2007年湖北省荆州市中考数学试题
湖北省荆州市中考数学真题试题
荆州市2013年初中升学考试数学试题一.选择题:1.下列等式成立的是A .│-2│=2B .-1)0 =0 C .(-12)1-=2 D .-(-2)=-22.如图,AB ∥CD ,∠ABE =60°,∠D =50°,则∠E 的度数为 A .30° B .20° C .10° D .40°3.解分式方程2132x x x-=++时,去分母后可得到 A .x (2+x )-2(3+x )=1 B . x (2+x )-2=2+xC . x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x4.计算 ABCD5.四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是 A .20,10 B .10,20 C .16,15 D .15,16FEDCB A′第5题图 第6题 第8题6.如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,角∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDEF 为 A .3:4 B .1:2 C .2:3 D .1:37.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条A .y =x +9与y =3x +3 B . y =-x +9与y =3x +3C . y =-x +9与y =-23x +223D . y =x +9与y =-23x +2238.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB 'C ',点B 经过的路径为弧BB ',若角∠BAC =60°,AC =1,则图中阴影部分的面积是FEDCB A第2题图A .2π B .3π C .4π D . π9.将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是A .1B .32C .12D .2310.如图,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是 A .1 B .2 C .3 D .4二.填空题:11.分解因式a 3-ab 2=12.如图,在高度是21米的小山A 处没得建筑物CD 顶部C 处的仰角为30°,底部D 处的俯角为何45°,则这个建筑物的高度 米(结果可保留根号)11第12题图 第13题图 第14题图13.如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O 为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4. 14如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内接同样的方法作第2个内接正方形A 2B 2D 2E 2,…如此下去,操作n 次,则第n 个小正方形A nB n D n E n 的边长是 。
2007年湖北省武汉市中考数学试卷
武汉市2007年新课程初中毕业生学业考试数学试卷第Ⅰ卷(选择题,共36分)一.选择题(共12小题,每小题3分,共36分)1.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()A.北京B.武汉C.广州D.哈尔滨2.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4 B.x<2 C.2<x<4 D.x>23.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2B.﹣2 C.4D.﹣44.化简:的值为()A.4B.﹣4 C.±4 D.165.(2010•湛江)在函数中,自变量x的取值范围是()A.x>1 B.x≥1C.x<1 D.x≠16.如图是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为()A.30°B.35°C.40°D.45°7.如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是()A.外离B.外切C.相交D.内切第6题图第7题图第8题图8.如图,为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备的水管的长为()A.17.5m B.35m C.35m D.70m9.如图,桌上放着一摞书和一个茶杯,从正面看的图形是()A.B.C.D.第9题图第10题图10.小刚与小亮一起玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘分成面积相等的三个区域,分别用“1”、“2”、“3”表示.固定指针,同时转动两个转盘,任其自由停止.若两指针指的数字和为奇数,则小刚获胜;否则,小亮获胜.则在该游戏中小刚获胜的概率是()A.B.C.D.11.为了弘扬雷锋精神,某中学准备在校园内建造一座高2m的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中.如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m,参考数据:≈1.414,≈1.732,≈2.236)是()A.0.62m B.0.76m C.1.24m D.1.62m12.近几年,某市在经济建设中取得突出成就,2004﹣2006年三年该市的国内生产总值的和为2200亿元.图甲是这三年该市的国内生产总值的扇形统计图,图乙是这三年该市总人口折线统计图.根据以上信息,下列判断:①2006年该市国内生产总值超过800亿元;②2006年该市人口的增长率比2005年人口的增长率低;③2006年比2004年该市人均国内生产总值增加万元;④如果2007年该市人口的年增长率与2006年人口的年增长率相同,且人均国内生产总值增长10%,那么2007年全市的国内生产总值将为2200×37%×(1+10%)(1+亿元.其中正确的只有()A.①②④B.①③④C.②③D.①③第Ⅱ卷(非选择题,共84分)二.填空题(共4小题,每小题3分,共12分)13.一个长方形的面积是(x2﹣9)平方米,其长为(x+3)米,用含有x的整式表示它的宽为米.14.(2008•乌兰察布)如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是.15.下列图案是由边长为单位长度的小正方形按一定的规律拼接而成.依此规律,第5个图案中小正方形的个数为个.第15题图第16题图16.如图,已知双曲线)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF 的面积为2,则k=.三.解答下列各题(共9小题,共72分)17.(2007•乌鲁木齐)解方程:x2﹣x﹣1=0.318.化简求值:,其中x=2.19.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC 与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′、BB′有何数量关系,为什么?20.如图①是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图②中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答下列问题:(1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图②中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?21.某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计.请你根据不完整的频率分布表,解答下列问题:(1)补全频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.22.(2010•密云县)如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.23.康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台.从A、B两地运往甲、乙两地的费用如下表:5(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)的函数关系式;(2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少费用?为什么?24.填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.(1)如图①,若∠BAC=60°,则∠AFB=;如图②,若∠BAC=90°,则∠AFB=;(2)如图③,若∠BAC=α,则∠AFB=(用含α的式子表示);(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠α的数量关系是.请你任选其中一个结论证明.25.如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(﹣1,0)、B(0,2),抛物线y=ax2+ax ﹣2经过点C.(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q 的坐标,若不存在,请说明理由;(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF 的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.(第25题图②)7武汉市2007年新课程初中毕业生学业考试数学试卷答案9。
宜昌市2007年中考数学试题及答案
宜昌市2007年中考数学试题及答案2007年湖北省宜昌市初中毕业⽣学业考试数学试卷考⽣注意:1.本试卷分为两卷,解答第Ⅰ卷(1~2页)时请将解答结果填写在第II 卷(3~8页)上指定的位置,否则答案⽆效,交卷时只交第II 卷. 2.答题时允许使⽤科学计算器.以下公式供参考:⼆次函数y =ax 2+bx +c 图象的顶点坐标是)44,2(2ab ac a b --;第Ⅰ卷(选择题、填空题共45分)⼀、选择题:(在各⼩题给出的四个选项中,只有⼀项是符合题⽬要求的,请将符合要求的选项前⾯的字母代号填写在第II 卷上指定的位置. 本⼤题共10⼩题,每⼩题3分,共30分)1.若-2的绝对值是a ,则下列结论正确的是(). (A) a =2 (B) a =21 (C) a =-2 (D) a =-21 2.下列事件,是必然事件的是( ) .(A )太阳每天都会从西边升起(B )打开电视,正在播放新闻(C )在学校操场上抛出的篮球会下落(D )掷⼀枚硬币落地后正⾯朝上 3.如图所⽰是⼀个圆锥体,它的俯视图是(). 4.下列图案中既是轴对称图形⼜是中⼼对称图形的是( ).(A) (B) (C) (D)(第4题)5.据统计,2002年⾄2006年全国每年⼯业增加值⽐上年增长的幅度分别是:10.0%,12.8%,11.5%,11.6%,12.5%.则这组数据的中位数是().(A) 11.5% (B )11.6%(C )11.68% (D )6.如图,⼩明从点O 出发,先向西⾛40⽶,再向南⾛ 30⽶到达点M ,如果点M 的位置⽤(-40,-30)表⽰,那么(10,20)表⽰的位置是().(A)点A (B)点B (C)点C (D)点D 7.化简122154+?的结果是().(A )(B )(C (D )8. 如图,四边形ABCD 是矩形,F 是AD 上⼀点,E 是CB 延长线上⼀点,且四边形AECF 是等腰梯形.下列结论中不⼀定...正确的是().(A )AE =FC (B )AD =BC(A )(B )(C )(D )(第3题)9.⼀种细胞的直径约为1.56×10-6⽶,那么它的⼀百万倍相当于().(A )玻璃跳棋棋⼦的直径(B )数学课本的宽度(C )初中学⽣⼩丽的⾝⾼(D )五层楼房的⾼度10.反⽐例函数与⼆次函数在同⼀平⾯直⾓坐标系中的⼤致图象如图所⽰,它们的解析式可能分别是().(A )y =k x ,y =kx 2-x (B )y =k x,y =kx 2+x(C )y =-k x ,y=kx 2+x (D )y =-k x ,y =-kx 2-x ⼆、填空题:(本⼤题共5⼩题,每⼩题3分,计15分)11.⼀电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度⽐冷冻室的温度⾼℃.12.夷陵长江⼤桥为三塔斜拉桥.如图,中塔左右两边所挂的最长钢索AB =AC ,塔柱底端D 与点B 间的距离是228⽶,则BC 的长是⽶.(第12题)13.随机掷⼀枚均匀的骰⼦,点数⼩于3的概率是 .14.两个圆的半径分别为3和4,圆⼼之间的距离是5,这两个圆的位置关系是 .15那么第7颗⾏星到太阳的距离是天⽂单位.16.请将式⼦:112--x x ×(1+11+x )化简后,再从0,1,2三个数中选择⼀个你喜欢且使原式有意义的x 的值带⼊求值.17.如图,G 是线段AB 上⼀点,AC 和DG 相交于点E .请先作出∠ABC 的平分线BF ,交AC 于点F ;(尺规作图,保留作图痕迹,不写作法与证明)然后证明当:AD ∥BC ,AD =BC ,∠A BC =2∠ADG 时,DE =BF .ED C B A G (第17题) DCBA18. 解下列不等式组: x +5≥2x +2 2+23x >43.19.如图,为了对我市城区省级⽂物保护对象-—⾼AC 约42⽶的天然塔(清乾隆五⼗七年重修)进⾏保护性维修,⼯⼈要在塔顶A 和塔底所在地⾯上的B 处之间拉⼀根铁丝,在BC 上的点D 处测得塔顶的仰⾓α为43°(测倾器DE ⾼1.6⽶,A ,E ,B 三点在同⼀条直线上).求∠BAC 的度数和铁丝AB 的长.(接头部分的长度忽略不计,结果精确到0.1⽶.sin43°≈0.68,tan43°≈0.93)(第19题)20. 如图,某建筑⼯地上⼀钢管的横截⾯是圆环形.王师傅将直尺边缘紧靠内圆,直尺与外圆交于点A ,B (AB 与内圆相切于点C ,其中点A 在直尺的零刻度处).请观察图形,写出线段AB 的长(精确到1cm ),并根据得到的数据计算该钢管的横截⾯积.(结果⽤含π的式⼦表⽰)(第20题)21.《中学⽣体质健康标准》规定学⽣体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学⽣中随机抽取了10%的学⽣进⾏了体质测试,得分情况如下图.(1)在抽取的学⽣中不及格⼈数所占的百分⽐是;(2)⼩明按以下⽅法计算出抽取的学⽣平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断⼩明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)(3)若不及格学⽣的总分恰好等于某⼀个良好等级学⽣的分数,请估算出该校九年级学⽣中优秀等级的⼈数.{22.2007年5⽉,第五届中国宜昌长江三峡国际龙⾈拉⼒赛在黄陵庙揭开⽐赛帷幕.20⽇上午9时,参赛龙⾈从黄陵庙同时出发.其中甲、⼄两队在⽐赛时,路程y (千⽶)与时间x (⼩时)的函数关系如图所⽰.甲队在上午11时30分到达终点黄柏河港.(1)哪个队先到达终点?⼄队何时追上甲队?(2)在⽐赛过程中,甲、⼄两队何时相距最远?(第22题)23. 椐报道,2007年“五⼀”黄⾦周宜昌市共接待游客约80万⼈,旅游总收⼊约2.56亿元.其中县区接待的游客⼈数占全市接待的游客⼈数的60%,⽽游客⼈均旅游消费(旅游总收⼊÷旅游总⼈数)⽐城区接待的游客⼈均旅游消费少50元.(1)2007年“五⼀”黄⾦周,宜昌市城区与县区的旅游收⼊分别是多少万元?(2)预计2008年“五⼀”黄⾦周与2007年同期相⽐,全市旅游总收⼊增长的百分数是游客⼈均旅游消费增长百分数的2.59倍,游客⼈数增长的百分数是游客⼈均旅游消费增长百分数的1.5倍.请估计2008年“五⼀”黄⾦周全市的旅游总收⼊是多少亿元?(保留3个有效数字)时间/时16402024.如图1,在△ABC 中,AB =BC =5,AC =6. △ECD 是△ABC 沿BC ⽅向平移得到的,连接AE .AC 和BE 相交于点O .(1)判断四边形ABCE 是怎样的四边形,说明理由;(2)如图2,P 是线段B C 上⼀动点(图2),(不与点B 、C 重合),连接PO 并延长交线段AB 于点Q ,QR ⊥BD ,垂⾜为点R .①四边形P Q ED 的⾯积是否随点P 的运动⽽发⽣变化?若变化,请说明理由;若不变,求出四边形P Q ED 的⾯积;②当线段BP 的长为何值时,△PQR 与△BOC 相似?(第24题图1) 1COEDBA(备⽤图) 1OEA QOEA (第24题图2)25.如图1,点A是直线y=kx(k>0,且k为常数)上⼀动点,以A为顶点的抛物线y=(x-h)2+m交直线y=x于另⼀点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C.(点A,E,F两两不重合)(1)请写出h与m之间的关系;(⽤含的k式⼦表⽰)(2)当点A运动到使EF与x轴平⾏时(如图2),求线段AC与OF的⽐值;(3)当点A运动到使点F的位置最低时(如图3),求线段AC与OF的⽐值.(第25题图1)(第25题图2)(第25题图3)2007年湖北省宜昌市初中学业考试数学试卷参考答案及评分说明(⼀)阅卷评分说明1.正式阅卷前先进⾏试评,在试评中认真阅读参考答案,明确评分标准,不得随意拔⾼或降低评分标准. 试评的试卷必须在阅卷后期全部予以复查,防⽌阅卷前后期评分标准宽严不⼀致.2.评分⽅式为分⼩题分步累计评分,解答过程的某⼀步骤发⽣笔误,只要不降低后继部分的难度,⽽后继部分再⽆新的错误,后继部分可评应得分数的50%;若是⼏个相对独⽴的得分点,其中⼀处错误不影响其它得分点的评分.3.最⼩记分单位为1分,不得将评分标准细化⾄1分以下(即不得记⼩数分).4.解答题题头⼀律记该题的实际得分,不得⽤记负分的⽅式记分. 对解题中的错误须⽤红笔标出,并继续评分,直⾄将解题过程评阅完毕,并在最后得分点处标上该题实际得分.5.本参考答案只给出⼀种或⼏种解法,凡有其它正确解法都应参照本评分说明分步确定得分点,并同样实⾏分⼩题分步累计评分.6.合理精简解题步骤者,其简化的解题过程不影响评分.(⼆)参考答案及评分标准⼀、选择题:(每⼩题3分,共30分)⼆、填空题:(每⼩题3分,共15分)三、解答题:(每⼩题6分,共24分)16.解:原式=(x +1)(x -1)x -1×(1+1x +1)(1分)=(x +1(x +1+1x +1)(2分)=x +x +1(3分)=x +2(4分)⽅法⼀:当x =0时(5分),原式=2(6分);⽅法⼆:当x =2时(5分),原式=4(6分). (注:化简正确,取x =1带⼊计算全题评4分;不化简直接求值结果正确全题评2分)17.解:(1)以B 为圆⼼、适当长为半径画弧,交AB 、BC 于M 、N 两点(1分),分别以M 、N 为圆⼼、⼤于12MN 长为半径画弧,两弧相交于点P (2分),过B 、P 作射线BF 交AC 于F (3分)(注:没有作出射线BF 与AC 的交点并表明标明F 扣1分);(2)证明:∵AD ∥BC ,∴∠DAC =∠C (1分),⼜∵BF 平分∠ABC ,且∠A BC =2∠ADG ,∴∠D =∠BFC (2分),18.解:由①得:-x ≥-3(1分),x ≤3(2分);由②得:6+2x >4(3分),x >-1(4分),∴原不等式组的解集是:-1<x ≤3(6分). 19、解:∵BC ∥EF ,∴∠AEF =∠B =43°,(1分)∵∠ACB =90°,∴∠BAC =90°-43°=47°,(2分) 在Rt △ABC 中,sin B =AC AB =42AB,(4分) ∴AB =42÷sin43°≈(5分)42÷0.68≈61.8(⽶),(6分) 答:∠BAC =47°,铁丝的长度是61.8⽶. (结果不按要求取近似值,或取值错误扣1分)四、解答题:(每⼩题7分,共21分)20. 解:AB =24cm (1分);连接OC ,OA(2分)∵AB 与内圆相切与点C ∴OC ⊥AB (3分) ∴AC =BC =12cm (4分) ∴横截⾯积为:πAO 2-πOC 2=π(AO 2-OC 2) (5分) ∵在Rt △ACO 中,AO 2-OC 2=AC 2 ∴横截⾯积=πAC 2 (6分)=144π(cm 2) (7分)(注:读数不按要求精确或者读数错误扣1分;最后结果中⽆单位扣1分) 21、解:(1)4%(1分); (2)不正确,(1分)正确的算法:90×18%+78×26%+66×52%+42×4%(2分)(3)⽅法⼀:因为⼀个良好等级学⽣分数为76~85分,⽽不及格学⽣均分为42分,由此可以知道不及格学⽣仅有2⼈(将⼀个良好等级的分数当成78分估算出此结果也可),(2分) 抽取优秀等级学⽣⼈数是:2÷4%×18%=9⼈,(3分) 九年级优秀⼈数约为:9÷10%=90⼈(4分)⽅法⼆:设不及格的⼈数为x ⼈,则76≤42x ≤85,(1分)1.8≤x ≤2.0,x =2(2分),下同上;⽅法三:设九年级总⼈数为x ⼈,则76≤42×4%x ×10%≤85,(1分) 解得:453<x <505,(2分)⽽4%x ×10%=250x必须为整数,所以x =500.(3分) 九年级优秀⼈数⼤约为500×18%=90⼈.(4分) 22、解:(1)⼄队先达到终点,(1分)对于⼄队,x =1时,y =16,所以y =16x ,(2分) 对于甲队,出发1⼩时后,设y 与x 关系为y =kx +b ,将x =1,y =20和x =2.5,y =35分别代⼊上式得:+=+=bk bk 5.23520 解得:y =10x +10(3分)时间/时解⽅程组+==101016x y x y 得:x =35,即:出发1⼩时40分钟后(或者上午10点40分)⼄队追上甲队.(4分)(2)1⼩时之内,两队相距最远距离是4千⽶,(1分)⼄队追上甲队后,两队的距离是16x -(10x +10)=6x -10,当x 为最⼤,即x =1635时,6x -10最⼤,(2分)此时最⼤距离为6×1635-10=3.125<4,(也可以求出AD 、CE 的长度,⽐较其⼤⼩)所以⽐赛过程中,甲、⼄两队在出发后1⼩时(或者上午10时)相距最远(3分) 五、解答题:(每⼩题10分,共30分)23、解:(1)2.56亿=25600万⽅法⼀:设城区与县区旅游收⼊分别为x 万元和y 万元,依据题意可列⽅程组:x +y =25600 (1分)x 80×40% -y80×60%=50,(2分)解⽅程组得: x =11200(万元)y =14400(万元)(3分)答:城区与县(市)区的旅游收⼊分别是11200万元和14400万元.(4分)⽅法⼆:设城区游客⼈均消费x 元,则县区游客⼈均消费(x -50)元,依据题意可列⽅程:80×(1-60%)x+80×60% (x-50)=25600,(1分)解得:x =350(2分), 350×80×(1-60%)=11200(万元),25600-11200=14400(万元)(3分)答:城区与县(市)区的旅游收⼊分别是11200万元和14400万元.(4分)(2)设2008年与2007年相⽐,游客⼈均旅游消费增长的百分数为z ,则旅游总收⼊增长的百分数为2.59z ,旅游⼈数增长的百分数为1.5z ,(1分)依据题意可列⽅程: 2560080(1+z )×80(1+1.5z )=25600(1+2.59z )(3分)化简并整理得:1.5z 2-0.09z =0,解得:z =0.06或z =0(舍去)(4分)2008年“五⼀”黄⾦周宜昌市的旅游总收⼊为:25600(1+2.59z )=25600×(1+0.1554)=29578.24(万元)(5分)=2.957824(亿元)≈2.96(亿元)(6分).(不按要求取近似值或者取近似值错误扣1分) 答:估计2008年“五⼀”黄⾦周全市的旅游总收⼊是2.96亿元.24.解:(1)四边形ABCE 是菱形,证明如下:∵△ECD 是由△ABC 沿BC 平移得到的,∴EC ∥AB ,且EC =AB ,∴四边形ABCE 是平⾏四边形,(1分)⼜∵AB =BC ,∴四边形ABCE 是菱形.(2分)(2)①四边形PQED 的⾯积不发⽣变化(1分),理由如下:{{⽅法⼀:∵ABCE 是菱形,∴AC ⊥BE ,OC =12AC =3,∵BC =5,∴BO =4,过A 作AH ⊥BD 于H ,(如图1).∵S △ABC =12BC ×AH =12AC ×BO ,即:12×5×AH =12×6×4,∴AH =245.(2分)【或∵∠AHC =∠BOC =90°,∠BCA 公⽤,∴△AHC ∽△BOC ,∴AH :BO =AC :BC ,即:AH :4=6:5,∴AH =24.(2分)】由菱形的对称性知,△PBO ≌△QEO ,∴BP =QE ,(3分)∴S 四边形PQED =12(QE +PD )×QR =12(BP +PD )×AH =12BD ×AH=12×10×245=24.(4分)⽅法⼆: 由菱形的对称性知,△PBO ≌△QEO ,∴S △PBO = S △QEO ,(2分)∵△ECD 是由△ABC 平移得到得,∴ED ∥AC ,ED =AC =6,⼜∵BE ⊥AC ,∴BE ⊥ED ,(3分)∴S 四边形PQED =S △QEO +S 四边形POED =S △PBO +S 四边形POED =S △BED =12×BE ×ED =12×8×6=24.(4分)②⽅法⼀:如图2,当点P 在BC 上运动,使△PQR 与△COB 相似时,∵∠2是△OBP 的外⾓,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,即∠2=∠1,∴OP =OC =3(5分),过O 作OG ⊥BC 于G ,则G 为PC 的中点,△OGC ∽△BOC ,(6分)∴CG :CO =CO :BC ,即:CG :3=3:5,∴CG =95,(7分)∴PB =BC -PC =BC -2CG =5-2×95=75.(8分)⽅法⼆:如图3,当点P 在BC 上运动,使△PQR 与△COB 相似时,∵∠2是△OBP 的外⾓,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,(5分)∴QR :BO =PR :OC ,即:245:4=PR :3,(第24题1)P QC H O EDBA(第24题2)P QOE132G QOEA∴PR =185,(6分)过E 作EF ⊥BD 于F ,设PB =x ,则RF =QE =PB =x , DF =ED 2-EF 2=62-(245)2 =185,(7分)∴BD =PB +PR +RF +DF =x +185+x +185=10,x =75.(8分)⽅法三: 如图4,若点P 在BC 上运动,使点R 与C 重合,由菱形的对称性知,O 为PQ 的中点,∴CO 是Rt △PCQ 斜边上的中线,∴CO =PO ,(5分)∴∠OPC =∠OCP ,此时,Rt △PQR ∽Rt △CBO ,(6分)∴PR :CO =PQ :BC ,即PR :3=6:5,∴PR =185(7分),∴PB =BC -PR =5-185=75.(8分)25.解(1)∵抛物线顶点(h ,m)在直线y =kx 上,∴m =kh ;(1分)(2) ⽅法⼀:解⽅程组=????+-=)2()1()(2kx y kh h x y ,将(2)代⼊(1)得到: (x -h)2+kh =kx ,整理得:(x -h)[(x -h)-k]=0,解得:x 1=h , x 2=k +h代⼊到⽅程(2) y 1=h y 2=k 2+hk 所以点E 坐标是(k +h ,k 2+hk) (1分) 当x =0时,y =(x -h)2+m =h 2+kh ,∴点F 坐标是(0,h 2+kh)当EF 和x 轴平⾏时,点E ,F 的纵坐标相等,即k 2+kh =h 2+kh解得:h =k (h =-k 舍去,否则E ,F ,O 重合)(2分) 此时点E (2k ,2k 2),F(0,2k 2),C (k,2k 2), A(k ,k 2) ∴AC ∶OF =k 2∶2 k 2=1∶2(3分)⽅法⼆:当x =0时,y =(x -h)2+m =h 2+kh ,即F (0,h 2当EF 和x 轴平⾏时,点E ,F 的纵坐标相等即点E 的纵坐标为h 2+kh当y =h 2+kh 时,代⼊y =(x -h)2+kh ,解得x =2h(0舍去,否则E ,F ,O 重合),即点E 坐标为(2h ,h 2+kh ),(1分)将此点横纵坐标代⼊y =kx 得到h =k (h =0舍去,否则点E ,F ,O 重合) (2分)(R ) ODQEB A(第24题4)此时点E (2k ,2k 2),F(0,2k 2),C (k,2k 2),A(k ,k 2) ∴AC ∶OF =k 2∶2 k 2 =1∶2(3分) ⽅法三:∵EF 与x 轴平⾏,根据抛物线对称性得到FC =EC (1分) ∵AC ∥FO ,∴∠ECA =EFO ,∠FOE =∠CAE ∴△OFE ∽△ACE ,(2分) ∴AC ∶OF =EC ∶EF =1∶2(3分)(3)当点F 的位置处于最低时,其纵坐标h 2+kh 最⼩,(1分)∵h 2+kh =])2([22k kh h ++-42k ,当h =2k -,点F 的位置最低,此时F(0,-42k )(2分)解⽅程组??=-+=kxy k k x y 2)2(22得E(2k ,22k ),A(-2k ,-22k ) (3分) ⽅法⼀:设直线EF 的解析式为y =px +q ,将点E(2k ,22k ),F(0,-42k )的横纵坐标分别代⼊得=+=qk q p kk 42222-(4分)解得:p =k 23,q =-241k ,∴直线EF 的解析式为y =k 23x -241k (5分)当x =-2k 时,y =-k 2,即点C 的坐标为(-2k,-k 2),∵点A(-k 21,-22k ),所以AC =22k ,⽽OF=241k ,∴AC =2OF ,即AC ∶OF =2。
2005-2011年荆州市初中升学考试数学试题(7套)
2008年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分.考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效.每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 60cos 的值等于( )A .21B .22C .23D .12.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( ) A .1个B .2个C .3个D .4个3.边长为a 的正六边形的面积等于( ) A .243aB .2aC .2233a D .233a4.纳米是非常小的长度单位,已知1纳米=610 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( ) A .210个B .410个C .610个D .810个5.把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( ) A .522+=x yB .522-=x yC .2)5(2+=x yD .2)5(2-=x y6.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )A .1B .21C .41D .07.下面的三视图所对应的物体是( )A .B .C .D .8.若440-=m ,则估计m 的值所在的范围是( ) A .21<<mB .32<<mC .43<<mD .54<<m9.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形B .菱形C .正方形D .梯形10.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个 B .2个C .3个D .4个第(14)题2008年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚.2.第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上. 11.不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .12.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .14.如图,是北京奥运会、残奥会赛会志愿者 申请人来源的统计数据,请你计算:志愿者申 请人的总数为 万;其中“京外省区市” 志愿者申请人数在总人数中所占的百分比约 为 %(精确到0.1%),它所对应的 扇形的圆心角约为 (度)(精确到度). 15.如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC , 则图中相似三角形共有 对.16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ; ③当2<x 时,函数值y 随x 的增大而增大.AG EH FJI BC 第(15)题第(16)题ADC B FG E你认为符合要求的函数的解析式可以是: (写出一个即可). 18.如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(本小题6分) 解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,20.(本小题8分)已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围.1o2o3o4oCB DA第(18)题图① 第(18)题图②1o2o3o4o5oA BCED21.(本小题8分)如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长.22.(本小题8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).ABD CEO车辆数车速2 4 6 8 10 050 51 5253 54 5523.(本小题8分)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时) 所走的路程(千米) 骑自行车 x10 乘汽车10(Ⅱ)列出方程(组),并求出问题的解.C A BC ABEF M N 图①CABE F MN 图②25.(本小题10分)已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=; 思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.26.(本小题10分)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.2008年天津市初中毕业生学业考试数学参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分. 1.A 2.D 3.C 4.B 5.A 6.C 7.A 8.B9.B10.D二、填空题:本大题共8小题,每小题3分,共24分. 11.34<<-x12.513.(4,5)14.112.6;25.9,︒9315.616.317.2-=x y (提示:答案不惟一,如652-+-=x x y 等)18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).三、解答题:本大题共8小题,共66分. 19.本小题满分6分.解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③ ·················································································· 2分 将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y . ∴原方程组的解为11.x y =⎧⎨=⎩,··············································································· 6分20.本小题满分8分.解 (Ⅰ)∵点P (2,2)在反比例函数xky =的图象上, 1o2o3o4oC BDA 第(18)题图① o第(18)题图②1o2o3oA BCED o4o5o∴22k=.即4=k . ······················································································ 2分 ∴反比例函数的解析式为xy 4=. ∴当3-=x 时,34-=y . ··············································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,34=y , ·············································· 6分 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ······································ 7分 ∴当31<<x 时,y 的取值范围为434<<y . ······················································· 8分 21.本小题满分8分. 解(Ⅰ)∵AB ∥CD ,∴︒=∠+∠180ADC BAD . ··········································································· 1分 ∵⊙O 内切于梯形ABCD ,∴AO 平分BAD ∠,有BAD DAO ∠=∠21,DO 平分ADC ∠,有ADC ADO ∠=∠21. ∴︒=∠+∠=∠+∠90)(21ADC BAD ADO DAO . ∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . ·························································· 4分 (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm ,∴由勾股定理,得1022=+=DO AO AD cm . ·················································· 5分 ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ······················································· 6分 ∴AOD AEO ∠=∠.又OAD ∠为公共角,∴△AEO ∽△AOD . ····················································· 7分 ∴AD AO OD OE =,∴8.4=⋅=AD OD AO OE cm . ··························································· 8分 22.本小题满分8分. 解 观察直方图,可得车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆, 车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27, ·························································································· 2分 ∴这些车辆行驶速度的平均数为A B D C E O4.52)255454653852551250(271≈⨯+⨯+⨯+⨯+⨯+⨯. ········································ 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52. ····························································· 6分 ∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52. ····································································· 8分 23.本小题满分8分.解 如图,过点A 作BC AD ⊥,垂足为D ,根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD . ······································ 2分 在Rt △ADB 中,由ADBDBAD =∠tan , 得322336630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . 在Rt △ADC 中,由ADCDCAD =∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ········································ 6分 ∴2.152388366322≈=+=+=CD BD BC .答:这栋楼高约为152.2 m . ·································································· 8分 24.本小题满分8分. 解 (Ⅰ)速度(千米/时)所用时间(时)所走的路程(千米)骑自行车 xx1010 乘汽车x 2x210 10··················································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x . ························································ 5分 解这个方程,得15=x . ··········································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ···························································· 8分CABD25.本小题满分10分.(Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . ············································································· 1分 有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =. ··································· 2分 由DCM DCM ECF DCN ∠-︒=∠-∠=∠45, ACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠. ······················································································ 3分 又CN CN =,∴△CDN ≌△CBN . ··············································································· 4分 有BN DN =,B CDN ∠=∠.∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . ···················································· 5分 ∴在Rt △MDN 中,由勾股定理,得222DN DM MN +=.即222BN AM MN +=. ················································ 6分 (Ⅱ)关系式222BN AM MN +=仍然成立. ···················································· 7分 证明 将△ACM 沿直线CE 对折,得△GCM ,连GN , 则△GCM ≌△ACM . ············································· 8分 有CA CG =,AM GM =,ACM GCM ∠=∠,CAM CGM ∠=∠.又由CB CA =,得 CB CG =.由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.得BCN GCN ∠=∠. ··················································································· 9分 又CN CN =, ∴△CGN ≌△CBN .有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴ 9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理,得222GN GM MN +=.即222BN AM MN +=. ················································ 10分 26.本小题满分10分.CABEFDMNCABE FMN G解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ···························· 4分 ②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤.综上,31=c 或51c -<-≤. ····································································· 6分(Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ···························································································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分 又该抛物线的对称轴abx 3-=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ····································· 10分Oyx1。
历年湖北省荆州市中考数学试卷(含答案)
2017年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列实数中最大的数是()A.3 B.0 C.D.﹣42.(3分)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104 B.1.8×105C.1.8×106D.18×1053.(3分)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°4.(3分)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、35.(3分)下列根式是最简二次根式的是()A.B.C.D.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元8.(3分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)29.(3分)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+300010.(3分)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是.12.(3分)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n的算术平方根是.13.(3分)若关于x的分式方程=2的解为负数,则k的取值范围为.14.(3分)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有个点.15.(3分)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y 轴的对称点落在平移后的直线上,则b的值为.16.(3分)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是.17.(3分)如图,在5×5的正方形网格中有一条线段AB,点A与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.18.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比=32,tan∠DOE=,则BN的例函数y=(x<0)的图象交AB于点N,S矩形OABC长为.三、解答题(本大题共7小题,共66分)19.(10分)(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.20.(8分)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.21.(8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.22.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D 处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)23.(10分)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.24.(10分)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.25.(12分)如图在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为t秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M.若CM与⊙Q相切于点D,求m与t的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切?若存在,请直接写出此时点C的坐标;若不存在,请说明理由.2017年湖北省荆州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)(2017•荆州)下列实数中最大的数是()A.3 B.0 C.D.﹣4【分析】将各数按照从大到小顺序排列,找出最大数即可.【解答】解:各数排列得:3>>0>﹣4,则实数找最大的数是3,故选A【点评】此题考查了实数大小比较,正确排列出大小顺序是解本题的关键.2.(3分)(2017•荆州)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104 B.1.8×105C.1.8×106D.18×105【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:180000=1.8×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)(2017•荆州)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A.40°B.45°C.50°D.10°【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.【点评】本题主要考查了平行线的性质以及三角形内角和定理的运用,解题时注意:两直线平行,同位角相等.4.(3分)(2017•荆州)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3 B.6、2、3 C.3、3、2 D.3、2、3【分析】根据中位数、平均数和众数的概念求解即可.【解答】解:∵共10人,∴中位数为第5和第6人的平均数,∴中位数=(3+3)÷3=5;平均数=(1×2+2×2+3×4+6×2)÷10=3;众数是一组数据中出现次数最多的数据,所以众数为3;故选A.【点评】本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(3分)(2017•荆州)下列根式是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式.6.(3分)(2017•荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)(2017•荆州)为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款多少元?()A.140元B.150元C.160元D.200元【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设出未知数,根据题中的关键描述语列出方程求解.【解答】解:设小慧同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150即:小慧同学不凭卡购书的书价为150元.故选:B.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.8.(3分)(2017•荆州)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2 D.x2+62=(10﹣x)2【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【解答】解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选D.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.9.(3分)(2017•荆州)如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+3000【分析】根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.【解答】解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,故选:D.【点评】本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键.10.(3分)(2017•荆州)规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④【分析】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x2=2x1,得到x1•x2=2x12=2,得到当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程mx2+5x+n=0即可得到正确的结论;【解答】解:①由x2﹣2x﹣8=0,得(x﹣4)(x+2)=0,解得x1=4,x2=﹣2,∵x1≠2x2,或x2≠2x1,∴方程x2﹣2x﹣8=0不是倍根方程.故①错误;②关于x的方程x2+ax+2=0是倍根方程,∴设x2=2x1,∴x1•x2=2x12=2,∴x1=±1,当x1=1时,x2=2,当x1=﹣1时,x2=﹣2,∴x1+x2=﹣a=±3,∴a=±3,故②正确;③关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,∴x2=2x1,∵抛物线y=ax2﹣6ax+c的对称轴是直线x=3,∴抛物线y=ax2﹣6ax+c与x轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m,n)在反比例函数y=的图象上,∴mn=4,解mx2+5x+n=0得x1=﹣,x2=﹣,∴x2=4x1,∴关于x的方程mx2+5x+n=0不是倍根方程;故选C.【点评】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•荆州)化简(π﹣3.14)0+|1﹣2|﹣+()﹣1的结果是2.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+2﹣1﹣2+2=2,故答案为:2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.12.(3分)(2017•荆州)若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m﹣7n 的算术平方根是4.【分析】根据同类项定义可以得到关于m、n的二元一次方程,即可求得m、n 的值即可解题.【解答】解:∵单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,∴4=m﹣n,2m+n=2,解得:m=2,n=﹣2,∴m﹣7n=16,∴m﹣7n的算术平方根==4,故答案为4.【点评】本题考查了同类项的定义,考查了二元一次方程的求解,考查了算术平方根的定义,本题中求得m、n的值是解题的关键.13.(3分)(2017•荆州)若关于x的分式方程=2的解为负数,则k的取值范围为k<3且k≠1.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为负数确定出k的范围即可.【解答】解:去分母得:k﹣1=2x+2,解得:x=,由分式方程的解为负数,得到<0,且x+1≠0,即≠﹣1,解得:k<3且k≠1,故答案为:k<3且k≠1【点评】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(3分)(2017•荆州)观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有135个点.【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第一个图形有3=3×1=3个点,第二个图形有3+6=3×(1+2)=9个点;第三个图形有3+6+9=3×(1+2+3)=18个点;…第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=个点;当n=9时,=135个点,故答案为:135.【点评】本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解.15.(3分)(2017•荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A(﹣1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.【分析】先根据一次函数平移规律得出直线y=x+b沿y轴向下平移3个单位长度后的直线解析式,再把点A(﹣1,2)关于y轴的对称点(1,2)代入,即可求出b的值.【解答】解:将直线y=x+b沿y轴向下平移3个单位长度,得直线y=x+b﹣3.∵点A(﹣1,2)关于y轴的对称点是(1,2),∴把点(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=4.故答案为4.【点评】本题考查了一次函数图象与几何变换,关于y轴对称的点坐标特征,一次函数图象上点的坐标特征,熟练记忆函数平移规律是解题关键.16.(3分)(2017•荆州)如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是60°或120°.【分析】连接OB,则AB=OA=OB故可得出△AOB是等边三角形,所以∠ADC=60°,∠AD′C=120°,据此可得出结论.【解答】解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.(3分)(2017•荆州)如图,在5×5的正方形网格中有一条线段AB,点A 与点B均在格点上.请在这个网格中作线段AB的垂直平分线.要求:①仅用无刻度直尺,且不能用直尺中的直角;②保留必要的作图痕迹.【分析】以AB为边作正方形ABCD,正方形ABEF,连接AC,BD交于O,连接AE,BF交于O′,过O,O′作直线OO′于是得到结论.【解答】解:如图所示,直线OO′即为所求.【点评】本题考查了作图﹣应用与设计作图,正方形的性质,线段的垂直平分线的性质,正确的作出图形是解题的关键.18.(3分)(2017•荆州)如图,在平面直角坐标系中,矩形OABC的顶点A、C 分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O 顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经=32,tan∠DOE=,过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC则BN的长为3.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE==,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为y=﹣,然后确定N点坐标,最后计算BN的长.=32,【解答】解:∵S矩形OABC∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE==,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM==,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入y=得k=﹣2×4=﹣8,∴反比例函数解析式为y=﹣,当x=﹣8时,y=﹣=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为3.【点评】本题考查了旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了反比例函数图象上点的坐标特征和解直角三角形.三、解答题(本大题共7小题,共66分)19.(10分)(2017•荆州)(1)解方程组:(2)先化简,再求值:﹣÷,其中x=2.【分析】(1)根据代入消元法可以解答此方程;(2)根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)将①代入②,得3x+2(2x﹣3)=8,解得,x=2,将x=2代入①,得y=1,故原方程组的解是;(2)﹣÷===,当x=2时,原式=.【点评】本题考查分式的化简求值、解二元一次方程,解答本题的关键是明确它们各自的计算方法.20.(8分)(2017•荆州)如图,在矩形ABCD中,连接对角线AC、BD,将△ABC 沿BC方向平移,使点B移到点C,得到△DCE.(1)求证:△ACD≌△EDC;(2)请探究△BDE的形状,并说明理由.【分析】(1)由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;(2)由AC=BD,DE=AC,得出BD=DE即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);(2)解:△BDE是等腰三角形;理由如下:∵AC=BD,DE=AC,∴BD=DE,∴△BDE是等腰三角形.【点评】此题主要考查了平移的性质、矩形的性质、全等三角形的判定;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.21.(8分)(2017•荆州)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为56人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.【分析】(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)总人数为14÷28%=50人,B等人数为50×40%=20人.条形图补充如下:(2)该年级足球测试成绩为D等的人数为700×=56(人).故答案为56;(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了样本估计总体、扇形统计图和条形统计图.22.(8分)(2017•荆州)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB 的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4•tan37°可得答案.【解答】解:如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=2,∴BF=BC+CF=2+2=4,过点E作EG⊥AB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=4•tan37°,则AB=AG+BG=4•tan37°+3.5=3+3.5,故旗杆AB的高度为(3+3.5)米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题和坡度坡比问题,掌握仰角俯角和坡度坡比的定义,并根据题意构建合适的直角三角形是解题的关键.23.(10分)(2017•荆州)已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.【分析】(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)由于二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以抛物线的顶点在x轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k的不等式组,解不等式组即可求解;(3)设方程的两个根分别是x1,x2,根据题意得(x1﹣3)(x2﹣3)<0,根据一元二次方程根与系数的关系求得k的取值范围,再进一步求出k的最大整数值.【解答】(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根;(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1•x2=1﹣k≥0,解得k≤1,即k的取值范围是k≤1;(3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1•x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1•x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<.则k的最大整数值为2.【点评】本题考查了抛物线与x轴的交点,二次函数的图象和性质,二次函数与一元二次方程的关系,根的判别式,根与系数的关系,综合性较强,难度适中.24.(10分)(2017•荆州)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m<7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求m的取值范围.【分析】(1)根据函数图象,利用待定系数法求解可得;(2)设日销售利润为w,分1≤t≤40和41≤t≤80两种情况,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时x的值,结合函数图象即可得出答案;(4)依据(2)中相等关系列出函数解析式,确定其对称轴,由1≤t≤40且销售利润随时间t的增大而增大,结合二次函数的性质可得答案.【解答】解:(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤x≤80,t为整数);(2)设日销售利润为w,则w=(p﹣6)y,①当1≤t≤40时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,=2450;∴当t=30时,w最大②当41≤t≤80时,w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100,=2301,∴当t=41时,w最大∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450,。
荆州市2007年初中毕业班第二次调研考试数学试题
荆州市2007年初中毕业班第二次调研考试数 学 试 题一、选择题(每小题3分,共24分) 1.下列说法中,正确的是A .-1是最大的负数B .0是最小的整数C .在有理数中,0的绝对值最小D .1是绝对值最小的正数 2.小明从正面观察,如图所示的两个物体看到的是3.点P(x ,y)在第四象限,|x |y =P 点坐标是A.B.( C.( D.4.如图,半圆A 和半圆B 均与y 轴相切于0,其直径CD 、EF 均和x 轴垂直,以0为顶点的两条抛物线 分别经过点C 、E 和点D 、F ,则图中阴影部分面积是 A .π B .2π C .3πD .条件不足,无法求 5.关于x 的方程2210mx x m -++=只有一个实数根,则函数()2341y x m x m =-++-的图象与坐标轴的交点有A .0个B .1个C .2个D .3个6.某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,则由此求出的平均数与实际平均数的差是 A .3.5 B .3 C .0.5 D .一37.AE 、CF 是锐角三角形ABC 的两条高,若AE :CF=3:2,则sinA :sinC 等于 A .3:2 B .2:3 C .9:4 D .4:98.半径为13 的⊙O 内有一点P ,OP=12,则过P 点,且长度为整数的弦的条数是 A .2条 B .17条 C .32条D .34条二、填空题(每小题3分,共18分)9.分解因式:()()2221a b a b ++-+=_________________________.10.如图所示,直线a ∥b ,则∠A=_________________.11.如图,矩形的长为6m ,宽为4m ,阴影部分种有鲜花,其它部分植有草皮,小鸟任意落 在矩形花园内,则小鸟落在鲜花丛中的概率是_________________. 12.关于x 的方程2133x mm x x -+=--只有一个实数解,则m 的取值范围是_________________.13.在△ABC 中,AB>BC>AC ,D 是AC 中点,过点D 作直线l ,使截得的三角形与原三角形相似,这样的直线l 有_________________条.14.如图,在直角坐标系中有四个点A(一6,3),B(一2,5),C(0,m),D (n ,0),当四边形ABCD 周长最短时,则m=_________,n =___________. 三、解答题(共78分) 15.(5分)计算:(11213-⎛⎫---+ ⎪⎝⎭16.(5分)解不等式:()()1131123x x x -->-⎡⎤⎣⎦第14题图17.(5分)已知()2340,x y x y ++--=求22412x y x y x y-++-的值.18.(6分)用4块如图甲所示的瓷砖拼成一个正方形,使正方形(包括色彩因素)分别是具有如下对称性的美术图案:(1)只是轴对称图形而不是中心对称图形;(2)既是轴对称图形又是中心对称图形,在下列图乙、图丙的方格中分别画出符合要求的图形各一个(阴影部分用斜线表示).19.(6分)已知:如图,等腰直角三角形ABC 中,∠BAC=90°,AB=AC ,AD 为斜边BC 上的高,P 为BC 延长线上一点,PE ⊥BA ,交BA 延长线于E ,PF ⊥AC 交AC 延长线于F , 求证:△DAE ≌△DCF .20.(6分)如图,反比例函数2y x =的图象过矩形OABC 的顶点B ,OA 、0C 分别在x 轴、y 轴的正半轴上,OA :0C=2:1,直线112y x m =++平分矩形OABC 面积,求m 的值并作出这条直线.21.(7分)已知:如图,在湖边高出水面BC50米的山顶A 处看见一艘飞艇停留在湖面上的某处,观察到飞艇底部标志P 处的仰角为45°,又观其在湖中之像Q 的俯角为60°,求飞艇离湖面的高度PD(结果可带根号).22.(8分)如图,以AB 为直径的⊙O 上有一点C ,过A 作⊙0的切线交BC 的延长线于点D . (1)求证:△ADC ∽△BDA ;(2)过O 点作OF ∥AC 交BC 于E , BC于F ,若BC=EF=1,求 AC 的长.第19题图 第20题图第21题图第22题图23.(9分)荆州市某中学组织一次学生夏令营活动,他们将前来报名的学生按年龄(整数岁)分为A 、B 、C 组. 统计数据如下表所示: (1)表中x =一——;y =一——;z =一——·(2)在右图中画出频数分布直方图.(3)若想从C 组中抽一些人到A 组,抽一些人到B 组(抽到B 组人数可以为0),使A 组的人数是B 组的2倍,且C 组的人数在3个组中不最少,应该怎样抽调?24.(9分)市场营销人员对去年市场上一种商品销售数量及销售利润情况进行了调查,发现:(1)销售数量1y (万件)与时间x (月份)满足下表 的一次函数关系:(2)每一件的销售利润2y (元)与 时间x (月份)具有如图所示的关系:请根据以上信息解答下列问题:(1)求2y 与x 的函数关系式,并指出,三份销售这种商品可获利润多少万元? (2)哪一个月的销售利润最大?请说明理由.25、(12分)如图所示,在平面直角坐标系xoy 中,正方形0ABC 的边长为2cm ,点AC 分别在y 轴的负半轴和x 轴的正半轴上,抛物线2y ax bx c =++经过点A 、B ,且1250a c +=.(1)求抛物线的解析式.(2)如果点P 由点A 开始沿AB 边以2cm /s 的速度向点B 移动,同时点Q 由点B 开始沿BC 边以1cm /s 的速度向点C 移动.①移动开始后第t 秒时,设S=PQ 2(cm 2),试写出S 与t 之间的函数关系式,并写出t 的取值范围;②当S 取得最小值时,在抛物线上是否存在点R ,使得以 P ,B ,Q ,R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标,如果不存在,请说明理由.第23题图第24题图第25题图。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
荆州市历年中考数学试题
3
满足 AE∶EC=2∶3。那么,tan∠ADE 是(
)
B
D
C
第 9 题图 洪湖市乌林镇中心学校 曾庆敏
A、
3 5
B、
2 3
C、
1 2
D、
1 3
10.有一张矩形纸片 ABCD,其中 AD=4cm,上面有一个以 AD 为直径的半园,正好与对边 BC 相切, 如图(甲)。将它沿 DE 折叠,是 A 点落在 BC 上,如图(乙)。这时,半圆还露在外面的部分(阴影部 D 分)的面积是( ) A D 1 E B、 ( π+ 3 )cm2 A、 (π- 2 3 )cm2 C、 (
yb1ooyxxca1llaa图1图2备用第25题图洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏洪湖市乌林镇中心学校曾庆敏2007年湖北省荆州市中考数学试题第卷选择题和填空题共42分一
荆州市 2006 年初中升学考试
数学试题
注意事项: 请先阅读下列注意事项,弄清答卷要求: 1. 全卷共 8 页,分为卷Ⅰ和卷Ⅱ,卷Ⅰ(1-2 页) ,卷Ⅱ(3-8 页) 。 2. 卷Ⅰ为选择题,每小题后面的四个选项中,只有一个正确,将正确答案的代号在 卷Ⅱ的答题卡中对应的位置用 2B 铅笔“墨黑” ,答在卷Ⅰ上无效。卷Ⅱ为非选择题,直接 在试卷上作答。本卷满分为 120 分,时间为 120 分钟。 认真审题,沉着思考,严谨解答,你一定能取得好成绩!
x
A、第一、三象限 B、第二、四象限 C、第一、四象限 D、第二、三象限 06.一个全透明的玻璃正方体,上面嵌有一根黑色的金属丝,如图,金属丝在俯视图中的形状是
A
B
第 6 题图
C
D ) 是无理数 输出 y
2007年湖北省随州市中考数学试题(含解析答案)
2007年湖北省随州市中考数学试卷一、填空题(共7小题,每小题3分,满分21分)1、-2的绝对值是2.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|-2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、不等式组:的解集是-1<x≤2.考点:解一元一次不等式组.专题:计算题.分析:首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.解答:解:由(1)得:x>-1由(2)得x≤2所以-1<x≤2.点评:本题考查不等式组的解法,一定要把每条不等式的解集正确解出来.3、如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是90%.考点:频数(率)分布直方图.专题:图表型.分析:分析频数直方图可得:72分及以上的人数与总人数,相比可得该班这次测试成绩的及格率.解答:解:由频数直方图可以看出:72分及以上成绩的人数=9+12+9+6=36人,总人数=1+3+9+12+9+6=40人,则该班这次测试成绩的及格率为36÷40=0.9=90%.故答案为90%.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、已知⊙O1与⊙O2相外切,⊙O1的半径为3cm,圆心距O1O2=7cm,那么⊙O2的半径为4cm.考点:圆与圆的位置关系.分析:根据两圆外切时,圆心距=两圆半径的和求解.解答:解:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是7-3=4cm.点评:注意:两圆外切,圆心距等于两圆半径之和.5、如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt△ABF中,∠AFB=90°,AF=3,AB=5.四边形EFGH的面积是1.考点:勾股定理;三角形的面积;正方形的性质.专题:计算题.分析:四边形EFGH的面积=四边形ABCD的面积-四个全等直角三角形的面积.直角三角形的面积需利用勾股定理求出直角边后解答.解答:解:因为AB=5,所以S正方形ABCD=5×5=25.Rt△ABF中,AF=3,AB=5,则BF= =4,所以SRt△ABF= ×3×4=6,四个直角三角形的面积为:6×4=24,四边形EFGH的面积是25-24=1.故答案为1点评:此题主要考查了勾股定理,以及正方形面积、三角形面积,难易程度适中.6、八年级的小亮和小明是好朋友,他们都报名参加学校的田径运动会,将被教练随机分进甲、乙、丙三个训练队,他俩被分进同一训练队的概率是.考点:概率公式.分析:本题可假设小亮在某一个训练队,则小明有3种被安排的可能,要与小亮在同一个训练队,那么就只有的可能,因此可知概率的值.解答:解:假设小亮在甲,则小明有甲、乙、丙三种,那么他们要在同一队的可能只有,同理,小亮在乙或丙,他们要在同一队的可能也只有,因此概率为.点评:本题考查了概率的公式.解本题时学生常常会认为小亮、小明都是三种其中一种而算出×= 的错误答案.7、在四边形ABCD中,AB边的长为4,设动点P沿折线B⇒C⇒D⇒A 由点B向点A运动,设点P运动的距离为x,△PAB的面积为y,y与x的函数图象如图所示.给出下列四个结论:①四边形ABCD的周和为14;②四边形ABCD是等腰梯形;③四边形ABCD是矩形;④当△PAB面积为4时,点P移动的距离是2.你认为其中正确的结论是①③.(只填所有正确结论的序号例如①)考点:动点问题的函数图象;矩形的判定;等腰梯形的判定.专题:动点型.分析:解本题需注意一定的面积值相对应的距离可以有2个或2个以上.解答:解:∵AB边的长为4,设动点P沿折线B⇒C⇒D⇒A由点B向点A运动,设点P运动的距离为10,∴四边形ABCD的周和为10+4=14;①成立.当点P在BC上运动时,面积在不断增加,当移动的距离是3,面积为6时,面积不再变化,说明CD∥AB,此时BC=3,△ABP面积= ×4×高=6,那么高=3,说明BC⊥AB.当点P运动7时,面积停止变化,此时CD=7-3=4,那么CD=AB.根据一组对边平行且相等的四边形是平行四边形得到四边形ABCD是平行四边形.根据有一个角是直角的平行四边形是矩形得到四边形ABCD是矩形.③对.由图中可以看出,面积为4的点可在图中找到两处,那么就有相应的两个距离值,④不对.故答案选①③.点评:解决本题的关键是读懂图意,得到相应的四边形的各边之间的关系.二、选择题(共11小题,每小题3分,满分33分)8、下列计算,结果正确的是()A、2a+3b=5abB、(a3)2=a2C、2a•(-3a2)=-6a3D、考点:负整数指数幂;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题.分析:根据合并同类项的法则,幂的乘方的性质,单项式的乘法法则及负整数指数幂的意义作答.解答:解:A、2a、3b不是同类项,不能合并,故选项错误;B、(a3)2=a6,故选项错误;C、2a•(-3a)2=2×(-3)•a•a2=-6a3,故选项正确;D、(- )-2= ,故选项错误.故选C.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项的法则,幂的乘方的性质,单项式的乘法法则及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.9、如图是某超市中“漂柔”洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是()A、15.36元B、16元C、23.04元D、24元考点:一元一次方程的应用.专题:图表型.分析:本题中的相等关系是:原价×80%=现价.解答:解:设原价是x元,根据题意得:80%x=19.2解得:x=24.故选D.点评:列方程解应用题的关键是正确找出题目中的相等关系,列出方程解答.答题:zhjh老师★★★★★显示解析在线训练收藏试题试题纠错下载试题试题篮10、已知分式的值是2,那么x的值是()A、-3B、3C、-1D、1考点:解分式方程.专题:计算题.分析:本题考查可化为一元一次方程的分式方程的解法,可通过去分母,转化为整式方程来求解,另外验根是分式方程必不可少的步骤.解答:解:依题意得方程:=2,去分母,得x-1=2(x+1),解得x=-3,检验:把x=-3代入x+1≠0,故选A.点评:解分式方程的关键是通过去分母或换元等方式将分式方程转化为整式方程,应注意其中的符号变化,同时不要忘记验根.11、如图,两条直线a、b被第三条直线l所截,如果a∥b,∠1=55°,那么∠2的度数为()A、125°B、105°C、65°D、55°考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:先利用两直线平行,同位角相等求出∠2的邻补角,再根据邻补角定义即可求出.解答:解:∵a∥b,∴∠3=∠1=55°,又∠2=180°-∠3=180°-55°=125°.故选A.点评:本题重点考查了平行线的性质及邻补角的定义,是一道较为简单的题目.12、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()A、10B、8C、6D、4考点:垂径定理;勾股定理.分析:先求出DE和圆的半径,再利用勾股定理即可求出.解答:解:∵弦CD⊥AB,垂足为E∴CE=DE= CD= ×16=8∴OA是半径OA= AB= ×20=10连接OD,在Rt△ODA中,OD=OA=10,DE=8OE= = =6故选C.点评:此题属简单题目,涉及到垂径定理及勾股定理的运用,需同学们细心解答.13、小李和小王同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A、点数之和是偶数B、点数之间和大于3且小于5C、点数之和是13D、点数之和是3的倍数考点:随机事件.分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:因为同时抛掷两枚质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,是不可能事件的是点数之和是13.故选C.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14、如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是()A、四边形ABCD与四边形AEFG是相似图形B、AD与AE的比是2:3C、四边形ABCD与四边形AEFG的周长比是2:3D、四边形ABCD与四边形AEFG的面积比是4:9考点:位似变换.分析:本题主要考查了位似变换的定义及作图,位似变换就是特殊的相似,且位似图形上任意一对对应点到位似中心的距离之比等于相似比.,因而周长的比等于相似比,面积的比等于相似比的平方.解答:解:∵四边形ABCD与四边形AEFG是位似图形;A、四边形ABCD与四边形AEFG不一定是相似图形,故正确;B、AD与AG是对应边,故AC:AE=2:3;故错误;C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;D、则周长的比是2:3,面积的比是4:9,故正确.故选B.点评:本题主要考查了位似的定义及性质:周长的比等于相似比,面积的比等于相似比的平方.15、某机床厂原计划在一定期限内生产240套机床,在实际生产中通过改进技术,结果每天比原计划多生产4套,并且提前5天完成任务.设原计划每天生产x套机床,根据题意,下列方程正确的是()A、B、C、D、考点:由实际问题抽象出分式方程.专题:应用题.分析:关键描述语为:提前5天完成任务.等量关系为:原计划用的时间-5=实际用的时间.解答:解:实际用的时间为:;原计划用的时间为:.方程可表示为:.故选B.点评:找到关键描述语,找到等量关系是解决问题的关键.用到的等量关系为:工作时间=工作总量÷工作效率.16、如图1,是由几个小正方体搭成的一个几何体,它的主视图如图2,那么它的左视图为()A、B、D、C、考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可.解答:解:从左面看可得到正方形的个数从左往右依次为:2,1,1.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.17、下列四个命题:①点(-2,3)在第二象限;②直线y=x-2与y轴交于点(0,-2);③直线y=-x与双曲线y= 有两个交点;④抛物线y=x2-3x+4与x轴没有交点.其中正确命题是()A、①③B、②④C、①②③D、①②④考点:抛物线与x轴的交点;点的坐标;一次函数图象上点的坐标特征.分析:注意象限内点的特点以及一次函数与二次函数图象的图象特征即可.解答:解:①点(-2,3)在第二象限;(-,+)属于第二象限点的特征,正确;②直线y=x-2与y轴交于点(0,-2);当x=0时,y=-2,正确;③直线y=-x与双曲线y= 有两个交点,直线过的是二四象限,双曲线在一三象限,所以没有交点,错误;④当y=0时,△<0,所以抛物线y=x2-3x+4与x轴没有交点,正确.故选D.点评:本题考查了象限内点的特点以及各类函数图象的图象特征.需注意在做题过程中加以理解应用.18、如图,沿Rt△ABC的中位线DE剪切一刀后,用得到的△ADE和四边形DBCE拼图,下列图形中不一定能拼出的是()A、平行四边形B、矩形C、菱形D、等腰梯形考点:三角形中位线定理.专题:操作型.分析:可动手拼图,先画出图形再根据已知条件解答.解答:解:如图:①为矩形;②为平行四边形,若∠B=60°时为菱形;③等腰梯形.故选C.点评:此题是考查直角三角形的中位线定理,结合四边形的性质解答.答题:CJX老师显示解析在线训练收藏试题试题纠错下载试题试题篮三、解答题(共8小题,满分66分)19、已知:a= -1,求的值.考点:二次根式的化简求值;分式的化简求值.专题:计算题.分析:先对所求的代数式进行整理化简,再字母的值代入计算.解答:解:原式= ,当a= -1时,原式= .点评:此题考查分式的计算与化简,解决这类题目关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.20、从2007年春季开学起,全国农村全部免除义务教育阶段的学费和杂费,小杰同学在一所农村初中上八年级(走读),2006年9月1日开学他交书本费和杂费共270元,其中书本费比杂费的2倍少30元.2007年春季开学,书本费不变,问小杰只交了书费多少元?考点:二元一次方程组的应用.专题:应用题.分析:设2006年9月1日小杰交书本费x元,杂费y元,根据题意:2006年9月1日开学他交书本费和杂费共270元,其中书本费比杂费的2倍少30元.2007年春季开学,书本费不变,列出方程求解即可.解答:解:设2006年9月1日小杰交书本费x元,杂费y元.则解得答:小杰只交了书本费170元.点评:本题主要考查了二元一次方程的应用,学生分清题中的关系是关键.21、如图,△ABC中,点D在BC上,点E在AB上,BD=BE,要使△ADB≌△CEB,还需添加一个条件.(1)给出下列四个条件:①AD=CE②AE=CD③∠BAC=∠BCA④∠ADB=∠CEB请你从中选出一个能使△ADB≌△CEB的条件,并给出证明;(2)在(1)中所给出的条件中,能使△ADB≌△CEB的还有哪些?直接在题后横线上写出满足题意的条件序号.考点:全等三角形的判定.专题:证明题;开放型.分析:要证明△ADB≌△CEB,两三角形中已知的条件有BD=BE,有一个公共角,那么根据三角形的判定公理和推论,我们可看出①不符合条件,没有SSA的判定条件,因此不正确.②AE=CD,可得出AB=BC,这样就构成了SAS,因此可得出全等的结论.③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.解答:解:第(1)题添加条件②,③,④中任一个即可,以添加②为例说明.(1)②证明:∵AE=CD,BE=BD,∴AB=CB,又∠ABD=∠CBE,BE=BD∴△ADB≌△CEB.(2).③构成了全等三角形判定中的AAS,因此可得出三角形全等的结论.④构成了全等三角形判定中的ASA,因此可得出三角形全等的结论.所以填③④.点评:本题考查了全等三角形的判定公理及推论.注意SSA和AAA是不能得出三角形全等的结论的.22、某中学数学活动小组为了调查居民的用水情况,从某社区的1500户家庭中随机抽取了(1)求这30户家庭月用水量的平均数、众数和中位数;(2)根据上述数据,试估计该社区的月用水量;(3)由于我国水资源缺乏,许多城市常利用分段计费的办法引导人们节约用水,即规定每个家庭的月基本用水量为m(吨),家庭月用水量不超过m(吨)的部分按原价收费,超过m(吨)的部分加倍收费.你认为上述问题中的平均数、众数和中位数中哪一个量作为月基本用水量比较合理?简述理由.考点:加权平均数;用样本估计总体;中位数;众数;统计量的选择.专题:图表型.分析:(1)根据加权平均数计算平均数;众数即出现次数最多的数据,中位数应是第15个和第15个数据的平均数.(2)根据样本平均数估计总体平均数,从而计算该社区的月用水量;(3)因为这组数据中,极差较大,用平均数不太合理,所以选用众数或中位数,有代表性.解答:解:(1)(3×4+4×3+5×5+7×11+8×4+9×2+10×1)=6.2,众数是7,中位数是(7+7)=7;(2)1500×6.2=9300(吨)∴该社区月用水量约为9300吨;(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.答:(1)这30户家庭月用水量的平均数6.2,众数是7,中位数是(7+7)=7;(2)该社区月用水量约为9300吨;(3)以中位数或众数作为月基本用水量较为合理.因为这样既可满足大多数家庭的月用水量,也可以引导用水量高于7吨的家庭节约用水.点评:掌握平均数的计算方法,理解众数和中位数的概念,能够正确找到众数和中位数.学会运用平均数、众数和中位数解决实际问题.23、一颗位于地球上空的气象卫星S,对地球上某区域天气系统的形成和发展进行监测.如图,当卫星S位于地球表面上A点的正上方时,其监测区域的最远点为B点,已知被监测区域中A,B两点间距离(即的长)约为1730km,试求出卫生S距地球表面的高度SA约是多少km?考点:解直角三角形的应用.专题:应用题.分析:如右图所示,可知OB⊥SB,即△OSB为直角三角形,要求出SA,必须先有SO,而SO的长度需借助OB,利用三角函数来解答.解答:解:设所在圆的圆心为点O,连接OB,设∠BOE=n°,由题意可知SB与⊙O相切,∴SB⊥OB,∵又,即,∴n≈15.5°,故Rt△OBS中,cos∠BOS= ,∴,∴SA=SO-AO=6642-6400=242≈2.4×102.答:卫星S距地球表面的高度约是2.4×102km.点评:解此题的关键是把实际问题转化为数学问题,抽象到三角形中,利用三角函数进行解答.24、如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE 于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.考点:相似三角形的判定;正方形的性质.专题:动点型;开放型.分析:(1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;(2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.解答:证明:(1)∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)解:若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE= =2 ,∴EF= AE= .∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.点评:解答本题要充分里利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.25、某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费-每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?考点:二次函数的应用;一次函数的应用.专题:应用题.分析:本题中要按照每辆次小车的停车费的变化,来分别讨论停车场的日净收入和每辆次小车的停车费之间的等量关系.然后根据不同的条件来判断出符合“使每天小车停放的辆次较多,又要有较大的日净收入”的取值.解答:解:(1)由题意得:y=1440x-800∵1440x-800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.(2)由题意得:y=[1440-120(x-5)]x-800即y=-120x2+2040x-800(3)当x≤5时,停车1440辆次,最大日净收入y=1440×5-800=6400(元)当x>5时,y=-120x2+2040x-800=-120(x2-17x)-800=-120(x- )2+7870∴当x= 时,y有最大值.但x只能取整数,∴x取8或9.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=-120×+7870=7840(元)由上得,每辆次小车的停车费应定为8元,此时的日净收入为7840元.点评:本题是利用一次函数的有关知识解答实际应用题,要注意不同的条件下,函数的不同的变化,要根据题目给出的条件分别进行讨论.26、如图,直角梯形ABCD的腰BC所在直线的解析式为y=- x-6 ,点A与坐标原点O重合,点D的坐标为(0,-4 ),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)考点:一次函数综合题.专题:压轴题;开放型;分类讨论.分析:(1)根据E(6,0),F(2,4 ),利用待定系数法可求得EF所在直线的解析式;(2)根据梯形OEFG的面积为(2+6)•4 ,A(a,- a+6 ,由题意得,若S的值为,则可得a2-6a+5=0,所以a1=1,a2=5,又a1=1不合题意,舍去,取a=5,可求得当a=5时,S的值恰好等于梯形OEFG的面积的;(3)满足条件的等腰△PAM的顶角应为120°,分下列三种情况考虑:①当∠PAM为顶角时(如图1),设AB交y轴于点Q,OM=x,利用Rt△PQA,Rt△POM中的有关角和线段可求得P1(0,);②当∠PMA为顶角时,画图可知合条件的点P2在y轴的负半轴上,可求;③当∠APM为顶角时(如图2)过点P3作P3N⊥AM于点M,点A与点F重合,即,所以满足条件的点P坐标为.解答:解:(1)E(6,0),F(2,4 ),EF所在直线的解析式为y=- x+6 .(2)梯形OEFG的面积为(2+6)•4 ,∵点A(a,b)在直线EF上,∴A(a,- a+6 ,由题意得,若S的值为,则,,即a2-6a+5=0,∴a1=1,a2=5,又a1=1不合题意,舍去,取a=5;∴当a=5时,S的值恰好等于梯形OEFG的面积的.(3)显然,满足条件的等腰△PAM的顶角应为120°,分下列三种情况考虑:①当∠PAM为顶角时(如图1),设AB交y轴于点Q,OM=x,∵点A在直线y=- x+6 上,∴AM=- x+6 ,在Rt△PQA中,∠PAQ=120°-90°=30°,∴PQ= AP= AM;∴OP=OQ+QP= AM= (- x+6 ),在Rt△POM中,∠PMO=90°-30°=60°,∴OP=OM•tan∠PMO= x;∴(- x+6 )= x,x= .②当∠PMA为顶角时,画图可知合条件的点P2在y轴的负半轴上;Rt△P2OM中,∠P2MO=120°-90°=30°,且OM仍为;∴,即;③当∠APM为顶角时(如图2)过点P3作P3N⊥AM于点M,设OM=x,在Rt△P3OM中,∠P3MO=90°-30°=60°,∴,∴,∴,x=2,此时点A的坐标为,即点A与点F重合,∴,即,由①,②,③得,满足条件的点P坐标为.点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.。
湖北荆州初中升学考试数学试题及答案(wor
湖北荆州初中升学考试数学试题及答案(wor————————————————————————————————作者:————————————————————————————————日期:2009年湖北荆州市初中升学考试数学试题一、选择题(每小题3分,共24分)1在-1,1,0,-2四个实数中,最大的是( ) A .-1 B .1 C .0 D .-2 2.抛物线23(1)2y x =-+的对称轴是( )A .1x =B .1x =-C . 2x =D .2x =-3.如图所示是荆州博物馆某周五天参观人数 的折线统计图,则由图中信息可知这五天参 观人数(单位:百人)的极差是( ) A . 1 B .2 C .3 D .44.如图,将一个直角三角板的斜边垂直于水平桌面,再绕斜边旋转一周, 则旋转后所得几何体的俯视图是( )5.用配方法解一元二次方程2430x x -+=时可配方得( ) A.2(2)7x -= B.2(2)1x -=C.2(2)1x += D.2(2)2x +=6.若120a b -++=,点M (a ,b )在反比例函数ky x=的图象上,则反比例函数的解析式为 A .2y x=B .1y x=-C .1y x=D .2y x=7.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中 点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cm B .4cm C .5cm D .6cm8.如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径 分别为6,3,则图中阴影部分的面积是( )A .93π-B .63π-C .933π-D .632π-二、填空题(每小题3分,共18分)D C B A 一 二三 四 五3 星人数12 4 5 (第3(第4N M F E D C BA (第7P OB A (第89.计算:3127482-+=_________. 10.如图,射线AC ∥BD ,∠A =70°,∠B =40°,则∠P= . 11.如图,已知零件的外径为25mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC=OD )量零件的内孔直径AB .若OC ∶OA=1∶2,量得CD =10mm ,则零件的厚度_____x mm =.12.定义新运算“*”,规则:()()a ab a b b a b ≥⎧*=⎨<⎩,如122*=,()522-*=。
【7年真题推荐】(2007-2013年)全国各地中考数学真题分类汇编专题:相交线与平行线
2007年中考试题分类汇编(相交线平行线)一、选择题1、(2007河北省)如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()CA.50°B.60°C.140°D.160°1、(2007浙江义乌)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()AA.3 B.4 C.5 D.62、(2007重庆)已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()C(A)200(B)1200(C)200或1200(D)3603、(2007浙江义乌)如图,AB∥CD,∠1=110°∠ECD=70°,∠E的大小是()BA.30° B.40° C.50° D.60°5、(2007天津)下列判断中错误..的是()BA. 有两角和一边对应相等的两个三角形全等B. 有两边和一角对应相等的两个三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有一边对应相等的两个等边三角形全等4、(2007甘肃陇南)如图,在△ABC中,DE∥BC,若13ADAB,DE=4,则BC=()DA.9 B.10C. 11 D.125(2007四川资阳)如图5,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )CA. 90°B. 135°C. 270°D. 315°6、(2007四川资阳)如图8,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行. 若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是( )DA. 6B. 7C. 8D. 97、(2007浙江临安)如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则DE∶BC的值为()AA .B .C .D .8、(2007福建晋江)如图,将一个等腰直角三角形按图示方式依次翻折,图5图8ab1 2O图1AB CD E若DE =a ,则下列说法正确的个数有( )C①DC ′平分∠BDE ;②BC 长为a )22(+;③△B C ′D 是等腰三角形;④△CED 的周长等于BC 的长。
历年荆州中考数学试卷真题
历年荆州中考数学试卷真题1、单选题(共10题,每题2分,共20分)提供10道历年荆州中考数学试卷真题的单选题,每题都给出了选项和答案,让考生进行选择并解释答案的原因。
2、填空题(共5题,每题2分,共10分)给出5道历年荆州中考数学试卷真题的填空题,要求考生填写正确的答案,并解释答案的求解过程。
3、解答题(共2题,每题10分,共20分)提供2道历年荆州中考数学试卷真题的解答题,要求考生详细解答问题,并给出完整的解题过程。
4、应用题(共2题,每题15分,共30分)给出2道历年荆州中考数学试卷真题的应用题,要求考生根据给定的情境进行分析,并给出合理的解决方案和计算过程。
5、综合题(共1题,30分)提供1道历年荆州中考数学试卷真题的综合题,要求考生综合运用所学的知识和技能进行解答,给出完整的解题思路和答案。
通过以上的题目设置,考察了学生的单项选择能力、填空能力、解答能力以及综合运用能力。
每个题型的分数权重也相应地设计得合理,以全面评价学生对数学知识的掌握和应用能力的发展。
在文章中,我将按照每个题型的序号和描述,依次给出历年荆州中考数学试卷真题,并附上参考解答和解题思路。
每道题目都有清晰的排版和标注,让读者能够清晰地看到题目内容和选项,方便理解解题过程。
在解答题和应用题中,我会详细地陈述解题思路和步骤,确保读者能够理解和掌握每一道题目的解法。
解答过程中,会使用清晰明了的语言表达,避免使用晦涩难懂的数学符号和术语,以保证文章的阅读体验。
总结部分,我将对每个题型的考察点进行分析,并指出学生在解答过程中可能遇到的难点和容易犯的错误。
同时,我会给出一些建议和提醒,以供学生在备考过程中进行参考和针对性的复习。
通过本文的整洁美观的排版和语句通顺流畅的表达,读者可以清晰地理解和掌握历年荆州中考数学试卷真题,并能够在自己的学习和备考中有所收获。
同时,文章的格式和语言表达的准确性也能够满足正式试卷的要求,为读者提供一个良好的阅读体验。
5.6.4 2020中考数学复习:《由视图确定几何体的形状》近8年全国中考题型大全(含答案)
1由视图确定几何体的形状一、选择题1. (2013 山东省德州市) 图中三视图所对应的直观图是( )2. (2013 湖北省孝感市) 由8个大小相同的正方体组成的几何体的主视图和俯视图如图所示,则这个几何体的左视图是3. (2014 北京市) 右图是几何体的三视图,该几何体是( )A 、圆锥B 、圆柱C 、正三棱柱D 、正三棱锥4. (2014 甘肃省天水市) 右图的主视图、左视图、俯视图是下列那个物体的三视图( )主视图 左视图 俯视图A. B. C. D.5. (2014 湖南省永州市) 若某几何体的三视图如图所示,则这个几何体是()6. (2014 浙江省杭州市) 已知某几何体的三视图(单位:cm)则该几何体的侧面积等于()2cmA. 12πB. 15πC. 24πD. 30π7. (2015 贵州省毕节地区) 如图是由5个相同的正方形组成的几何体的左视图和俯视图,则该几何体的主视图不可能是()A. B. C. D.8. (2015 河北省) 如图所示的三视图所对应的几何体是()俯视图左视图主视图6423A .B .C .D .9. (2015 湖北省孝感市) 如图是一个几何体的三视图,则这个几何体是A .正方体B .长方体C .三棱柱D .三棱锥10. (2015 山东省日照市) 小红在观察由一些相同小立方块搭成的几何体时,发现它的右视图、俯视图、左视图均为如图,则构成该几何体的小立方块的个数有( )A.3个B . 4个 C. 5个 D . 6个11. (2016 内蒙古呼伦贝尔市) 三棱柱的三视图如图所示,△EFG 中,EF=6cm ,∠EFG=45°,则AB 的长为( )A .6cmB .3cmC .3cmD .6cm 12. (2016 内蒙古呼和浩特市) 一个几何体的三视图如图所示,则该几何体的表面积为( ))4(题第A.4π B.3π C.2π+4 D.3π+413. (2016 四川省凉山州) 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.214. (2016 四川省资阳市) 如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.15. (2017 湖北省荆州市) 如图是某几何体的三视图,根据图中的数据,求得该几何体的体积为()A.800π+1200 B.160π+1700 C.3200π+1200 D.800π+300016. (2017 湖南省常德市) 如图是一个几何体的三视图,则这个几何体是()45A .B .C .D .17. (2017 山东省泰安市) 下面四个几何体:其中,俯视图是四边形的几何体个数是( )A .1B . 2C .3D .418. (2017 湖北省武汉市) 某物体的主视图如图所示,则该物体可能为( ) A . B . C . D .19. (2018 北京市) (2分)下列几何体中,是圆柱的为( )A .B .C .D .20. (2018 山东省济宁市) (3.00分)一个几何体的三视图如图所示,则该几何体的表面积是( )A .24+2π B .16+4π C .16+8π D .16+12π21. (2018 山东省泰安市)如图是下列哪个几何体的主视图与俯视图( )A. B.C.D.22. (2018 陕西省) 如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥23. (2018 浙江省金华市) 一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体24. (2019 广西梧州市) (3分)一个几何体的主视图和左视图都是矩形,俯视图是圆,则这个几何体是()A.圆柱B.圆锥C.球D.正方体25. (2019 黑龙江省绥化市) (3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是()A.球体B.圆锥C.圆柱D.正方体26. (2019 湖南省长沙市)某个几何体的三视图如图所示,该几何体是()A. B. C. D.627. (2019 江苏省无锡市) (3分)一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是()A.长方体B.四棱锥C.三棱锥D.圆锥28. (2019 浙江省台州市) (4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球29. (2019 内蒙古赤峰市)如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱二、填空题30. (2014 四川省攀枝花市) 如图是一个几何体的三视图,这个几何体是圆锥,它的侧面积是(结果不取近似值).7参考答案一、选择题1. C2. B3. C4. A5. C6. B7.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:根据题意可得:选项A不正确,它的俯视图是:则该几何体的主视图不可能是A.故选A.8点评:此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.分析:对所给四个几何体,分别从主视图和俯视图进行判断.解答:解:从主视图可判断A错误;从俯视图可判断C、D错误.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9.B10.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:从俯视图发现有3个立方体,从左视图发现第二层最多有1个立方块,则构成该几何体的小立方块的个数有4个;故选B.点评:此题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.911.考点由三视图判断几何体.分析根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.解答解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=6cm,∠EFG=45°,∴EQ=AB=EF×sin45°=3cm,故选B.点评此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.12.考点由三视图判断几何体.分析首先根据三视图判断几何体的形状,然后计算其表面积即可.解答解:观察该几何体的三视图发现其为半个圆柱放在一个长方体的上面组成的一个几何体,半圆柱的直径为2,长方体的长为2,宽为1,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故选D.13.考点由三视图判断几何体.分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.10解答解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.14.考点几何体的展开图.分析根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.解答解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.15.考点U3:由三视图判断几何体.分析根据给出的几何体的三视图可知几何体是由一个圆柱和一个长方体组成,从而利用三视图中的数据,根据体积公式计算即可.解答解:由三视图可知,几何体是由一个圆柱和一个长方体组成,圆柱底面直径为20,高为8,长方体的长为30,宽为20,高为5,故该几何体的体积为:π×102×8+30×20×5=800π+3000,故选:D.16.答案B.解析试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.17.考点U1:简单几何体的三视图.分析根据俯视图是分别从物体上面看,所得到的图形进行解答即可.解答解:俯视图是四边形的几何体有正方体和三棱柱,故选:B.18.答案D试题解析:只有选项A的图形的主视图是拨给图形,其余均不是.故选A.考点:三视图.19.分析根据立体图形的定义及其命名规则逐一判断即可.解答解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.20.分析根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.解答解:该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,故选:D.21.分析直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.解答解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C 符合题意.故选:C.22. A.正方体B.长方体C.三棱柱D.四棱锥分析由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.解答解:由图得,这个几何体为三棱柱.故选:C.23.分析根据三视图的形状可判断几何体的形状.解答解:观察三视图可知,该几何体是直三棱柱.故选:A.24.分析根据几何体的主视图和左视图都是矩形,得出几何体是柱体,再根据俯视图为圆,易判断该几何体是一个圆柱.解答解:一个几何体的主视图和左视图都是矩形,俯视图是圆,符合这个条件的几何体只有圆柱,因此这个几何体是圆柱体.故选:A.点评本题考查由三视图判断几何体,主要考查学生空间想象能力.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.25.分析利用三视图都是圆,则可得出几何体的形状.解答解:主视图、俯视图和左视图都是圆的几何体是球体.故选:A.点评本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.26.分析根据几何体的三视图判断即可.解答解:由三视图可知:该几何体为圆锥.故选:D.点评考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.27. A28.C.29.分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.点评此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题30. 圆锥,2π。
2007--2009中考数学试题专题(填空题)分类汇编含答案
荆州市2008年初中升学考试数学试题第Ⅰ卷(选择题和填空题,共42分)一、选择题(每小题3分,共24分)1.下列根式中属最简二次根式的是( )A.21a +B.12C.8D.27 2.我国第一颗探月卫星“嫦娥一号”从环月轨道传回第一张月面照片时距地球38万公里.将38万公里科学记数法表示应为( )A.38×104B.3.8×105C.0.38×106D.3.8×104 3.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数 是( )A.1B.2C.3D.44.方程21011x x x -+=--的解是( ) A.2 B.0 C.1 D.35.如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,O 为位似中心,OD=12OD ′,则A ′B ′:AB 为( )A.2:3B.3:2C.1:2D.2:16.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是 ( ) A.甲 B.乙 C.丙 D. 乙或丙7.如图,在平面直角坐标系中,点A 在第一象限,⊙A 与轴相切于B ,与轴交于C (0,1),D (0,4)两点,则点A 的坐标是 ( )A.35(,)22B.3(,2)2C.5(2,)2D.53(,)228.如图,直角梯形ABCD 中,∠BCD =90°,A D ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM :MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412 34 5(第3题图) AB C ED O B ′ A ′ C ′ D ′E ′ (第5题图)二、填空题(每小题3分,共18分)9.计算:101()(tan 30)22π---++-= __________________.10.两个相似三角形周长的比为2:3,则其对应的面积比为___________.11.在如图所示的8×8正方形网格纸板上进行投针实验,随意向纸板投中一针,投中阴影部分的概率是___________.12.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)ky k x=>的图象于Q ,32OQC S ∆=,则k 的值和Q 点的坐标分别为_________________________.13.关于的方程222(1)0x k x k +++=两实根之和为m ,且满足2(1)m k =-+,关于y 的不等于组4y y m >-⎧⎨<⎩有实数解,则k 的取值范围是______________________.14.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:㎝),在上盖中开有一孔便于插吸管,吸管长为13㎝, 小孔到图中边AB 距离为1㎝,到上盖中与AB 相邻的两边距离相等,设插入吸管后露在盒外面的管长为h ㎝,则h 的最小值大约为_________㎝.(精确到个位,参考数据:2 1.4,3 1.7,5 2.2≈≈≈) ADBCEFM(第8题图)(第11题图) x y O A P C QB(第12题图) A B10 5 6 吸管(第14题图)·AB C Oy x(第7题图)D第Ⅱ卷(非选择题,共78分)15.(本题5分)已知a 为实数,求代数式2284a a a +--+-的值.16.(本题5分)解方程组123x y x y +=⎧⎨+=⎩17.(本题5分)已知点P (a+1,2a-1)关于x 轴的对称点在第一象限,求a的取值范围. 18.(本题6分)正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称或中心对称图案.下面是三种不同设计方案中的一部分,请把图①、图②补成既是..轴对称图形,又是..中心对称图形,并画出..一条对称轴;把图③补成只是..中心对称图形,并把中心标上..字母P .(在你所设计的图案中用阴影部分和非阴影部分表示两种不同颜色的花卉.)19.(本题6分)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .图① 图② 图③ A B C D F E20.(本题6分)已知:如图,R t△AOB的两直角边OA、OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点且OC=OB,抛物线y=(x-2)(x-m)-(p-2)(p-m)(m、p为常数且m+2≥2p>0)经过A、C两点.(1)用m、p分别表示OA、OC的长;(2)当m、p满足什么关系时,△AOB的面积最大.21.(本题7分)已知:如图,AB是⊙O的切线,切点为A,OB交⊙O于C且C为OB中点,过C点的弦CD使∠ACD=45°, AD的长为22,求弦AD、AC的长.OBCA xyABCD·O45°22.(本题8分)为了节约资源,保护环境,从6月1日起全国限用超薄塑料袋.古城中学课外实践小组的同学利用业余时间对本城区居民家庭使用超薄塑料袋的情况进行了抽样调查.统计情况如图所示,其中A 为“不再使用”,B 为“明显减少了使用量”,C 为“没有明显变化”. (1)本次抽样的样本容量是________________.(2)图中a=___________(户),c=___________(户).(3)若被调查的家庭占全城区家庭数的10%,请估计该城区不再使用超薄塑料袋的家庭数.(4)针对本次调查结果,请用一句话发表你的感想.23.(本题8分)载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递,途经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:2 1.4,3 1.7≈≈)AB C10%72ºAB C a 800 c家庭数 情况 ABC北北60º 45º D24.(本题10分)“5•12”汶川大地震后,某健身器材销售公司通过当地“红十字会”向灾区献爱心,捐出了五月份全部销售利润.已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y 1(万元)和杂项支出y 2(万元)分别与总销售量x (台)成一次函数关系(如图). (1)求y 1与x 的函数解析式; (2)求五月份该公司的总销售量; (3)设公司五月份售出甲种型号器材t 台,五月份总销售利润为W (万元),求W 与t 的函数关系式;(销售利润=销售额-进价-其他各项支出) (4)请推测该公司这次向灾区捐款金额的最大值.25.(本题12分)如图,等腰直角三角形纸片ABC 中,AC =BC =4,∠ACB=90º,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长;(2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在,求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 的取值范围.型 号进价(万元/台) .9 .2 .1 售价(万元/台) .2 .6 .30 20 0.20.3 1.2 By 1 y 2=0.005x+0.3 x(台) y(万元) OCxA C 1F 1E 1B 1BF Ey。
荆州市2007年中考数学试题及答案
2007年湖北省荆州市中考数学试题第Ⅰ卷(选择题和填空题,共42分)一.选择题(每小题3分,共24分) 1.-2007的相反数是( )A 、2007B 、-2007C 、20071D 、20071-2.抛物线5)3(212---=x y 的对称轴是( )A 、3-=xB 、3=xC 、5=xD 、5-=x 3.下列图形中经过折叠能围成一个棱柱的是( )A B C D4. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例函数xy 2=与x y 2-=的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( )A 、2B 、4C 、8D 、65.若323y x n -与n xy 2是同类项,则n m -的值是( ) A 、0 B 、1 C 、7 D 、-1 6. 如图是某只股票从星期一至星期五的最高股价与最低股价的折线统计图,则这5天中最高股价与最低股价之差最大的一天是( )A 、星期二B 、星期三C 、星期四D 、星期五(第6题图)星期日最低股价日最高股价股价(元)11.51110.5109.598.58五四三二一21F E(第7题图)PCBAD(第8题图)7.如图,在等腰梯形ABCD 中,AD ∥BC,过C 作CE ∥AB,P 为梯形ABCD 内一点,连接BP 并延长交CD 于F ,CD 于E,再连接PC,已知BP=PC,则下列结论中错误的是( )A 、∠1=∠2B 、∠2=∠EC 、△PFC ∽△PCED 、△EFC ∽△ECB8.如图在平台上用直径为100mm 的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D, 测得两根圆钢棒外侧距离为400mm,则工件直径D (mm)用科学记数法可写为( )A 、5104.0⨯B 、20000C 、4102⨯D 、4104⨯第4题二.填空题(每小题3分,共18分)9.分解因式:324a ab -= .10.如图,一束光线照在坡度为1: 3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是 度.40cmO D CBA第13题21A 第14题11.一张正方形纸片与两张正三角形纸片的边长相同,放在盒子里搅匀后,任取两张出来能拼成菱形的概率是12.若x=0是方程0823)2(22=-+++-m m x x m 的解,则m= . 13.如图有一张简易的活动小餐桌,现测得OA=OB=30cm, OC=OD=50cm,桌面离地面的高度为40mm,则两条桌腿的张角∠COD 的度数为14.如图直角三角板ABC 中,∠A=30°, BC=3cm,将直角三角板ABC 绕着直角顶点C 顺时针方向旋转90°至△A ′B ′C ′的位置,再沿CB 向左平移使点B 1落在△ABC 的斜边AB 上,点A 1平移到点A 2的位置,则点A →A 1→A 1运动的路径长度是 cm.(结果用带π和根号的式子表示)第Ⅱ卷(解答题,共78分)三.解答题(本大题共11个小题,共66分,每题应写出文字说明或证明过程或演算步骤)15.(本题5分)计算: 4)21()32(10+---16.(本题5分)解方程:2223-=-+-xxx17.(本题5分)求不等式组:⎪⎩⎪⎨⎧+≤-② 2211①23x x 的正整数解18.(本题6分)如图矩形ABCD 中,DP 平分∠ADC 交BC 于P 点,将一个直角三角板的直角顶点放在P 点处,且使它的一条直角边过A 点,另一条直角边交CD 于E.找出图中与PA 相等的线段.并说明理由.EPABCD19.(本题6分)D 为反比例函数:)0( k xky =图象上一点.过D 作DC ⊥y 轴于C, DE ⊥x 轴于E,一次函数m x y +-=与233+-=x y 的图象都过C 点,与x 轴分别交于A 、B 两点。
文档:da2007年湖北省荆门市中考数学试卷
湖北省荆门市2007年初中毕业生学业考试数学参考答案及评分说明一、选择题(每小题2分,满分20分) 题号 1 2 3 4 5 6 7 8 9 10 答案BADCCBDDBA二、填空题(每小题3分,满分30分)11.8128a -; 12.222a b(或222a b -); 13.85; 14.1;15.60; 16.20; 17.712; 18.5; 19.2π; 20.25. 三、解答题(满分70分)21.解:原式2222(424)()x y x y xy =--+÷ ················································ 2分22()x y xy xy =-÷=-. ············································································ 4分当10x =,125y =-时,原式1210255⎛⎫=-⨯-= ⎪⎝⎭. ······································ 6分 22.解:(1)如图,圆锥的高23DO =. 在Rt DOB △中,426OB BE EO =+=+=,233tan 63DO B BO ∴∠===.30B ∴∠=. ·············································· 2分(2)过点A 作AF BP ⊥,垂足为F . ············· 3分30B ∠=,260ACP B ∴∠=∠=.又ACP B BAC ∠=∠+∠,B BAC ∴∠=∠.8AC BC BE EC ∴==+=. ···································································· 5分 在Rt ACF △中,sin 8sin 6043AF AC ACF =∠==.故灯源离地面的高度为43米. ·································································· 6分 23.解:连接OD OE ,.过O 作OF ED ⊥,垂足为F . ······························· 1分DE 是ABC △的中位线,12DE BC ∴∥.90AED C ∴∠=∠=. 又4BC =,2DE ∴=,1FD =. ······························································ 3分 AB 切O 于D ,OD AB ∴⊥.DACO BPE 第22题图F90A ADE ODE ADE ∠+∠=∠+∠=,A ODE ∴∠=∠.Rt Rt ABC DOF ∴△∽△. ············· 6分 OD FDAB AC∴=,即153r =. 53r ∴=.即O 的半径为53. ············ 8分 24.解:设(012)y kx x =乙≤≤,84012k =,70k ∴=.70y x ∴=乙. ····· 2分 当8x =时,560y =乙. ·························· 3分 设(416)y mx n x =+甲≤≤,43608560.m n m n +=⎧∴⎨+=⎩,50160.m n =⎧∴⎨=⎩,50160y x ∴=+甲.·················································································· 5分当16x =时,5016160960y =⨯+=甲. ····················································· 6分8409601800∴+=.故该公路全长为1800米. ·········································································· 8分25.解:(1)是,此时AD BC ∥,一组对边平行且相等的四边形是平行四边形. · 2分(2)是,在平移过程中,始终保持11AB C D ∥,一组对边平行且相等的四边形是平行四边形. ······································································································· 4分 (3)33,此时190ABC ∠=,有一个角是平行四边形是矩形. ······················ 7分 3,此时点D 与点1B 重合,11AC BD ⊥,对角线互相垂直的平行四边形是菱形. ··············································································································· 10分 说明:第(1)、(2)结论和理由各1分.第(3)问结论为2分.理由1分. 各小题填注其它理由的只要正确均应给分.A DCOE第23题图B F甲 乙4812 16 x (天)y (米)第24题图960840 560 36026.解:(1)(每图2分) ·········································································· 4分(2)①0.12,36;②10,90;(每空1分) ············································· 8分 (3)当旋钮开到36附近时最省气,当旋钮开到90时最省时.最省时和最省气不可能同时做到. ····························································· 10分 说明:第(3)问只要表达意思明确即可,方式和文字不一定如此表达. 注:最省气的旋钮位置在36附近,接近090的黄金分割点360.3820.490⎛⎫= ⎪⎝⎭.27.解:设该队胜x 场,平y 场,则由已知32112x y x y x.y +=⎧⎪+⎨⎪⎩,①≤,②为非负整数.③ ······················ 2分由①知213y x =-代入②,得21312x x +-≤.92x ∴≥. ··························· 4分 又0y ≥,由①知321x ≤.7x ∴≤.即972x ≤≤. ······················································································· 6分 又x 为整数,567x ∴=,,.故56x y =⎧⎨=⎩,;63x y =⎧⎨=⎩,;70.x y =⎧⎨=⎩,·········································································· 8分 答:该队胜5场,平6场,负1场;或胜6场,平3场,平3场;或胜7场,平1场,负5场. ····································································································· 10分 说明:321x y +=及0y ≥得7x ≤.再对7.6210x =,,,,用列举法得出y 亦可. 28.解:(1)由已知PB 平分APB ∠,PE 平分OPF ∠, 且PD PF ,重合,则90BPE ∠=.90OPE APB ∴∠+∠=. 又90APB ABP ∠+∠=,OPE PBA ∴∠=∠.Rt Rt POE BAP ∴△∽△ ·········································································· 2分 0 0.12 0.14 0.16 0.18 0.170.14 0.13 0.0068 0.0076 0.0107 0.0124 0.0172 流量(3m /分) 煤气使用量3(m )图②煤气流量和烧开一壶水所需煤气量关系图 05 1015 20 0.0068 0.0076 0.01070.0124 0.0172 流量(3m /分) 时间(分) 图③煤气流量和烧开一壶水所需时间关系图 18 36 54 72 90 18 36 54 72 90 0.15 0.12101213 1619PO BAOE AP∴=.即34x y x =-. 2114(4)(04)333y x x x x x ∴=-=-+<<.且当2x =时,y 有最大值43. ··································································· 4分(2)由已知,PAB △,POE △均为人等腰直角三角形,可得(10)P ,,(01)E ,,(43)B ,. ································································· 6分 设过此三点的抛物线为2y ax bx c =++,则10164 3.c a b c a b c =⎧⎪++=⎨⎪++=⎩,,12321.a b c ⎧=⎪⎪⎪∴=-⎨⎪=⎪⎪⎩,,213122y x x ∴=-+. ··············································································· 8分 (3)由(2)知90EPB ∠=,即点Q 与B 重合时满足条件. ··························· 9分 直线PB 为1y x =-,与y 轴交于点(01)-,. 将PB 向上平移2个单位则过点(01)E ,,∴该直线为1y x =+. ············································································ 10分由2113122y x y x x =+⎧⎪⎨=-+⎪⎩,,得56.x y =⎧⎨=⎩,(56)Q ∴,. 故该抛物线上存在两点(43)(56)Q ,,,满足条件. ············································ 12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年湖北省荆州市中考数学试题
第Ⅰ卷(选择题和填空题,共42分)
一.选择题(每小题3分,共24分) 1.-2007的相反数是( )
A 、2007
B 、-2007
C 、20071
D 、2007
1
-
2.抛物线5)3(2
1
2---=x y 的对称轴是( )
A 、3-=x
B 、3=x
C 、5=x
D 、5-=x 3.下列图形中经过折叠能围成一个棱柱的是( )
A B C D
4. 边长为4的正方形ABCD 的对称中心是坐标原点O,AB ∥x 轴,BC ∥y 轴, 反比例
函数x
y 2=与x y 2
-=的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( )
A 、2
B 、4
C 、8
D 、6
5.若323y x n -与n xy 2是同类项,则n m -的值是( ) A 、0 B 、1 C 、7 D 、-1 6. 如图是某只股票从星期一至星期五的最高股价与最低股
价的折线统计图,则这5天中最高股价与最低股价之差最大的一天是( )
A 、星期二
B 、星期三
C 、星期四
D 、星期五
(第6题图)
星期
日最低股价
日最高股价股价(元)
11.51110.5109.598.58
五四三二一
2
1
F E
(第7题图)
P
C
B
A
D
(第8题图)
7.如图,在等腰梯形ABCD 中,AD ∥BC,过C 作CE ∥AB,P 为梯形ABCD 内一点,连接BP 并延长交CD 于F ,CD 于E,再连接PC,已知BP=PC,则下列结论中错误的是( )
A 、∠1=∠2
B 、∠2=∠E
C 、△PFC ∽△PCE
D 、△EFC ∽△ECB
8.如图在平台上用直径为100mm 的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D, 测得两根圆钢棒外侧距离为400mm,则工件直径D (mm)用科学记数法可写为( )
A 、5104.0⨯
B 、20000
C 、4102⨯
D 、4104⨯
第4题
二.填空题(每小题3分,共18分)
9.分解因式:324a ab -= .
10.如图,一束光线照在坡度为1: 3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,则这束光线与坡面的夹角α是 度
.
40cm
O D C
B
A
第13题
2
1
A 第14题
11.一张正方形纸片与两张正三角形纸片的边长相同,放在盒子里搅匀后,任取两张出来能拼成菱形的概率是
12.若x=0是方程0823)2(22=-+++-m m x x m 的解,则m= . 13.如图有一张简易的活动小餐桌,现测得OA=OB=30cm, OC=OD=50cm,桌面离地面的高度为40mm,则两条桌腿的张角∠COD 的度数为
14.如图直角三角板ABC 中,∠A=30°, BC=3cm,将直角三角板ABC 绕着直角顶点C 顺时针方向旋转90°至△A ′B ′C ′的位置,再沿CB 向左平移使点B 1落在△ABC 的斜边AB 上,点A 1平移到点A 2的位置,则点A →A 1→A 1运动的路径长度是 cm.(结果用带π和根号的式子表示)
第Ⅱ卷(解答题,共78分)
三.解答题(本大题共11个小题,共66分,每题应写出文字说明或证明过程或演算步骤)
15.(本题5分)计算: 4)2
1
()32(10+---
16.(本题5分)解方程:
2223-=-+-x
x
x
17.(本题5分)求不等式组:⎪⎩⎪⎨⎧+≤-② 22
11①
23x x 的正整数解
18.(本题6分)如图矩形ABCD 中,DP 平分∠ADC 交BC 于P 点,将一个直角三角板的直角顶点放在P 点处,且使它的一条直角边过A 点,另一条直角边交CD 于E.找出图中与PA 相等的线段.并说明理由.
E
P
A
B
C
D
19.(本题6分)D 为反比例函数:)0( k x
k
y =
图象上一点.过D 作DC ⊥y 轴于C, DE ⊥x 轴于E,一次函数m x y +-=与23
3
+-=x y 的图象都过C 点,与x 轴分别交于
A 、
B 两点。
若梯形DCAE 的面积为4,求k 的值.
y
x
E D C
B A
O
20.(本题6分)某住宅小区拟栽种12棵风景树,若想栽成6行,每行4棵,且
6行树所处位置连成线后能组成精美的对称图案,请你仿照举例在下面方框中再设计两种不同的栽树方案。
21.(本题7分)如图,张聪同学在学校某建筑物C 点处测得旗杆顶部A 的仰角为
30°,旗杆底部B 点的俯角为45°,若旗杆底部B 点到该建筑物的水平距离BE=6米,旗杆台阶高1米,求旗杆顶部A 离地面的高度(结果保留根号)
22.(本题8分)为了了解全市今年8万名初中毕业生的体育升学考试成绩状况,(满分30分,得分均是整数)从中随机抽取了部分学生的体育升学考试成绩制成下面频数直方图(尚不完整),已知第一小组的频数为0.12,回答下列问题: (1)在这个问题中,总体是 .样本的容量为 ; (2)第四小组的频数为 .请补全频数直方图 (3)被抽取的样本的中位数落在第 小组内. (4)若成绩在24分以上..
的为“优秀”,请估计今年全市初中毕业生的体育升学考试成绩为“优秀”的人数。
频数(人)
15.524.521.518.530.560
120
180
120分数(分)
18060
10
27.5
23.(本题8分)如图,AB 为半⊙O 的直径,AD 为弦,∠DBC =∠A , (1)求证: BC 是半⊙O 的切线;
(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长。
D E
O
C
B
A
24.(本题10分)某文具零售店老板到批发市场选购A 、B 两种文具,批发价分别为12元/件、8元/件;若该店零售的A 、B 两种文具的日销售量y (件)与零售价x (元/件)均成一次函数关系(如图) (1)求y 关于x 的函数关系式;
(2)该店老板计划这次选购A 、B 两种文具的数量共100件,所花资金不超过1000元,并希望全部售完后获利不低于296元,若按日销售4件和B 种文具每件可获利2元计算,他这次有哪几种进货方案?
(3)若A 种文具的零售价比B 种文具的零售价高2元/件,求这两种文具每天的销
售利润W (元)与A 种文具零售价x (元/件)之间的函数关系式。
并说明A 、B 两种文具的零售价分别为多少时,每天的销售利润最大?
(y(件)
x(元/件)
O
1015510
25.(本题12分)如图,矩形OABC 的边OC 、OA 与x 轴、y 轴重合,点B 的坐标是(3、1),点D 是AB 边上一个动点(与点A 不重合),沿OD 将△OAD 对折后,点 A 落在点P 处
(1)若点P 在一次函数12-=x y 的图象上(如图甲),求点P 的坐标;
(2)若点P 在抛物线2ax y =图象上,并满足△PCB 是等到腰三角形,请直接写出....该抛物线的解析式;
(3)当线段OD 与PC 所在的直线垂直时,在PC 所在直线上作出一点M ,使DM+BM
最小,并求出这个最小值。
D
图甲
P
y x
O
C
B
A
D A
B
C
O x y P 图乙(备用图)。