概率论与数理统计课件(PPT)
合集下载
概率论与数理统计ppt课件
04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。
《概率论与数理统计》-课件 概率论的基本概念
解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计课件(共199张PPT)
P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论与数理统计课件(最新完整版)
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
《概率论与数理统计》经典课件 概率论
解: P( Ak )
C C k nk D ND
/ CNn ,
k
0,1,
,n
(注:当L>m或L<0时,记 CmL 0)
2021/8/30
17
❖ 例4:将n个不同的球,投入N个不同的盒中(n≤N),设每一球落入各盒
的概率相同,且各盒可放的球数不限,
记A={ 恰有n个盒子各有一球 },求P(A).
解: ① ②……n
2021/8/30
2
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
1. 可以在相同条件下重复进行 2. 事先知道可能出现的结果 3. 进行试验前并不知道哪个试验结果会发生
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
S AB
✓
A的逆事件记为A,
A
A S,
A A
若
A A
B
B
S
,称A,
B互逆、互斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2
i 1
i 1
i 1
i 1
例:设A={ 甲来听课 },B={ 乙来听课 } ,则:
An;
A B {甲、乙至少有一人来}
P(A B) P(A) P(B) P(AB)
# 3。的推广:
n
n
P( Ai ) P( Ai )
P( Ai Aj )
i 1
i 1
同济大学《概率论与数理统计》PPT课件
随机事件 D=“出现的点数超过 6”= ,即一定不会发生的不可能事件。
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
概率论与数理统计课件最新完整版
时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。
概率论与数理统计-五大数定理-PPT
5
300
P
Xi 0
i 1
n
10
n
P
300
Xi
i 1
5
0
2
2 2 2 2 1 0.9544
15
德莫威尔—拉普拉斯定理
设在独立实验序列中,事件A 在各次实验中发生的概率为
p0 p 1, 随机变量 表Yn示事件A 在n 次实验中发生的次
数,则有
lim
n
P
Yn
Ai 表示“在第 i 次试验中,事件A发生”。
n
Bn Ai 而 P( Ai ) p
i 1
P(Bn )
P n Ai i1
1
P
n i 1
Ai
1 P
A1
A2 An
1 P A1 P A2 P An 1 (1 p)n
显然,当n 时,P(Bn ) 1. [注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
X1 , X 2的, 算, X术n平均值:
X n 的数学期望是:EX n
1 n
n i 1
EX i
X n 的方差为:
DX n
1 n2
n
DX i
i 1
1 n
X n n i1 X i
∴若方差一致有上界,则
DX n
1 n2
nK
K n
由此,当
n
充分大时,
随机变量
X
分散程度是很小的,
n
也就是说, X n的值较紧密地聚集在它的数学期望 EX n的附近.
P200 (6)
26 6!
e2
0.012
此概率很小,据小概率事件的实际不可能性原理,
∴不能相信该工厂的次品率不大于0.01。
300
P
Xi 0
i 1
n
10
n
P
300
Xi
i 1
5
0
2
2 2 2 2 1 0.9544
15
德莫威尔—拉普拉斯定理
设在独立实验序列中,事件A 在各次实验中发生的概率为
p0 p 1, 随机变量 表Yn示事件A 在n 次实验中发生的次
数,则有
lim
n
P
Yn
Ai 表示“在第 i 次试验中,事件A发生”。
n
Bn Ai 而 P( Ai ) p
i 1
P(Bn )
P n Ai i1
1
P
n i 1
Ai
1 P
A1
A2 An
1 P A1 P A2 P An 1 (1 p)n
显然,当n 时,P(Bn ) 1. [注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
X1 , X 2的, 算, X术n平均值:
X n 的数学期望是:EX n
1 n
n i 1
EX i
X n 的方差为:
DX n
1 n2
n
DX i
i 1
1 n
X n n i1 X i
∴若方差一致有上界,则
DX n
1 n2
nK
K n
由此,当
n
充分大时,
随机变量
X
分散程度是很小的,
n
也就是说, X n的值较紧密地聚集在它的数学期望 EX n的附近.
P200 (6)
26 6!
e2
0.012
此概率很小,据小概率事件的实际不可能性原理,
∴不能相信该工厂的次品率不大于0.01。
概率论与数理统计ppt课件
称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
①
②
①
1 2 N
①
②
1 2 N
……
概率论与数理统计课件(完整)
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2
CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2
CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
概率论与数理统计教程ppt课件
1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则
UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
概率论与数理统计教程_第五版_ppt课件
.
推广:
N元情形
n
称 Ak 为 n 个事件 A1, A2 , , An 的和事件,即 k 1
A1, A2 , , An至少发生一个;
.
3.事件的交(积)
"二事件A, B同时发生"也是一个事件 , 称为 事件A 与事件 B 的积事件,记作A B,显然 A B {e | e A且e B}.
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
.
五、随机事件的关系及运算
(1)、随机事件间的关系 设试验 E 的样本空间为 , 而 A, B, Ak (k
1,2, )是 的子集. 1、包含关系 若事件 A 出现, 必然导致 B 出现
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
推广:
N元情形
n
称 Ak 为 n 个事件 A1, A2 , , An 的和事件,即 k 1
A1, A2 , , An至少发生一个;
.
3.事件的交(积)
"二事件A, B同时发生"也是一个事件 , 称为 事件A 与事件 B 的积事件,记作A B,显然 A B {e | e A且e B}.
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
.
五、随机事件的关系及运算
(1)、随机事件间的关系 设试验 E 的样本空间为 , 而 A, B, Ak (k
1,2, )是 的子集. 1、包含关系 若事件 A 出现, 必然导致 B 出现
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
《概率论与数理统计》课件
n
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)
XXXX大学
单选题 1分
下列对古典概型说法正确的个数是 ( )。 A ①试验中可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
B ③若基本事件总数为n ,事件 A 包括 k 个基本事件,则P(A) = k n ;
④每个基本事件出现的可能性相等。 C A. 0
B. 1 C. 2 D D. 3
柯尔莫哥洛夫
概率的公理化定义
概率的性质
频率方法:
频率= nA n
概率=频率的稳定值
Ⅰ.规范性 Ⅱ.非负性 Ⅲ.可列可加
Ⅰ.P( ) = 0 ; Ⅱ.有限可加性 Ⅲ.对
立事件概率Ⅳ.减法公式; Ⅴ加法公式
概率
三种计算方法
几何方法:一维线段的长度;
二维区域的面积; 三维立体的体积.
古典方法:
Ⅰ .随机试验中只有有限个可能的结果;
AB
A
B
A = (A− B) + AB 显然A− B与AB互斥
2
P(A) = P(A− B) + P(AB)
P(A− B) = P(A) − P(AB)
B 仁 A,则P(A− B) = P(A) − P(B). 显然P(A) > P(B)
1.3.2概率的公理化定义及其性质
P( ) = 0;
A1 , A2 , , An
A
B. P(AB) = 1− P(A) − P(B) + P(AB) C. P(AB) = P(A)P(B)
B
D. P(A− B) = 0
C
P(A− B) = P(A) − P(AB) ,排除选项 A。
D
1− P(A) − P(B) + P(AB)=P(A) −1+ P(B) + P(A B)
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机现象:不确定性与统计规律性
概率论——研究和揭示随机现象 的统计规律性的科学
目录
• • • • • • 第一章 随机事件及其概率 第二章 随机变量 第三章 随机变量的数字特征 第四章 样本及抽样分布 第五章 参数估计 第六章 假设检验
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
,称为A的对立事件 ; 易见A B AB
五、事件的运算(p5)
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC), (AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC) 4、对偶(De Morgan)律:
1.2.1.古典概型与概率
(p10)若某实验E满足:
1.有限性:样本空间S={e1, e 2 , … , e n };
2.等可能性:(公认)
P(e1)=P(e2)=…=P(en).
则称E为古典概型也叫等可能概型。
古典概型中的概率(P10):
设事件 A 中所含样本点个数为 N(A) ,以 N() 记样本空间 中样本点总数,则有
(1),(2),(3)的概率分别为 :33/200,1/8,1/25
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
出现的频率,记为fn(A). 即
fn(A)= nA/n.
N ( A) P( A) N ()
P(A)具有如下性质(P7)
(1) 0 P(A) 1;
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 ={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所 组成的集合称为样本空间,记为={e}; 2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
解:设A,B,C分别表示选到的人订了甲,乙,丙报
A B A B,
k k
AB A B
可推广 Ak Ak ,
A
k
k
Ak .
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C的 运算关系表示下列事件:
A B C A2 : “恰有一人命中目标” : ABC ABC ABC A3 : “恰有两人命中目标” : ABC ABC ABC A4 : “最多有一人命中目标 ” : BC AC AB
频率的性质
(1) 0 fn(A) 1;
(2) fn(S)=1; fn( )=0
(3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A), 作为事件A的概率
1.3.2. 概率的公理化定义
i 1
Ai
n
3.积事件(p4) :事件A与事件B同时发生, 记作 AB=AB
3’n个事件A1, A2,…, An同时发生,记作 A1A2…An
4.差事件(p5) :A-B称为A与B的差事件,表示事件A发 生而事件B不发生
思考:何时A-B=?何时A-B=A?
5.互斥的事件(也称互不相容事件)(p4) 即事件与事件不可能同时发生。AB=
n
共有nk种排列方式.
无重复排列:从含有n个元素的集合中随机抽取k 次,
每次取一个,取后不放回,将所取元素排成一列,
n n-1 n-2
n-k+1
共有Pnk=n(n-1)…(n-k+1)种排列方式.
组合:从含有n个元素的集合中随机抽取k 个, 共有
k n Pn n! k Cn k k! k!(n k )!
概率与统计
开课系:非数学专业 教师: 叶梅燕
e-mail: yemeiyan @
教材:《概率论与数理统计》 王松桂 等编
科学出版社2002 参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社 2. 《概率论与数理统计》 魏振军 编 中国统计出版社
序
言
概率论是研究什么的?
1.1随机事件及其概率
一、随机试验(简称“试验”)
随机试验的特点(p1) 1.可在相同条件下重复进行; 2.一次试验之前无法确定具体是哪种结果出现,但 能确定所有的可能结果。 随机试验常用E表示
随机实验的例子
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面 和反面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况; E3:某城市某年某月内发生交通事故的次数; E4:掷一颗骰子,可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命; E7:任选一人,记录他的身高和体重 。
k个白球的概率是
C C p C
k M
n k N M n N
在实际中,产品的检验、疾病的抽 查、农作物的选种等问题均可化为 随机抽球问题。我们选择抽球模型 的目的在于是问题的数学意义更加 突出,而不必过多的交代实际背景 。
2、分球入盒问题
例2:将3个球随机的放入3个盒子中去,问: (1)每盒恰有一球的概率是多少?
既然事件是一个集合,因此有关事 件间的关系、运算及运算规则也就按集 合间的关系、运算及运算规则来处理。
三、事件之间的关系
1.包含关系(p3)“ 事件 A发生必有事件B发生” 记为AB A=B AB且BA.
2.和事件: (p3)“事件A与事件B至少有一个发生 ”,记作AB
2’n个事件A1, A2,…, An至少有一个发生,记作
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
fn(H)
0.5181 0.5069 0.5016 0.5005
A={HHH,HHT,HTH,THH,HTT,TTH,THT}
N ( A) 7 P( A) N () 8
二、古典概型的几类基本问题 复习:排列与组合的基本概念 乘法公式:设完成一件事需分两步, 第一步有n1种方法,第二步有n2种方法, 则完成这件事共有n1n2种方法。 (也可推广到分若干步)
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(10-13) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
30! N (S ) C C C 10! 10! 10!
10 10 10 30 20 10
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
3 C C C P( B) N (S )
7 27 10 20
10 10
一般地,把n个球随机地分成m组(n>m),
要求第 i 组恰 有ni个球(i=1,…m),共有分法:
P p m
n m n
某班级有n 个人(n365), 问至少有两个人的生日在同一天
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
n! n1!.... nm !
4 随机取数问题 例4 从1到200这200个自然数中任取一个,
(1)求取到的数能被6整除的概率
(2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率 解:N(S)=200, N(1)=[200/6]=33,
N(2)=[200/8]=25
N(3)=[200/24]=8
任何事件均可表示为样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素。 2.两个特殊事件: 必然事件S 、不可能事件.(p3) 例如 对于试验E2 ,以下A 、 B、C即为三个随机事件: A=“至少出一个正面” ={HHH, HHT, HTH, THH,HTT,THT,TTH}; B = “两次出现同一面”={HHH,TTT} C=“恰好出现一次正面”={HTT,THT,TTH} 再如,试验E6中D=“灯泡寿命超过1000小时” ={x:1000<x<T(小时)}。
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
概率论——研究和揭示随机现象 的统计规律性的科学
目录
• • • • • • 第一章 随机事件及其概率 第二章 随机变量 第三章 随机变量的数字特征 第四章 样本及抽样分布 第五章 参数估计 第六章 假设检验
第一章 随机事件及其概率
• 随机事件及其运算 • 概率的定义及其运算 • 条件概率 • 事件的独立性
,称为A的对立事件 ; 易见A B AB
五、事件的运算(p5)
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC), (AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC) 4、对偶(De Morgan)律:
1.2.1.古典概型与概率
(p10)若某实验E满足:
1.有限性:样本空间S={e1, e 2 , … , e n };
2.等可能性:(公认)
P(e1)=P(e2)=…=P(en).
则称E为古典概型也叫等可能概型。
古典概型中的概率(P10):
设事件 A 中所含样本点个数为 N(A) ,以 N() 记样本空间 中样本点总数,则有
(1),(2),(3)的概率分别为 :33/200,1/8,1/25
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
出现的频率,记为fn(A). 即
fn(A)= nA/n.
N ( A) P( A) N ()
P(A)具有如下性质(P7)
(1) 0 P(A) 1;
(2) P()=1; P( )=0 (3) AB=,则 P( A B )= P(A) +P(B)
例:有三个子女的家庭,设每个孩子是男是女的概率 相等,则至少有一个男孩的概率是多少?
解:设A--至少有一个男孩,以H表示某个孩子是男孩 ={HHH,HHT,HTH,THH,HTT,TTH,THT,TTT}
随机事件
二、样本空间(p2)
1、样本空间:试验的所有可能结果所 组成的集合称为样本空间,记为={e}; 2、样本点: 试验的单个结果或样本空间 的单元素称为样本点,记为e. 3.由样本点组成的单点集称为基本事件, 也记为e.
幻灯片 6
随机事件
1.定义 样本空间的任意一个子集称为随机事件, 简称“ 事件”.记作A、B、C等
解:设A,B,C分别表示选到的人订了甲,乙,丙报
A B A B,
k k
AB A B
可推广 Ak Ak ,
A
k
k
Ak .
k
例:甲、乙、丙三人各向目标射击一发子弹,以A、 B、C分别表示甲、乙、丙命中目标,试用A、B、C的 运算关系表示下列事件:
A B C A2 : “恰有一人命中目标” : ABC ABC ABC A3 : “恰有两人命中目标” : ABC ABC ABC A4 : “最多有一人命中目标 ” : BC AC AB
频率的性质
(1) 0 fn(A) 1;
(2) fn(S)=1; fn( )=0
(3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A), 作为事件A的概率
1.3.2. 概率的公理化定义
i 1
Ai
n
3.积事件(p4) :事件A与事件B同时发生, 记作 AB=AB
3’n个事件A1, A2,…, An同时发生,记作 A1A2…An
4.差事件(p5) :A-B称为A与B的差事件,表示事件A发 生而事件B不发生
思考:何时A-B=?何时A-B=A?
5.互斥的事件(也称互不相容事件)(p4) 即事件与事件不可能同时发生。AB=
n
共有nk种排列方式.
无重复排列:从含有n个元素的集合中随机抽取k 次,
每次取一个,取后不放回,将所取元素排成一列,
n n-1 n-2
n-k+1
共有Pnk=n(n-1)…(n-k+1)种排列方式.
组合:从含有n个元素的集合中随机抽取k 个, 共有
k n Pn n! k Cn k k! k!(n k )!
概率与统计
开课系:非数学专业 教师: 叶梅燕
e-mail: yemeiyan @
教材:《概率论与数理统计》 王松桂 等编
科学出版社2002 参考书:1.《概率论与数理统计》 浙江大学 盛骤等 编 高等教育出版社 2. 《概率论与数理统计》 魏振军 编 中国统计出版社
序
言
概率论是研究什么的?
1.1随机事件及其概率
一、随机试验(简称“试验”)
随机试验的特点(p1) 1.可在相同条件下重复进行; 2.一次试验之前无法确定具体是哪种结果出现,但 能确定所有的可能结果。 随机试验常用E表示
随机实验的例子
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面 和反面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况; E3:某城市某年某月内发生交通事故的次数; E4:掷一颗骰子,可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命; E7:任选一人,记录他的身高和体重 。
k个白球的概率是
C C p C
k M
n k N M n N
在实际中,产品的检验、疾病的抽 查、农作物的选种等问题均可化为 随机抽球问题。我们选择抽球模型 的目的在于是问题的数学意义更加 突出,而不必过多的交代实际背景 。
2、分球入盒问题
例2:将3个球随机的放入3个盒子中去,问: (1)每盒恰有一球的概率是多少?
既然事件是一个集合,因此有关事 件间的关系、运算及运算规则也就按集 合间的关系、运算及运算规则来处理。
三、事件之间的关系
1.包含关系(p3)“ 事件 A发生必有事件B发生” 记为AB A=B AB且BA.
2.和事件: (p3)“事件A与事件B至少有一个发生 ”,记作AB
2’n个事件A1, A2,…, An至少有一个发生,记作
历史上曾有人做过试验,试图证明抛掷匀质硬币时 ,出现正反面的机会均等。
实验者
De Morgan Buffon K. Pearson K. Pearson
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
fn(H)
0.5181 0.5069 0.5016 0.5005
A={HHH,HHT,HTH,THH,HTT,TTH,THT}
N ( A) 7 P( A) N () 8
二、古典概型的几类基本问题 复习:排列与组合的基本概念 乘法公式:设完成一件事需分两步, 第一步有n1种方法,第二步有n2种方法, 则完成这件事共有n1n2种方法。 (也可推广到分若干步)
(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(10-13) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
30! N (S ) C C C 10! 10! 10!
10 10 10 30 20 10
27! 3! 9! 9! 9! 50 P( A) N (S ) 203
3 C C C P( B) N (S )
7 27 10 20
10 10
一般地,把n个球随机地分成m组(n>m),
要求第 i 组恰 有ni个球(i=1,…m),共有分法:
P p m
n m n
某班级有n 个人(n365), 问至少有两个人的生日在同一天
的概率有多大?
3.分组问题
例3:30名学生中有3名运动员,将这30名学生平均 分成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
n! n1!.... nm !
4 随机取数问题 例4 从1到200这200个自然数中任取一个,
(1)求取到的数能被6整除的概率
(2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率 解:N(S)=200, N(1)=[200/6]=33,
N(2)=[200/8]=25
N(3)=[200/24]=8
任何事件均可表示为样本空间的某个子集.
称事件A发生当且仅当试验的结果是子集A中的元素。 2.两个特殊事件: 必然事件S 、不可能事件.(p3) 例如 对于试验E2 ,以下A 、 B、C即为三个随机事件: A=“至少出一个正面” ={HHH, HHT, HTH, THH,HTT,THT,TTH}; B = “两次出现同一面”={HHH,TTT} C=“恰好出现一次正面”={HTT,THT,TTH} 再如,试验E6中D=“灯泡寿命超过1000小时” ={x:1000<x<T(小时)}。
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白