2016年山东省枣庄市中考数学试卷附详细答案(原版+解析版)
山东省枣庄市2016届九年级中考仿真演练数学试题解析(解析版)
山东省枣庄市2016届九年级中考仿真演练数学试题一、选择题(共12小题,每小题3分,满分36分)1.-23的相反数是()A.-32B.23C.32D.-23【答案】B. 【解析】试题解析:-23的相反数是23.故选B.考点:相反数.2.下列计算中,正确的是()A.3a+2b=5ab B.a•a4=a4C.a6÷a2=a3D.(a3b)2=a6b2【答案】D.【解析】试题解析:A、3a与2b不是同类项不能合并,故本选项错误;B、应为a•a4=a1+4,故本选项错误;C、应为a6÷a2=a6-2=a4,故本选项错误;D、(a3b)2=a6b2,正确.故选D.考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.3.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32° B.58° C.68° D.60°【答案】B.【解析】试题解析:如图:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°-∠1=58°.故选B.考点:1.平行线的性质;2.余角和补角.4.据统计2016年1月至2016年6月,石榴园、台儿庄古城等景区共接待游客约518000人,这个数可用科学记数法表示为()A.0.518×104B.5.18×105C.51.8×104D.518×103【答案】B.【解析】试题解析:518000=5.18×105.故选B.考点:科学记数法—表示较大的数.5.如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的 AC ,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为( )A .(60π)° B.(90π)° C.(120π)° D.(180π)°【答案】D .【解析】试题解析:设∠ABC 的度数大小由60变为n ,则AC=180n AB π⨯,由AC=AB , 解得n=180π故选D .考点:1.弧长的计算;2.等边三角形的性质.6.下列调查工作需采用的普查方式的是( )A .环保部门对淮河某段水域的水污染情况的调查B .电视台对正在播出的某电视节目收视率的调查C .质检部门对各厂家生产的电池使用寿命的调查D .企业在给职工做工作服前进行的尺寸大小的调查【答案】D.【解析】试题解析:A 、环保部门对淮河某段水域的水污染情况的调查不必全面调查,大概知道水污染情况就可以了,适合抽样调查,故A 选项错误;B 、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查,故B 选项错误;C 、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,故C 选项错误;D 、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适于全面调查,故D 选项正确. 故选D .考点:全面调查与抽样调查.7.如图,∠1=50°,如果AB∥DE,那么∠D=()A.40° B.50° C.130° D.140°【答案】C.考点:平行线的性质.8.如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为35,则坡面AC的长度为()m.A.10 B.8 C.6 D.【答案】A.【解析】试题解析:∵天桥的坡面AC与地面BC的夹角∠ACB的正弦值为35,∴sinC=35 ABAC=,则635 AC=,解得:AC=10,则坡面AC的长度为10m.故选A.考点:解直角三角形的应用-坡度坡角问题.9.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为()A.cm B cm C cm D.12cm【答案】C.【解析】试题解析:设圆锥的底面半径为r,则2π,所以cm.故选C.考点:1.弧长的计算;2.勾股定理.10.给出下列函数:①y=2x;②y=-2x+1;③y=2x(x>0);④y=x2(x<1),其中y随x的增大而减小的函数是()A.①②③④ B.②③④ C.②④ D.②③【答案】D.【解析】试题解析:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;②∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故本小题正确;③∵y=2x(x>0)中k=2>0,∴y随x的增大而减小,故本小题正确;④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.故选D.考点:1.反比例函数的性质;2.一次函数的性质;3.正比例函数的性质.11.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.m B.100m C.150m D.m【答案】D.【解析】试题解析:AD=AB•sin60°=BD=AB•cos60°=50,∴CD=150.=.故选D.考点:解直角三角形的应用-方向角问题.12.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A .1个B .2个C .3个D .4个【答案】C.【解析】试题解析:由图象可得:甲的速度为120÷3=40千米/小时,故①正确;乙的速度在0≤t≤1时,速度是50千米/小时,而在t >1时,速度为÷(3-1)=35千米/小时,故②错误;行驶1小时时,甲的距离为40千米,乙的距离为50千米,所以乙在甲前10千米,故③正确;3小时甲与乙相遇,即3小时时甲追上乙,故④正确;故选C .考点:一次函数的应用.二、填空题(共6小题,每小题3分,满分18分)13.分解因式:3ax 2-3ay 2= .【答案】3a (x+y )(x-y ).【解析】试题解析:3ax 2-3ay 2=3a (x 2-y 2)=3a (x+y )(x-y ).考点:提公因式法与公式法的综合运用.14.不等式组20301x x -⎩≥-⎧⎨<的解集是 . 【答案】12≤x<3. 【解析】试题解析:解不等式1,得x <3解不等式2,得x≥12∴原不等式组的解集是12≤x<3. 考点:解一元一次不等式组.15.若△ABC 的一边为4,另两边分别满足x 2-5x+6=0的两根,则△ABC 的周长为 .【答案】9.【解析】试题解析:设x 2-5x+6=0的两个根分别为x 1、x 2,则有x 1+x 2=551b a --=-=, △ABC 的周长为x 1+x 2+4=5+4=9.考点:根与系数的关系.16.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为 cm .【答案】2.【解析】试题解析:设圆锥的底面圆半径为r ,根据题意得2πr=1206180π⨯,解得r=2, 即圆锥的底面圆半径为2cm .考点:圆锥的计算.17.如图,矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC ,若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .【答案】4.【解析】试题解析:∵AE=EC ,∴∠EAC=∠ECA ,∵将纸片沿AE 折叠,点B 恰好落在AC 上,∴∠BAE=∠EAC ,∴∠BAE=∠EAC=∠ECA ,∵∠B+∠ECA+∠CAB=180°∴∠ECA=30°∵AB=2∴AC=2AB=4.考点:1.翻折变换(折叠问题);2.等腰三角形的性质.18.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (-3,0),对称轴为x=-1.给出四个结论:①b 2>4ac ;②2a+b=0;③a -b+c=0;④5a<b .其中正确结论是 .【答案】①④【解析】试题解析:①∵图象与x 轴有交点,对称轴为x=2b a -=-1,与y 轴的交点在y 轴的正半轴上, 又∵二次函数的图象是抛物线,∴与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac ,故①正确;②∵抛物线的开口向下,∴a<0,∵与y 轴的交点在y 轴的正半轴上,∴c>0,∵对称轴为x=2b a-=-1, ∴2a=b,∴2a+b=4a,a≠0,故②错误;③∵x=-1时y 有最大值,由图象可知y≠0,故③错误;④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,两边相加整理得5a-b=-c <0,即5a <b ,故④正确.考点:二次函数图象与系数的关系.三、解答题(共7小题,满分66分)19.(1)先化简,再求值:22()b b a a b a b a b+÷+--.其中a=2016,(2)计算:11|2|()2cos 603---+︒.【答案】(1);(2).【解析】试题分析:(1)首先进行通分,进而化简,再将已知代入求出答案;(2)直接利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简求出答案. 试题解析:(1)22()b b a a b a b a b +÷+-- =()()()()[]()()()()b a b b a b a b a b a b a b a b a b a-++-+⨯+-+- =2()()()()ab a b a b a b a b a+-⨯+- =2b把代入得:原式;(2)11|2|()2cos 603---+︒--1.考点:1.实数的运算;2.分式的化简求值;3.负整数指数幂;4.特殊角的三角函数值.20.如图,在Rt△ABC 中,∠ACB=90°,D 、E 分别为AB ,AC 边上的中点,连接DE ,将△ADE 绕点E 旋转180°得到△CFE,连接AF ,AC .(1)求证:四边形ADCF 是菱形;(2)若BC=8,AC=6,求四边形ABCF 的周长.【答案】(1)证明见解析;(2)28.考点:1.菱形的判定与性质;2.旋转的性质.21.初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200 名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【答案】(1)200;(2)补图见解析;(3)54°.(4) 17000名学生【解析】试题分析:(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200-120-50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1-25%-60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.试题解析:(1)50÷25%=200(人);(2)C级人数:200-120-50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1-25%-60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.考点:1.条形统计图;2.全面调查与抽样调查;3.用样本估计总体;4.扇形统计图.22.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【答案】甲公司为300人,乙公司250人.【解析】试题分析:首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款-甲公司的人均捐款=40,根据这个等量关系可得出方程求解.试题解析:问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:600006000040(120%)x x-=+解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.考点:分式方程的应用.23.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=kx(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.(1)①求反比例函数的解析式与点D的坐标;②直接写出△ODE的面积;(2)若P 是OA 上的动点,求使得“PD+PE 之和最小”时的直线PE 的解析式.【答案】(1) ①y=6x.D 的坐标是(1.5,4);②4.5;(2) 直线PE 的解析式是y=-4x+10. 【解析】 试题分析:(1)①连接OE ,则O 、E 、三点共线,则E 是OB 的中点,即可求得E 的坐标,利用待定系数法求得函数的解析式,进而求得D 的坐标;②根据S △ODE =S △OBC -S △OCD -S △BDE 即可求解;(2)作E 关于OA 轴的对称点E',则直线DE'就是所求的直线PE ,利用待定系数法即可求解.试题解析:(1)①连接OB ,则O 、E 、B 三点共线.∵B 的坐标是(6,4),E 是矩形对角线的交点,∴E 的坐标是(3,2),∴k=3×2=6,则函数的解析式是y=6x. 当y=4时,x=1.5,即D 的坐标是(1.5,4);②S △OBC =12BC•OC=12×6×4=12, S △OCD =12OC•CD=12×4×1.5=3, S △BDE =12×(6-1.5)×2=4.5, 则S △ODE =S △OBC -S △OCD -S △BDE =12-3-3-4.5=4.5;(2)作E 关于OA 轴的对称点E',则E'的坐标是(3,-2).连接E'D ,与x 轴交点是P ,此时PO+PE 最小.设y=mx+n ,把E'和D 的坐标代入得:321.54m n m n +=-⎧⎨+=⎩, 解得:410m n =-⎧⎨=⎩, 则直线PE 的解析式是y=-4x+10.考点:反比例函数综合题.24.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若DE=6cm ,AE=3cm ,求⊙O 的半径.【答案】(1)证明见解析;(2)7.5cm.【解析】试题分析:(1)连接OD ,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D 在⊙O 上,故DE 是⊙O 的切线.(2)由直角三角形的特殊性质,可得AD 的长,又有△ACD ∽△ADE .根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.试题解析:(1)连接OD .∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)∵∠AED=90°,DE=6,AE=3,∴AD===.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴AD AC AE AD=.=则AC=15(cm).∴⊙O的半径是7.5cm.考点:1.切线的判定;2.平行线的判定与性质;3.圆周角定理;4.相似三角形的判定与性质.25.如图,在平面直角坐标系中,直角梯形OABC,BC∥OA,一边OA在x轴上,另一边OC在y轴上,且OA=AB=5cm,BC=2cm,以OC为直径作⊙P.(1)求⊙P的直径;(2)⊙P沿x轴向右滚动过程中,当⊙P与x轴相切于点A时,求⊙P被直线AB截得的线段AD长;(3)⊙P沿x轴向右滚动过程中,当⊙P与直线AB相切时,求圆心P移动的距离.【答案】(1) 4cm;(2) 165cm.(3) 1cm或6cm.【解析】试题分析:(1)作BD⊥OA于点D,由题意可得BD=OC,要求⊙P的直径,只要求出BD的长即可,根据题目中的数量关系,由勾股定理可以得到BD的长,本题得以解决;(2)根据题意,画出相应的图形,作AE⊥CP交CB的延长线于点E,根据直径所对的圆周角是直角和勾股定理可以得到AD的长,本题得以解决;(3)根据题意可知,分两种情况,分别画出相应的图形,然后根据题目中的数量关系和切线的性质,可以分别求得圆心P移动的距离,本题得以解决.试题解析:(1)如右图①,过B作BD⊥OA.由题意知:∠BCO=∠DOC=∠BDO=90°.∴四边形ODBC为矩形.∴OC=BD,OD=BC.∵BC=2,∴DA=OA-OD=5-2.在Rt△ABD中,根据勾股定理,得BD2=AB2-DA2,∴BD=4,∴CD=4,即⊙P的直径是4cm;(2)如右图②所示,当⊙P与x轴相切于A时,设⊙P与CB所在直线相切于E.易知P在EA上,且CE=AO=5∴BE=3连接ED,∵EA为直径,∴∠EDA=90°.设AD=x,则BD=5-x由勾股定理知32-(5-x)2=42-x2解得x=16 5∴AD=165cm.(3)如右图③所示,当⊙P与AB相切时,分两种情况.第一种情况:当⊙P滚动到P1时,设PP1=x,由题意易知:PP1=CE=OG=x,则BE=BC-CE=2-x,AG=AO-OG=5-x.∵⊙P1与AB、AO相切于点F、G,∴AF=AG=5-x.∵⊙P1与BC、AB相切于点E、F,∴BF=BE=2-x.∵AB=5,AF+BF=AB,∴5-x+2-x=5.解得,x=1,即PP1=1cm;第二种情况:当⊙P滚动到P2时,设PP2=x,易知:OJ=CH=PP2=x,则AJ=x-5,BH=x-2,∵⊙P2与AB、CH相切,∴BI=BH=x-2.同理,AI=AJ=x-5.∵AB=BI+AI,∴x-2+x-5=5.解得,x=6,即PP2=6cm;∴当⊙P与直线AB相切时,点P移动的距离为1cm或6cm.考点:圆的综合题.。
【中考真题】枣庄市2016年中考数学试题含答案资料
绝密☆启用前二○一六年枣庄市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a += C .422)(a a =- D .1)1(22+=+a a2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在 OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数 是A .75°36′B .75°12′C .74°36′D .74°12′ 3.某中学篮球队关于这12名队员的年龄,下列说法错误的是A .众数是14 B.极差是3 C .中位数是14.5 D .平均数是14.8 4.如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于 A .15° B .17.5° C .20°D .22.5°5.已知关于x 的方程230x x a ++=有一个根为-2,则另一个根为第4题图第2题图A .5B .-1C .2D .-56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆 放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑 7.如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线 翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一 点,则线段BP 的长不可能是A .3B .4C .5.5D .108. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥ 于H ,则DH 等于 A .524B .512 C .5 D .4 10.已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数 轴上表示正确的是第7题图第9题图CHB ACD C DCB AOO O Oxyxyx yyx11. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为 A .2π B .π C.π3 D.2π312.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示, 给出以下四个结论:①0=abc ;②0>++c b a ;③b a >; ④042<-b ac .其中,正确的结论有A.1个B.2个C.3个D.4个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.122--= .14. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据: AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米 (结果精确到0.1=1.41).15. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若第11题图(第10题图)第14题图第15题图AC =2,则tan D = .16. 如图,点 A 的坐标为(-4,0),直线y n =+与坐标轴交于点B ,C ,连结 AC ,如果∠ACD =90°,则n 的值为 .17. 如图,已知△ABC 中,∠C =90°,AC =BC 2△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = . 18. 一列数1a ,2a ,3a ,… 满足条件:112a =,111n n a a -=-(n ≥2,且n 为整 数),则2016a = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分)先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解.20. (本题满分8分)n P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么n P 与n 的关系式是:第16题图B 第17题图2(1)()24n n n P n an b -=⋅-+ (其中,a ,b 是常数,n ≥4) ⑴通过画图,可得四边形时,4P = (填数字);五边形时,5P = (填数字).⑵请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 21.(本题满分8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表:⑴请根据题中已有的信息补全频数分布表:① ,② ,③ ; ⑵如果家庭月均用水量“大于或等于5t 且小于8t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?⑶记月均用水量在23x ≤<范围内的两户为1a 、2a ,在78x ≤<范围内3户为1b 、2b 、3b ,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭来自不同范围的概率.22.(本题满分8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数kyx的图象与BC边交于点E.⑴当F为AB的中点时,求该函数的解析式;⑵当k为何值时,△EF A的面积最大,最大面积是多少?23.(本题满分8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接P A,PB,AB,已知∠PBA=∠C.⑴求证:PB是⊙O的切线;⑵连接OP,若OP∥BC,且OP=8,⊙O的半径为BC的长.第22题图第23题图24.(本题满分10分)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF=,∠BAD =60°,且AB>.⑴求∠EPF 的大小; ⑵若AP =8,求AE +AF 的值;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.25. (本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式; ⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;第24题图第24题备用图⑶设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.绝密☆启用前二○一六年枣庄市初中学业水平考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.122 14.2.9 15. 16.3- 171 18.-1三、解答题:(本大题共7小题,共60分) 19.(本题满分8分) 解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷--……………………………………………………2分=2(1)(1)(1)1a a a a a a +-⋅-+=21a a -…………………………………………………………………………4分 由2230x x +-=,得 11x =,232x =- ………………………………………6分又10a -≠ ∴32a =-.∴原式=23()9231012-=---. ………………………………………………………………8分 20.(本题满分8分) 解:⑴由画图,可得当4n =时,41P =;当5n =时,55P =. ………………………………………4分⑵将上述数值代入公式,得4(41)(164)1245(51)(255)524a b a b ⨯-⎧⋅-+=⎪⎪⎨⨯-⎪⋅-+=⎪⎩①② ………………………………………………6分 解之,得5,6.a b =⎧⎨=⎩………………………………………………………………………8分 21.(本题满分8分) 解:⑴①15②6③12% ………………………………………………………3分⑵中等用水量家庭大约有450×(20%+12%+6%)=171(户) ……………………5分⑶表格(略),抽取的2户家庭来自不同范围的概率P=123205=. …………………………………………………………………8分22.(本题满分8分)解:⑴在矩形OABC 中,OA =3,OC =2,∴B (3,2),∵F 为AB 的中点,∴F (3,1). …………2分∵点F 在反比例函数ky x=的图象上, ∴k =3.∴该函数的解析式为3y x=. ………4分⑵由题意,知E ,F 两点坐标分别为E (2k ,2),F (3,3k),∴221111(3)223212213(3)124EFA k k S AF BE k k k ∆=⋅=⨯-=-+=--+…………………………6分所以当k =3时,S 有最大值,S 最大值=34. ……………………………………8分23.(本题满分8分)⑴证明:如图所示,连接OB.第22题图∵AC 是⊙O 的直径,∴∠ABC =90°,∠C +∠BAC =90°. ……………1分 ∵OA =OB ,∴∠BAC =∠OBA . ………………………2分 ∵∠PBA =∠C ,∴∠PBA +∠OBA =90°,即PB ⊥OB .∴PB 是⊙O 的切线. ……………………………4分 ⑵解:⊙O的半径为OB=AC=∵OP ∥BC ,∴∠BOP =∠OBC =∠C . 又∵∠ABC =∠PBO =90°,∴△ABC ∽△PBO ,…………………………………………………………………………6分 ∴BC AC OB OP ==∴BC =2.……………………………………………………………………………………8分24.(本题满分10分)解:(1)如图,过点P 作PG ⊥EF 于G .∵PE =PF =6,EF =63∴FG =EG= ∠FPG =∠EPG =12EPF ∠. 在Rt △FPG 中,sin ∠FPG=FG PF ==. ∴∠FPG =60°, ∴∠EPF =2∠FPG =120°. ……………………………………………………3分(2)作PM ⊥AB 于M ,PN ⊥AD 于N .∵AC 为菱形ABCD 的对角线,第24题图∴∠DAC =∠BAC ,AM =AN ,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF∴NF =ME . ………………………………………………………………………………5分又AP =10,1302PAM DAB ∠=∠=︒, ∴AM = AN =AP cos30°=10=∴A E+AF =(A M+ME)+(A N-NF )=A M +AN=………………………………7分(3) 如图,当△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在1P ,2P 之间运动,易知123PO PO ==,9AO =, ∴AP 的最大值为12,AP 的最小值为6.……………………………………10分25.(本题满分10分)解:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解之,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y . …………………………………………2分∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0). 把B (-3,0)、C (0,3)分别直线y =mx +n ,得30,3.m n n -+=⎧⎨=⎩ 解之,得1,3.m n =⎧⎨=⎩ ∴直线BC 的解析式为3+=x y . …………3分(2)∵MA =MB ,∴MA +MC =MB +MC.第24题备用图∴使MA +MC 最小的点M 应为直线BC 与对称轴x = -1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1 代入直线3+=x y ,得y =2. ∴M (-1,2)………………………………………………………………………6分 (3)设P (-1,t ),结合B (-3,0),C (0, 3),得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即 18+4+t 2=t 2-6t +10. 解之,得t =-2. ② 若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解之,得t =4. ③ 若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18.解之,得t 1=2173+,t 2=2173-. 综上所述,满足条件的点P 共有四个,分别为 1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-).…10分。
2016年山东省枣庄市中考数学试卷-答案
山东省枣庄市2016年初中毕业学业水平考试数学答案解析第Ⅰ卷 一、选择题1.【答案】C【解析】解:A.224a a a =,故此选项错误;B.2222a a a +=,故此选项错误;C.()224a a -=,故此选项正确;D.()22121a a a +=++,故此选项错误;故选:C 。
【提示】根据同底数幂相乘判断A ,根据合并同类项法则判断B ,根据积的乘方与幂的乘方判断C ,根据完全平方公式判断D 。
【考点】幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式。
2.【答案】B【解析】过点D 作DF AO ⊥交OB 于点F 。
∵入射角等于反射角,∴13∠=∠,∵CD OB ∥,∴12∠=∠(两直线平行,内错角相等);∴23∠=∠(等量代换);在Rt DOF △中,90ODF ∠=︒,3736AOB ∠=︒', 29037365224∴∠=︒︒'=︒'-∴在DEF △中,180227512DEB ∠=︒∠=︒'-故选B 。
【提示】过点D 作DF AO ⊥交OB 于点F 。
根据题意知,DF 是CDE ∠的角平分线,故13∠=∠;然后又由两直线CD OB ∥推知内错角12∠=∠;最后由三角形的内角和定理求得DEB ∠的度数。
【考点】平行线的性质,度分秒的换算。
3.【答案】D【解析】解:由图表可得:14岁的有5人,故众数是14,故选项A 正确,不合题意;极差是163=13-,故选项B 正确,不合题意;中位数是:14.5,故选项C 正确,不合题意;平均数是:()131451541621214.58+⨯+⨯+⨯÷≈,故选项D 错误,符合题意。
故选:D 。
【提示】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案。
【考点】极差,加权平均数,中位数,众数。
4.【答案】A【解析】∵∠ABC 的平分线与∠ACE 的平分线交于点D ,12∴∠=∠,34∠=∠ACE A ABC ∠=∠+∠,1234A ∠+∠=∠+∠+∠,2123A ∴∠=∠+∠,13D ∠=∠+∠,130152D A ∴∠=∠=⨯︒=︒。
山东省枣庄市山亭区2016届中考模拟考试数学试题(三)含答案(扫描版)
绝密☆启用前
二○一六年枣庄市初中学业模拟考试(三)
数学参考答案及评分意见
评卷说明:
1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.
2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.
3.如果考生在解答的中间过程出现计算
..
错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.
一、选择题:(本大题共12小题,每小题3分,共36分)
二、填空题:(本大题共6小题,每小题4分,共24分)
13.m 114.012015.
616.02517.(1,1)18.-3. 19.解:原式=
?+=
+===,………
………4分∵a 与2、3构成△ABC 的三边,且a 为整数,
∴1<a <5,即a=2,3,4,………………6分
当a=2或a=3时,原式没有意义,
则a=4时,原式=1.………………8分
20解:
(1)由统计图可知被调查学生中“D(知之甚少)”档次的有12人,所占比例是30%,所以共调查的学生数是1230%=4(0人);
“A(熟悉)”、“C(略有知晓)”档次的学生分别是
4人和16人,所以4
16100%=10%,100%=40%4040,则10,40m n ………………2分题
号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B B B C D B A B C A D。
山东省枣庄市中考数学试卷同名
2016年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.(3分)(2016?枣庄)下列计算,正确的是()A.a2?a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+12.(3分)(2016?枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC 恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′3.(3分)(2016?枣庄)某中学篮球队12名队员的年龄如表:年龄13141516(岁)人数1542关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14B.极差是3C.中位数是.平均数是4.(3分)(2016?枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.°C.20°D.°5.(3分)(2016?枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5B.﹣1C.2D.﹣56.(3分)(2016?枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑7.(3分)(2016?枣庄)如图,△ABC的面积为6,AC=3,现将△ABC沿AB 所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3B.4C..108.(3分)(2016?枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.9.(3分)(2016?枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB 于H,则DH等于()A.B.C.5D.410.(3分)(2016?枣庄)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.11.(3分)(2016?枣庄)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2πB.πC.D.12.(3分)(2016?枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
山东省枣庄市2016年中考数学真题试题(含解析)
绝密☆启用前山东省枣庄市2016年中考数学真题试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的, 请把正确的选项选出.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a +=C .422)(a a =- D .1)122+=+a a ( 【答案】C.考点:同底数幂的计算;合并同类项;完全平方公式.2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数是 A .75°36′ B .75°12′ C .74°36′ D .74°12′【答案】B.第2题图【解析】试题分析:由平行线的性质可得∠AOB=∠ADC=37°36′,根据光的反射定律可得∠ADC=∠ODE=37°36′,再由三角形外角的性质可得∠DEB=∠AOB+∠ODE=37°36′+37°36′=75°12′,故答案选B. 考点:平行线的性质;三角形外角的性质. 3.某中学篮球队12名队员的年龄如下表:关于这12 A .众数是14 B.极差是3C .中位数是14.5D .平均数是14.8【答案】D.考点:众数;中位数;极差;平均数.4.如图,在△ABC 中,AB = AC ,∠A = 30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于 A .15° B .17.5°C .20°D .22.5°【答案】A. 【解析】试题分析:在△ABC 中,AB=AC ,∠A=30°,根据等腰三角形的性质可得∠ABC=∠B第4题图ACB=75°,所以∠ACE=180°-∠ACB=180°-75°=105°,根据角平分线的性质可得∠DBC=37.5°,∠ACD=52.5°,即可得∠BCD=127.5°,根据三角形的内角和定理可得∠D=180°-∠DBC-∠BCD=180°-37.5°-127.5°=15°,故答案选A. 考点:等腰三角形的性质;三角形的内角和定理.5.已知关于的方程230x x a ++=有一个根为-2,则另一个根为 A .5 B .-1 C .2 D .-5 【答案】B. 【解析】试题分析:设方程的里一个根为b ,根据一元二次方程根与系数的关系可得-2+b=-3,解得b=-1,故答案选B.考点:一元二次方程根与系数的关系.6.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑 【答案】C.考点:几何体的侧面展开图.7.如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是A .3B .4C .5.5D .10第7题图【答案】A. 【解析】试题分析:由题意可知,△ABC ′是由△ABC 翻折得到的,所以△ABC ′的面积也为6,当BC ′⊥AD 时,BP 最短,因AC=AC ′=3,△ABC ′的面积为6,可求得BP=4,即BP 最短为4,所以线段BP 的长不可能是3,故答案选A. 考点:点到直线的距离.8. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是【答案】B.考点:根的判别式;一次函数的性质.9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于 A .524B .512 C .5 D .4【答案】A. 【解析】试题分析:如图,四边形ABCD 是菱形,8=AC ,6=DB ,根据菱形的性质可得OA=4,V VVD C BA第9题图COB=3,由勾股定理可得AB=5,再由DH AB BD AC S ⋅=⋅=21菱形即可求得DH=524,故答案选A.考点:菱形的性质. 10.已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是【答案】C.考点:点的坐标;不等式组的解集.11. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为A .2πB .Π C.π3D.2π3【答案】D.B ACD 第11题图【解析】试题分析:已知,AB 是⊙O 的直径,弦CD ⊥AB ,根据圆的对称性可得阴影部分的面积等于扇形AOB 的面积,由垂径定理可得CE=3,由圆周角定理可得∠COB=60°,在Rt △COE 中,求得OC=2,所以323602602ππ=⨯⨯==BOCS S 扇形阴影,故答案选D.考点:垂径定理;圆周角定理;扇形面积公式.12.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,给出以下四个结论:①0=abc ;②0>++c b a ;③b a >;④042<-b ac .其中,正确的结论有A.1个B.2个C.3个D.4个【答案】C.考点:抛物线的图象与系数的关系.第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.122--= .(第10题图)【答案】25. 【解析】试题分析:原式=3-21+2-2=25. 考点:实数的运算.14. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米(结果精确到0.1=1.41).【答案】2.9.考点:解直角三角形.15. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D = .【答案】22. 【解析】试题分析:如图,连接BC ,根据直径所对的圆周角为直角可得△ACB 为直角三角形,在直角三角形△ACB 中,AC=2,AB=6,由勾股定理可得BC=42,由圆周角定理可得∠第14题图第15题图A=∠D,所以tan D =tan A =22224==AC BC.考点:圆周角定理;勾股定理;锐角三角函数. 16. 如图,点 A 的坐标为(-4,0),直线y n =+与坐标轴交于点B ,C ,连结AC ,如果∠ACD =90°,则n 的值为 .【答案】334-. 考点:一次函数的性质.17. 如图,已知△ABC 中,∠C =90°,AC =BCABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = .第16题图B 第17题图【答案】13-.13)13()22()262(22222''-=-=+-=+=BP P C BC.考点:旋转的性质;勾股定理.18. 一列数1a ,2a ,3a ,… 满足条件:112a =,111n n a a -=-(n ≥2,且n 为整数),则2016a = . 【答案】-1. 【解析】试题分析:根据题意可知,112a =,221112=-=a ,1-2113=-=a ,211-114=-=)(a ,.......,由此可得这组数据3个一循环,2016÷3=672,所以2016a 是第672个循环中的第3个数,即2016a =-1. 考点:规律探究题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证 明过程或演算步骤.19.(本题满分8分)先化简,再求值:2221()211a a a a a a +÷--+-,其中a 是方程2230x x +-=的解. 【答案】原式=21a a -, 由2230x x +-=,得 11x =,232x =- 又10a -≠ ∴32a =-.原式=23()9231012-=---.考点:分式的化简求值;一元二次方程的解法. 20. (本题满分8分)n P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么n P 与n 的关系式是:2(1)()24n n n P n an b -=⋅-+ (其中,a ,b 是常数,n ≥4) ⑴通过画图,可得四边形时,4P = (填数字);五边形时,5P = (填数字). ⑵请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 【答案】(1)41P =,55P =;(2)5,6.a b =⎧⎨=⎩【解析】试题分析:(1)根据题意画出图形即可得41P =,55P =;(2)把n=4,n=5分别代入公式,可得以a 、b 为未知数的二元一次方程组,解方程组即可得a 、b 的值. 试题解析:⑴由画图,可得当4n =时,41P =;当5n =时,55P =.考点:数形结合思想;二元一次方程组的解法. 21.(本题满分8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表:12⑴请根据题中已有的信息补全频数分布表:① ,② ,③ ;⑵如果家庭月均用水量“大于或等于5t 且小于8t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?⑶记月均用水量在23x ≤<范围内的两户为1a 、2a ,在78x ≤<范围内3户为1b 、2b 、3b ,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭自不同范围的概率.【答案】⑴①15,②6,③12%;(2)171;(3)表格见解析,5. ⑵中等用水量家庭大约有450×(20%+12%+6%)=171(户) ⑶表格(略),a a bb抽取的2户家庭自不同范围的概率P=205=. 考点:22.(本题满分8分)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . ⑴当F 为AB 的中点时,求该函数的解析式;⑵当为何值时,△EFA 的面积最大,最大面积是多少?【答案】(1)3y x =;(2)当=3时,S 有最大值,S 最大值=34. ∴=3.∴该函数的解析式为3y x=. ⑵由题意,知E ,F 两点坐标分别为E (2k ,2),F (3,3k ),∴221111(3)223212213(3)124EFA k k S AF BE k k k ∆=⋅=⨯-=-+=--+所以当=3时,S 有最大值,S 最大值=34.考点:反比例函数的性质;二次函数的应用. 23.(本题满分8分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PA ,PB ,AB ,已知∠PBA =∠C .⑴求证:PB 是⊙O 的切线;⑵连接OP ,若OP ∥BC ,且OP =8,⊙O的半径为BC 的长.【答案】(1)详见解析;(2)2.第23题图∴PB是⊙O的切线.∴BC=2.考点:切线的判定;相似三角形的判定及性质.24.(本题满分10分)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>⑴求∠EPF 的大小;⑵若AP =8,求AE +AF 的值;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.【答案】(1)120°;(2)(3)AP 的最大值为12,AP 的最小值为6. 【解析】试题分析:(1)如图,过点P 作PG ⊥EF 于G ,已知PE=PF=6,EF=角形的性质可得FG=EG=FPG=∠EPG=12EPF ∠.在Rt △FPG 中,由sin ∠FPG=FG PF ==可求得∠FPG=60°,所以∠EPF=2∠FPG=120°.(2)作PM ⊥AB 于M ,PN ⊥AD 于N ,根据菱形的性质可得∠DAC=∠BAC ,AM=AN ,PM=PN ,再利用HL 证明Rt △PME ≌Rt △PNF ,即可得NF=ME.又因AP=10,1302PAM DAB ∠=∠=︒,所以AM= AN =APcos30°=10=所以AE +AF=(AM +ME )+(AN -NF)=AM +AN=(3)如图,当△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在1P ,2P 之间运动,易知123PO P O ==,9AO =,所以AP 的最大值为12,AP 的最小值为6.试题解析:(1)如图,过点P 作PG ⊥EF 于G.第24题备用图第24题图∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF 中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF∴NF=ME.又AP=10,1302PAM DAB∠=∠=︒,∴AM= AN =APcos30°=10⨯=∴AE+AF=(AM+ME)+(AN-NF)=AM+AN=考点:四边形综合题. 25. (本题满分10分)如图,已知抛物线y =a 2+b +c (a ≠0)的对称轴为直线=-1,且经过A (1,0),C (0,3)两点,与轴的另一个交点为B .⑴若直线y =m +n 经过B ,C 两点,求直线BC 和抛物线的解析式;⑵在抛物线的对称轴=-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的对称轴=-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.【答案】(1)322+--=x x y ,3+=x y ;(2)M (-1,2);(3)满足条件的点P 共有四个,分别为1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-). 【解析】试题分析:(1)已知抛物线y =a 2+b +c 的对称轴为直线=-1,且经过A (1,0),C (0,3)两点,可得方程组,解方程组可求得a 、b 、c的值,即可得抛物线的解析式;根据抛第25题图物线的对称性和点A 的坐标(1,0)可求得B 点的坐标(-3,0),用待定系数法可求得直线BC 的解析式;(2)使MA+MC 最小的点M 应为直线BC 与对称轴=-1的交点,把=-1代入直线BC 的解析式求得y 的值,即可得点M 的坐标;(3)分①B 为直角顶点,②C 为直角顶点,③P 为直角顶点三种情况分别求点P 的坐标.试题解析:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解之,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y .∵对称轴为=-1,且抛物线经过A (1,0), ∴B (-3,0).把B (-3,0)、C (0,3)分别直线y =m +n ,得PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10. 解之,得t =-2.②若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解之,得t =4. ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t2+t2-6t+10=18.解之,得t1=2173+,t2=2173-.考点:二次函数综合题.。
山东省枣庄市中考数学试题(版,含解析)
山东省枣庄市中考数学试题(版,含解析)山东省枣庄市中考数学试题(版,含解析)一、选择题1. 某数学竞赛中,有10道选择题和5道填空题。
小明选择并回答了其中的6道题目。
他的回答情况是:做对了1道选择题,对于另外5道题目没有回答正确的人总数大于对于1道选择题以及对于5道填空题都没有回答正确的人总数。
求小明对于填空题的回答情况。
【解析】设对于5道填空题,小明做对的题数为a,对于剩下的未作答的题目,做对的题数为b。
根据题意可得到以下两个不等式:a +b > 1b > 0解得 a > 1因此,小明所回答正确的填空题的数量至少为2。
2. 某等差数列的前6项为1,3,5,7,9,11,如果它的第100项是奇数,则这个等差数列的公差是多少?【解析】首先,可以计算出这个等差数列的公差为2。
由已知条件可得:$ a_{100} = a_1 + 99d = 1 + 99 \cdot 2 = 199$因此,这个等差数列的公差为2。
二、填空题1. 某种动物生长迅速。
刚出生时体重为1.5千克,到了5天时增长到2千克,然后每天增重量都是前一天增重量的1.2倍。
求出这种动物在第30天的体重。
【解析】设第n天的体重为$w_n$千克,第n-1天的体重为$w_{n-1}$千克。
由题意可得:$w_n = w_{n-1} + 1.2w_{n-1} = 2.2w_{n-1}$初始条件为:$w_1 = 2$代入递推式可得:$w_2 = 2.2w_1 = 2.2 \cdot 2 = 4.4$$w_3 = 2.2w_2 = 2.2 \cdot 4.4 = 9.68$依此类推可得,第30天的体重为:$w_{30} = 2.2^{29} \cdot 2 = 6618.44$千克。
三、解答题1. 已知函数f(x)的定义域为实数集R,f(x)满足$f(x) + f(2-x) = 2x^2 - 1$。
求f(x)的表达式。
【解析】将x替换为2-x,得:f(2-x) + f(x) = 2(2-x)^2 - 1。
2016年--2017年两年枣庄中考数学试题(含答案)汇编
二○一六年枣庄市初中学业水平考试数 学 试 题第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a +=C .422)(a a =- D .1)1(22+=+a a 2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在 OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数 是A .75°36′B .75°12′C .74°36′D .74°12′ 3.某中学篮球队关于这12名队员的年龄,下列说法错误的是A .众数是14 B.极差是3 C .中位数是14.5 D .平均数是14.8 4.如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于 A .15° B .17.5° C .20°D .22.5°5.已知关于x 的方程230x xa ++=有一个根为-2,则另一个根为A .5B .-1C .2D .-56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是第4题图第2题图A.白B. 红C.黄D.黑 7.如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线 翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一 点,则线段BP 的长不可能是A .3B .4C .5.5D .108. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥ 于H ,则DH 等于 A .524B .512 C .5 D .4 10.已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数 轴上表示正确的是11. 如图,AB是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD=32,则阴影部分的面积为 A .2π B .π第7题图第9题图CHBA C D DCB AC.π3D.2π312.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示, 给出以下四个结论:①0=abc ;②0>++c b a ;③b a >; ④042<-b ac .其中,正确的结论有A.1个B.2个C.3个D.4个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.122-+-= .14. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据: AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米 (结果精确到0.1=1.41).15. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若 AC =2,则tan D = .16. 如图,点 A 的坐标为(-4,0),直线y n =+与坐标轴交于点B ,C ,连结 AC ,如果∠ACD =90°,则n 的值为.(第10题图)第14题图第15题图17. 如图,已知△ABC 中,∠C =90°,AC =BC△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = . 18. 一列数1a ,2a ,3a ,… 满足条件:112a =,111n n a a -=-(n ≥2,且n 为整 数),则2016a = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分)先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解.20. (本题满分8分)n P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么n P 与n 的关系式是:2(1)()24n n n P n an b -=⋅-+ (其中,a ,b 是常数,n ≥4) ⑴通过画图,可得四边形时,4P = (填数字);五边形时,5P = (填数字).⑵请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 21.(本题满分8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民第16题图B 第17题图的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表:⑴请根据题中已有的信息补全频数分布表:① ,② ,③ ; ⑵如果家庭月均用水量“大于或等于5t 且小于8t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?⑶记月均用水量在23x ≤<范围内的两户为1a 、2a ,在78x ≤<范围内3户为1b 、2b 、3b ,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭来自不同范围的概率.22.(本题满分8分)如图,在矩形OABC 中,OA =3,OC =2,F 是AB上的一个动点(F不与A,B重合),过点F的反比例函数kyx的图象与BC边交于点E.⑴当F为AB的中点时,求该函数的解析式;⑵当k为何值时,△EF A的面积最大,最大面积是多少?23.(本题满分8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接P A,PB,AB,已知∠PBA=∠C.⑴求证:PB是⊙O的切线;⑵连接OP,若OP∥BC,且OP=8,⊙O的半径为BC的长.24.(本题满分10分)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>第23题图⑴求∠EPF 的大小; ⑵若AP =8,求AE +AF 的值;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.25. (本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式; ⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.绝密☆启用前二○一六年枣庄市初中学业水平考试数学参考答案及评分意见评卷说明:第25题图第24题图第24题备用图1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.122 14.2.9 15. 16. 171 18.-1三、解答题:(本大题共7小题,共60分) 19.(本题满分8分) 解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷--……………………………………………………2分=2(1)(1)(1)1a a a a a a +-⋅-+=21a a -…………………………………………………………………………4分 由2230x x +-=,得 11x =,232x =- ………………………………………6分又10a -≠ ∴32a =-.∴原式=23()9231012-=---. ………………………………………………………………8分 20.(本题满分8分) 解:⑴由画图,可得当4n =时,41P =;当5n =时,55P =. ………………………………………4分⑵将上述数值代入公式,得4(41)(164)1245(51)(255)524a b a b ⨯-⎧⋅-+=⎪⎪⎨⨯-⎪⋅-+=⎪⎩①② ………………………………………………6分 解之,得5,6.a b =⎧⎨=⎩………………………………………………………………………8分 21.(本题满分8分) 解:⑴①15②6③12% ………………………………………………………3分⑵中等用水量家庭大约有450×(20%+12%+6%)=171(户) ……………………5分⑶表格(略),抽取的2户家庭来自不同范围的概率P=123205=. …………………………………………………………………8分22.(本题满分8分)解:⑴在矩形OABC 中,OA =3,OC =2,∴B (3,2),∵F 为AB 的中点,∴F (3,1). …………2分∵点F 在反比例函数ky x=的图象上, ∴k =3.∴该函数的解析式为3y x=. ………4分⑵由题意,知E ,F 两点坐标分别为E (2k ,2),F (3,3k),∴221111(3)223212213(3)124EFA k k S AF BE k k k ∆=⋅=⨯-=-+=--+…………………………6分所以当k =3时,S 有最大值,S 最大值=34. ……………………………………8分23.(本题满分8分)⑴证明:如图所示,连接OB . ∵AC 是⊙O 的直径,∴∠ABC =90°,∠C +∠BAC =90°. ……………1分 ∵OA =OB ,∴∠BAC =∠OBA . ………………………2分 ∵∠PBA =∠C ,∴∠PBA +∠OBA =90°,即PB ⊥OB .∴PB 是⊙O 的切线. ……………………………4分 ⑵解:⊙O的半径为OB=AC=∵OP ∥BC ,∴∠BOP =∠OBC =∠C . 又∵∠ABC =∠PBO =90°,∴△ABC ∽△PBO ,…………………………………………………………………………6分第22题图第23题图∴BC ACOB OP==∴BC=2.……………………………………………………………………………………8分24.(本题满分10分)解:(1)如图,过点P作PG⊥EF于G.∵PE=PF=6,EF=∴FG=EG=∠FPG=∠EPG=12EPF ∠.在Rt△FPG中,sin∠FPG=FGPF==∴∠FPG=60°,∴∠EPF=2∠FPG=120°.……………………………………………………3分(2)作PM⊥AB于M,PN⊥AD于N.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF∴NF=ME.………………………………………………………………………………5分又AP=10,1302PAM DAB∠=∠=︒,∴AM= AN =AP cos30°=10=∴A E+AF=(A M+ME)+(A N-NF)=A M+AN=………………………………7分第24题图(3) 如图,当△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在1P ,2P 之间运动,易知123POPO ==,9AO =, ∴AP 的最大值为12,AP 的最小值为6.……………………………………10分25.(本题满分10分)解:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解之,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y . …………………………………………2分∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0). 把B (-3,0)、C (0,3)分别直线y =mx +n ,得30,3.m n n -+=⎧⎨=⎩ 解之,得1,3.m n =⎧⎨=⎩∴直线BC 的解析式为3+=x y . …………3分(2)∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x = -1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1 代入直线3+=x y ,得y =2. ∴M (-1,2)………………………………………………………………………6分 (3)设P (-1,t ),结合B (-3,0),C (0, 3),得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即 18+4+t 2=t 2-6t +10. 解之,得t =-2. ② 若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解之,得t =4. ③ 若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18.解之,得t 1=2173+,t 2=2173-. 综上所述,满足条件的点P 共有四个,分别为第25题1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-).…10分2017年山东省枣庄市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确的是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=22.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.993.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.18.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P 的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷=.14.已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是.15.已知是方程组的解,则a2﹣b2=.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为.17.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O 在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).23.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.2017年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确的是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=2【考点】24:立方根;1A:有理数的减法;22:算术平方根;6F:负整数指数幂.【分析】根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【考点】R1:生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【考点】JA:平行线的性质.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【考点】S8:相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】L8:菱形的性质;G6:反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2<r < B .<r <3 C .<r <5 D .5<r <【考点】M8:点与圆的位置关系;KQ :勾股定理.【分析】利用勾股定理求出各格点到点A 的距离,结合点与圆的位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r <3时,以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内. 故选B .11.如图,直线y=x +4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A 选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根的判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;C、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同的交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的对称轴为x=1.若a>0,则当x≥1时,y随x的增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷=.【考点】6A:分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣1且a≠0.【考点】AA:根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组的解,则a2﹣b2=1.【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为π.【考点】MC:切线的性质;L5:平行四边形的性质;MN:弧长的计算.【分析】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故答案为:π.17.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为4.【考点】G5:反比例函数系数k的几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC的面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,=OA•OC=x•2y=2xy=2×2=4,∴S矩形OABC故答案为:4.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=.(结果保留根号)【考点】LB:矩形的性质;KI:等腰三角形的判定;S9:相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE 为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】C7:一元一次不等式的整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有50人,在扇形统计图中,m的值是30%;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,。
2016年山东省枣庄市中考数学试卷【答案加解析】
2016年山东省枣庄市中考数学试卷一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.(2016•枣庄)下列计算,正确的是()A. a2•a2=2a2B. a2+a2=a4C. (﹣a2)2=a4D. (a+1)2=a2+1【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,完全平方公式【解析】【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.2.(2016•枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A. 75°36′B. 75°12′C. 74°36′D. 74°12′【答案】B【考点】度分秒的换算,平行线的性质【解析】【解答】解:过点D作DF⊥AO交OB于点F,∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选B.【分析】过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.3.(2016•枣庄)某中学篮球队12名队员的年龄如表:年龄(岁) 13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A. 众数是14B. 极差是3C. 中位数是14.5D. 平均数是14.8【答案】D【考点】加权平均数,极差【解析】【解答】解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选:D.【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.4.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°【答案】A【考点】等腰三角形的性质【解析】【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D= ∠A= ×30°=15°.故选A.【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D= ∠A,然后把∠A的度数代入计算即可.本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.5.(2016•枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A. 5B. ﹣1C. 2D. ﹣5【答案】B【考点】根与系数的关系【解析】【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m= ,解得,m=﹣1,故选B.【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.6.(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A. 白B. 红C. 黄D. 黑【答案】C【考点】认识立体图形【解析】【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.7.(2016•枣庄)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A. 3B. 4C. 5.5D. 10【答案】A【考点】翻折变换(折叠问题)【解析】【解答】解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于6,边AC=3,∴×AC×BN=6,∴BN=4,∴BM=4,即点B到AD的最短距离是4,∴BP的长不小于4,即只有选项A的3不正确,故选A.【分析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可.本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.【答案】B【考点】根的判别式,一次函数的图象【解析】【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C. 5 D. 4【答案】A【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB= =5,∵S菱形ABCD= ,∴,∴DH= ,故选A.【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=是解此题的关键.10.(2016•枣庄)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.【答案】C【考点】在数轴上表示不等式的解集,关于原点对称的点的坐标【解析】【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.此题主要考查了关于原点对称点的性质以及不等式组的解法,正确得出关于a的不等式组是解题关键.11.(2016•枣庄)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分的面积为()A. 2πB. πC.D.【答案】D【考点】扇形面积的计算【解析】【解答】解:∵∠CDB=30°,∴∠COB=60°,又∵弦CD⊥AB,CD=2 ,∴OC= ,∴S阴影=S扇形COB=,故选D.【分析】要求阴影部分的面积,由图可知,阴影部分的面积等于扇形COB的面积,根据已知条件可以得到扇形COB的面积,本题得以解决.本题考查扇形面积的计算,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.12.(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二.填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
2016年山东省枣庄市中考数学试卷(00002)
2016年山东省枣庄市中考数学试卷DA.15° B.17.5° C.20° D.22.5°5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白 B.红 C.黄 D.黑7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C.5 D.410.已知点P(a+1,﹣ +1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.11.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2π B.π C. D.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
13.计算:﹣2﹣1+﹣|﹣2|= .14.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据: =1.41, =1.73).15.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD= .16.如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.17.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= .18.一列数a1,a2,a3,…满足条件:a1=,an=(n≥2,且n为整数),则a2016= .三、解答题:本大题共7小题,满分60分,解答时,要写出必要的文字说明、证明过程或演算步骤。
山东省枣庄市2016届中考数学模拟试卷含答案解析
2016年山东省枣庄41中中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,满分24分,每题只有一个正确答案).1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.在九年级体育中考中,某班参加仰卧起坐测试的一组女生:46,44,45,42,48,46,47,45.则这组数据的极差为()A.2 B.4 C.6 D.83.下列运算正确的是()A.2a2•3a3=6a6B.2xa+xa=3x2a2C.(﹣2a)3=﹣6a3D.a5÷a4=a4.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m5.方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根6.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y27.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为488.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A的纵坐标是()A.3 B.3 C.﹣4 D.4二、填空题(本大题共有10小题,每小题3分,满分24分).9.方程x2=x的根是.10.二次函数y=x2﹣2x+6的最小值是.11.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.12.现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为cm.13.如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是.15.如图,在平面直角坐标系xOy中,⊙P的圆心P为(﹣3,a),⊙P与y轴相切于点C.直线y=﹣x被⊙P 截得的线段AB长为4,则过点P的双曲线的解析式为.16.如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD的中点,若MH=,则EG.三、解答题(本大题共有10小题,共96分).17.(1)解方程:x2﹣4x+2=0(2)计算:(3.14﹣π)0+﹣4sin45°+.18.把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.19.我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).20.为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.21.在梯形ABCD中,AD∥BC.AB=DC=AD=6,∠ABC=60°,点E、F分别在AD、DC上(点E与A、D 不重合);且∠BEF=120°,设AE=x,DF=y.(1)求证:△ABE∽△DEF;(2)求出y关于x的函数关系;(3)当x为何值时,y有最大值,最大值为多少?22.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?23.如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为.24.如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=.(1)求这个二次函数的解析式;(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.2016年山东省枣庄41中中考数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,满分24分,每题只有一个正确答案).1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)【考点】二次函数的性质.【专题】压轴题.【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.【点评】主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.2.在九年级体育中考中,某班参加仰卧起坐测试的一组女生:46,44,45,42,48,46,47,45.则这组数据的极差为()A.2 B.4 C.6 D.8【考点】极差.【分析】根据极差的定义,找出这组数据的最大值和最小值,再求出最大值与最小值的差即可.【解答】解:∵46,44,45,42,48,46,47,45中,最大的数是48,最小的数是42,∴这组数据的极差为48﹣42=6,故选:C.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,注意:极差的单位与原数据单位一致.3.下列运算正确的是()A.2a2•3a3=6a6B.2xa+xa=3x2a2C.(﹣2a)3=﹣6a3D.a5÷a4=a【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据单项式乘单项式的运算法则、合并同类项法则、积的乘方和同底数幂的除法法则进行计算,选择得到答案.【解答】解:2a2•3a3=6a5,A错误;2xa+xa=3xa,B错误;(﹣2a)3=﹣8a3,C错误;a5÷a4=a,D正确,故选:D.【点评】本题考查的是单项式乘单项式、合并同类项、积的乘方和同底数幂的除法,掌握各自的运算法则是解题的关键.4.如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.100m C.150m D.50m【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.【解答】解:∵堤坝横断面迎水坡AB的坡比是1,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.【点评】此题主要考查了解直角三角形的应用﹣坡度问题,关键是掌握坡度是坡面的铅直高度h和水平宽度l 的比.5.方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根【考点】根的判别式.【分析】把a=1,b=﹣4,c=4代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=4,∴△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴方程有两个相等的实数根.故选B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.6.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y 值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+3,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.7.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48【考点】垂径定理;勾股定理;梯形中位线定理.【分析】过圆心O作OE⊥CD于点E,则OE平分CD,在直角△ODE中利用勾股定理即可求得OE的长,即梯形DMNC的中位线,根据梯形的面积等于OE•CD即可求得.【解答】解:过圆心O作OE⊥CD于点E,连接OD.则DE=CD=×6=3.在直角△ODE中,OD=AB=×10=5,OE===4.=OE•CD=4×6=24.则S四边形DMNC故选A.【点评】本题考查了梯形的中位线以及垂径定理,正确作出辅助线是关键.8.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A的纵坐标是()A.3 B.3 C.﹣4 D.4【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质得出△ABC的边长放大到原来的2倍,进而得出点A的纵坐标.【解答】解:∵点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.点A′的对应点A的纵坐标是1.5,则点A的纵坐标是:﹣3.故选:B.【点评】此题主要考查了位似变换的性质,根据已知得出纵坐标的绝对值是2倍关系是解决问题的关键.二、填空题(本大题共有10小题,每小题3分,满分24分).9.方程x2=x的根是x1=0,x2=1.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先把方程化为一般式,再把方程左边因式分解得x(x﹣1)=0,方程就可转化为两个一元一次方程x=0或x﹣1=0,然后解一元一次方程即可.【解答】解:x2﹣x=0,x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1.故答案为x1=0,x2=1.【点评】本题考查了利用因式分解法解一元二次方程ax2+bx+c=0的方法:先把方程化为一般式,再把方程左边因式分解,然后把方程转化为两个一元一次方程,最后解一元一次方程即可.10.二次函数y=x2﹣2x+6的最小值是5.【考点】二次函数的最值.【专题】计算题.【分析】利用配方法将原函数关系式化为顶点式,即可求出二次函数的最小值.【解答】解:y=x2﹣2x+6=x2﹣2x+1+5=(x﹣1)2+5,可见,二次函数的最小值为5.故答案为:5.【点评】本题考查了二次函数的最值,将原式化为顶点式是解题的关键.11.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是乙.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为2cm.【考点】圆锥的计算.【分析】根据扇形的弧长等于圆锥的底面周长,利用扇形的弧长公式即可求得圆锥的底面周长,然后根据圆的周长公式即可求解.【解答】解:圆锥的底面周长是:=4π.设圆锥底面圆的半径是r,则2πr=4π.解得:r=2.故答案是:2.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.13.如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN=.【考点】正方形的性质;轴对称的性质;锐角三角函数的定义.【分析】M、N两点关于对角线AC对称,所以CM=CM,进而求出CN的长度.再利用∠ADN=∠DNC即可求得tan∠ADN.【解答】解:在正方形ABCD中,BC=CD=4.∵DM=1,∴CM=3,∵M、N两点关于对角线AC对称,∴CN=CM=3.∵AD∥BC,∴∠ADN=∠DNC,∵tan=∠DNC==,∴tan∠ADN=.故答案为:.【点评】本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则不等式ax2+bx+c<0的解集是﹣1<x<3.【考点】二次函数与不等式(组).【分析】直接根据二次函数的图象即可得出结论.【解答】解:∵由函数图象可知,当﹣1<x<3时,函数图象在x轴的下方,∴不等式ax2+bx+c<0的解集是﹣1<x<3.故答案为:﹣1<x<3.【点评】本题考查的是二次函数与不等式式,能利用数形结合求不等式的解集是解答此题的关键.15.如图,在平面直角坐标系xOy中,⊙P的圆心P为(﹣3,a),⊙P与y轴相切于点C.直线y=﹣x被⊙P截得的线段AB长为4,则过点P的双曲线的解析式为y=﹣.【考点】切线的性质;待定系数法求反比例函数解析式;垂径定理.【专题】计算题.【分析】作PH⊥x轴于H,交直线y=﹣x于E,作PD⊥AB于D,连结PC、PA,如图,根据切线的性质得PC⊥y轴,则PC=PA=OH=3,再根据垂径定理,由PD⊥AB得AD=BD=AB=2,则可根据勾股定理计算出PD=1,接着利用直线y=﹣x为第二、四象限的角平分线可判断△HOB和△PDE都为等腰直角三角形,所以EH=OH=3,PE=PD=,则P(﹣3,+3),然后利用待定系数法求过点P的双曲线的解析式.【解答】解:作PH⊥x轴于H,交直线y=﹣x于E,作PD⊥AB于D,连结PC、PA,如图,∵⊙P与y轴相切于点C,∴PC⊥y轴,而P(﹣3,a),∴PC=3,即⊙P的半径为3,∴PA=OH=3,∵PD⊥AB,∴AD=BD=AB=×4=2,在Rt△PAD中,PD===1,∵直线y=﹣x为第二、四象限的角平分线,∴∠HOB=45°,易得△HOB和△PDE都为等腰直角三角形,∴EH=OH=3,PE=PD=,∴PH=PE+EH=+3,∴P(﹣3,+3),设过点P的双曲线的解析式为y=,把P(﹣3,+3)代入得k=﹣3(+3)=﹣3﹣9,∴过点P的双曲线的解析式为y=﹣.故答案为y=﹣.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了垂径定理、等腰直角三角形的性质和待定系数法求反比例函数解析式.16.如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD的中点,若MH=,则EG.【考点】相似三角形的判定与性质;正方形的性质.【分析】连接DF,DG,过H作HP⊥AB于P,HQ⊥AD于Q,由点F,点G关于直线DE的对称,得到DF=DG,根据正方形的性质得到AD=CD,∠ADC=∠A=∠BCD=90°,推出Rt△AFD≌Rt△CDG,证得△FDG是等腰直角三角形,推出四边形APHQ是矩形,证得△HPF≌△DHQ,根据全等三角形的性质得到HP=HQ,推出△MHQ≌△DHQ ,根据全等三角形的性质得到DH=MH=,DQ=QM=,求得CH=DH=,通过△DQH∽△CEH,根据相似三角形的性质即可得到结论.【解答】解:连接DF,DG,过H作HP⊥AB于P,HQ⊥AD于Q,∵点F,点G关于直线DE的对称,∴DF=DG,正方形ABCD中,∵AD=CD,∠ADC=∠A=∠BCD=90°,∴∠GCD=90°,在Rt△AFD与Rt△CDG中,,∴Rt△AFD≌Rt△CDG,∴∠ADF=∠CDG,∴∠FDG=∠ADC=90°,∴△FDG是等腰直角三角形,∵DH⊥CF,∴DH=FH=FG,∵HP⊥AB,HQ⊥AD,∠A=90°,∴四边形APHQ是矩形,∴∠PHQ=90°,∵∠DHF=90°,∴∠PHF=∠DHQ,在△PFF与△DQH中,,∴△HPF≌△DHQ,∴HP=HQ,∵∠PHF=90°﹣∠FHM,∠QHM=90°﹣∠FHM,∴∠PHF=∠QHM,∴∠QHM=∠DHQ,在△MHQ与△DHQ中,,∴△MHQ≌△DHQ,∴DH=MH=,DQ=QM=,∴CH=DH=,∵点M为AD的中点,∴DM=3,∴DQ=QM=,∴HQ==,∵∠QDH=∠HEG,∴△DQH∽△CEH,∴,即,∴EG=.故答案为:.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题(本大题共有10小题,共96分).17.(1)解方程:x2﹣4x+2=0(2)计算:(3.14﹣π)0+﹣4sin45°+.【考点】实数的运算;解一元二次方程-配方法.【专题】计算题;实数.【分析】(1)方程利用配方法求出解即可;(2)原式第一项利用零指数幂法则计算,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:(1)方程整理得:x2﹣4x=﹣2,配方得:x2﹣4x+4=2,即(x﹣2)2=2,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)原式=1+2﹣4×+3=4.【点评】此题考查了实数的运算,以及解一元二次方程﹣配方法,熟练掌握运算法则是解本题的关键.18.把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,然后利用树状图展示所有可能的结果数;(2)找出2张图片恰好组成一张完整风景图的结果数,然后根据概率公式求解.【解答】解:(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4,所以2张图片恰好组成一张完整风景图的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】作AF⊥BD,PG⊥BD,在Rt△ABF和△PDG中分别求出BF、GD的值,继而可求得BD=BF+FG+GD 的值.【解答】解:作AF⊥BD,PG⊥BD,垂足分别为F、G,由题意得:AF=PG=CE=5km,FG=AP=20km,在Rt△AFB中,∠B=45°,则∠BAF=45°,∴BF=AF=5,∵AP∥BD,∴∠D=∠DPH=30°,在Rt△PGD中,tan∠D=,即tan30°=,∴GD=5,则BD=BF+FG+GD=5+20+5=25+5(km).答:飞机的飞行距离BD为25+5km.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,然后解直角三角形,难度一般.20.为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;(2)根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解:(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)3÷25%=12(个),×360°=30°.故投稿篇数为2所对应的扇形的圆心角的度数为30°;(2)12﹣1﹣2﹣3﹣4=2(个),(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇),将该条形统计图补充完整为:(3)画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:8÷12=.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.在梯形ABCD中,AD∥BC.AB=DC=AD=6,∠ABC=60°,点E、F分别在AD、DC上(点E与A、D 不重合);且∠BEF=120°,设AE=x,DF=y.(1)求证:△ABE∽△DEF;(2)求出y关于x的函数关系;(3)当x为何值时,y有最大值,最大值为多少?【考点】相似形综合题.【分析】(1)由AD∥BC,AB=DC,∠ABC=60°,由等腰梯形的性质可得∠A=∠D,等量代换易得∠A=∠BEF,可得∠DEF=∠ABE,证得结论;(2)由△ABE∽△DEF,利用相似三角形对应边的比相等,得出y关于x的函数关系;(3)利用配方法,将(2)中的函数关系式写成顶点式,可求最大值.【解答】(1)证明:∵AD∥BC,AB=DC,∠ABC=60°,∴∠A=∠D,∠A=120°∵∠BEF=120°,∴∠A=∠BEF,又∵∠AEB+∠BEF+∠DEF=180°,在△AEB中,∠AEB+∠A+∠ABE=180°,∴∠DEF=∠ABE,∴△ABE∽△DEF;(2)解:∵△ABE∽△DEF,∴=,即=,解得y=﹣x2+x;(3)解:∵y=﹣x2+x=y=﹣(x﹣3)2+,且﹣<0,=.∴当x=3时,y最大值【点评】本题考查了等腰梯形的性质与二次函数的综合运用.关键是利用相似三角形的性质得出 x、y 的关系 式.22.某商场经营某种品牌的玩具,购进时的单价是 30 元,根据市场调查:在一段时间内,销售单价是 40 元时, 销售量是 600 件,而销售单价每涨 1 元,就会少售出 10 件玩具. (1)不妨设该种品牌玩具的销售单价为 x 元(x>40),请你分别用 x 的代数式来表示销售量 y 件和销售该品 牌玩具获得利润 w 元,并把结果填写在表格中: 销售单价(元) 销售量 y(件) 销售玩具获得利润 w(元) x 1000﹣10x ﹣10x2+1300x﹣30000(2)在(1)问条件下,若商场获得了 10000 元销售利润,求该玩具销售单价 x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于 44 元,且商场要完成不少于 540 件的销售 任务,求商场销售该品牌玩具获得的最大利润是多少? 【考点】二次函数的应用;一元二次方程的应用. 【专题】优选方案问题. 【分析】 (1)由销售单价每涨 1 元,就会少售出 10 件玩具得 y=600﹣(x﹣40)×10=1000﹣10x,利润=(1000 ﹣10x)(x﹣30)=﹣10x2+1300x﹣30000; (2)令﹣10x2+1300x﹣30000=10000,求出 x 的值即可; (3)首先求出 x 的取值范围,然后把 w=﹣10x2+1300x﹣30000 转化成 y=﹣10(x﹣65)2+12250,结合 x 的取 值范围,求出最大利润. 【解答】解:(1) 销售单价(元) 销售量 y(件) x 1000﹣10x销售玩具获得利润 w(元)﹣10x2+1300x﹣30000 (2)﹣10x2+1300x﹣30000=10000 解之得:x1=50,x2=80 答:玩具销售单价为 50 元或 80 元时,可获得 10000 元销售利润,(3)根据题意得 解之得:44≤x≤46,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250, ∵a=﹣10<0,对称轴是直线 x=65, ∴当 44≤x≤46 时,w 随 x 增大而增大. ∴当 x=46 时,W 最大值=8640(元). 答:商场销售该品牌玩具获得的最大利润为 8640 元. 【点评】 本题主要考查了二次函数的应用的知识点, 解答本题的关键熟练掌握二次函数的性质以及二次函数最 大值的求解,此题难度不大.23.如图,在△ ABC 中,以 AB 为直径的⊙O 分别交 AC、BC 于点 D、E,点 F 在 AC 的延长线上,且 AC=CF, ∠CBF=∠CFB. (1)求证:直线 BF 是⊙O 的切线; (2)若点 D,点 E 分别是弧 AB 的三等分点,当 AD=5 时,求 BF 的长和扇形 DOE 的面积; (3)填空:在(2)的条件下,如果以点 C 为圆心,r 为半径的圆上总存在不同的两点到点 O 的距离为 5,则 r 的取值范围为 5 ﹣5<r<5 +5 .【考点】切线的判定;扇形面积的计算. 【分析】(1)根据直角三角形的判定证明∠ABF=90°即可; (2)连接 DO,EO,根据题意证明△ AOD 是等边三角形,得到△ ABC 是等边三角形,根据勾股定理求出 BF 的长,根据扇形面积公式: (3)求出圆心距 OC=5 求出扇形 DOE 的面积;,根据题意解答即可.【解答】(1)证明:∵∠CBF=∠CFB, ∴CB=CF, 又∵AC=CF, ∴CB= AF, ∴△ABF 是直角三角形, ∴∠ABF=90°∴直线 BF 是⊙O 的切线; (2)解:连接 DO,EO, ∵点 D,点 E 分别是弧 AB 的三等分点, ∴∠AOD=60°, 又∵OA=OD, ∴△AOD 是等边三角形, ∴∠OAD=60°, 又∵∠ABF=90°,AD=5, ∴AB=10, ∴BF=10 ; = π; ,扇形 DOE 的面积=(3)解:连接 OC,则圆心距 OC=5 由题意得,5 故答案为:5 ﹣5<r<5 ﹣5<r<5 +5, +5.【点评】 本题考查的是圆的切线的判定和扇形面积的计算, 掌握经过半径的外端且垂直于这条半径的直线是圆 的切线、扇形面积公式: 是解题的关键.24.如图 1,在平面直角坐标系中,二次函数 y=ax2+bx+c(a>0)的图象顶点为 D,与 y 轴交于点 C,与 x 轴 交于点 A、B,点 A 在原点的左侧,点 B 的坐标为(3,0),OB=OC,tan∠ACO= . (1)求这个二次函数的解析式; (2)若平行于 x 轴的直线与该抛物线交于点 M、N,且以 MN 为直径的圆与 x 轴相切,求该圆的半径长度; (3)如图 2,若点 G(2,y)是该抛物线上一点,点 P 是直线 AG 下方的抛物线上的一动点,当点 P 运动到 什么位置时,△ AGP 的面积最大?求此时点 P 的坐标和△ AGP 的最大面积.。
2016年山东省枣庄市中考试题
绝密☆启用前二○一六年枣庄市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a += C .422)(a a =- D .1)1(22+=+a a2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在 OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数 是A .75°36′B .75°12′C .74°36′D .74°12′ 3.某中学篮球队12年龄:(岁) 13 14 15 16 人数1542关于这12名队员的年龄,下列说法错误的是A .众数是14 B.极差是3 C .中位数是14.5 D .平均数是14.8 4.如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于 A .15° B .17.5° C .20°D .22.5°5.已知关于x 的方程230x x a ++=有一个根为-2,则另一个根为A .5B .-1C .2D .-5DA 第4题图第2题图6.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆 放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑 7.如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线 翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一 点,则线段BP 的长不可能是A .3B .4C .5.5D .10 8. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥ 于H ,则DH 等于 A .524B .512 C .5 D .4 10.已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数 轴上表示正确的是11. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD=32,则阴影部分的面积为 A .2π B .π绿 白 黑红 绿 蓝 白 黄 红 第7题图 第11题图第9题图CDH-2 -1 2 1 0 B . -2 -1 2 10 A .-2 -1 2 1 0 C . -3 -2 1 0 -1 D .C DCB AOO O Oxyxy x y y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(﹣a2)2=a4D.(a+1)2=a2+12.(3分)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′3.(3分)某中学篮球队12名队员的年龄如表:关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.84.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°5.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.(3分)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑7.(3分)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B.C.D.9.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.410.(3分)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.11.(3分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2πB.πC.D.12.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
13.(4分)计算:﹣2﹣1+﹣|﹣2|=.14.(4分)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).15.(4分)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=.16.(4分)如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为.17.(4分)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=.18.(4分)一列数a1,a2,a3,…满足条件:a1=,a n=(n≥2,且n为整数),则a2016=.三、解答题:本大题共7小题,满分60分,解答时,要写出必要的文字说明、证明过程或演算步骤。
19.(8分)先化简,再求值:,其中a是方程2x2+x﹣3=0的解.20.(8分)P n表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n与n的关系式是:P n=•(n2﹣an+b)(其中a,b是常数,n≥4)(1)通过画图,可得:四边形时,P4=;五边形时,P5=(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.21.(8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户具名的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表:(1)请根据题中已有的信息补全频数分布:①,②,③;(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?(3)记月均用水量在2≤x<3范围内的两户为a1,a2,在7≤x<8范围内的3户b1、b2、b3,从这5户家庭中任意抽取2户,试完成下表,并求出抽取出的2户家庭来自不同范围的概率.22.(8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?23.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.24.(10分)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.25.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.2016年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.(3分)(2016•枣庄)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.2.(3分)(2016•枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′【分析】过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.【解答】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选B.【点评】本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.3.(3分)(2016•枣庄)某中学篮球队12名队员的年龄如表:关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.8【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.【解答】解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选:D.【点评】此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.4.(3分)(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.5.(3分)(2016•枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m=,解得,m=﹣1,故选B.【点评】本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.6.(3分)(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.7.(3分)(2016•枣庄)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.10【分析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD 的最短距离是4,得出选项即可.【解答】解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于6,边AC=3,∴×AC×BN=6,∴BN=4,∴BM=4,即点B到AD的最短距离是4,∴BP的长不小于4,即只有选项A的3不正确,故选A.【点评】本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(3分)(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k<0,b=0,即kb=0,故D不正确;故选:B.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.(3分)(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.【点评】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱=是解此题的关键.形ABCD10.(3分)(2016•枣庄)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.【点评】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确得出关于a的不等式组是解题关键.11.(3分)(2016•枣庄)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2πB.πC.D.【分析】要求阴影部分的面积,由图可知,阴影部分的面积等于扇形COB的面积,根据已知条件可以得到扇形COB的面积,本题得以解决.【解答】解:∵∠CDB=30°,∴∠COB=60°,又∵弦CD⊥AB,CD=2,∴OC=,∴,故选D.【点评】本题考查扇形面积的计算,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.12.(3分)(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。