎪⎪⎨
⎪=⎪⎩
, 故所求直线l 的函数表达式为111
33
y x =-+.
三、解答题(共3小题,每小题20分,共60分)
11.解:由2231085100a ab b a b -++-= 可得()()23450a b a b --+=,
所以 20a b -=,或 3450a b -+=. ………………8分
(i )当20a b -=时, ()2
22
97223672236134u a b b b b =++=++=+-,
于是1b =-时,u 的最小值为34-,此时2a =-,1b =-.…………6分
(ii )当3450a b -+=时,()2
22
972216322716111u a b b b b =++=++=++,
于是1b =-时,u 的最小值为11,此时3a =-,1b =-.
综上可知,u 的最小值为34-. ……………………6分 12. 设y =m 2,(x -90)2=k 2,m 、k 都是非负整数,则 K 2-m 2=7×701=1×4907
即(k -m )(k +m )=7×701=1×4907 ……………………10分
则有⎩⎨
⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==∴⎩⎨
⎧==⎩⎨⎧==⎩⎨⎧==+⎩⎨
⎧==+6017209y 2364-x 6017209y 2544x 120409y 264-x 120409y 444x 2453
m 2454
k 347m 354k 1m -k 4907
m k 7m -k 701m k 443
32211;;;或解得或
故“好点”共有4个,它们的坐标是:
(444,120409)(-264,120409)(2544,6017209)(-2364,6017209) ……………………10分 13.如图,连接AE 、NE 和NC ,易知
由 MEN AEM S S ∆∆=,EFN CNF S S ∆∆=两个式子相加得2S S S CNF AEM =+∆∆ ①
……………………6分
并且四边形AECN 的面积=22S . 连接AC (如图)由三角形面积公式,易知AEC ABE S S ∆∆=21,CNA CDN S S ∆∆=2
1
, 两个式子相加得2
1
=
+∆∆CDN ABE S S S 四边形AECN =2S ② ……………………6分
将①式和②相加,得到22S S S S S CDN ABE CNF AEM =+++∆∆∆∆, 既然1S S S ABE AEM =+∆∆,3S S S ABE CNF =+∆∆,因此2312S S S =+,
2
1
312=+S S S .
……………………8分。

相关文档
最新文档