正交试验设计直观分析法和方差分析法
正交试验设计及其方差分析

例 9. 8 提高某化工产品转化率的试验 . 某种化工产品的转化率可能与反应温度A,反应时间B,某两 种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此 考虑对 A , B ,C , D 这4个因素进行试验.根据以往的经验,确 定各个因素的3个不同水平,如表9-19所示 .分析各因素对产品的 转化率是否产生显著影响,并指出最好生产条件.
3
显然 T Tij ,j =1,2,3,4.此处 i 1
T11 大致反映了A1 对试验结果的影响, T21 大致反映了A2 对试验结果的影响, T31 大致反映了A3 对试验结果的影响, T12 , T22 和 T32 分别反映了B1 , B2 , B3 对试验结果的影响,
T13 , T23 和T33 分别反映了C1, C2 , C3 对试验结果的影响, T14 , T24 和 T34 分别反映了D1, D2 , D3 对试验结果的影响.
Rj 反映了第j列因素的水平改变对试验结果的影响大小, Rj 越大反映第j列因素影响越大.上述结果列表 of range) 由极差大小顺序排出因素的主次顺序:
这里, Rj值相近的两因素间用“、”号隔开,而Rj 值相差较 大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中 控制好因素B,即反应时间.其次是要考虑因素A和D,即要控制 好反应温度和真空度.至于原料配比就不那么重要了.
(2 ) 表中任两列,其横向形成的有序数对出现的次数相同 . 如 表 L4 (23) 中任意两列,数字1 , 2 间的搭配是均衡的 .
凡满足上述两性质的表都称为正交表(Orthogonal table).
常用的正交表有L9(34), L8(27),L16(45)等,见附表7. 用正 交表来安排试验的方法,就叫正交试验设计. 一般正交表)
正交试验设计直观分析法和方差分析法

正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
第章正交试验设计的极差分析

第章正交试验设计的极差分析集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]第7章 正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
单指标正交试验设计及其极差分析极差分析法简称R 法。
它包括计算和判断两个步骤,其内容如图7-1所示。
值。
最优组合R j =max(jm j j K K K ,,,21 )-min(jm j j K K K ,,,21 )R j 反映了第j 列因素的水平变动时,试验指标的变动幅度。
R j 越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j 的大小,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6-2来说明单指标正交试验结果的极差分析方法。
一、 确定因素的优水平和最优水平组合例6-2 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6-2中,不考虑因素间的交互作用(因例6-2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6-5所示,试验方案则示于表6-6中。
试验结果的极差分析过程,如表7-1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y i表示,列于表6-6和表7-1的最后一列。
表7-1 试验方案及结果分析计算示例:因素A 的第1水平A 1所对应的试验指标之和及其平均值分别为:K A1=y 1+y 2+y 3=0+17+24=41,=1A K 31K A1=同理,对因素A 的第2水平A 2和第3水平A 3,有K A2=y 4+y 5+y 6=12+47+28=87,=2A K 31K A2=29K A3=y 7+y 8+y 9=1+18+42=61,=3A K 31K A3=由表7-1或表6-6可以看出,考察因素A 进行的三组试验中(A 1,A 2,A 3),B 、C 、D 各水平都只出现了一次,且由于B 、C 、D 间无交互作用,所以B 、C 、D 因素的各水平的不同组合对试验指标无影响,因此,对A 1、A 2和A 3来说,三组试验的试验条件是完全一样的。
正交试验设计中的方差分析

目的
通过方差分析,可以确定不同组之间 的平均值差异是否由随机误差引起, 还是由处理因素或自变量引起。
方差分析的数学模型
数学模型
方差分析使用数学模型来描述数据之间的关系,特别是不同组之间的平均值差异。模型通常包括组间差异和组内 差异两部分。
医学研究
通过正交试验设计中的方差分析,研究不同治疗方案、药物剂量等因素对疾病治疗效果的影响,为临床 治疗提供科学依据。
方差分析的局限性
04
方差分析对数据的要求
独立性
数据必须是相互独立的,不存 在相互关联或依赖关系。
正态性
数据应符合正态分布,才能保 证统计推断的准确性。
同方差性
各组数据的方差应相等,否则 可能导致误判。
制定试验方案
根据正交表设计试验方案,确定每个因素的每个 水平。
实施试验
按照试验方案进行试验,记录每个试验的结果。
方差分析
利用方差分析法对试验结果进行分析,确定各因 素对试验结果的影响程度和显著性。
优化方案
根据方差分析结果,优化试验方案,进行下一步试验。
方差分析的基本原理
02
方差分析的定义与目的
定义
拉丁方设计方差分
析
适用于需要控制试验条件的试验, 通过拉丁方设计平衡试验条件和 试验误差。
正交试验设计中的方差分析步骤
确定试验因素和水平
根据研究目的和实际情况确定试验因 素和水平。
制定正交表
根据试验因素和水平选择合适的正交 表。
安排试验
按照正交表进行试验,记录试验数据。
方差分析
对试验数据进行方差分析,包括自由 度、离均平方和、均方、F值等计算。
正交实验设计及结果分析

正交试验设计对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交试验设计就是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
1正交试验设计的概念及原理1.1正交试验设计的基本概念正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。
它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找岀最优的水平组合。
例如:设计一个三因素、3水平的试验A因素,设A、A?> As3个水平;B因素,设B、B2、Bs3个水平;C因素,设G、G、G 3个水平,各因素的水平之间全部可能组合有27种。
全面试验:可以分析各因素的效应,交互作用,也可选岀最优水平组合。
但全面试验包含的水平组合数较多(图示的27个节点),工作量大,在有些情况下无法完成。
若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。
全面试验法示意图三因素、三水平全面试验方案卫具e8G正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能岀现交互作用的混杂。
虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。
如对于上述3因素3水平试验,若不考虑交互作用,可利用正交表1_9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件1.2正交试验设计的基本原理正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
上图中标有试验号的九个“(・)”就是利用正交表L(34)从27个试验点中挑选出来的9个试验点。
SPSSAU正交实验及极差分析步骤说明

极差分析正交试验正交设计 SPSSAU极差分析Contents1背景 (1)2理论 (2)3操作 (3)4 SPSSAU输出结果 (4)5文字分析 (4)6剖析 (5)正交试验设计进行分析的方法包括两种,一种是极差分析(也称直观分析法),二是方差分析法。
如果使用方差分析,可使用S P S S A U进阶方法里面的多因素方差,也或者通用方法里面的方差分析进行研究。
极差分析是一种直观式的分析方法,其也称作R法,通过计算R值(因素极差值)来判断因素的优劣情况,当然还可判断某因素时的最佳水平情况,从而得到最终组合。
特别提示:极差分析是针对正交试验设计数据,比如使用S P S S A U【医学/实验研究--正交设计】数据得到正交表,进行试验得到试验数据后需要进行直观式分析。
1背景当前有一项研究,研究大豆出油率分别与3个因素的关系情况,分别是萃取液,温度和处理时间。
首先使用S P S S A U的正交设计得到正交表L9.3.4,总共进行9次试验收集完成试验数据后进行分析,希望找出3个因素时各水平的最佳大豆出油率组合。
另外,本案例数据如下表:表格中水平数量使用数字表示,比如因子2(温度)里面的数字1表示20度,数字2表示35度。
2理论极差分析是一种直观式分析方法,一般我们希望先评价因素优劣,比如本案例中三个因素的优劣,评价标题是通过R值(因素极差值)进行评价;而具体水平的优劣可通过K a v g值,即每个水平时试验数据的平均值,对于K a v g值的大小即可得到水平优劣的对比。
最终结合因素优劣和水平优劣,即可找出最佳试验组合。
特别提示:极差分析时,涉及相关指标的计算说明如下:K值:每因子每水平时试验证数据Y的加和值K a v g值:每因子每水平时试验证数据Y的平均值最佳水平:每因子时,K a v g值最大时对应的水平R:每因子时,K a v g值的最大值减去K a v g值的最小值水平数量:每因子时的水平数量每水平重复数r:每个水平平均实验次数折算系数d:每因子时,水平数量对应的折算系数d值R’:折算系数d*R*S q r t(每水平重复数r)如果是混合型正交表,R值(因素极差值)需要进行校正,即使用R’值,R’=折算系数d*R*S q r t(每水平重复数r),其中折算系数d是结合水平数量查表得到,每水平重复数r指每水平平均实验次数。
正交试验设计直观分析法和方差分析法

正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
第7章-正交试验设计的极差分析

第7章正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
7.1单指标正交试验设计及其极差分析极差分析法简称R法。
它包括计算和判断两个步骤,其内容如图7-1所示。
图7-1 R法示意图图中,K m为第j列因素m水平所对应的试验指标和,K jm为K m的平均值。
由K m 的大小可以判断j因素的优水平和各因素的水平组合,即最优组合。
R为第j 列因素的极差,即第j列因素各水平下平均指标值的最大值与最小值之差:R二max(心,耳,,爲)-min(心,兀,,爲)R反映了第j列因素的水平变动时,试验指标的变动幅度。
R越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j的大小,就可以判断因素的主次。
极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6 - 2来说明单指标正交试验结果的极差分析方法。
一、确定因素的优水平和最优水平组合例6-2为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6 -2中,不考虑因素间的交互作用(因例6 - 2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6 - 5所示,试验方案则示于表6 - 6中。
试验结果的极差分析过程,如表7 - 1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y表示,列于表6 - 6和表7 - 1的最后一一表7-1试验方案及结果分析计算示例:因素A的第1水平A i所对应的试验指标之和及其平均值分别为:1K\i=y i+y2+y3=0+17+24=41, K AI = — K Ai=13.73同理,对因素A的第2水平A和第3水平A,有1K A2=y4+y5+y6=12+47+28=87 K A2=-K A2=2931K A3=y7+y8+y9=1 + 18+42=61 , K A3K A3=20.33由表7 - 1或表6 - 6可以看出,考察因素A进行的三组试验中(A,A2,A3), B、C D各水平都只出现了一次,且由于B C、D间无交互作用,所以B、C D因素的各水平的不同组合对试验指标无影响,因此,对A、A和A来说,三组试验的试验条件是完全一样的。
一、正交表介绍

剩余4列中的任意两列.即
因素 列号
A
1
B
2
AB
3
C
4
5
6
D
7
根据上述安排试验,并进行试验记录结果,同时计算 相关数据得到:
列号 试验号
A B AB C
5ห้องสมุดไป่ตู้
6 D
1 2 2 1 1 2 2 1 -5 0 -5 25 1 2 2 1 2 1 1 2 -7 0 -9 81
详情可参见附表8(p347)
正交表的附表-两列间的交互作用列表
例如 L8 (27 )的交互作用表
列号 1 列号
2 (1) 3 (2)
3 4 5 6 7 2 5 4 7 6 1 6 7 4 5 (3) 7 6 5 4 (4) 1 2 3 (5) 3 2 (6) 1 (7)
交互作用列表用于确定任两列的交互作用应占的列 号。如何利用交互作用表?
(3) 水平翻译 安排好表头以后,把排有因素的各列中的数码换 成相应的实际水平,称其为水平翻译.
例如 该实例可以将正交表中的第一列中的1,2,3, 分别换成因素A的第一、第二、第三水平,第二列、 第三列可以类似去做。 (4) 列出试验方案表 经过表头设计以及水平翻译以后,再划去未安排 因素的列,就得到一张试验设计表. 该实例的实验设计方案表如下:
因素
水平
配比A
加温温度B
保温时间C/min
1 2 3
A1 1 : 1 A2 2 : 3 A3 3 : 7
B1 150 B2 165 B3 180
C1 30 C2 35 C3 40
2. 用正交表安排试验 (1) 选用合适的正交表 选用正交表主要根据因素的水平来确定选用几个 水平的正交表,其次根据因素的多少来确定正交表的 大小,一般要求列数大于或等于因素的个数。
第7章-正交试验设计的极差分析汇总

第7章-正交试验设计的极差分析汇总第7章正交试验设计的极差分析正交试验设计和分析方法大致分为二种:一种是极差分析法(又称直观分析法),另一种是方差分析法(又称统计分析法)。
本章介绍极差分析法,它简单易懂,实用性强,在工农业生产中广泛应用。
7.1单指标正交试验设计及其极差分析极差分析法简称R法。
它包括计算和判断两个步骤,其内容如图7-1所示。
图中,K m为第j列因素m水平所对应的试验指标和,K jm为K m的平均值。
由K m的大小可以判断j因素的优水平和各因素的水平组合,即最优组合。
R为第j列因素的极差,即第j列因素各水平下平均指标值的最大值与最小值之差:R j=max(K~i,K~2, ,K jm)-min(心,兀,,K~)R反映了第j列因素的水平变动时,试验指标的变动幅度。
R 越大,说明该因素对试验指标的影响越大,因此也就越重要。
于是依据R j的大小,就可以判断因素的主次极差分析法的计算与判断,可直接在试验结果分析表上进行,现以例6 - 2来说明单指标正交试验结果的极差分析方法。
一、确定因素的优水平和最优水平组合例6-2为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂精汁。
拟通过正交试验寻找酶法液化工艺的最佳工艺条件。
在例6 -2中,不考虑因素间的交互作用(因例6 - 2是四因素三水平试验,故选用L9(34)正交表),表头设计如表6 - 5所示,试验方案则示于表6 - 6中。
试验结果的极差分析过程,如表7 - 1所示.表6-4 因素水平表表6-6 试验方案及结果试验指标为液化率,用y i表示,列于表6 - 6和表7 - 1的最后一一计算示例:因素A的第1水平A i所对应的试验指标之和及其平均值分别为:K AI二y i+y2+y3=0+17+24=41, K A1同理,对因素A的第2水平A和第3水平A,有-K AI=13.7 31K A2=y4+y5+y6=12+47+28=87 K A2 K A2=2931K A3=y7+y8+y9=1 + 18+42=61 , K A3K A3=20.33由表7 - 1或表6 - 6可以看出,考察因素A进行的三组试验中(A,A2,A3),B、C D各水平都只出现了一次,且由于B、C D间无交互作用,所以B、C D因素的各水平的不同组合对试验指标无影响,因此,对A、A2和A s来说,三组试验的试验条件是完全一样的。
正交试验设计—直观分析法(试验设计与数据处理课件)

(5)计算极差,确定因素的主次顺序
R越大,因素越重要 若空列R较大,可能原因:
➢ 漏掉某重要因素 ➢ 因素之间可能存在不可忽略的交互作用
(6)最优方案的确定
➢ 优方案:在所做的试验范围内,各因素较优的水平组合 ➢ 若指标越大越好 ,应选取使指标大的水平 ➢ 若指标越小越好,应选取使指标小的水平 ➢ 还应考虑:降低消耗、提高效率等
② 例题6-3
水平
(A)乙醇浓度/%
1
80
2
60
3
70
目标:检验三个指标 :
(B)液固比
7 6 8
(C)回流次数
1 2 3
提取物得率
总黄酮含量
葛根素含量
注意:三个指标都是越大越好。
对三个指标分别进行直观分析: ➢ 提取物得率: 因素主次:C A B 优方案:C3A2B2 或C3A2B3 ➢ 总黄酮含量: 因素主次:A C B 优方案:A3C3B3 ➢ 葛根素含量 : 因素主次:C A B 优方案:C3A3B2
110
120 130 温度/℃
2
3
4
时间/h
趋势图
甲
乙
丙
催化剂种类
多指标正交试验设计及其结果 的直观分析
多指标正交试验设计及其结果的直观分析
有两种分析方法: ➢ 综合平衡法 ➢ 综合评分法
(1)综合平衡法
❖ 先对每个指标分别进行单指标的直观分析 ❖ 对各指标的分析结果进行综合比较和分析,得出较优方案
❖ 选 L9(34) 正交表
(2)表头设计
➢ 将试验因素安排到所选正交表相应的列中 ➢ 因不考虑因素间的交互作用,一个因素占有一列(可以随机排列) ➢ 空白列(空列):最好留有至少一个空白列
正交实验设计与方差分析2024

引言概述正交实验设计与方差分析是一种常用于实验设计和数据分析的统计方法。
这种方法能够帮助研究人员系统地设计实验、收集数据,并通过方差分析对数据进行统计分析。
正交实验设计适用于多因素实验设计,能够探究多个因素对结果变量的影响,并确定各个因素对结果变量的相对重要性。
方差分析则是用来比较不同组别之间的均值差异是否显著,并推断这些差异是否由于随机因素引起。
正文内容1.正交实验设计的基本原理1.1.因素和水平1.2.正交实验设计的完备性和平衡性1.3.主效应和交互效应的概念1.4.正交表和正交实验设计的选择1.5.正交实验设计的优点和局限性2.正交实验设计的建立步骤2.1.确定要研究的因素和水平2.2.选择适当的正交表2.3.构建试验方案2.4.进行实验和数据收集2.5.数据分析和结果解释3.方差分析的基本原理3.1.单因素方差分析3.2.多因素方差分析3.3.方差分析中的假设检验3.4.方差分析的效应量和效应大小3.5.方差分析结果的解释和报告4.正交实验设计与方差分析的应用领域4.1.医学研究4.2.工程设计4.3.农业实验4.4.社会科学研究4.5.生产过程优化5.正交实验设计与方差分析的案例分析5.1.一个药物疗效评价的正交实验设计案例5.2.一个工程设计的正交实验设计案例5.3.一个农业实验的正交实验设计案例5.4.一个社会科学研究的正交实验设计案例5.5.一个生产过程优化的正交实验设计案例总结正交实验设计与方差分析是一种重要的统计方法,在实验设计和数据分析中具有广泛的应用。
通过正交实验设计,研究人员能够系统地探究多个因素对结果变量的影响,并确定各个因素的相对重要性。
方差分析则用于比较不同组别之间的均值差异,并推断这些差异是否显著。
正交实验设计与方差分析能够帮助研究人员有效地设计实验、收集数据并进行统计分析,为科学研究和应用提供有力支持。
在不同领域,如医学研究、工程设计、农业实验、社会科学研究和生产过程优化等方面都有广泛的应用。
正交试验设计直观分析法和方差分析法

正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
解:直观分析
方差分析n=9,r=3
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
根据以上计算,进行显著性检验,列出方差分析表,结果见表:
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。
《试验设计与数据处理》讲稿_第6章_正交试验设计

第6章正交试验设计主要内容:一、概述二、正交试验设计结果的直观分析法三、正交试验设计结果的方差分析法正交试验法:在优选区内利用正交表科学地安排试验点,通过试验结果的数据分析,缩小优选范围,或者得到较优点的多因素试验方法。
6.1 概述引例—多因素的试验设计问题•指标—收率•因素—(1)原料A的用量 (2)原料B的用量(3)液固比C (4)反应温度D(5)反应压力E (6)催化剂的用量F(7)反应时间G (8)搅拌强度H•水平—8个因素各取3个水平•进行全面搭配的试验次数为: 38=6561 次•科学问题:能否只做其中一小部分试验,通过数据分析来达到全面试验的效果呢?6.1.1 正交表(一)正交表的代号及含义常用正交表的形式为:L(r m)n式中,L ──正交表的符号;n ──要做的试验次数;r ──因素的水平数;m ── 最多允许安排的因素个数。
(27)完全试验次数:128如:L8L(313)完全试验次数:1594323(二)正交表的形式(1)等水平正交表:指各个因素的水平数都相等的正交表。
如L8(27),L27(313)(2)混合水平正交表:指试验中各因素的水平数不相等的正交表如L8(41×24),L24(3×4×24)(三)正交表的特点(1)每一列中,不同的数字出现的次数相等,即对任何一个因素,不同水平的试验次数是一样的。
(2)任意两列中,同一横行的两个数字构成有序数对,每种数对出现的次数是相同,即任何两个因素之间都是交叉分组的全面试验。
(三)正交试验设计的分类6.1.2 正交试验设计的优点①能在所有试验方案中均匀地挑选出代表性强的少数试验方案。
②通过对这些少数试验方案的结果进行统计分析,可以推出较优的方案,而且所得到的较优方案往往不包含在这些少数试验方案中。
③对试验结果作进一步的分析,可以得到试验结果之外的更多信息。
例如,各试验因素对试验结果影响的重要程度、各因素对试验结果的影响趋势等。
正交实验结果如何进行数据分析

正交实验结果如何进⾏数据分析正交实验如何数据分析我们把在试验中考察的有关影响试验指标的条件称为因素(也叫因⼦),把在试验中准备考察的各种因索的不同状态(或配⽅)称为⽔平。
在研究⽐较复杂的⼯程问题中,往往都包含着多个因素,⽽且每个因素要取多个⽔平。
对于包含五个因素、五个⽔平的⼯程项⽬,理论计算必须进⾏55= 31 25次试验。
显然,所需要的试验次数太多了,⼯作量太⼤。
实践告诉我们,合理安排试验和科学分析试验,是试验⼯作成败的关键。
试验⽅案设计的好,试验次数就少,周期也短,这样不仅节省了⼤量⼈⼒、物⼒、财⼒和时间,⽽且可以得到理想的结果。
相反,如果试验设计安排的不好,即使进⾏了很多次试验,浪费了⼤量材料、⼈⼒和时间,也不⼀定能够得到预期的结果。
正交试验法,就是在多因素优化试验中,利⽤数理统计学与正交性原理,从⼤量的试验点中挑选有代表性和典型性的试验点,应⽤“正交表”科学合理地安排试验,从⽽⽤尽量少的试验得到最优的试验结果的⼀种试验设计⽅法。
正交试验法也叫正交试验设计法,它是⽤“正交表”来安排和分析多因素问题试验的⼀种数理统计⽅法。
这种⽅法的优点是试验次数少,效果好,⽅法筒单,使⽤⽅便,效率⾼。
由于试验次数⼤⼤减少,使得试验数据处理⾮常重要。
我们可以从所有的试验数据中找到最优的⼀个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。
⽤正交表安排的试验具有均衡分散和整齐可⽐的特点。
均衡分散,是指⽤正交表挑选出来的各因素和各⽔平组合在全部⽔平组合中的分布是均衡的。
整齐可⽐是说每⼀因素的各⽔平间具有可⽐性。
最简单的正交表L4(23)如表-1所⽰。
记号L4(23)的含意如下:“L”代表正交表;L下⾓的数字“ 4”表⽰有4横⾏(简称为⾏),即要做四次试验;括号内的指数“ 3”表⽰有3纵列(简称为列),即最多允许安排的因素个数是3个;括号内的数“ 2”表⽰表的主要部分只有2种数字,即因素有两种⽔平I与2,称之为I⽔平与2⽔平。
正交试验设计与直观分析 正交试验直观分析

正交试验设计与直观分析:正交试验直观分析6.正交实验设计与直观分析一、目的和结论目的:做这个实验是为了什么.结论:从实验分析后得出的结论,相当于总结性的话。
二、结果和指标结果:从实验中得出的数据或现象,记录下来。
指标:用来衡量试验效果的质量指标。
三、因素和水平因素:实验中不同考察条件,比如温度,PH,浓度等。
水平:实验中因素所取的考察点。
四、处理和单位处理:实验中所要操纵的自变量的变化。
五、重复和平行同时做的同一样品试验是平行试验,不同时做的不同样品试验是重复六、试验设计的原则 1、重复:同时做的同一样品试验是平行试验,不同时做的不同样品试验是重复 2、随机化:试验单元随机进入试验中,试验顺序等随机 3、区组化:使试验中对结果有影响但不是重点监测的因素保持一致(局部一致),使试验结果无显著影响。
4、对照:优化实验可以没有对照空白对照、条件对照、方法对照七、试验类型 1、单因素序贯试验设计 2、全面设计 3、正交试验设计正交实验设计:利用正交表科学地安排与分析多因素试验的方法 u 正交表:三种分析方法:直观分析、方差分析、回归分析 1) 等水平正交表:各因素的水平数是相等的。
特点:l 表中任一列,不同的数字出现的次数相同。
l 表中任意两列,各种同行数字对出现的次数相同 2) 混合水平正交表:重点考察的因素可多取一些水平,其他因素的水平数可适当减少。
重要性质:l 表中任一列,不同的数字出现的次数相同。
l 每两列,同行两个数字组成的各种不同的水平搭配出现的次数是相同的,但不同的两列间组成的水平搭配种类及出现次数是不完全相同的。
各因素的水平数不完全相同的正交表:正交表L8(41ⅹ24)实验号列号 1 2 3 4 5 11 1 1 1 12 1 2 2 2 23 2 1 1 2 24 22 2 1 1 53 1 2 1 2 6 3 2 1 2 1 74 1 2 2 1 8 4 2 1 1 2 u 正交实验设计的基本步骤: ²明确实验目的,确定评价指标²挑选因素,确定水平²选正交表,进行表头设计 n 选正交表: 水平数与正交表对应的水平数一致 l 因素数小于等于正交表列数 l 选较小的表 n表头设计:一个因素占有一列;不同因素占不同列(随机排列)²明确设计方案,进行实验,得到结果²对试验结果进行统计分析²进行验证试验,作进一步分析 4、正交试验设计的优点 1) 能均匀地挑选出代表性强的少数试验方案 2) 由少数试验结果,可以退出较优的方案 3) 可以得到试验结果之外的更多信息正交实验设计结果的直观分析法 1)、单指标正交试验设计及结果的直观分析选正交表表头设计明确实验方案按规定的方案做实验,得出试验结果计算极差,确定因素的主次顺序优方案的确定进行验证试验,作进一步的分析 2)、多指标正交试验设计及结果的直观分析 3)、交互作用 4)、混合水平单指标正交试验设计及其结果的直观分析根据试验指标的个数,可把正交试验设计分为单指标试验设计与多指标试验设计。
什么是正交试验(详解)

什么是正交试验设计正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分析因式设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
例如作一个三因素三水平的实验,按全面实验要求,须进行3^3 = 27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3)正交表安排实验,只需作9次,按L18(3)正交表进行18次实验,显然大大减少了工作量。
因而正交实验设计在很多领域的研究中已经得到广泛应用。
正交表是一整套规则的设计表格,用L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
例如L9(3^4)它表示需作9次实验,最多可观察4个因素,每个因素均为3水平。
一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如L8(4×2),此表的5列中,有1列为4水平,4列为2水平。
编辑本段正交试验设计表正交试验设计表[1]正交试验因素水平表正交试验设计方案及试验结果极差分析表(或指标与因素关系图) 方差分析表(简单分析时可无)正交表的性质(1)每一列中,不同的数字出现的次数相等。
例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。
例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。
每种对数出现次数相等。
在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正交试验设计直观分析法和方差分析法:
自溶酵母提取物是一种多用途食品配料,为探讨外加中性蛋白酶的方法,需作啤酒酵母的最适自溶条件试验,为此安排如下试验,试验指标为自溶液中蛋白质含量(%),取含量越高越好。
因素水平表如下:
试验结果如下,试进行直观分析和方差分析,找出使产量为最高的条件。
A B C e df df df df ====3-1=2
2A A A SS MS df =
=45.422.72=,2B B B SS MS df ==6.49
3.232=, 2C C C SS MS df =
=0.310.1552=,2e e e SS MS df ==0.83
0.4152
= 因为22
2C e MS MS <,所以因素C 的偏差平方和、自由度并入误差的偏差平方和、自由
度
因素A 高度显著,因素B 显著,因素C 不显著。
本试验指标越大越好。
对因素A 、B 分析,确定优水平为3A 、1B ;因素C 的水平改变对试验结果几乎无影响,从经济角度考虑,选1C 。
优水平组合为311A B C 。
即温度为58℃,pH 值为6.5,加酶量为2.0%。