23届希望杯高一数学2试
历届(1-18)希望杯数学邀请赛高二试题(含答案)(1) 全国通用
第一届“希望杯”全国数学邀请赛(高二)第一试1990年3月18日 上午8:30—10:00一、选择题1、等差数列的第p 项是1990,第1990项是p ,那么第p + q (q ≥ 1991)项( )(A )是正数 (B )是负数 (C )是零 (D )符号不能确定2、设S k =11k ++12k ++ (12),则( ) (A )S k + 1 = S k +122k + (B )S k + 1 = S k +121k ++122k + (C )S k + 1 = S k +121k +–122k + (D )S k + 1 = S k –121k ++122k +3、函数y )(A )有最小值没有最大值 (B )有最大值没有最小值(C )有最小值也有最大值 (D )没有最小值也没有最大值4、a ,b ∈R ,那么| a + b | = | a | – | b |是a b ≤ 0的( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )不充分也不必要条件5、α ≠2k π( k ∈ Z ),那么sec α与sin 2 α tan 2α的符号(指正负号)( ) (A )总是相同 (B )总是相异(C )在第一、三象限时,它们同号,在第二、四象限时,它们异号(D )在第一、三象限时,它们异号,在第二、四象限时,它们同号6、正四面体内切球的体积是V ,则它的外接球的体积是( )(A )8V (B )27V (C )64V (D )4V7、一个平面最多把空间分为两部分,两个平面最多把空间分为四部分,三个平面最多把空间分为八部分,那么,四个平面最多把空间分成( )(A )16部分 (B )14部分 (C )15部分 (D )20部分8、设a = arcsin ( sin 17),b = arccos ( –17),c = arcsin ( –17),则( ) (A )a > b > c (B )b > a > c (C )c > a > b (D )b > c > a9、方程arccot x + arcsin x = π的实数根的个数是( )(A )0 (B )1 (C )2 (D )310、在四个数12,中,与等的个数是( )(A )0 (B )1 (C )2 (D )3二、填空题11、方程arcsin ( sin x ) + arccos ( cos x ) =2π的解集是 。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
2010-2012年第21-23届_“希望杯”全国数学邀请赛_初一_第2试_试题与答案(word版)
第二十一届“希望杯”全国数学邀请赛初一第2试2010年4月11日上午9:00至11:00 得分一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.若a-b的相反数是2b-a,则b=( )(A)-1. (B)0. (C)1. (D)2.2.某工厂3月份的产值比2月份增加10%,4月份的产值比3月份减少10%,则( )(A)4月份的产值与2月份相等.(B)4月份的产值比2月份增加.(C)4月份的产值比2月份减少. (D)4月份的产值比2月份减少.3.如图1,△ABC中,∠A、∠B、∠C的外角分别记为α,β,γ,.若α:β:γ,=3:4:5,则∠A:∠B:∠C=( )(A)3:2:1. (B)1:2:3. (C)3:4:5. (D)5:4:3.4.若m=,则m是( )(A)奇数,且是完全平方数. (B)偶数,且是完全平方数.(C)奇数,但不是完全平方数. (D)偶数,但不是完全平方数.5.有两个两位数的质数,它们的差等于6,且它们平方的个位数字相同,这样的两位质数的组数是( )(A)1. (B)2. (C)3. (D)4.6.As in figure 2,the area of square ABCD is l69cm2,and the area ofthombus BCPQ is 156cm2. Then the area of the shadow part is ( )(A) 23cm2. (B) 33cm2. (C) 43cm2. (D) 53cm2.(英汉词典:square正方形;thombus菱形)7.要将40kg浓度为16%的盐水变为浓度为20%的盐水,则需蒸发掉水( )(A) 8kg. (B) 7kg. (C) 6kg. (D) 5kg.8.如图3,等腰直角△ABC的腰长为2cm.将△ABC绕C点逆时针旋转90。
高中一年级 第2试
3×420+2,4×420+2,即共有5个符合题意的自然数,其中最大的自然数是4×420+2=1682.23.当b=0时,|x2-1|=110x,此时要求x≥0,去掉绝对值,解一元二次方程得x=-1±槡40120或x=1 ±槡40120,舍去两负根,因此A中只有2个元素.当b=1时,|x2-1|=110x+1,此时要求x≥-10,去掉绝对值,解一元二次方程得x=0,-110或1 ±槡80120.它们都满足x≥-10,因此A中有4个元素.24.an={2,4,8,16,32,64,128,256,512,…},若{an}中的元素在{cn}中,则必须满足减2以后能被3整除,则只有8,32,128,512,…满足条件,即23,25,27,29,…故cn=22n+1,即公比q=22(n+1)+122n+1=22n+322n+1=4,所以Sn=8(1-4n)1-4=83(4n-1).25.第n组中有2n-1个数对,则前n组共有1+3+5+…+(2n-1)=n2个数对.因为442=1936<2005<452=2025,所以2005在第45组.因为前44组共有1936个数对,且2005-1936=69,所以第2005个数对是第45组中的第69个数对.观察规律可知,由于45为奇数,所以第一个数对为(0,44),数对中的第一个数逐步增加到44,即第45个数对为(44,44),然后第二个数44逐步减去1,所以第45组中第69个数对是(44,20).高中一年级第2试一、选择题1.已知等差数列{an}中(an∈Z,n∈N*),a1=5,a2=b,则an≠0的充要条件为()(A)b≠0.(B)b≠4.(C)b≠0或b≠4.(D)b≠0且b≠4.2.对1949°,1966°,2005°,2008°依次求余弦,则余弦值最大及最小的角依次是()(A)1949°,1966°.(B)1966°,1949°.(C)2008°,1966°.(D)2005°,2008°.3.下列函数中,值域为R+的是()(A)y=2-|x-1|.(B)y=3x+1(x>0).(C)y=x2+x+2.(D)y=1x2.4.设集合M=x x=k2+14,k∈Z{},N=x x=k4+18,k∈Z{},P=x x=k8+14,k∈Z{},则下面的结论中正确的是()(A)M∪N=P.(B)M∩N=P.(C)M∩P=P.(D)M∩N=M.5.偶函数f(x)(x∈R)满足:f(-4)=f(1)=0,在区间[0,3]与[3,+∞)上分别递减和递增,则不等式x3 f(x)<0的解集为()(A)(-∞,-4)∪(4,+∞).(B)(-4,-1)∪(1,4).(C)(-∞,-4)∪(-1,0).(D)(-∞,-4)∪(-1,0)∪(1,4).·14·6.如果f(x)=max{sinx,cosx}(x∈R),则下面命题正确的是()(A)函数f(x)的值域是[-1,1].(B)当且仅当x=2kπ+π2(k∈Z)时,f(x)取得最大值.(C)函数f(x)的最小正周期是π.(D)当且仅当2kπ+π<x<2kπ+3π2(k∈Z)时,f(x)<0.7.Four people,A,B,Cand Dare accusedin a trial.It is known that(1)if Ais guilty,then Bis guilty;(2)if Bis guilty,then Cis guilty or Aisnot guilty;(3)if Dis not guilty,then Ais guilty andCis not guilty;(4)if Dis guilty,then Ais guilty.How many of the accused are guiltyAnswer:()(A)2.(B)3.(C)4.(D)Insufficient information to determine.8.已知f1(x)=x+1,f2(x)=2x,f3(x)=-3x+5,F(x)=min{f1(x),f2(x),f3(x)},则F(x)的最大值为()(A)1.(B)2.(C)4.(D)8.9.满足a2-3b-9=0(a,b∈Z),且|b|≤1000的数组(a,b)的个数是()(A)57.(B)54.(C)37.(D)109.10.有“黄河源头第一县”之称的青海省果洛藏族自治州玛多县,被称作“千湖之县”.受连续干旱影响,该县有数百个湖泊相继干涸,且鼠害十分猖獗,草原在加速退化,每年因鼠害造成的退化面积达20%.按这样的退化速度,自2005年起,经过()草原退化总面积将开始超过2005年草原总面积的一半.(A)3年.(B)4年.(C)5年.(D)6年.二、填空题11.设集合A={1,2,3,4,5,6},则从A到A的映射f有个,其中,满足f(A)≥a的映射有个.12.若f(x)=x+1,1,烅烄烆x≥0,x<0.则f(cos2)=;当x∈[0,2π)且满足cosx+f(sinx)>1的x的集合为.13.一个三位数与它的各位数字和的比值为p(例如对于三位数462,p=4624+6+2=772),若三位数的各位数字都不为0,则当p取得最小值时,此三位数是;当p取得最大值时,此三位数是.14.函数y=3x2-6x+2 2x-x槡2+4的最大值为,最小值为.15.如果△ABC边上的点的坐标(x,y)在映射f:(x,y)→(2x+2,2y-5)的作用下的像的集合所对应的图形是△A′B′C′,已知△ABC的面积为6,则△A′B′C′的面积等于.16.Let aand b be the two real roots ofthe quadratic equation x2-(k-1)x+k2+3k+4=0,where k is some real num ber.Thelargest possible value of a2+b2 is.17.某校高一新生共有784人,每班分配56人.方法是:将每人的入学成绩从高分到低分依次编号(成绩相同的学生按姓氏笔画的顺序),然后按S形顺序编班.例如:若有8个班,按编号1至8号分别编在1至8班,9至16号分别编在8至1班,17至24号分别编在1至8班…….该校高一新生中编号为300(每号只对应1人)的同学编在班.18.函数y=x2(-2≤x≤2)与函数y=x+m的图象恰有1个公共点在y轴的右侧,则·24·m的取值范围是.19.数列{an}的前三项依次为5,55,555,但第4项不是5555,请写出一个适合题意的通项公式:an=.20.集合M={x|x=9n,n=0,1,2,…,2005},已知92005是1914位数,则在M中最高位是9的数共有个.图1三、解答题21.如图1所示,在凸四边形ABCD中,AB=5,BC=CD=DA=2,∠A=θ.(1)求BD的长(用θ表示);(2)设△ABD的面积为S1,△BCD的面积为S2,f(θ)=S21+S22,求函数f(θ)的值域.22.密码员王超设计了一种给自然数编码的方法:(1)先将自然数表示成五进制数(逢五进一);(2)再将五进制中的5个数码与集合{V,W,X,Y,Z}中的元素建立一个一一对应关系.后来,他发现三个递增的相邻的十进制自然数被编成VYZ,VYX,VVW.求被编成VWXYZ的数所对应的十进制数.23.已知函数f(x)=x2+kx+1x2+x+1.(1)当k=2时,求f(x)的值域;(2)若存在实数a,b,c,使f(a)+f(b)<f(c),求实数k的取值范围.参考答案一、选择题1.等差数列公差d=b-5.如果等差数列不存在值为零的项,那么对于任意非零自然数n,不等式5+(n-1)(b-5)≠0恒成立,即n≠55-b+1 N*,所以5-b≠1且5-b≠5,即b≠4,且b≠0.反之,可证当b≠4且b≠0时,55-b+1N*,即对于任意非零自然数n,当b≠4且b≠0时,不等式5+(n-1)(b-5)≠0恒成立.所以这个数列中不存在零项的充要条件为b≠0且b≠4.故选(D).2.cos1949°=cos149°,cos1966°=cos166°,cos2005°=cos205°=cos155°,cos2008°=cos208°=cos152°,在区间(90°,180°)内,余弦函数是减函数,故cos149°>cos152°>cos155°>cos166°,故选(A).3.y=2-|x-1|的值域是(0,1];y=3x+1(x>0)的值域是(1,+∞);y=x2+x+2的值域是74,+∞[).故选(D).4.因为M=x|x=k2+14,k∈Z{}=x|x=2(2k+1)8,k∈Z{},N=x|x=k4+18,k∈Z{}=x|x=2k+18,k∈Z{},P=x|x=k8+14,k∈Z{}=x|x=k+28,k∈Z{},所以M∪N≠P,M∩N≠P,M∩N= ,·34·故排除(A),(B),(D),又M P,所以M∩P=M.故选(C).5.由偶函数性质及单调性,知图2f(-4)=f(-1)=f(1)=f(4)=0,画出f(x)对应的大致图象,如图2所示.当x<-4或-1<x<1或x>4时,f(x)>0;当-4<x<-1或1<x<4时,f(x)<0.当x<0时,x3<0;当x>0时,x3>0.所以x3 f(x)<0的解集为{x|x<-4或-1<x<0或1<x<4}.故选(D).图36.作出函数f(x)的图象,如图3所示,只有(D)是正确的.7.从D入手,分有罪和无罪两种情况讨论:假设D无罪,由(3)知,A犯罪且C无罪;由(1)知,B犯罪.由(2)知,A无罪或C犯罪,与A犯罪且C无罪矛盾,故假设D无罪不成立,即D犯罪.由(4)知,A犯罪;由(1)知,B犯罪;由(2)知,C也犯罪.因此犯罪的共有4人.故选(C).8.如图4所示,作出f1(x),f2(x),f3(x),易得F(x)的图象.由F(x)的图象,可知F(x)的最大值为2.故选(B).图49.由a2-3b-9=0,得b=a23-3.①由|b|≤1000,有-1000≤a23-3≤1000,0≤a2≤3009,所以-槡3009≤a≤槡3009.因为a是整数,所以-54≤a≤54.②因为b是整数,即a23-3是整数,所以a2是3的倍数,即a·a3是整数,所以a是3的倍数.结合②知,a的值为-54,-51,-48,…,51,54共37个.故选(C).10.设2005年的草原总面积为x,设经过m年后(即2005+m年),草原的面积退化超过x2,即15x+15×45x()+15×45()2x+…+15×45()m-1x>x2,即45()m<12.当m=3时,45()3=64125>12;·44·当m=4时,45()4=256625<12.所以最多经过4年,草原退化总面积就超过2005年草原总面积的一半.故选(B).二、填空题11.(1)如图5所示,其它元素也如此,因此,从A到A的映射f共有6×6×6×6×6×6=66(个).图5图6(2)如图6所示,其它元素也如此,因此,满足f(A)≥a的映射共有1×2×3×4×5×6=720(个).12.因为cos2<0,所以f(cos2)=1,因此,原不等式等价于sinx≥0,cosx+sinx+1>1,烅烄烆或sinx<0,cosx+1>1,烅烄烆解得0≤x<3π4或3π2<x<2π.故满足条件的x的集合为0,3π4[)∪3π2,2π().13.设此三位数为abc,则p=100a+10b+ca+b+c.(1)先固定b,c,则p=100(a+b+c)-90b-99ca+b+c=100-99b+99ca+b+c.因为b,c固定,所以a越小时,p越小.所以当a=1时,p才可能取到最小值.(2)再固定c,则p=100+10b+c1+b+c=10(b+c+1)-9c+901+b+c=10+90-9c1+b+c.因为90-9c恒大于零,所以b越大,p越小.从而知当b=9时,p才可能取到最小值.(3)p=100+90+c1+9+c=c+10+180c+10=1+180c+10.因为c越大,p越小,所以当c=9时,p才能取到最小值,故可知使p取到最小值的三位数为199.同理,使p取到最大值的三位数为911.14.令t=2x-x槡2=-(x-1)2 +槡1,0≤t≤1,则y=3(x2-2x)+2 2x-x槡2+4=-3t 2+2t+4=-3 t-13()2+133,由0≤t≤1,得3≤y≤133.故y的最大值和最小值分别为133和3.15.作图可知△ABC∽△A′B′C′,且ABA′B′=12,又由三角形相似性质,得·54·S△A′B′C′=4S△ABC=24.16.由题意知x2-(k-1)x+(k2+3k+4)=0有两实数根,所以Δ=(k-1)2-4(k2+3k+4)≥0,解得-3≤k≤-53.由韦达定理得a+b=k-1,ab=k2+3k+4,a2+b2=(a+b)2-2ab=-k2-8k-7=-(k+4)2+9,由-3≤k≤-53,得a2+b2的最大值为8.17.因为784÷56=14,所以共可分成14个班.又300÷(14×2)=10……20,20-14=6,14-6+1=9,所以编号是300号的同学应分在9班.18.当直线与抛物线相切时,即x2-x-m=0有重根,可得m=-14;当y=x+m的图象分别过点(2,4)及点(0,0)时,它与y=x2(-2≤x≤2)的图象都恰有1个在y轴右侧的交点,此时m分别为0和2;当m在区间(0,2)内变化时,也满足题意.所以m的取值范围是[0,2]∪-14{}.19.an=59(10n-1)+(n-1)(n-2)·(n-3).(答案不唯一)20.将M中元素从小到大排列,若从第m个与第m+1个数的位数没有增加,则第m+1个数的最高位必是9;反之,最高位是9的数与前一个数的位数一定相同,所以M中最高位是9的数共有2006-1914=92(个).三、解答题21.(1)作DE⊥AB于E(如图7所示),图7则DE=2sinθ,AE=2cosθ,BE=5-2cosθ,BD=DE2+EB槡2=4sin2θ+25-20cosθ+4cos2槡θ=29-20cos槡θ.(2)S1=12AB·DE=5sinθ,取BD中点M,连接CM(如图7所示),由DC=CB,得CM⊥BD,CM2=DC2-DM2=4-14(29-20cosθ)=5cosθ-134,S22=12BD·CM()2=14(29-20cosθ)5cosθ-134()=-25cos2θ+1052cosθ-37716,于是f(θ)=S21+S22=25sin2θ-25cos2θ+1052cosθ-37716=-50cos2θ+1052cosθ+2316=-50cosθ-2140()2+48732.当D,C,B共线时,由余弦定理可得cosθ=1320;当A,D,C共线时,同理可得cosθ=3740.因为ABCD是凸四边形,·64·所以cosθ的取值区间为1320,3740().令cosθ=t,则f(θ)=-50 t-2140()2+48732=g(t).因为t∈1320,3740(),所以g(t)在1320,3740()上单调递减,又g1320()=23116,g3740()=23132,所以f(θ)的值域为23132,23116().22.由题中给出的对应关系,有V,W,X,Y,Z∈{0,1,2,3,4}.由于三个递增的相邻的自然数被编成VYZ,VYX,VVW,所以25V+5Y+Z=25V+5Y+X-1,25V+5Y+X=25V+5V+W-1,烅烄烆即Z=X-1,5(V-Y)=X-W+1.烅烄烆①②因为被编成VYX,VVW的十进制的自然数是递增的,所以V>Y.由②知5|X-W+1,且X-W>0,所以X-W+1=5,V-Y=1,即X=4+W≥4,但X≤4,所以X=4,W=0,Z=3,于是V,Y∈{1,2},而V-Y=1,所以V=2,Y=1.因此,VWXYZ所对应的十进制数是2×54+0×53+4×52+1×5+3=1358.23.(1)即求y=x2+2x+1x2+x+1的值域,易得(x2+x+1)y=x2+2x+1,所以(y-1)x2+(y-2)x+(y-1)=0.当y=1时,-x=0,即x=0;当y≠1时,Δ=(y-2)2-4(y-1)2≥0,即y(3y-4)≤0,解得0≤y≤43.综上可知y=x2+2x+1x2+x+1的值域为0,43[].(2)由y=x2+kx+1x2+x+1可得(x2+x+1)y=x2+kx+1,即(y-1)x2+(y-k)x+(y-1)=0.当k=1时,y≡1,所以不存在灾数a,b,c使f(a)+f(b)<f(c);当k≠1时,若y=1,则x=0;若y≠1,则Δ=(y-k)2-4(y-1)2≥0,即3y2+(2k-8)y+(4-k2)≤0,解得4-k-2|k-1|3≤y<1或1<y≤4-k+2|k-1|3.综上可知y∈4-k-2|k-1|3,4-k+2|k-1|3[].假设对任意的实数a,b,c都有f(a)+f(b)≥f(c),则有2(4-k-2|k-1|)3≥4-k+2|k-1|3,解得k∈25,107[].所以若存在实数a,b,c使得f(a)+f(b)<f(c),则k∈-∞,25()∪107,+∞().·74·。
人教A版高中必修二试题第二十三届“希望杯”全国邀请赛
高中数学学习材料(灿若寒星 精心整理制作)第二十三届“希望杯”全国数学邀请赛高一 第1试2012年3月11日 上午8:30至10:00 得分一、 选择题(每小题4分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在下面的表格内。
题号 1 2 3 4 5 6 7 8 9 10 得分 答案1. 集合2{|67,,}M x y x x x y R ==-++∈,2{|67,,}N y y x x x y R ==-++∈,则集合M N =( )()A ∅ ()[1,4]B - ()[1,7]C -()[0,4]D 2. 设,m n 是自然数,条件甲:33m n +是偶数;条件乙:m n -是偶数,则甲是乙的( )()A 充分不必要条件()B 必要不充分条件 ()C 充分且必要条件 ()D 既不充分也不必要条件3. 已知二面角l βγ--,直线a ⊂平面β,直线b ⊂平面γ,且a 和b 都不垂直于l ,那么,a 与b ( )()A 可能垂直,但不可能平行()B 不可能垂直,但可能平行、 ()C 可能垂直,也可能平行 ()D 不可能垂直,也不可能平行4. 设n S 是等比数列{}n a 前n 项的乘积,若91a =,则下面的等式中正确的是( )119()A S S = 317()B S S = 512()C S S = 811()D S S =5. 已知数列{}n a 中,*1130,()31n n n a a a n N a +-==∈+,则122012a a a +++=( ) ()3A - ()0B ()3C()10063D 6. 在ABC 中,60,23B AB BC ∠==,则tan A 的值等于( )2()2A - 3()2B - 3()2C 3()2D ± 7. Suppose ABC is a triangle with the side length of 2, D andE are moving points nothe sides BC and AC , AD BE ⊥ at point M ,then the length of 'M s trajectory is ( )()2A π()3B π()4C π()6D π8. 若(1,1)1234f =,(,),(,1)3f x y k f x y k =+=-,则(1,2012)f =( )()6033A - ()4799B - ()1235C ()2012D9. 下面判断正确的是( )2()40A b ac -≥是方程20ax bx c ++=有解的充分且必要条件2()40B b ac -<是方程20ax bx c ++=无解的充分且必要条件()0C c ≠是方程20ax bx c ++=无解的必要不充分条件2()40D b ac ->是方程20ax bx c ++=有解的必要不充分条件10. 已知函数()1(,0)f x m x m R m =-∈≠,设向量1(1,cos ),(2,2sin ),(4sin ,1),(sin ,1)2a b c d θθθθ====,当(0,)4πθ∈时,()f a b 与()f c d 的大小关系是 ( )()()()A f a b f c d <()()()B f a b f c d >()0()();0()()C m f a b f c d m f a b f c d ><<>时,时,()0()();0()()D m f a b f c d m f a b f c d >><<时,时,二、 A 组填空题(每小题4分,共40分)11. 设[0,2)απ∈,则在[0,2)π内,终边与α角的终边关于x 轴对称的角是12. 函数2log ()341x f x x -=--的值域是 13. 若,,a b c 是三个互不相等的实数,且满足关系式222221614,45b c a a bc a a +=++=--,则a 的取值范围是14. 若,a b 是正实数,且2a b +=,则1111a b+++的最小值是 15. sin()y a ax b b =++,if the minimum value of y is 12 ,the maximum value is 52, then ab = 16. 设点G 是ABC 的重心,23,22,2GA GB GC ===,则ABC 的面积是17. 已知0.80.9x <<,若将,,xx x x x x 按从小到大的顺序排列,应当是18. 已知等差数列{}n a 的前n 项之和是n S ,若8115,23S S ≤≥,则10a 的最小值是19. 若#a b a b ab =+-,则下列等式中: (1)##a b b a = (2)#0a a = (3)(#)##(#)a b c a b c =正确的是 (填序号)20.O 与D 相交于,A B 两点,BC 是D 的切线,点C 在O 上,且AB BC =,若ABC 的面积为S ,则D 的半径最小值 是三、B 组填空题(每小题8分,共40分)21.已知18x ≤≤,则函数()357f x x x x =-+-+-的最大值 是 ,最小值是22.,αβ是关于x 的方程222(1)40x m x m +-+-=的两个实根,设22y αβ=+,则()y f m =的解析式是 ,值域是23.已知ABC 三条边长分别为223,23,4,()a t b t t c t t R =+=--+=∈,则ABC 最大内角是角 ,它的度数等于24.方程216log 0x x +=的解是 ;使不等式2log 0m x x -<在1(0,)2上恒成立的m 的取值范围是25.若函数22()log (212)(0,1)a f x x ax a a a =-+->≠在R 上的最大值是2,则a = ,()f x 的单调递增区间是 。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30.12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
【精编范文】希望杯数学竞赛试题-word范文模板 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==希望杯数学竞赛试题篇一:最全希望杯数学竞赛真题及答案“希望杯”全国数学竞赛(第1-23届)第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题........................................ 003-0052.希望杯第一届(1990年)初中一年级第二试试题........................................ 010-0123.希望杯第二届(1991年)初中一年级第一试试题........................................ 018-0204.希望杯第二届(1991年)初中一年级第二试试题........................................ 024-0265.希望杯第三届(1992年)初中一年级第一试试题........................................ 032-0326.希望杯第三届(1992年)初中一年级第二试试题........................................ 038-0407.希望杯第四届(1993年)初中一年级第一试试题........................................ 048-0508.希望杯第四届(1993年)初中一年级第二试试题........................................ 056-0589.希望杯第五届(1994年)初中一年级第一试试题........................................ 064-066题 ..................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题 ...................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题 ...................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题 ...................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题 ...................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题 ...................................... 111-11316.希望杯第八届(1997年)初中一年级第二试试题 ...................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题 ...................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题 ...................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题 ...................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题 ...................................... 148-15121.希望杯第十一届(201X年)初中一年级第一试试题 .................................. 159-16122.希望杯第十一届(201X年)初中一年级第二试试题 .................................. 167-16923.希望杯第十二届(201X年)初中一年级第一试试题 .................................. 171-17424.希望杯第十二届(201X年)初中一年级第二试试题 .................................. 176-17825.希望杯第十三届(201X年)初中一年级第一试试题 .................................. 182-184题 .................................. 186-18927.希望杯第十四届(201X年)初中一年级第一试试题 .................................. 193-19628.希望杯第十四届(201X年)初中一年级第二试试题 .................................. 198-20029.希望杯第十五届(201X年)初中一年级第一试试题 (203)30.希望杯第十五届(201X年)初中一年级第二试试题 (204)31.希望杯第十六届(201X年)初中一年级第一试试题 .................................. 213-21832.希望杯第十六届(201X年)初中一年级第二试试题 (204)33.希望杯第十七届(201X年)初中一年级第一试试题 .................................. 228-23334.希望杯第十七届(201X年)初中一年级第二试试题 .................................. 234-23835.希望杯第十八届(201X年)初中一年级第一试试题 .................................. 242-24626.希望杯第十八届(201X年)初中一年级第二试试题 .................................. 248-25137.希望杯第十九届(201X年)初中一年级第一试试题 .................................. 252-25638.希望杯第十九届(201X年)初中一年级第二试试题 .................................. 257-26239.希望杯第二十届(201X年)初中一年级第一试试题 .................................. 263-26620.希望杯第二十届(201X年)初中一年级第二试试题 .................................. 267-271。
历届希望杯数学邀请赛高二试题(含答案) 全国通用
第十一届“希望杯”全国数学邀请赛(高二)第二试2000年4月23日 上午8:30—10:30一、选择题(每小题6分,共60分)1、函数f ( x ) = log 13( 2 x 2 + 2 + 1 ) x 是( )(A )偶函数 (B )奇函数 (C )奇且偶函数 (D )非奇非偶函数 2、△ABC 中,BC = 6,BC 上的高为4,则AB ∙ AC 的最小值是( )(A )24 (B )25 (C ) (D )263、If l 1 : x + 3 y – 7 = 0 , l 1 : k x – y – 2 = 0 and positive x – axis and positive y – axis make a quadrilateral , which has a circumcircle , then k =( )(A )– 6 (B )– 3 (C )3 (D )6 (英汉小字典:positive 正的;quadrilateral 四边形;circumcircle 外接圆)4、直线y = x + 3和曲线 –||4x x +29y= 1的交点的个数是( )(A )0 (B )1 (C )2 (D )3 5、若f ( x + y ) = f ( x ) ∙ f ( y ),且f ( 1 ) = 2,则(2)(1)f f +(4)(3)f f +(6)(5)f f + … +(2000)(1999)f f =( ) (A )1999 (B )2000 (C )2001 (D )20026、定义在R 上的偶函数f ( x )在[ 0,+ ∞ )上是增函数,且f (13) = 0,则不等式f ( log 18x ) > 0的解是( )(A )(12,1 ) (B )( 2,+ ∞ ) (C )( 0,12)∪( 2,+ ∞ ) (D )(12,1 )∪( 2,+ ∞ )7、将圆x 2 + ( y – 1 ) 2 = 1的中心到直线y = k x 的距离记为d = f ( k ),给出以下三个判断:⑴数列{ n f ( n ) }是递增数列;⑵数列{21()f n }的前n 项和是2(237)6n n n ++;⑶ lim n →+∞(1(1)f n +–1()f n ) – 1 = 1其中,正确的个数是( )(A )3 (B )2 (C )1 (D )08、设计一条隧道,要使高3.5米,宽3米的巨型载重车辆能通过,隧道口的纵断面是抛物线状的拱,拱宽是拱高的4倍,那么拱宽的最小整数值是( )(A )14 (B )15 (C )16 (D )17 9、已知x 、y 、z ∈R +,且1x +2y +3z = 1,则x +2y +3z 的最小值是( )。
26届希望杯高一数学2试
Fig.3
.
(英 汉 小 词 典 :diameter 直 径 ;tangent 相 切 的 )
{ ( ( )) 19.定义符号函数sgnx
=
1, x -1,x
≥ <
0,令 0
数
列an
=sgnsin
3π 4
2nπ +3
,b1 =1,b2 =2,bn+2 =
2015
∑ bn+1 -bn (n ≥3),则 akbk =
.
13.平面上有点 A(-3,0)和 B(0,-3),点C 在直线l:3x +y -2=0上运
图2
动,当 CA +CB 最小时,点 C 的坐标为
.
14.已知抛物线y =ax2 +bx 过点A(4,0),若点 B(x,y)为该抛物线在第一象限内的一个动
点,且使得 △AOB 的面积取到最大值8,则a +b=
值为( )
(A)0.
(B)1.
(C)-419580.
(D)-420000.
3.若数列{an}为等差数列,且3(a3 +a5)+2(a7 +a10 +a13)=24.则此数列前13项之和等
于( )
(A)13.
(B)26.
(C)52.
(D)156.
4.定义集合 Ak ={x|x 是k 个大于1的连续自然数之积}(k =1,2,…),那么集合A3 ∩A5 中 的最小元素是( )
.
15.已知平面直角坐标系中,点B(2,0),点 A 在线段OB 上,AB = 2.将线段OB 绕点O 按逆
时 针方向旋转角α(0<α <π)到点B′,点 A 到点A′,对于y 轴上的点P,若 △B′PA′ 是以 ∠B′ 为
第20届全国希望杯数学邀请赛高一数学第二试试题及答案
第20届全国希望杯高一数学邀请赛第二试(第1类)一、选择题(每题4分,40分)1、设的定义域为D ,又()()().h x f x g x =+若(),()f x g x 的最大值分别是M ,N ,最小值分别是m ,n ,则下面的结论中正确的是( )A .()h x 的最大值是M+NB .()h x 的最小值是m +nC .()h x 的值域为{|}x m n x M N +≤≤+D .()h x 的值域为{|}x m n x M N +≤≤+的一个子集2、方程log (0,1)x a a x a a -=>≠的实数根的个数为( )A .0B .1C .2D .33、已知函数32()1(0)f x ax bx cx a =++-<,且(5)3f =,那么使()0f x =成立的x 的个数为( )A .1B .2C .3D .不确定的4、设22{(,)|S x y x y =-是奇数,,}x y R ∈,22{(,)|sin(2)sin(2)T x y x y ππ=-= 22cos(2)cos(2),,}x y x y R ππ-∈,则S ,T 的关系是( )A .S ≠⊂TB .T ≠⊂S C .S=T D .S T =Φ 5、定义集合M,N 的一种运算*,:1212*{|,,}M N x x x x x Mx N ==∈∈,若{1,2,3}M =,N={0,1,2},则M*N 中的所有元素的和为( )A .9B .6C .18D .166、关于x 的整系数一元二次方程20(0)ax bx c a ++=≠中,若a b +是偶数,c 是奇数,则( )A .方程没有整数根B .方程有两个相等的整数根C .方程有两个不相等的整数根D .不能判定方程整数根的情况7、设x 是某个三角形的最小内角,则cos cos sin 22x y x x =-的值域是( ) A.( B.( C. D. 8、已知e的大小关系是( )A.sin tan <<< B.sin tan <<< C.<<< D .<<<9、()f x 是定义在R 上的奇函数,且(2)f x -是偶函数,则下列命题中错误的是( )A .()f x 的图像关于x =2对称B .()f x 的图像关于点(4,0)-对称C .()f x 的周期为4D .()f x 的周期为810、某航空公司经营A,B,C,D 四个城市之间的客运业务,其中部分单程机票的价格如下: A,B 区间:2000元;A,C 区间:1600元;A,D 区间:2500元;B,C 之间:1200元;C,D 区间:900元。
历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
历届(1-18)希望杯数学邀请赛高二试题(含答案) 全国通用
高中竞赛必备资料第一届“希望杯”全国数学邀请赛(高二)第二试一、选择题1、直线A x + B y + C = 0(A ,B 不全为零)的倾斜角是( )(A )B = 0时,倾斜角是2π,B ≠ 0时,倾斜角是arctan ( –A B )(B )A = 0时,倾斜角是2π,A ≠ 0时,倾斜角是arctan ( –BA )(C )A = 0时,倾斜角是0,A ≠ 0时,倾斜角是arctan ( –B A ) (D )B = 0时,倾斜角是0,B ≠ 0时,倾斜角是arctan ( –AB)2、数列{ a n }:a 1 = p ,a n + 1 = q a n + r (p ,q ,r 是常数),则r = 0是数列{ a n }成等比数列的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )不充分也不必要条件 3、f 是R → R 上的一一映射,函数y = f ( x )严格递增,方程x = f ( x )的解集为P ,方程x = f [ f ( x )]的解集为Q ,则( )(A )P ⊂ Q (B )P = Q (C )P ⊃ Q (D )以上都不对4、点( x ,y )的坐标x ,y 都是有理数时,该点称为有理点,在半径为r ,圆心为( a ,b )的圆中,若a ∈Q ,b ∈Q ,则这个圆上的有理点的数目( )(A )最多有一个 (B )最多有两个 (C )最多有三个 (D )可以有无穷多个5、以某些整数为元素的集合P 具有以下性质:(1)P 中元素有正数也有负数;(2)P 中元素有奇数也有偶数;(3)– 1 P ;(4)若x ,y ∈P ,则x + y ∈P 。
对于集合P ,可以断定( ) (A )0∈P ,2 P (B )0 P ,2∈P (C )0∈P ,2∈P (D )0 P ,2 P 二、填空题6、方程arcsin ( sin x 的实根个数是 。
7、使不等式| ( x – 1 ) ( x + 1 ) | + | ( x – 2 ) ( x + 2 ) | + | ( x – 3 ) ( x + 3 ) | < ( t – x ) ( t + x )的解集为空集的实数t 形成一个集合,把这个集合用区间形式写出来,就是 。
人教A版高中数学必修五第二十三届“希望杯”全国邀请赛
第二十三届“希望杯”全国数学邀请赛高二 第1试2012年3月11日 上午8:30至10:00 得分一、 选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将正确答案前的英文字母写在下面的表格内。
题号 1 2 3 4 5 6 7 8 9 10 得分答案1. 集合{|1,},{|11,}P x x x R Q x x x Z =≤∈=-≤∈,则P Q =( )()(0,1).A (){0,1}.B ()[0,1].C()[1,1].D - 2. 已知340,log (1),log x A x B x >=+=,则A 与B 的大小关系是( )().A A B > ().B A B = ().C A B < ()D 随x 的值而定.3. 有若干个同心圆,其半径是公比为(1)q q >的等比数列,相邻的两个圆组成一个圆环,则这些圆环的面积( )()A 不是等比数列. ()B 是等比数列,公比为.q()C 是等比数列,公比为2.q()D 是等比数列,公比为2 1.q - 4. 设,a b 是两个非零向量,则“a 和b 同向”是“2()()()a b a a b b =”的( )()A 充分不必要条件 ()B 必要不充分条件()C 充分且必要条件 ()D 既不充分也不必要条件5. 已知,x y R ∈,且3535x y y x --+≤+,则下列关系式中成立的是( )() 1.x y A e -≥ () 1.y x B e -≥ ()ln()0.C x y -≥()ln(1) 1.D y x -+≥ 6. The range of values for the function 21y x x =+- is ( )()[2,2].A - ()(2,2).B - ()[1,2].C - ()(1,2)D -7. 方程2222(2)460x y x x y y y +-+++--+=的正整数解的个数是( )()1.A ()2.B ()5.C ()D 无穷多个.已知正三棱柱111ABC A B C -中,1AA a =,2AB a =,M 、N 、E 分别是AB 、AC 、11A B 的中点,那么平。
第23届希望杯全国数学邀请赛九年级第2试试题
第23届(2012年)“希望杯”全国数学邀请赛初中三年级(九年级)第2试试题一、选择题1.若反比例函数k y x =的图像经过点1,22⎛⎫- ⎪⎝⎭,则k 的值为( )(A )1- (B ) 1 (C ) 4- (D )42.已知二次函数2y ax bx c =++的图像如图1所示,则下列代数式的值恒为正值的是( )(A )abc (B )ac (C )bc (D )ab3.若存在12x ≤≤,使得2120ax -->,则a 的取值范围是( )(A )14a <- (B )34a > (C )1344a -<< (D )14a <-或34a > 4.直线ky x k =总是下列哪个函数图像的对称轴?( )(A )y k x = (B )k y x =(C )2y kx = (D )y kx = 5.若实数,,a b c 满足2222221,2,3,a b b c c a +=+=+=则ab bc ca ++的最小值为( )(A ) (B ) (C ) (D -6.如图2,双曲线(0)k y k x=>经过Rt AOB ∆的斜边AB 的 中点C ,,AF AO ⊥,BF BO ⊥,AF BF 与双曲线分别交于点,D E ,若8,6,OA OB ==则四边形ODFE 的面积是( )(A )12 (B )24 (C )36 (D )407.对于实数a ,规定[]a 表示不大于a 的最大整数,如[][]2.12, 1.52,=-=-则方程 [][]224x y +=的解在xOy 坐标系中的图像是( )(A ) (B ) (C ) (D )8.若获利是销售量的二次函数,则该商店获利的最大值是( )(A )9万元 (B )9.25万元 (C )9.5万元 (D )10万元9.如图3,已知长方形ABCD 的边长32AB AD ==,,点E 在BC 边上,且AE EF ⊥,EF 交CD 于F ,设,BE x FC y ==,则当点E 从点B 运动到点C 时,y 关于x 的函数图像是( )(A ) (B ) (C ) (D )10.若凸n 边形12n A A A 适合以下:(1)1100A ∠= ,(2)18,1,2,,1,k k A A k n +∠=∠+=- 则n 的值是( )(A )5 (B )6 (C ) 7 (D )8二、填空题11.若ABC ∆是半径为1的圆的内接三角形,BC =则A ∠= .12.方程11112012201420162018x x x x -=-----的解是x = . 13.如图4,P 是等边ABC ∆内一点,3,4,5,AP BP PC ===则APB ∠= .14.边长为整数,且周长为2012的等腰三角形有 个.15.已知关于x 的一元二次方程222(1)(1)0x m x m --+-=有两个不相等的实根,αβ,若224,αβ+=则m = .16.已知ABC ∆的三个顶点的坐标分别为(1,5),(6,2),(1,2),A B C ----则ABC ∆外接圆半径的长度为 .17.已知坐标平面xOy ,Rt ABC ∆中的直角顶点是A ,点B 与点O 重合,点C 在坐标轴上,则点C 的坐标是 . 18.已知350,x y z -+=并且230x y z ++=,则2222223323x y z xy yz zx x y z-+++-+-的值等于 .19.α和β是方程2210x x --=的两根,2α和2β是20x mx n ++=的两根,点(,)m n 在一次函数(3)y kx n =+-的图像上,则此函数的解析式是 .它的图像与xOy 坐标平面内的坐标轴围成的图形的面积是 .20.如图5,在直角梯形ABCD 中,,90,AB CD BAD ADC ∠=∠= ∥两条对角线的交点为O .O 与AD 相切,并与以AD 为直径的O ' 内切,已知AD 长为h ,则梯形ABCD 的面积是 .三、解答题21.解方程44(2)820x x +--=22.如图6所示,已知二次函数28y x bx =-++的图像与x 轴交于,A B 两点,与y 轴交于点C ,且(4,0)B .(1) 求二次函数的解析式及其图像的顶点D 的坐标;(2)若点(,0)M p 是x 轴上的一个动点,则当MC MD -取得最大值时,求p 的值;(3) 如果点(,)E m n 是二次函数28y x bx =-++的图像上的一个动点,且ABE ∆是钝角三角形,求m 的取值范围.23.给你若干个边长都是1的正三角形,正方形,正五边形,正六边形,从其中任选两种(个数不限),将它们拼接,要求是:(1)使某边重合;(2)两种图形中的任何一种不得有公共部分.问:(1)用选出的两种图形围成正n边形,如:用3个正方形和3个正六边形围成一个正三角形ABC(图7).请你再举两例,并作图说明.(2) 对于(1)中的正n边形,求它的外接圆的半径.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三届 希望杯 全国数学邀请赛
高一㊀第2试试题
一㊁选择题(每小题4分,共40分.
)1.设A ,B 是同一个三角形的两个内角,则不是∙∙A <B 成立的充要条件的是()(A )s i n A <s i n B .(B )s i n 2A <s i n 2B .(C )c o s A >c o s B .(D )c o s 2A >c o s 2B .2.函数f (x )=|l g |2-x ||的单调增区间是()(A )(-ɕ,1)ɣ(3,+ɕ).(B )(1,2)ɣ(3,+ɕ).(C )(-ɕ,
1)ɣ(2,3).(D )(1,2)ɣ(2,3).3.图1中的图形所表示的是将棱长为a 的立方体用一个平面切割后剩下的几何体,则它的体积不等于原立方体体积一半的有(
)个.
图1(A )3.(B )4.(C )5.(D )6.4.{a n }是公比不为1的等比数列,S n 是{a n }的前n 项和.给出下面3个命题:(1)若{a n }中既有正数,又有负数,那么{S n }中也既有正数,又有负数;(2){a n }不可能同时具有最大值和最小值;(3)S 10,S 20-S 10,S 30-S 20,S 40-S 30, 构成等比数列.其中,真命题的个数是()(A )0.(B )1.(C )2.(D )3.5.在正数数列{a n }中,a 1=14,a n +1=a n +a n +14,则a 2012=()(A )1012025.(B )1012036.(C )1013025.(D )1013036.6.若存在x ɪ[1,2],使得|a ㊃2x -1|-2>0,则a 的取值范围是()(A )(-12,32).(B )(-ɕ,-12)ɣ(32,+ɕ).(C )(-14,34).(D )(-ɕ,-14)ɣ(34,+ɕ).7.已知O 是坐标原点,动点M 在圆C :(x -4)2+y 2=4上,对该坐标平面内的点N 和P ,若N ң+O M ң=M C ң+MP ң=0,则|N P ң|的取值范围是()(A )[0,12].(B )[1,11].(C )[2,11].(D )[1,12].8.已知关于x 的方程a x 3+b x 2+c x +d =0有三个不同的实根,
其中一个是0,则它的系数中不能是0的仅有()(A )a ,c .(B )b ,c .(C )a ,d .(D )b ,d .
9.已知集合A ={a 关于x 的方程2x +a 4x 2-9=1有唯一实数解},则集合A 的真子集的个数是()(A )0.(B )3.(C )7.(D )8
.图210.如图2所示,已知圆锥的底面半径为7,母线长为14,F C 是轴截面A B C 底角øA C B 的平分线,B D 是底面的一条弦,且øD B C =30ʎ,则直线F C 与B D 的距离是()(A )14.(B )27.(C )37.(D )72.二㊁填空题(每小题4分,共40分.)11.直角梯形A B C D 中,øA B C =90ʎ,A D ʊB C ,A B =A D =2,B C =4,I 为B D 的中点,直线MN 过I 点,且与线段A B ㊁C D 分别交于点M ㊁N ,则A N ң㊃C M ң的最小值是.12.已知y =x 2+x +18且y ɤ10|x +1|,则x 的取值范围是.13.当a ȡ1,0ɤx ɤ1时,函数f (x )=x 2-a x +8的最大值是.14.若实数a ,b 满足0<a <b <1,则f (x )=|x -l o g a b |+x -l o g a 1b +x -l o g b 1b 的最小值是.15.已知三角形三个内角的度数成首项㊁公比均是整数的等比数列,则公比的值等于.16.S u p p o s e m i si n t e g e r ,i f a =(4,m ),b =(-2m ,4),O A ң=a +2b ,O B ң=2a -b ,|O A ң|=|O B ң|,t h e n t h e a r e a o f t h eәO A B i s .17.四面体A B C D 的三组对棱分别相等,长度分别为3,4,x ,那么x 的取值范围是.18.S u p p o s e x ,y ɪR +,a n d x +y =2,t h e nt h ev a l u er a n g ef o r x 3+2x 2y 2+y 3i s .19.设等比数列{a n }的公比q ʂ0,1,S n 表示{a n }的前n 项的和,T n 表示{a n }的前n 项的乘积,T n (k )表示{a n }的前n 项中除去第k 项后所剩余的n -1项的乘积,即T n (k )=T n a k (n ,k ɪN ∗,k ɤn ),则数列{S n T n T n (1)+T n (2)+ +T n (n
)}的前n 项的和是.(用a 1和q 表示)20.在ð324k =1k 3的约数中,平方数有个.三㊁解答题
每题都要写出推算过程.21.(本题满分10分)求数列1,3+7,13+21+31,43+57+73+91, 的第21项中的第
12个数.图3
22.(本题满分15分)在A B =6,A D =4的矩形纸片A B C D 中剪去圆M 与圆M ᶄ,其中圆M 与A B ㊁A D 相切,圆M ᶄ与B C ㊁C D 相切,且圆M 与圆M ᶄ外切,
则剩余部分的面积是否有最大值与最小值?若有,求出最值;若没有,请说明理由.23.(本题满分15分)已知函数f :R ңR 满足:①f (m +n )=f (m )+f (n )-1;②当x >0时,f (x )>1.解答以下问题:(1)求证:f (x )是增函数;(2)若f (2012)=6037,解不等式f (a 2-8a +13)<4.。