2008年秋北师大版八年级上期中数学试卷
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、单选题1.下列运算中错误的有()个①164=②393=③233-=-④2(3)3-=⑤±233=A .4B .3C .2D .12.在△ABC 中,AC=3,BC=4,则AB 的长是()A .5B .7C .5或7D .大于1且小于73.在0(2)-,38,0,934,0.010010001……,2π,-0.333…,5 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有()A .2个B .3个C .4个D .5个4.在平面直角坐标系中,点P (﹣1,x 2+2)一定在()A .第一象限B .第二象限C .第三象限D .第四象限5.满足3x 7的整数x 是()A .-2,-1,0,1,2,3B .-1,0,1,2C .-2,-1,0,1,2D .-1,0,1,2,36.下列语句:①-1是1的平方根.②带根号的数都是无理数.③-1的立方根是-1.38的立方根是2.⑤(-2)2的算术平方根是2.⑥-125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有()A .2个B .3个C .4个D .5个7.若a 、b 为实数,且满足|a -2|2b -=0,则b -a 的值为()A .2B .0C .-2D .以上都不对8.在平面内,确定一个点的位置一般需要的数据个数是()A .1B .2C .3D .49.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B′,那么BB′()A .小于1mB .大于1mC .等于1mD .小于或等于1m10.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm ,则h 的取值范围是()A .h≤17cmB .h≥8cmC .15cm≤h≤16cmD .7cm≤h≤16cm二、填空题11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12.2(5)-的算术平方根是__________________,-8的立方根是_________,13.直角三角形两直角边长分别为3和4,则它斜边上的高为____________________.14.已知M (a ,﹣3)和N (4,b )关于原点对称,则(a+b )2002=_____.15.在直角三角形ABC 中,斜边2AB =,则222AB AC BC ++=________.16.若一个正数的两个平方根分别为231a a +-与,则=a _____,这个正数是_________.17.如图,有一圆柱,其高为12cm ,它的底面半径为3cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,则蚂蚁经过的最短路程为________cm.(π取3)18===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题19.计算(13(2)(3)2+(4)02(1++-20.已知21b +的平方根为±3,3a+2b-1的算术平方根为4,求a+2b 的平方根.21.如图所示的一块地,∠ADC =90°,AD =8m ,CD =6m ,AB =26m ,BC =24m ,求这块地的面积S .22.在如图所示的正方形网络中,每个小正方形的边长为1,格点三角形(顶点是网络的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)点B 关于x 轴的对称点B 2的坐标是;(4)△ABC 的面积为.23.如图,在长方形ABCD 中,AB =6,BC =8,将长方形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处.(1)求EF 的长;(2)求四边形ABCE 的面积.24.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(),0a ,点C 的坐标为()0,b ,且a ,b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动.(1)点B 的坐标为___________;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.25.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?参考答案1.B【解析】【分析】根据平方根、立方根及算术平方根的定义,即可求解.【详解】=,正确;43≠,错误;=-该等式无意义,错误;33=,正确;=±,错误.⑤3故选:B.【点睛】此题主要考查了立方根、算术平方根、平方根的定义,解题注意平方根和算术平方根的区别:一个非负数的平方根有两个,算术平方根有一个,是非负数.2.D【解析】【分析】三角形中,两边之和永远大于第三边,两边之差永远小于第三边;【详解】题中三角形的两边为3与4,所以第三边的范围应该大于1而小于7【点睛】本题主要考查了三角形三边的关系,由三角形三边性质我们不难得出最后结果3.C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:0(=1,2π 2.010101…(相邻两个1之间有1个0)共4个.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B【解析】【详解】解:210,20,x -+ 符合第二象限点的特征故选B5.B【解析】【分析】二次根式的估算,需要准确地找出整数部分【详解】1的整数部分为2,所以整数x 应该满足23x -<<,故答案为B 选项【点睛】本题主要考查了二次根式中的估算思想,重点在于准确找出相应的整数或小数部分.6.B【解析】【分析】根据平方根的意义求出a≥0),即可判断①,根据无理数的意义即可判断②;根据立(a≥0),即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.解:1的平方根是±1,①正确;=2-1的立方根是-1,③正确;,2(-2)2=4,4,⑤正确;-125的立方根是-5,⑥错误;实数和数轴上的点一一对应,⑦错误;∴正确的有3个.故选:B.7.C【解析】【详解】由题意得:a-2=0,20b-=,所以a=2,b=0.∴b-a的值为0-2=-2.故选C.8.B【解析】【分析】在一个平面内,要有两个有序数据才能表示清楚一个点的位置.【详解】解:因为在一个平面内,一对有序实数确定一个点的位置,即2个数据,所以选B.故选B.【点睛】本题考查如何在平面内表示一个点的位置的知识.9.A【解析】【分析】由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,得出AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB由题意可知AB=A′B′,又OA′=3,根据勾股定理得:OB′∴BB′=<1.故选:A.10.D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【详解】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题考查了勾股定理的应用,解题的关键是注意此题要求的是筷子露在杯外的取值范围,主要是根据勾股定理求出筷子在杯内的最大长度.【分析】利用勾股定理求得AC即可求解.【详解】在Rt△ABC中,AB=5米,BC=3米,∠ACB=90°,∴4=∴AC+BC=3+4=7米.故答案是:7.【点睛】本题考查勾股定理的应用,理解题意是解答的关键.12.5±3-2【解析】【分析】根据算术平方根、平方根、立方根的定义即可求解.【详解】解:2(5)-=25∴2(5)-算术平方根是5,±3-8的立方根是-2故答案为:5;±3;-2.【点睛】此题主要考查算术平方根、平方根、立方根,解题的关键是熟知:算术平方根的定义:如果一个非负数x的平方等于a,那么这个非负数x叫做a的算术平方根;如果一个数的平方等于a,那么这个数叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.13.12 5【解析】【分析】设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案,设斜边为c ,斜边上的高为h ,∵直角三角形两直角边长分别为3和4,∴,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:125.【点睛】本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,解题的关键是熟练掌握面积法.14.1【解析】【详解】解:∵M (a ,﹣3)和N (4,b )关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=,故答案为:1.15.8【解析】【分析】直接由勾股定理求解即可.【详解】解:∵在直角三角形ABC 中,2AB =,∴222AC BC AB +==4,∴222AB AC BC ++=4+4=8,故答案为:8.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答的关键.16.14-##-0.254916【解析】【分析】根据平方根的性质,可得2310a a ++-=,从而得到14a =-,即可求解.【详解】解:∵一个正数的两个平方根分别为231a a +-与,∴2310a a ++-=,解得:14a =-,∴这个正数为()2214922416a ⎛⎫+=-+= ⎪⎝⎭.故答案为:14-;491617.15【解析】【分析】本题应先把圆柱展开即得其平面展开图,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理求得AB 的长.【详解】解:如图所示,圆柱展开图为长方形,则A ,B 所在的长方形的长为圆柱的高12cm ,宽为底面圆周长的一半为πrcm ,蚂蚁经过的最短距离为连接A ,B 的线段长,由勾股定理得=15cm .故蚂蚁经过的最短距离为15cm .(π取3)【点睛】本题考查了平面展开图-最短路径问题,解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.18(1)n n =+≥【解析】【分析】=(2=+(3=+则将此规律用含自然数n(n≥1)(1)n n =+≥【详解】解:=(2=+(3=+……,发现的规律用含自然数n(n≥1)(1)n n =+≥.(1)n n =+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.(1)1;(2;(3)0;(4)3+【解析】【分析】(1)先运用分母有理化化简,然后再计算即可;(2)先运用二次根式的性质化简,然后再计算即可;(3)先运用平方差公式计算,然后再化简即可;(4)先运用零次幂、二次根式的性质、完全平方公式化简,然后再计算即可.【详解】解:(133=623 2+-=4-3=1;(2)=(3)2+=5-7+2=0;(4)02(1=41(12)⨯-=423+-+=3+【点睛】本题主要考查了二次根式的运算,掌握分母有理化、二次根式的性质成为解答本题的关键.20..【解析】【分析】直接利用平方根以及算术平方根的定义得出a,b的值,进而得出答案.【详解】∵2b+1的平方根为±3,∴2b+1=9,解得:b=4,∵3a+2b−1的算术平方根为4,∴3a+2b−1=16,则3a+8−1=16,解得:a=3,则a+2b=11,故a+2b 的平方根是:.【点睛】此题考查平方根,算术平方根,解题关键在于掌握其性质定义.21.这块地的面积为296m .【解析】【分析】如图所示,连接AC ,利用勾股定理求出AC ,运用勾股定理逆定理可证ACB △为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【详解】解:如图所示,连接AC ,在Rt ADC 中,10(m)AC ===,22222102467624AC BC BC +=+===,ACB ∴ 为直角三角形,∴这块地的面积21124106896(m )22ACB ADC S S S =-=⨯⨯-⨯⨯= ,答:这块地的面积为296m .【点睛】本题考查了勾股定理和逆定理的应用,解题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.22.(1)见解析;(2)见解析;(3)(﹣2,﹣1);(4)4【解析】【分析】(1)根据A 、C 两点坐标确定平面直角坐标系即可;(2)画出A 、B 、C 的对应点A 1、B 1、C 1即可;(3)根据点B 2的位置,写出坐标即可解决问题;(4)利用分割法求出面积即可.【详解】(1)平面直角坐标系如图所示:(2)△A 1B 1C 1如图所示;(3)点B 关于x 轴的对称点B 2的坐标是(﹣2,﹣1);(4)S △ABC=3×412-⨯2×412-⨯1×212-⨯3×2=4.【点睛】本题考查了作图﹣轴对称变换,解答本题的关键是熟练掌握轴对称的性质,学会用分割法求三角形面积,属于中考常考题型.23.(1)EF=3;(2)梯形ABCE 的面积为39.【解析】【详解】试题分析:(1)根据折叠的性质,折叠前后边相等,即CF CD DE EF ==,,得:AE AD EF =-,在Rt ACD △中,根据勾股定理,可将AC 的长求出,知CF 的长,可求出AF 的长,在Rt AEF 中,根据222AE EF AF =+,可将EF 的长求出;(2)根据S 梯形=()2AE BC AB +⨯,将各边的长代入进行求解即可.试题解析:(1)设EF=x ,∵四边形ABCD 是矩形,∴CD=AB=6,AD=BC=8,依题意知:△CDE ≌△CFE ,∴DE=EF=x ,CF=CD=6.∵在Rt ACD △中,226810AC =+=,∴AF=AC−CF=4,AE=AD−DE=8−x.在Rt AEF 中,有222AE EF AF =+,即222(8)4x x -=+解得x=3,即:EF=3.(2)由(1)知:AE=8−3=5,梯形ABCE 的面积()()5863922AE BC AB S +⨯+⨯===.24.(1)(4,6);(2)(2,6);(3)2.5秒或5.5秒.【解析】【分析】(1|6|0b -=,可以求得a 、b 的值,根据长方形的性质,可以求得点B 的坐标;(2)根据题意点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,可以得到当点P 移动4秒时,点P 的位置和点P 的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P 移动的时间即可.【详解】解:(1)a 、b |6|0b -=,40a ∴-=,60b -=,解得4a =,6b =,∴点B 的坐标是(4,6),故答案是:(4,6);(2) 点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O ----的线路移动,248∴⨯=,4= OA ,6OC =,∴当点P 移动4秒时,在线段CB 上,离点C 的距离是:862-=,即当点P 移动4秒时,此时点P 在线段CB 上,离点C 的距离是2个单位长度,点P 的坐标是(2,6);(3)由题意可得,在移动过程中,当点P 到x 轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P 在OC 上时,点P 移动的时间是:52 2.5÷=秒,第二种情况,当点P 在BA 上时.点P 移动的时间是:(641)2 5.5++÷=秒,故在移动过程中,当点P 到x 轴的距离为5个单位长度时,点P 移动的时间是2.5秒或5.5秒.【点睛】本题考查坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.0.8【解析】【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.【点睛】本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键.。
北师大版八年级上册数学期中考试试题含答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,无理数是()A.0 B C.﹣2 D.272.下列运算正确的是()3 C±3 D.1A 3 B3.已知ABC的三边长a,b,c满足(a﹣b)(c2﹣a2﹣b2)=0,则ABC的形状是()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形4.已知图形A在y轴的右侧,如果将图形A上的所有点的横坐标都乘﹣1,纵坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称5.如图,等腰直角△OAB的斜边OA在x轴上,且OA=2,则点B坐标为()A.(1,1) B.C.D.(1)6.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<07.对于一次函数y=﹣2x+4,下列结论中正确的是()A.函数值随自变量的增大而增大B.点(4﹣a,a)在该函数的图像上C.函数的图象与直线y=﹣x﹣2平行D.函数图象与坐标轴围成三角形的周长为8x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤59.以下列长度的线段为边,不能组成直角三角形的是()A.1,1B C.2,3,4 D.8,15,17 10.如图所示的图象分别给出了x与y的对应关系,其中表示y是x的函数的是()A.B.C.D.二、填空题11.若a b<,且a,b是两个连续的整数,则a b+的值是______.12.若y+4,则x2+y2的算术平方根是__________.13.在一次函数y=﹣2x+5图象上有A(x1,y1)和(x2,y2)两点,且x1>x2,则y1________ y2(填“>,<或=”)14.小明从邮局买了面值0.5元和0.8元的邮票共9枚,花了6.3元,小明买了两种邮票各多少枚?若设买了面值0.5元的邮票x枚,0.8元的邮票y枚,则根据题意可列出方程组为__________.15.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知轿车比货车每小时多行驶10千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,下列说法正确的是__________.△甲乙两地的距离为450千米△点A的实际意义是两车出发2小时相距150千米△x=3时,两车相遇△货车的速度为90千米/小时16.已知长方形ABCD,AB=6,BC=10,M为线段AD上一点且AM=8,点P从B出发以每秒2个单位的速度沿线段BC﹣CD的方向运动,至点D停止,设运动时间为t秒,当AMP为等腰三角形时,t的值为__________.三、解答题17.计算:(1(2|2|.18.如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,3),B(2,1),C(5,1).(1)画出ABC关于y轴的对称的A 1B1C1.(2)A 1B1C的面积为;(3)y轴上存在一点P使得ABP的周长最小,点P的坐标为,周长最小值为.191(1(2(320.已知等腰三角形ABC的底边BC=10cm,D是腰AB上一点,且CD=8cm,BD=6cm.(1)求证:CD△AB;(2)求该三角形的腰的长度.21.学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即每套100元.经洽谈协商:A公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费;B公司的优惠条件是:服装按单价打八折,公司承担运费.如果设参加演出的学生有x人.(1)写出:△学校购买A公司服装所付的总费用y1(元)与参演学生人数x之间的函数关系式;△学校购买B公司服装所付的总费用y2(元)与参演学生人数x之间的函数关系式.(2)若参演学生人数为150人,选择哪个公司比较合算,请说明理由.22.如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴,y轴的正半轴上,连接AC,OA=4,OCOA=12.(1)根据题意,写出点A的坐标,点C的坐标;(2)求AC所在直线的表达式;(3)将纸片OABC折叠,使点A与点C重合(折痕为EF),折叠后纸片重叠部分(即△CEF)的面积为;(4)请直接写出EF所在直线的函数表达式.23.如图1,在正方形ABCD中,点E,F分别在正方形ABCD的边BC,CD上,△EAF =45°,连接EF.(1)思路梳理:将ABE绕点A逆时针旋转至ADG,如图1,使AB与AD重合,易证△GAF=△EAF=45°,可证AFG△AFE,故EF,BE,DF之间的数量关系为;(2)类比引申:如图2,在图1的条件下,若点E,F由原来的位置分别变到正方形ABCD 的边CB,DC的延长线上,△EAF=45°,连接EF,猜想EF,BE,DF之间的数量关系为,并给出证明;(3)联想拓展:如图3,等腰Rt ABC,△BAC=90°,△MAN=45°,把△MAN绕点A旋转,在整个旋转过程中AM、AN分别与直线BC交于点D、E,若BD=2,EC=4,则BE的长为.24.根据题意,解答问题:(1)如图1,已知直线y=2x+4与x轴、y轴分别交于A、B两点,求线段AB的长.(2)如图2,类比(1)的解题过程,请你通过构造直角三角形的方法,求出点M(3,4)与点N(﹣2,﹣1)之间的距离.(3)在(2)的基础上,若有一点D在x轴上运动,当满足DM=DN时,请求出此时点D 的坐标.25.【模型建立】(1)如图1,等腰Rt ABC中,△ACB=90°,CB=CA,直线ED经过点C,过点A作AD△ED 于点D,过点B作BE△ED于点E,求证:BEC△CDA.【模型应用】(2)如图2,已知直线l1:y=32x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A逆时针旋转45°至直线l1则直线l2的函数表达式为.(3)如图3,将图1四边形放到平面直角坐标系中,点E与O重合,边ED放到x轴上,若OB=2,OC=1,在x轴上存在点M使的以O、A、B、M为顶点的四边形面积为4,请直接写出点M的坐标.(4)如图4,平面直角坐标系内有一点B(3,﹣4),过点B作BA△x轴于点A,BC△y轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.若CPD 是等腰直角三角形.请直接写出点D的坐标.参考答案1.B2.A3.A4.B5.A6.A7.D8.B9.C10.D11.5【分析】a和b的值,即可求解.【详解】解:△23<,△a=2,b=3,△a+b=5.故答案为:512.5【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式求值,再根据算术平方根的定义解答.【详解】解:根据题意得,3-x≥0且x-3≥0,解得x≤3且x≥3,所以,x=3,y=4,所以,x2+y2=32+42=25,△25的算术平方根是5,△x2+y2的算术平方根是5.故答案为:5.13.<【解析】先根据一次函数的性质判断出函数的增减性,进而可得出结论.【详解】解:△一次函数y=-2x+5中,k=-2<0,△y 随x 的增大而减小.△x 1>x 2,△y 1<y 2.故答案为:<.14.90.50.8 6.3x y x y +=⎧⎨+=⎩【分析】由题意可得等量关系△0.5元的邮票枚数+面值0.8元的邮票枚数=9枚;△0.5元的邮票价格+面值0.8元的邮票总价格=6.3元,由等量关系列出方程组即可.【详解】解:设买了面值0.5元的邮票x 枚,0.8元的邮票y 枚,由题意得90.50.8 6.3x y x y +=⎧⎨+=⎩, 故答案为:90.50.8 6.3x y x y +=⎧⎨+=⎩. 15.△△△【分析】根据函数图象中的数据和题意,可以直接判断△△△,再根据轿车比货车每小时多行驶10千米和两车3小时相遇,即可计算出货车的速度,从而可以判断△.【详解】解:由图象可得,甲乙两地的距离为450千米,故△正确;点A 的实际意义是两车出发2小时相距150千米,故△正确;x=3时,两车相遇,故△正确;货车的速度为:(450÷3-10)÷2=70(千米/小时),故△错误;故答案为:△△△.16.42【详解】 解:四边形ABCD 是矩形, 6AB CD ∴==,10BC AD ==,90BAD B C D ∠=∠=∠=∠=︒, 当AMP ∆为等腰三角形时,分三种情况: △当PA PM =时,点P 在AM 的垂直平分线上, 取AM 的中点N ,过点N 作NP AM ⊥交BC 于P ,如图1所示:则四边形ABPN 是矩形,142BP AN AM ∴===,422t ∴=÷=;△当8AM AP ==时,如图2所示:在Rt ABP ∆中,由勾股定理得:BP ===,2t ∴=÷=△当8MA MP ==时,过点M 作MH BC ⊥于H ,如图3所示:则四边形ABHM 为矩形,6MH AB ∴==,8BH AM ==,90MHP ∠=︒,在Rt MHP ∆中,由勾股定理得:HP ===,8BP BH HP ∴=-=-,(824t ∴=-÷=-综上所述,t 的值为:42故答案为:42【点睛】本题考查了矩形的判定与性质、勾股定理以及分类讨论等知识,熟练掌握矩形的性质,进行分类讨论是解题的关键.17.(1(2)10【解析】【分析】(1(2)化简|2|,再合并同类项即可. 【详解】解:(1=(2|2|+=())9322+-+-=9322-+=10【点睛】本题考查实数的运算,二次根式的混合运算,掌握运算法则是正确计算的前提.18.(1)见解析;(2)7;(3)7(0,)3【分析】(1)分别作出三个顶点关于y 轴的对称点,再首尾顺次连接即可;(2)根据三角形的面积公式求解即可;(3)利用待定系数法求出AB 1所在直线解析式,从而得出点P 坐标,再利用勾股定理可得三角形ABP 周长最小值.【详解】解:(1)如图所示,△111A B C 即为所求.(2)如图所示,连接1A C ,△11A B C 的面积为17272⨯⨯=,故答案为:7;(3)如图所示,连接1AB ,与y 轴的交点即为所求点P ,设1AB 所在直线解析式为y kx b =+,则321k b k b +=⎧⎨-+=⎩, 解得2373k b ⎧=⎪⎪⎨⎪=⎪⎩, 2733y x ∴=+, 当0x =时,73y =, 7(0,)3P ∴;12AB ==,AB ==∴故答案为:7(0,)3【点睛】本题主要考查作图—轴对称变换,解题的关键掌握轴对称变换的定义和性质,并据此得出变换后的对称点.19.(1(23)9【解析】【分析】(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可.【详解】解:(1)原式(2)原式(3)由(2)可知:原式﹣=﹣=9.【点睛】本题考查了二次根式的混合运算以及分母有理化,观察式子找到规律是解题的关键.20.(1)见解析;(2)253cm【分析】(1)根据勾股定理的逆定理求出△BDC=90°,求出△ADC=90°即可;(2)在Rt△ADC中,由勾股定理得出a2=(a-6)2+82,求出a即可.【详解】解:证明:(1)设AB=AC=a cm,△BC=10cm,CD=8cm,BD=6cm,△BD2+CD2=BC2,△△BDC=90°,即△ADC=90°,△CD△AB;(2)△△ADC=90°,在Rt△ADC中,由勾股定理得:AC2=AD2+CD2,即a2=(a-6)2+82,解得:a=253,即AB=253cm.21.(1)△y1=70x+1200;△y2=80x;(2)若参演学生人数为150人,选择A公司比较合算,理由见解析【分析】(1)△根据A 公司给出的优惠条件是:服装按单价打七折,但校方需承担1200元的运费,可以写出学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式;△根据B 公司的优惠条件是:服装按单价打八折,公司承担运费,可以写出学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式;(2)先判断哪家公司比较合算,然后将x=150代入(1)中的两个函数解析式,求出相应的函数值,再比较大小即可说明理由.【详解】解:(1)△由题意可得,学校购买A 公司服装所付的总费用y 1(元)与参演学生人数x 之间的函数关系式是y 1=100x×0.7+1200=70x+1200,故答案为:y 1=70x+1200;△由题意可得,学校购买B 公司服装所付的总费用y 2(元)与参演学生人数x 之间的函数关系式是y 2=100x×0.8=80x ,故答案为:y 2=80x ;(2)若参演学生人数为150人,选择A 公司比较合算,理由:当x=150时,y 1=70×150+1200=11700,y 2=80×150=12000,△11700<12000,△若参演学生人数为150人,选择A 公司比较合算.22.(1)(4,0),(0,2);(2)122y x =-+;(3)52;(4)23y x =- 【分析】(1)由4OA =,12OC OA =.得2OC =,即可得出点A 、C 的坐标; (2)利用待定系数法求函数解析式;(3)由折叠的性质和平行线的性质得CE CF =,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理列方程可得CE 的长,从而求出面积;(4)设AC 与EF 的交点为G ,可知点G 为AC 的中点,再用待定系数法求函数解析式即可.【详解】解:(1)4=OA ,12OCOA =.2OC ∴=,(4,0)A ∴,(0,2)C ;故答案为:(4,0),(0,2);(2)设直线AC 的函数解析式为:y kx b =+,∴240b k b =⎧⎨+=⎩, ∴122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为:122y x =-+;(3)由折叠知:AE CE =,AEF CEF ∠=∠,//BC OA ,AEF CFE ∴∠=∠,CEF CFE ∴∠=∠,CE CF ∴=,设CE AE x ==,则4OE x =-,在Rt OCE ∆中,由勾股定理得:222(4)2x x -+=, 解得52x =,52CE ∴=,115522222CEF S CF OC ∆∴=⨯⨯=⨯⨯=, 故答案为:52;(4)设AC 与EF 的交点为G ,52AE CE ==, 32OE ∴=, 3(,0)2E ∴, 由折叠知,EF 垂直平分AC ,∴点G 为AC 的中点,∴点(2,1)G ,设直线EF 的函数解析式为:y mx n =+, ∴30221m n m n ⎧+=⎪⎨⎪+=⎩,∴23m n =⎧⎨=-⎩, ∴直线EF 的函数解析式为23y x =-,故答案为:23y x =-.23.(1)BE+FD=EF ;(2)DF=EF+BE ;(3)2+【分析】(1)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFG△△AFE ,根据全等三角形的性质得出EF=FG ,即可得出答案;(2)把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,证出△AFE△△AFG ,根据全等三角形的性质得出EF=FG ,即可得出答案;(3)把△ACE 旋转到ABF 的位置,连接DF ,证明△AFE△△AFG (SAS ),则EF=FG ,△C=△ABF=45°,△BDF 是直角三角形,根据勾股定理即可作出判断.【详解】解:(1)如图1所示:△AB=AD ,△把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,△△ADC=△B=90°,△△FDG=180°,点F 、D 、G 共线,△△DAG=△BAE ,AE=AG ,△△FAG=△FAD+△GAD=△FAD+△BAE=90°-45°=45°=△EAF ,即△EAF=△FAG . 在△EAF 和△GAF 中,AF AFEAF GAF AE AG=⎧⎪∠=∠⎨⎪=⎩,△△AFG△△AFE (SAS ).△EF=FG .△EF=DF+DG=DF+BE ,即EF=BE+DF .故答案为:BE+FD=EF ;(2)DF=EF+BE .证明:如图2所示.△AB=AD ,△把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合,△△ADC=△ABE=90°,△点C 、D 、G 在一条直线上.△EB=DG ,AE=AG ,△EAB=△GAD .又△△BAG+△GAD=90°,△△EAG=△BAD=90°.△△EAF=45°,△△FAG=△EAG -△EAF=90°-45°=45°.△△EAF=△GAF .在△EAF 和△GAF 中,EA GAEAF GAF EF FG=⎧⎪∠=∠⎨⎪=⎩,△△EAF△△GAF (SAS ).△EF=FG .△FD=FG+DG ,△DF=EF+BE ,故答案为:DF=EF+BE ;(3)把△ACE 旋转到ABF 的位置,连接DF ,则△FAB=△CAE .△△BAC=90°,△DAE=45°,△△BAD+△CAE=45°,又△△FAB=△CAE ,△△FAD=△DAE=45°,则在△ADF 和△ADE 中,AD AD FAD DAE AF AE =⎧⎪∠=∠⎨⎪=⎩,△△ADF△△ADE (SAS ).△DF=DE ,△C=△ABF=45°.△△BDF=90°.△△BDF 是直角三角形.△BD 2+BF 2=DF 2.△BD 2+CE 2=DE 2.=△BE=BD+DE=2+故答案为:2+24.(1)(2)(3)点D 的坐标为(2,0).【分析】(1)由一次函数解析式求得点A 、B 的坐标,则易求直角△AOB 的两直角边OB 、OA 的长度,所以在该直角三角形中利用勾股定理即可求线段AB 的长度;(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C ,构造直角△MNC ,则在该直角三角形中利用勾股定理来求求点M 与点N 间的距离;(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .在直角△DGN 和直角△MDH 中,利用勾股定理得到关于m 的方程12+(m+2)=42+(3-m )2通过解方程即可求得m 的值,则易求点D 的坐标.【详解】(1)令x=0,得y=4,即A (0,4).令y=0,得x=-2,即B (-2,0).在Rt△AOB 中,根据勾股定理有:AB(2)如图2,过M 点作x 轴的垂线MF ,过N 作y 轴的垂线NE ,MF 和NE 交于点C .根据题意:MC=4-(-1)=5,NC=3-(-2)=5.则在Rt△MCN 中,根据勾股定理有:MN(3)如图3,设点D 坐标为(m ,0),连结ND ,MD ,过N 作NG 垂直x 轴于G ,过M 作MH 垂直x 轴于H .则GD=|m -(-2)|,GN=1,DN 2=GN 2+GD 2=12+(m+2)2MH=4,DH=|3-m|,DM 2=MH 2+DH 2=42+(3-m )2△DM=DN ,△DM 2=DN 2即12+(m+2)=42+(3-m )2整理得:10m=20得m=2,△点D 的坐标为(2,0).25.(1)见解析;(2)510y x =--;(3)(2,0)或(1,0)-;(4)1119(,)33-或(4,7)-或813(,)33- 【分析】(1)根据同角的余角相等可证BCE =∠∠CAD ,从而利用AAS 可证BEC CDA ∆≅∆; (2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可得OAB HBF ∆≅∆,则(3,5)F -,利用待定系数法即可求得函数解析式;(3)由(1)得BOC CDA ∆≅∆,得(3,1)A ,分两种情况,可求出OM 的值,即可得出点M 的坐标;(4)分点P 为直角顶点或点C 为直角顶点时或点D 为直角顶点三种情况,分别画出图形,利用(1)中K 型全等可得点D 的坐标,即可解决问题.【详解】解:证明:(1)AD ED ⊥,BE ED ⊥,90BEC ADC ∴∠=∠=︒,90ACD DAC ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,BCE CAD ∴∠=∠,在BEC ∆和CDA ∆中,BEC ADCBCE DAC BC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CDA AAS ∴∆≅∆;(2)过点B 作1BF l ⊥,交2l 于F ,过F 作FH y ⊥轴于H ,则ABF ∆是等腰直角三角形,由(1)同理可证()OAB HBF AAS ∆≅∆,OA BH ∴=,OB FH =, 直线13:32l y x =+与x 轴交于点A ,与y 轴交于点B ,(2,0)A ∴-,(0,3)B ,2OA ∴=,3OB =,5OH ∴=,3FH =,(3,5)F ∴-,设2l 的函数解析式为y kx b =+,将点A ,F 的坐标代入得5k =-,10b =-,∴直线2l 的函数解析式为510y x =--,故答案为:510y x =--;(3)由(1)得BOC CDA ∆≅∆,1OC AD ∴==,2CD OB ==,(3,1)A ∴,12332AOB S ∆=⨯⨯=,1OAM S ∆∴=,2OM ∴=,(2,0)M ∴;当M 点在x 轴的负半轴上时,如下图,12332AOB S ∆=⨯⨯=,1OBM S ∆∴=,1OM ∴=,(1,0)M ∴-;故答案为:(2,0)或(1,0)-;(4)△若点P 为直角顶点时,如图,设点P 的坐标为(3,)m ,则PB 的长为4m +,90CPD ∠=︒,CP PD =,180CPM CDP PDH ∠+∠+∠=︒,90CPM PDH ∴∠+∠=︒,又90CPM DPM ∠+∠=︒,PCM PDH ∴∠=∠,在MCP ∆与HPD ∆中,PCM PDHCMP PHM PC PD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△()MCP HPD AAS ∆≅∆,CM PH ∴=,PM PD =,∴点D 的坐标为(7,3)m m +-+,又点D 在直线21y x =-+上,2(7)13m m ∴-++=-+, 解得:103m =-,即点D 的坐标为1119(,)33-;△若点C 为直角顶点时,如图,设点P 的坐标为(3,)n ,则PB 的长为4n +,CA CD =,同理可证明()PCM CDH AAS ∆≅∆,PM CH ∴=,MC HD =,∴点D 的坐标为(4,7)n +-, 又点D 在直线21y x =-+上,2(4)17n ∴-++=-,解得:0n =,∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为(4,7)-;△若点D 为直角顶点时,如图,设点P 的坐标为(3,)k ,则PB 的长为(4)k +,CD PD =,同理可证明()CDM PDQ AAS ∆≅∆,MD PQ ∴=,MC DQ =,77(,)22k k D +-∴-, 又点D 在直线21y x =-+上,772122k k +-∴-⨯+=-, 解得:53k =-, ∴点P 与点A 重合,点M 与点O 重合,即点D 的坐标为813(,)33-,综上所述,点D 的坐标为1119(,)33-或(4,7)-或813(,)33-, 故答案为:1119(,)33-或(4,7)-或813(,)33-. 【点睛】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,一次函数图象上点的坐标的特征,作辅助线构造模型,运用分类思想是解题的关键.。
八年级第一学期数学期中考试试卷及参考答案(北师大版)
图1 图2 北师大版八年级上学期期中测试题数学(本试卷满分120分)一、精心选一选(每小题3分,共30分)1. 台风是一种破坏性极大的自然灾害,下列说法中能确定台风位置的是( )A. 北纬26°,东经133°B. 西太平洋C. 距离台湾300海里D. 台湾与冲强岛之间2. 在实数0.3,02π,0.123456…中,无理数的个数是( ) A. 2 B. 3 C. 4 D. 53. 如图1,在水塔O 的东北方向32 m 处有一抽水站A ,在水塔东南方向24 m 处有一建筑工地B ,要在A ,B 之间铺设一根直水管,则水管的长为( )A. 40 mB. 45 mC. 50 mD. 56 m4. 已知点A (-3,2m -1)在x 轴上,点B (n +1,4)在y 轴上,则点C (m ,n )位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 化简下列式子:①2233-===-;②()201520152=-;③()1642=-; ④2282=-+-a a ;⑤()201520152-=-.其中正确的是( )A. ①和⑤B. ②和③C. ①和③D. ②和④6. 如图2,长方形OABC 的边OA 在x 轴上,O 与原点重合,OA =1,OC =2,点D 的坐标为(0,4),则直线BD 的函数表达式为( )A. y =-x +2B. y =-2x +4C. y =-x +3D. y =2x +47. 如图3,在平面直角坐标系中,点P 的坐标为(-2,3),以点O 为圆心,OP 长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于( )A. -4与-3之间B. 3与4之间C. -5与-4之间D. 4与5之间8. 直线y =ax +b 与y =bx +a 在同一平面直角坐标系中的图象位置可能是( )A B CD图39. 如图4,在平面直角坐标系xOy中,A,B都是直线y=-2x+m(m为常数)上的点,且横坐标分别是-1,2,AC∥y轴,BC∥x轴,则△ABC的面积为()A. 6B. 9C. 12D. 因m不确定,故面积不确定10. 一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y(千米)与行驶时间x(小时)之间的函数图象如图5所示,则下列说法中错误的是()A. 客车比出租车晚4小时到达目的地B. 客车速度为60千米/时,出租车速度为100千米/时C. 两车出发后3.75小时相遇D. 两车相遇时客车距乙地还有225千米二、细心填一填(每小题3分,共24分)11.有意义,则x的取值范围是_______.12. 已知一次函数y=(m-1)x+2的图象不经过第三象限,则m的取值范围是_______.13. 已知一个正数的两个平方根分别是3x-2和4-x,则这个正数是_____.14. 如图6,已知点A(a,b),O是原点,OA=OA1,OA⊥OA1,则点A1的坐标为______.15. 实数a,b在数轴上对应的点分别为A,B,且A在原点左侧,B在原点右侧,化简|a-b|_____.16. 如图7,点A(a,4)在一次函数y=-3x-5的图象上,图象与y轴的交点为B,则△AOB的面积为_____.17. 如图8,已知∠B=45°,AB=2 cm,点P为∠ABC的边BC上一动点,则当BP=_______cm时,△BAP为直角三角形.18. 如图9,在平面直角坐标系中,一颗棋子从点P(0,-2)处开始依次关于点A(-1,-1),B(1,2),C(2,1)作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于点C的对称点处,……,如此下去,则经过第2015次跳动之后,棋子落点的坐标为______.三、耐心做一做(共66分)19.(6分)计算:(1(2)(.图4 图7 图8图9图5y/千米x/小时O 图6图13① ②图1420.(6分)如图10,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,求一次函数的表达式.21.(8分)(1)若点M (5+a ,a -3)在第二、四象限的角平分线上,求a 的值;(2)已知点N 的坐标为(2-a ,3a +6),且点N 到两坐标轴的距离相等,求点N的坐标.22.(8分)阅读下列内容:∵1<2<4,∴12.11.试完成下列问题:(1的整数部分和小数部分;(2)若99a 和b ,求ab -3a +4b +8的值.23.(7分)如图11,已知∠AOB =90°,OA =90 cm ,OB =30 cm ,一机器人在点B 处感应到点A 处的小球沿AO 方向匀速滚向点O ,机器人立即从点B 出发,沿直线匀速前进拦截小球,且恰好在点C 处截住了小球,如果小球滚动的速度与机器人行走的速度相等,试求机器人行走的路程BC.24.(9分)一艘轮船与一艘快艇沿相同方向行驶,图12所示为轮船与快艇行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象). 根据图象解答下列问题:(1)请分别写出轮船和快艇行驶过程中路程与时间的函数关系式(不写自变量的取值范围);(2)轮船和快艇在途中行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?25.(10分)如图13-①,一个长方体的木柜放在墙角处(与墙面和地面均没有缝隙),一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. 如图13-②,小明认为蚂蚁能够最快到达目的地的路线为AC 1,小王认为蚂蚁能够最快到达目的地的路线为AC 1′. 已知AB =BC =4,CC 1=5,请你帮助他们求出蚂蚁爬过的最短路线的长.图10图11 O y/千米x/小时 图1226.(12分)如图14,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在,求出此时点M的坐标;若不存在,请说明理由.参考答案一、1. A 2. B 3. A 4. D 5. D 6. B 7. A 8. A 9. B 10. D二、11. x≥-5 12. m<1 13. 25 14.(-b,a)15. b 16. 7.5 17.18.(4,4)提示:连接PA并延长到点M,使AM=PA,则点M的坐标是(-2,0);连接MB并延长到点N,使BN=MB,则点N的坐标是(4,4);连接NC并延长到点Q,使QC=NC,发现点Q与点P重合.因为棋子跳动3次后又回到点P处,所以经过第2015次跳动后,即2015÷3=671……2,棋子落在点N处,故其坐标为(4,4).三、19.(1(2)420-20. 解:由图象可知,一次函数图象经过点A(0,2),点B的横坐标是-1.=-图象上,所以y=- (-1)=1.所以点B的坐标为(-1,1).因为点B在正比例函数y x设一次函数表达式为y=kx+b,把A(0,2),B(-1,1)代入,得b=2,k=1,所以一次函数的表达式为y=x+2.21. 解:(1)由题意,得5+a+a-3=0,解得a=-1;(2)由题意,得|2-a|=|3a+6|,即2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点N的坐标为(3,3)或(6,-6).22. 解:(1)因为3433;(2)因为99的小数部分分别是a和b,所以a=99-3-3,b=9-5=4所以ab-3a+4b+83)(4)-33)+4(48=13-12+-9+16-8=8.23. 解:设机器人行走的路程BC是x cm,则AC=BC=x cm.因为AC=90 cm,所以OC=(90-x)cm. 由勾股定理,得302+(90-x)2=x2,解得x=50,即BC =50 cm.所以机器人行走的路程是50 cm.24. 解:(1)设快艇行驶过程中路程与时间的函数关系式是y1=k1x,把点(8,160)代入,得160=8 k1,解得k1=20.所以快艇行驶过程中路程与时间的函数关系式是y1=20x;设轮船行驶过程中路程与时间的函数关系式为y2=k2x+b.由图象,知该直线过(0,40),(8,120),所以b =40,8k2+b =120,解得k2=10.所以轮船行驶过程中路程与时间的函数关系式为y2=10x+40;(2)由图象可以看出,快艇在8小时内行驶了160千米,所以它的速度是160÷8=20(千米/时),轮船在8小时内行驶了120-40=80(千米),所以轮船的速度是80÷8=10(千米/时);(3)设快艇出发x小时赶上轮船,根据题意得10x+40=20x,解得x=4.所以快艇出发4小时赶上轮船.25. 解:蚂蚁沿着木柜表面经线段A1B1到C1′,爬过路线的长是L1;蚂蚁沿着木柜表面经线段BB1到C1,爬过路线的长是L2.因为L1>L2.26. 解:(1)因为点C的坐标为(0,6),所以设直线AC的函数表达式为y=kx+6.因为点A的坐标为(4,2),所以4k+6=2,解得k=-1.所以直线AC的函数表达式为y=-x+6.(2)由已知,得OC=6.因为点A的坐标为(4,2),所以△OAC的边OC上的高为4.所以1=2OACS∆×6×4=12.(3)①如图1,当点M位于线段OA上时,设点M的坐标为(a,b),则△OMC的边OC上的高为a.所以14OMCS∆=OACS∆=14×12=3.因为OC=6,所以12×6a=3.所以a=1. 因为点A的坐标为(4,2),所以直线OA的函数表达式为y=12x.因为点M在直线OA上,所以b=12×1=12.所以当点M的坐标为112⎛⎫⎪⎝⎭,时,△OMC的面积是△OAC面积的14;②如图2,当点M位于线段AC上时,设点M的坐标为(m,n),同①可得m=1.因为点M在直线AC上,所以n=-1+6=5.所以当点M的坐标为(1,5)时,△OMC的面积是△OAC面积的14;③如图3,当点M位于射线CM上时,设点M的坐标为(s,t),同①可得s=-1.因为点M在直线AC上,所以t=-(-1)+6=7.所以当点M的坐标为(-1,7)时,△OMC的面积是△OAC面积的1 4 .综上所述,存在满足题意的点M,其坐标为112⎛⎫⎪⎝⎭,或(1,5)或(-1,7).图1 图2 图3。
八年级2008学年第一学期数学期中考试
八年级2008学年第一学期数学期中考试参考答案及评分标准一、 选择题(每题3分,共30分)二、 填空题(每题3分,共18分)11、3; 12、等边三角形; 13、6cm ; 14、8;15、AB=CD ; 16、4;三、 解答题17、(9分)解:原式 =9+(-3)+61⨯12 ----------------------6分 =6+2 -------------------------8分=8 ----------------------------9分18、(9分)解:原式=2.466+2.449-0.707 -----------------------6分=4.951-0.707 ---------------------------------8分≈4.24 -------------------------------------9分19、(10分)解:x-1=±84 ----------------------------------4分x-1=8 或 x-1=-8 -------------------------------7分∴x=9 或 x=-7 -------------------------------------10分20、(10分)证明: AE\\CF∴∠AEB=∠CFB ∠AED=∠CFB -------3分又 BE=DF∴BF=DE ---------------------------------------5分AE=CF (已知)∴∆ADE ≅∆CBF ------------------------------7分∴∠ADE=∠CBF --------------------------------9分∴AB\\BC -----------------------------------------10分21、(12分)解: ∠DCB=1100 ∠DCA=300∴∠ACB=800 -----------------------------------3分 ∆ABC ≅∆DEC AB 与DE 是对应边∴∠ACB=∠DCE=800 --------------------------8分∴∠BCE=1100-800=300 -----------------------10分 ∴∠ACE=1100-300-300=500 -------------------12分22、(12分)解:(1)如图:CE 是∠ACB 的平分线(图略) ----------3分(2)证明: ∠ABC=∠ACB∠ABD=21∠ACB ∠ACE=21∠ABC ∴∠ABD=∠ACE ----------------------------6分 ∠ABC=∠ACB∴AB=AC ∠A=∠A --------------------------8分 ∴∆ABD ≅∆ACE(ASA) -------------------10分 ∴BD=CE --------------------------------------12分23、(12分)解: DE 垂直平分AB∴AE=BE AD=BD -------------------------------------------2分 ∴∆ADE ≅∆BDE ------------------------------------------ -4分 ∴∠B=∠EAB ----------------------------------------------6分 ∠CAB=∠B+300=∠EAB+300∴∠CAE=300 ------------------------------------------------8分 ∴∠AEC=600 ------------------------------------------------10分 ∴∠AEB=1200-----------------------------------------------12分24(14分)证明: AE 平分∠PAB∴∠DAE=∠FAE --------------------------------------1分 AD=AF AE=AE∴∆ADE ≅∆AFE(SAS) -----------------------------------4分 ∴∠ADE=∠AFE ----------------------------------------5分 AD\\BC∴∠ADE+∠C=1800---------------------------------------7分 ∠AFE+∠BFE=1800∴∠C=∠BFE -------------------------------------------9分 BE 平分∠ABC∴∠ABE=∠CBE --------------------------------------------10分 BE=BE∴∆EBF ≅∆ECB(AAS)∴BF=BC ------------------------------------------------12分 ∴AD+BC=AF+BF即AD+BC=AB -----------------------------------------------14分25(14分)解:(1)连结PA ----------------------------------------------------------------1分 PA是等腰三角形∆ABC底边上的中线∴AP⊥PC ------------------------------------------------------------------2分 AB⊥AC∴∠PAE=900-∠PAC∠C=900-∠PAC∴∠PAE=∠C --------------------------------------------------------------4分同理:PA⊥PC PE⊥PF∴∠APE=∠CPF ---------------------------------------------------------6分 AB=AC ∠BAC=900∴∠C=450-----------------------------------------------------------------7分AP⊥PC∴∠PAC=∠C=450------------------------------------------------------8分∴PA=PC --------------------------------------------------------9分在∆PAE和∆PCF中∠PAE=∠CPA=PC∠APE=∠CPF∴∆PAE≅∆PCF (ASA)---------------------------------------------------12分∴PE=PF ----------------------------------------------------------------13分∴∆PEF始终是等腰直角三角形--------------------------------------14分(解法不唯一,其它解法可参照以上评分标准)。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,无理数是()B.πC.﹣13D.52.已知点A的坐标为(﹣4,﹣3),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.分别以下列四组线段为三边,能构成直角三角形的是()A.0.3,0.4,0.5B.1,1,2C.1,2,3D.9,16,254.若y=mx|m﹣1|是正比例函数,则m的值是()A.0B.1C.2D.0或﹣2的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.如图所示,在正方形网格中有A,B,C三个点,若建立平面直角坐标系后,点A的坐标为(2,1),点B的坐标为(1,﹣2),则点C的坐标为()A.(1,1)B.(﹣2,1)C.(﹣1,﹣2)D.(﹣2,﹣1)7.如图,有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm,在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程是()A.15cm B.17cm C.18cm D.30cm 8.在正比例函数y=kx中,y的值随着x值的增大而减小,则一次函数y=kx+k在平面直角坐标系中的图象大致是()A.B.C.D.9.点P(3,﹣4)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m二、填空题的立方根是________.11.2712.如果一个数的平方根是2x+1和x﹣7,那么这个数是___.13.已知点A(﹣2,y1),B(3,y2)在一次函数y=2x﹣3的图象上,则y1___y2(填“>”,“<”或“=”).14.长方形ABCD在平面直角坐标系中的位置如图所示,若AD=5,点B的坐标为(﹣3,3),则点C的坐标为___.15.如图,在△ABC中,∠ACB=90°,AB=10,BC=6,CD⊥AB于点D,则CD的长为___.16.如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是___.17.如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.18.若实数x,y满足5x-5x-+8,则2x﹣y=___.三、解答题19.计算:38﹣(π﹣3.14)0218182﹣1)(3)5-7)5+75220.如图,在△ABC中,D是BC边上的一点,若AB=5,BD=3,AD=4,AC=8,求CD的长.21.在弹性限度内,弹簧的长度与所挂物体质量满足一次函数关系,某数学兴趣小组通过实验发现弹簧的长度y(cm)与所挂物体质量x(kg)之间的关系如下表:x/kg0123⋯y/cm14.51515.516⋯(1)根据上表数据求出y与x之间的关系式;(2)求当所挂物体的质量为6千克时弹簧的长度.22.如图,在平面直角坐标中,△ABC各顶点都在小方格的格点上.(1)画出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.23.甲、乙两商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原价收费,其余每件优惠20%;乙商场的优惠条件是:每件优惠25%.设所买商品为x(x>1)件,甲商场收费为1y元,乙商场收费为y2元.(1)分别求出y1,y2与x之间的关系式;(2)当所买商品为5件时,选择哪家商场更优惠?请说明理由.24.如图,在Rt△ABC中,∠B=90°,AB=9,BC=12,D为BC上一点,连接AD,将△ABC沿AD折叠,使点B恰好落在边AC上的点B'处,求DB'的长度.25.如图,直线y=kx+4与x轴相交于点A,与y轴相交于点B,且(1)求点A的坐标;(2)求k的值;(3)C为OB的中点,过点C作直线AB的垂线,垂足为D,交x轴正半轴于点P,试求点P的坐标及直线CP的函数表达式.26.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.参考答案1.B【解析】【分析】根据无理数的概念“无限不循环的小数”结合算术平方根可进行排除选项.【详解】,313、5;故选B.【点睛】本题主要考查无理数及算术平方根,熟练掌握无理数的概念是解题的关键.2.C【解析】【分析】根据平面直角坐标系象限的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)可直接进行求解.【详解】解:∵点A的坐标为(﹣4,﹣3),∴点A在第三象限;故选C.【点睛】本题主要考查平面直角坐标系象限的符号,熟练掌握平面直角坐标系象限的符号特点是解题3.A 【解析】【分析】根据勾股定理的逆定理:若a、b、c 为三角形的三边长,满足222+=a b c ,那么这个三角形就是直角三角形,由此进行求解即可.【详解】解:A、∵2220.30.40.5+=,∴能构成直角三角形,故此选项符合题意;B、∵2221122+=≠,∴不能构成直角三角形,故此选项不符合题意;C、∵2221253+=≠,∴不能构成直角三角形,故此选项不符合题意;D、∵22291633725+=≠,∴不能构成直角三角形,故此选项不符合题意;故选A.【点睛】本题主要考查了勾股定理的逆定理,解题的关键在于能够熟练掌握勾股定理的逆定理.4.C 【解析】【分析】根据正比例函数的概念:形如y=kx,其中k≠0的函数,可知11,0m m -=≠,进而求解即可.【详解】解:由题意得:11,0m m -=≠,∴2m =;【点睛】本题主要考查正比例函数的概念,熟练掌握正比例函数的概念是解题的关键.5.B【解析】【分析】利用4<5<91的范围.【详解】∵4<5<9,故选:B.【点睛】本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个连续的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.6.D【解析】【分析】根据点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立坐标系,进而问题可求解.【详解】解:由点A的坐标为(2,1),点B的坐标为(1,﹣2)可建立如下坐标系:∴点C的坐标为(﹣2,﹣1);故选D.【点睛】本题主要考查平面直角坐标系,解题的关键是根据点A、B的坐标建立平面直角坐标系.7.A【分析】如图把圆柱体展开,连接AB,然后可知AC=9cm,BC=12cm,进而可由两点之间,线段最短可知AB即为所求.【详解】解:如图所示:∵圆柱的高等于12cm,底面上圆的周长等于18cm,∴AC=9cm,BC=12cm,∴2215cmAB AC BC=+=,∴蚂蚁沿圆柱侧面爬行的最短路程是15cm;故选A.本题主要考查利用勾股定理求最短路径,熟练掌握利用勾股定理求最短路径是解题的关键.8.D【解析】【分析】根据正比例函数y=kx中,y的值随着x值的增大而减小,可得k<0,从而可以判断一次函数图像经过第二、三、四象限,由此求解即可.【详解】解:∵正比例函数y=kx中,y的值随着x值的增大而减小,∴k<0,∴一次函数y=kx+k与y轴的交点在y轴的负半轴,∴一次函数y=kx+k的图像经过第二、三、四象限,故选D.【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出k<0.9.D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:∵3>0,﹣4<0,∴点P(3,﹣4)所在的象限是第四象限.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.C【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C..【点睛】本题主要考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.11.-3【解析】【分析】根据立方根的定义求解即可.【详解】解:-27的立方根是-3,故答案为:-3.【点睛】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.12.25或225【解析】【分析】根据一个正数的两个平方根互为相反数或相等,可知2x+1+x-7=0或2x+1=x-7,求解x,进而问题可求解.【详解】解:由题意得:2x+1+x-7=0或2x+1=x-7,解得:x=2或x=-8,∴这个正数为()222125⨯+=或(-15)²=225,故答案为25或225.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.13.<【解析】【分析】根据题意易得k=2>0,则有y 随x 的增大而增大,再由点A(﹣2,y 1),B(3,y 2)在一次函数y=2x﹣3的图象上可进行求解.【详解】解:由题意得:k=2>0,∴y 随x 的增大而增大,∵点A(﹣2,y 1),B(3,y 2)在一次函数y=2x﹣3的图象上,∴12y y <;故答案为<.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.14.(2,3)【解析】【分析】由题意易证BC∥AD,则有点B 与点C 的纵坐标相等,然后根据两点距离公式可进行求解.【详解】解:在长方形ABCD 中,BC∥AD,∴点B 与点C 的纵坐标相等,设点(),3C x ,∵AD=5,∴BC=5,∴352x =-+=,∴C(2,3);故答案为(2,3).15.4.8【分析】先利用勾股定理求出AC 的长,再由三角形面积公式11=22ABC S AC BC AB CD ⋅=⋅△得到AC BC CD AB⋅=,由此即可得到答案.【详解】解:∵在△ABC 中,∠ACB=90°,AB=10,BC=6,∴8AC ==,∵CD⊥AB,∴11=22ABC S AC BC AB CD ⋅=⋅△,∴ 4.8AC BC CD AB⋅==,故答案为:4.8.16.45°【分析】如图,连接EF,由题意易得△AHE≌△EGF,则有∠AEH=∠EFG,AE=EF,然后可得∠AEH+∠FEG=90°,则有△AEF 是等腰直角三角形,进而问题可求解.【详解】解:如图,连接EF,∵AH=EG=2,∠AHE=∠EGF=90°,EH=FG=1,∴△AHE≌△EGF,∴∠AEH=∠EFG,AE=EF,∵∠EFG+∠FEG=90°,∴∠AEH+∠FEG=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴∠EAF=45°;故答案为45°.【点睛】本题主要考查全等三角形的性质与判定及等腰直角三角形的性质与判定,熟练掌握全等三角形的性质与判定及等腰直角三角形的性质与判定是解题的关键.17.(22018,0)【分析】根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.【详解】根据题意得:A1和B1的横坐标为1,把x=1代入y=x得:y=1B1的纵坐标为1,即A 1B 1=1,∵△B 1A 1A 2为等腰直角三角形,∴A 1A 2=1,A 2和B 2的横坐标为1+1=2,同理:A 3和B 3的横坐标为2+2=4=22,A 4和B 4的横坐标为4+4=8=23,…依此类推,A 2019的横坐标为22018,纵坐标为0,即点A 2019的坐标为(22018,0),故答案为:(22018,0).【点睛】此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.18.2【分析】根据根式有意义的条件可知5x =,然后可知y=8,进而代入求解即可.【详解】解:∵实数x,y 满足50,50x x -≥-≥,∴50x -=,解得:5x=,∴y=8,∴22582x y -=⨯-=,故答案为2.19.(1)3(2)2;(3)1-【分析】(1)根据零次幂、立方根及绝对值可直接进行求解;(2)先对二次根式进行化简,然后再进行二次根式的加减运算;(3)利用乘法公式进行二次根式的混合运算即可.【详解】解:(1)原式=2123-+=-(2)原式=22=;(3)原式=207591--+=.【点睛】本题主要考查二次根式的混合运算及零次幂,熟练掌握二次根式的混合运算及零次幂是解题的关键.20.CD =【解析】【分析】由题意可知222AB BD AD =+,则有90ADB ADC ∠=∠=︒,然后根据勾股定理可求解.【详解】解:∵AB=5,BD=3,AD=4,∴22225,9,16AB BD AD ===,∴222AB BD AD =+,∴90ADB ADC ∠=∠=︒,在Rt△ADC 中,AC=8,∴DC ==.【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及其逆定理是解题的关键.21.(1)()0.514.50y x x =+≥;(2)当所挂物体的质量为6千克时弹簧的长度为17.5cm【解析】【分析】(1)设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,然后根据表格中的数据把(0,14.5),(1,15)代入求解即可;(2)令6x =,求出此时y 的值即为弹簧的长度.【详解】解:设弹簧的长度与所挂物体质量满足一次函数关系式为y kx b =+,由题意得:14.515b k b =⎧⎨+=⎩,∴0.514.5k b =⎧⎨=⎩,∴一次函数关系式为()0.514.50y x x =+≥;(2)当当所挂物体的质量为6千克时,即6x =,∴0.5614.517.5y =⨯+=,∴当所挂物体的质量为6千克时弹簧的长度为17.5cm.【点睛】本题主要考查了一次函数的应用,解题的关键在于能够熟练掌握求一次函数解析式.22.(1)图见详解,()()()1112,3,3,2,1,1A B C ------;(2)图见详解,()0,1P【解析】【分析】(1)分别作出点A、B、C 关于x 轴的对称点,然后顺次连接即可,最后根据图象得到点的坐标即可;(2)作点A 关于y 轴的对称点D,然后连接DB 1,交y 轴于点P,此时点P 即为所求,进而求出直线DB 1的函数解析式即可求解点P 的坐标.【详解】解:(1)如图所示,由图象可知()()()1112,3,3,2,1,1A B C ------;(2)作点A 关于y 轴的对称点D,然后连接DB 1,交y 轴于点P,由轴对称的性质可知AP PD =,则有PA+PB 1的最小值即为1DB 的长,∴设直线DB 1的函数解析式为y kx b =+,把点()()12,3,3,2D B --代入得:2332k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=⎩,∴直线DB 1的函数解析式为1y x =+,令x=0时,则有y=1,∴()0,1P .【点睛】本题主要考查坐标与图形、轴对称的性质及最短路径问题,熟练掌握坐标与图形、轴对称的性质及最短路径问题是解题的关键.23.(1)()124006001y x x =+>,()222501y x x =>;(2)当所买商品为5件时,选择乙商场更优惠,理由见解析【解析】【分析】(1)根据两家商场的优惠方案分别求出对应的关系式即可;(2)根据关系式分别求出x=5时的两个商场的收费,即可得解.【详解】解:(1)由题意得:()()()1300030001120%24006001y x x x =+--=+>,()()23000125%22501y x x x =⨯-=>;(2)当5x =时,12400560012600y =⨯+=,22250511250y =⨯=,∴12y y >,∴当所买商品为5件时,选择乙商场更优惠.【点睛】本题考查了列函数关系式和代数式求值,读懂题目信息,理解两家商场的优惠方案是解题的关键.24.92【解析】【分析】由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,先利用勾股定理求出15AC ==,即可得到6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,则()222126x x -=+,解方程即可.【详解】解:由折叠的性质可得9AB AB '==,9DB DB '==,90AB D B '==o ∠∠,∴=180=90CB D AB D ''-o o∠∠∵∠B=90°,AB=9,BC=12,∴15AC ==,∴6B C AC AB ''=-=,设DB DB x '==,则12DC BC BD x =-=-,在直角三角形B CD '中:222CD DB B C ''=+,∴()222126x x -=+,解得92x =,∴92DB '=.【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质与勾股定理.25.(1)()2,0A -;(2)2k =;(3)()4,0P ,直线CP 的解析式为122y x =-+【解析】【分析】(1)由题意可把x=0代入直线解析式求得点B 的坐标,则有OB=4,然后根据勾股定理可得OA=2,则可得点A 的坐标;(2)由(1)可把点A 的坐标代入解析式求解即可;(3)由题意易得OC=OA=2,然后可证△AOB≌△COP,进而可得OP=OB=4,最后问题可求解.【详解】解:(1)把x=0代入直线y=kx+4可得:y=4,∴()0,4B ,∴OB=4,在Rt△AOB2OA ==,∴()2,0A -;(2)由(1)可把点()2,0A -代入直线y=kx+4得:240k -+=,解得:2k =;(3)∵点C 为OB 的中点,OB=4,∴2OC =,∴OC OA =,∵90AOB COP ∠=∠=︒,DP AB ⊥,∴90BAO ABO BAO CPO ∠+∠=∠+∠=︒,∴ABO CPO ∠=∠,又∵∠AOB=∠COP=90°,∴△AOB≌△COP(AAS),∴OP=OB=4,∴()4,0P ,设直线CP 的解析式为y ax c =+,则把点()4,0P ,()0,2C 代入得:∴240c a c =⎧⎨+=⎩,解得:212c a =⎧⎪⎨=-⎪⎩,∴直线CP 的解析式为122y x =-+.【点睛】本题主要考查一次函数与几何的综合及勾股定理,熟练掌握一次函数与几何的综合及勾股定理是解题的关键.26.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【解析】【分析】(1)根据图象可直接求出A、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】解:(1)由图象可知:A、B 两地的相距20km;乙骑车的速度为(30-20)÷2=5km/h;故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,∴甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,∴乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y x y x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,∴甲追上乙用了4小时的时间.。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数是无理数的是()A.227B.(4﹣π)0C.﹣πD2.下列函数中,y是x的正比例函数的是()A.y=5x﹣1B.y=12x C.y=x2D.y=3x3.如果点P(2,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥04)A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 6.下列计算正确的是()A B=1CD7.在一次函数y=﹣3x+9的图象上有两个点A(x1,y1),B(x2,y2),已知x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.有一长、宽、高分别为5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A B C D.2cm9.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A .B .C .D .10.已知点12(4,),(2,)y y -都在直线122y x =+上,则1y 和2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .无法确定二、填空题11.函数y =中,自变量x 的取值范围是________.12.若直角三角形的两直角边长分别为3cm ,4cm ,则斜边的长为__________cm .13.在平面直角坐标系中,点()1,1A -和()1,1B 关于______轴对称.14.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).15.已知实数x,y 满足2y =,则()2011y x -的值为__________.16.若某个正数的两个不同的平方根分别是2m ﹣4与2,则m 的值是________.17.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8.则边BC 的长为_______.三、解答题18.191|﹣3)0+.20.已知函数()0y kx b k =+≠的图象经过点()2,1A -,点51,2B ⎛⎫ ⎪⎝⎭(1)求直线AB 的解析式;(2)若在直线AB上存在点C,使1=2ACO ABOS S∆∆,求出点C坐标.21.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖.⑴当购买数量超过10本时,分别写出在甲、乙两商店购买练习本的费用y(元)与购买数量x(本)之间的关系式;⑵小明要买30本练习本,到哪个商店购买较省钱?22.如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC 边上的点F处,AE为折痕.请回答下列问题:(1)AF=________;(2)试求线段DE的长度.23.在平面直角坐标系xOy中, ABC三个顶点的坐标分别为A(0,2),B(2,0),C(5,3).(1)点C关于x轴对称的点C1的坐标为,点C关于y轴对称的点C2的坐标为.(2)试说明 ABC是直角三角形.(3)已知点P在x轴上,若12PBC ABCS S=△△,求点P的坐标.24.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1并写出坐标;(2)求出△A1B1C1的面积.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6),与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案1.C【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、227是分数,属于有理数,故此选项不符合题意;B、(4﹣π)0=1,1是有理数,故此选项不符合题意;C、﹣π是无理数,故此选项符合题意;D2,2是有理数,故此选项不符合题意;故选:C.【点睛】本题考查的是无理数的定义,掌握“无限不循环的小数是无理数”是解题的关键.2.B【解析】【分析】一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数,据此判断即可.【详解】解:A.y=5x﹣1不属于正比例函数,不合题意;B.y=12x属于正比例函数,符合题意;C.y=x2不属于正比例函数,不合题意;D.y=3x不属于正比例函数,不合题意;故选:B.【点睛】本题考查了正比例函数的识别,熟知形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数是解本题的关键.3.A【解析】【分析】根据第四象限的点的坐标特点解答即可.解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.4.B【解析】【详解】根据9<13<16,可知32<13<42,可知34.故选B.【点睛】此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.D【解析】【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、62+122≠132,故不符合题意,B、32+42≠72,故不符合题意,C、7.5,8.5不是正整数,故不符合题意,D、82+152=172,故符合题意.故选:D.6.C【解析】【分析】根据二次根式的运算方法判断选项的正确性.解:A选项错误,不是同类二次根式不可以加减;B选项错误,不是同类二次根式不可以加减;C选项正确;D选项错误,2故选:C.7.A【解析】根据一次函数解析式一次项系数的正负判断函数的增减关系.【详解】解:∵一次函数的一次项系数k=-3<0,∴y随着x的增大而减小,∵x1>x2,∴y1<y2.故选:A.8.A【解析】根据勾股定理即可得到结论.【详解】如图,,,故选:A.【点睛】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.9.D根据正比例函数y kx =的图象经过第一,三象限可得: 0k >,因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10.C 【解析】【分析】根据一次函数的增减性进行判断.【详解】∵122y x =+,k >0,∴y 随x 的增大而增大,又∵点12(4,),(2,)y y -在直线122y x =+上,且-4<2,∴y 1<y 2.故选:C .【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:一次函数y=kx+b ,当k>0时,图象从左到右上升,y 随x 的增大而增大;当k<0时,图象从左到右下降,y 随x 的增大而减小.11.x≥0【解析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵y=∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.12.5【解析】【分析】直接根据勾股定理两直角边的平方和等于斜边的平方进行计算.【详解】根据勾股定理,得斜边的长5=(cm).故答案为:5【点睛】此题考查勾股定理,解题关键在于掌握运算法则.13.x【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【详解】解:点A(1,−1)和B(1,1)关于x轴对称,故答案为:x.【点睛】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.14.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.15.-1【解析】【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.【点睛】此题考查二次根式有意义的条件,正确得出x的值是解题关键.16.1【解析】【分析】根据平方根的定义得出2m﹣4+2=0,再进行求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m ﹣4与2,∴2m ﹣4+2=0,∴m =1;故答案为:1.【点睛】本题考查了平方根的应用,能得出关于m 的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.17.21或9【解析】【分析】根据题意,ABC 可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.【详解】解:在ABC 中,17AB =,10AC =,BC 边上高8AD =,如图所示,当ABC 为锐角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:15621BC BD DC =+=+=;如图所示:当ABC 为钝角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:1569BC BD DC =-=-=;综上可得:BC 的长为:21或9.故答案为:21或9.【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.18.56【解析】【分析】化简二次根式,然后先进行二次根式分母有理化计算,最后算加减.【详解】125024223226232)22622⨯2610262+-6526+-=5-.【点睛】本题主要考查了二次根式的混合运算,理解二次根式的性质,掌握二次根式的混合运算的运算顺序和计算法则是解答本题的关键.19+2【解析】【分析】利用零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算法则进行计算即可.【详解】解:原式)1153=--+-1153=+-+-2.【点睛】本题主要考查了零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.20.(1)y=12x+2;(2)C (-1274,)或(-1736,);【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C 是线段AB 的中点,或A 是线段BC 的三等分点,即可求得C 的坐标.【详解】(1)∵一次函数y=kx+b 的图象经过点A (-2,1)、点B (1,52).∴2152k b k b -+⎧⎪⎨+⎪⎩==,解得:122k b ==⎧⎪⎨⎪⎩.∴这个一次函数的解析式为:y=12x+2.(2)如图,∵在直线AB 上存在点C ,使S △ACO =12S △ABO ,∴C是线段AB的中点,或A是线段BC的三等分点,∵A(-2,1),B(1,5 2).∴C(-1274,)或(-7124,);【点睛】此题考查待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.21.(1)y甲=0.7x+3,y乙=0.85x.(2)在甲商店购买较省钱.【解析】【分析】(1)根据题意:甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖,列出函数关系式即可;(2)把x=30,分别代入甲乙的解析式,求出y的值就可以得出结论.【详解】⑴当x>10时,y甲=10+0.7(x-10)=0.7x+3,y乙=0.85x.⑵当x=30时,y甲=0.7×30+3=24元;y乙=0.85×30=25.5元;∵y甲<y乙,∴在甲商店购买较省钱.【点睛】此题考查一次函数的应用:关键在于根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.22.(1)10;(2)DE=5.【解析】【分析】(1)由折叠性质可得AF=AD,根据矩形的性质即可得到AF的长;(2)利用勾股定理可求出BF的长,进而求出CF的长,设DE=x,根据折叠性质可得EF=DE=x,利用勾股定理列出方程求得x的值即可得答案.【详解】(1)在长方形ABCD中,BC=10,∴AD=BC=10,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴AF=AD=10,故答案为:10(2)∵AB=8,AF=10,在Rt△ABF中,AB2+BF2=AF2,∴6BF==,∴CF=BC﹣BF=10-6=4,设DE=x,则CE=8﹣x,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴EF=DE=x,∠D=∠AFE=90°,∴EF2=CF2+CE2,即x2=(8﹣x)2+42,解得:x=5,∴DE=5.【点睛】本题考查矩形的性质、折叠性质及勾股定理,熟练掌握折叠的性质,正确找出对应边与对应角是解题关键.23.(1)(5,-3),(﹣5,3);(2)见解析;(3)P(0,0)或(4,0)【解析】(1)根据平面直角坐标系中关于坐标轴为对称点的特点可直接得到结果;(2)根据勾股定理求出AB2,AC2,BC2,再根据勾股定理的逆定理即可证得结论;(3)先求出S△ABC =6,设P点坐标为(t,0),根据三角形面积公式得到12×5×|t﹣2|=12×6=3,然后求出t的值,则可得到P点坐标.【详解】解:(1)∵C点的坐标为(5,3),∴点C关于x轴对称的点C1的坐标为(5,﹣3),点C关于y轴对称的点C2的坐标为(﹣5,3),故答案为:(5,-3),(﹣5,3);(2)∵AB 2=22+22=8,AC 2=(3﹣2)2+52=26,BC 2=(5﹣2)2+32=18,∴AB 2+BC 2=8+18=26=AC 2,∴△ABC 是直角三角形;(3)S △ABC =3×5﹣12×2×2﹣12×(5﹣2)×3﹣12×(3﹣2)×5=6,设P 点坐标为(t ,0),∵S △PBC =12S △ABC ,∴12×3×|t ﹣2|=12×6=3,∴t ﹣2=±2,∴t =0或t =4,∴P 点坐标为(0,0)或(4,0).【点睛】本题主要考查了坐标与图形,关于坐标轴对称的点的坐标特征,勾股定理的逆定理等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)图见解析;点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1);(2)92.【解析】【分析】(1)先根据轴对称的性质作出△A 1B 1C 1,然后再写出各点坐标即可;(2)用一个长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求.由图可知:点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1).(2)用一个长方形将△A 1B 1C 1框住,如上图所示:由图可知:△A 1B 1C 1的面积=5×3-12×1×2-12×2×5-12×3×3=92【点睛】此题考查的是画关于y 轴对称的图形和网格中求面积,掌握关于y 轴对称的图形的画法和用长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积,是解决此题的关键.25.(1)BC 解析式为6y x =-+;(2)M (0,65);(3)点P 的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC 的解析式是y=kx+b ,把B 、C 的坐标代入,求出k 、b 即可;(2)先确定出点M 的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P 在OA 上,此时OP :AO=1:4,根据A 点的坐标求出即可;②当P 在AC 上,此时CP :AC=1:4,求出P 即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b ⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数:3.14,﹣2,0.1010010001…,0,﹣π,17,0.6,其中无理数有()A .1个B .2个C .3个D .4个2)A .3与4之间B .5与6之间C .6与7之间D .28与30之间3.下列各点位于平面直角坐标系内第二象限的是()A .(3,1)-B .(3,0)-C .(3,1)-D .(0,1)4.一次函数21y x =+的图象经过点()A .()1,2--B .()1,1--C .()0,1-D .()1,15.下列各式中,正确的是()A 7=-B3=±C .2(4=D=6.如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为()A .10米B .16米C .15米D .14米7.直线y=2x+2沿y 轴向下平移6个单位后与x 轴的交点坐标是()A .(-4,0)B .(-1,0)C .(0,2)D .(2,0)8.下列一次函数y 随x 的增大而增大是()A .y =-2xB .y =x -3C .y =-5xD .y =-x +39.已知点(-4,y 1),(2,y 2)都在直线y =2x 3-+b 上,则y 1与y 2的大小关系是()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定10.等腰三角形的周长为10cm ,其中一边长为2cm ,则该等腰三角形底边上的高为()A .B .CD .11.已知一次函数y =kx +b (k≠0)的图象如图所示,则y =-bx -k 的图象可能是()A .B .C .D .12.如图,在平面直角坐标系中,点A 1、A 2、A 3、A 4、A 5、A 6的坐标依次为A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…按此规律排列,则点A 2020的坐标是()A .(1009,1)B .(1009,0)C .(1010,1)D .(1010,0)二、填空题13.已知点(),5A x -与点()2,B y 关于x 轴对称,则x y +=______.14.比较大小:273315. ABC 的三边长为a 、b 、c ,且a 、b 满足a 2﹣28b -=0,则c 的取值范围是______.16.化简131=________.17.如图,某港口P 位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A ,B 处,且相距20海里,如果知道甲船沿北偏西40︒方向航行,则乙船沿_____方向航行.18.如图,已知BA =BC .写出数轴上点A 所表示的数是____________.三、解答题19.计算:(11235-;(2)(133)(133)4+(32712283(4)4(3)124863+20.先化简,再求值:22()()(2)3x y x y x y x ++-+-,其中:23x =-32y =21.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (-3,4),B (-4,1),C (-1,2).(1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)请直接写出点C 关于y 轴的对称点C'的坐标:;(3)△ABC 的面积=;(4)在y 轴上找一点P ,使得△PAC 周长最小,并求出△PAC 周长的最小值.22.如图,一架梯子AB 斜靠在一竖直的墙OA 上,这时AO =3m ,∠OAB =30°,梯子顶端A 沿墙下滑至点C ,使∠OCD =60°,同时,梯子底端B 也外移至点D .求BD 的长度.(结果保留根号)[补充:直角三角形中,30°所对的直角边是斜边的一半]23.判断下面各式是否成立(1=(2=(3=_____=②用含有n 的代数式将规律表示出来,说明n 的取值范围,并给出证明24.如图,在△ABC 中,∠ADC =∠BDC =90°,AC =20,BC =15,BD =9,求AD 的长.25.阅读理解<,即23<<,∴112<-<.1-的整数部分为1,小数2.解决问题:已知a 3的整数部分,b 3-的小数部分,求32()(4)a b -++的平方根.26.如图,一次函数y 1=x+2的图象是直线l 1,一次函数y 2=kx+b 的图象是直线l 2,两条直线相交于点A (1,a ),已知直线l 1和l 2与x 轴的交点分别是点B ,点C ,且直线l 2与y 轴相交于点E (0,4).(1)点A 坐标为,点B 坐标为.(2)求出直线l 2的表达式;(3)试求△ABC的面积.参考答案1.B【解析】【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数2π是无理数,因为π是无理数.【详解】解:在所列的实数中,无理数有0.1010010001⋯,π-共2个,故选:B.【点睛】本题主要考查的是无理数的定义,解题的关键是熟练掌握无理数的常见类型.2.B【解析】【分析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】<∴56<,5与6之间.故选:B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键.3.A 【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.第二象限点特点(-,+)【详解】解:A 、(3,1)-,在第二象限,故此选项正确;B 、(3,0)-,在x 轴上,故此选项错误;C 、(3,1)-,在第四象限,故此选项错误;D 、(0,1),在y 轴上,故此选项错误;故选A .【点睛】本题主要考查象限内点的符号特点,掌握每个象限点特点是解决此题的关键.4.B 【解析】【分析】根据分别将A,B,C,D 代入y=2x+1中即可判断.【详解】解:A .把1x =-代入21y x =+得:211y =-+=-,即A 项错误,B .把1x =-代入21y x =+得:211y =-+=-,即B 项正确,C .把0x =代入方程21y x =+得:1y =,即C 项错误,D .把1x =代入方程21y x =+得:213y =+=,即D 项错误,故选B .【点睛】本题主要考查了一次函数上点的坐标特点,代入过程中注意计算正确性是关键.5.D【解析】【详解】解:A=7,故A错误;,故B错误;BC、()2=2,故C错误;D==D正确;故选D.6.B【解析】【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】由题意得BC=6,在直角三角形ABC中,根据勾股定理得:=10米.所以大树的高度是10+6=16米.故选:B.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.7.D【解析】【分析】根据图象平移规律:上加下减求得平移后的直线解析式,再令y=0求解方程即可解答.【详解】解:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,由2x-4=0得:x=2,即图像与x轴的交点坐标为(2,0),故选:D.考点:一次函数的性质【点睛】本题考查一次函数图象的平移、一次函数与坐标轴的交点问题,掌握平移规律是解答的关键.8.B【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵正比例函数y=-2x中,k=-2<0,∴此函数中y随x增大而减小,故本选项不符合题意;B、∵一次函数y=x-3中,k=1>0,∴此函数中y随x增大而增大,故本选项符合题意;C、∵正比例函数y=-5x中,k=-5<0,∴此函数中y随x增大而减小,故本选项不符合题意;D、一次函数y=-x+3中,k=-1<0,∴此函数中y随x增大而减小,故本选项不符合题意.故选:B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.9.A【解析】【分析】先根据一次函数的解析式得出函数的增减性,进而可得出结论.【详解】解:∵一次函数y=23x-+b中,k=23-<0,∴y随x的增大而减小.∵-4<2,∴y1>y2.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.10.C【解析】【分析】由等腰三角形的周长为10cm,其中一边长为2cm,没有说明是腰还是底,分类讨论,只有一种成立,2为底,由等腰三角形底边上的高具有三线合一性质,可求出BD,再由勾股定理可求AD即可.【详解】等腰三角形的周长为10cm,其中一边长为2cm,当2为腰时,二腰长为4,底长为10-4=6,由于6>2+2,不能构成三角形,当2为底时,腰为(10-2)÷2=4,4+4>2,可以构成三角形,则AB=AC=4,BC=2,∵AB=AC,AD⊥BC,∴BD=CD=12BC=1,在Rt△ABD中,由勾股定理的故选择:C.【点睛】本题考查等腰三角形底边上的高,会分类讨论三角形成立的条件,会用三角形三线合一的性质,会用勾股定理解决问题是解题的关键.11.C【解析】【分析】根据是一次函数y=kx+b的图象经过一、三、四象限得出k,b的取值范围解答即可.【详解】解:因为一次函数y=kx+b 的图象经过一、三、四象限,可得:k >0,b <0,所以-b >0,-k <0,则直线y=-bx-k 的图象经过一、三、四象限,故选:C .【点睛】本题考查了一次函数的性质,关键是根据一次函数y=kx+b 的图象经过一、三、四象限得出k ,b 的取值范围.12.D 【解析】【分析】根据图形可得:移动4次,图形完成一个循环,从而可得出点A2020的坐标.【详解】解:()()()()()()1234560,1,1,1,1,0,2,0,2,1,3,1,,A A A A A A ∴2020÷4=505,所以点2020A 的坐标为(505×2,0),则点2020A 的坐标是(1010,0).故选:D .【点睛】本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律.13.7【解析】【分析】直接利用关于x 轴对称点的性质得出x ,y 的值进而得出答案.【详解】点(),5A x -与点()2,B y 关于x 轴对称,2x ∴=,5y =则257x y +=+=.故答案为7.【点睛】此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的符号是解题关键.14.>【解析】【分析】把根号外的因式移入根号内,再比较即可.【详解】∵=,∴>,故答案为:>.【点睛】本题考查了比较二次根式的大小,把根号外的因式移入根号内再比较,是解题的关键.15.2<c <6【解析】【分析】根据非负数的性质得到2a =,4b =,再根据三角形三边的关系得26c <<.【详解】解:2440a a -++= ,∴()220a -+=,2a ∴=,4b =,所以26c <<,故答案为:26c <<【点睛】本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出a ,b 的值,熟练掌握三角形的三边关系.16【解析】【分析】化简绝对值,再进行实数的计算.【详解】11=11+=【点睛】本题考查了实数的运算,化简绝对值,掌握化简绝对值是解题的关键.17.北偏东50°(或东偏北40°)【解析】【分析】由题意易得12AP =海里,PB=16海里,40APN ∠=︒,则有222AP BP AB +=,所以∠APB=90°,进而可得50BPN ∠=︒,然后问题可求解.【详解】解:由题意得:112=12AP =⨯海里,PB=1×16=16海里,40APN ∠=︒,20AB =海里,∴222400AP BP AB +==,∴∠APB=90°,∴50BPN ∠=︒,∴乙船沿北偏东50°(或东偏北40°)方向航行;故答案为北偏东50°(或东偏北40°).【点睛】本题主要考查勾股定理的逆定理及方位角,熟练掌握勾股定理的逆定理及方位角是解题的关键.18.1-【解析】【分析】先利用勾股定理求解BC 的长,可得BA 的长,从而可得A 到原点的距离,从而可得答案.【详解】解:由勾股定理得:BC==,BA BC∴=BA则A1,∴点A 1.1.【点睛】本题考查的是利用数轴表示无理数,勾股定理的应用,掌握利用勾股定理求解直角三角形的某条边长是解题的关键.19.(1)1;(2)2;(3)1;(4)10-【解析】【分析】根据二次根式的除法、乘法法则运算,平方差公式计算、然后利用二次根式的性质化简后进行减法运算,合并即可.【详解】解:(1)原式5=,=,5=-,651=;=--,(2)原式13922=;(3)原式=,=+-,3241=;(4)原式,=+,46=+-,10=-.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、乘法公式,解题的关键是掌握二次根式的混合运算.20.xy ;1.【解析】【分析】根据完全平方公式、多项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】解:22()()(2)3x y x y x y x ++-+-222222223x xy y x xy xy y x =+++-+--xy =,当2x =-2y =时,原式(()22222431=---+=--=-=.【点睛】本题考查了整式的混合运算-化简求值,二次根式的混合运算,解答本题的关键是明确整式化简求值的方法.21.(1)见解析;(2)(1,2).(3)4(4)【解析】【分析】(1)分别作出点A ,B ,C 关于x 轴的对称点,再顺次连接即可得;(2)由关于y 轴的两点的横坐标互为相反数,纵坐标相等可得;(3)割补法求解可得;(4)作点C 关于y 轴的对称点C′,连接AC′交y 轴于点P ,P 即为所求,此时PA+PC 最小,再根据勾股定理计算可得.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)点C (-1,2)关于y 轴的对称点C′的坐标为(1,2),故答案为(1,2).(3)△ABC 的面积=3×3-12×1×3-12×1×3-12×2×2=4,故答案为4.(4)如图,作点C 关于y 轴的对称点C′,连接AC′交y 轴于点P ,P 即为所求,此时PA+PC 最小,∵,AC=,∴△PAC 周长的最小值为【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义与性质、最短路线问题及勾股定理等知识点.22.3m )【解析】【分析】先在Rt △OAB 中,OA =3m ,∠OAB =30°,求出梯子AB 的长,在滑动过程中梯子的长是不变的,再根据已知条件证明出△AOB ≌△DOC ,即可求出BD 长.【详解】解:在Rt △ABO 中,∵AO =3m ,∠OAB =30°,12BO AB ∴=AO ∴=OB ∴∴AB =,∵∠OCD =60°,∴∠ODC =30°,在△AOB 和△DOC 中,OAB ODC AOB DOC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△DOC (AAS ),∴OA =OD ,OC =OB ,∴BD =OD ﹣OB =3m ).【点睛】本题考查了勾股定理解直角三角形,三角形全等的性质与判定,求出BO 的长是解题的关键.23.都正确①)2n =≥,证明见解析.【解析】【分析】(1)①利用已知即可得出命题正确,同理即可得出其他正确性,=;②利用①的方法,可以得出规律,并加以证明即可.【详解】解:①上面三题都正确,=,;=,=,;=;)2n=≥,证明:==.【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.24.16【解析】【分析】在Rt△BDC中,与Rt△ACD中,由勾股定理即可得出结果.【详解】解:∠ADC=∠BDC=90°,在Rt△BDC中,由勾股定理得:CD==12,在Rt△ACD中,由勾股定理得:AD=16.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.25.4±【解析】【分析】的范围,继而得到a、b的具体数值,然后再代入式子(-a)3+(b+4)2求值,最后再根据平方根的定义进行求解即可.【详解】<<5,∴,-3的整数部分为1-4,即a=1,-4,∴(-a)3+(b+4)2=-1+17=1616的平方根是±4,即(-a)3+(b+4)2的平方根是±4.【点睛】本题考查了无理数的估算,阅读题,通过阅读材料找到解决此类问题的方法是关键.26.(1)()1,3,()2,0-;(2)23y x =-+;(3)152【解析】【分析】(1)将点A 的坐标代入到直线1l 的解析式,即可求得a 的值,进而求得A 的坐标,进而令10y =,即可求得点B 的坐标;(2)将点,E A 的坐标代入2l ,待定系数法求解析式即可;(3)根据,,A B C 的坐标,三角形的面积公式求解即可【详解】解:(1) 一次函数y 1=x+2过点A (1,a ),123a ∴=+=()1,3A 令10y =,即20x +=,解得2x =-,0()2B ∴-故答案为:()1,3,()2,0-(2) 一次函数y 2=kx+b 过点E (0,4)()1,3A则34k b b =+⎧⎨=⎩解得13k b =-⎧⎨=⎩∴直线l 2的表达式为23y x =-+(3)令20y =,即30x -+=解得3x =()3,0C ∴()1115323222ABC A S BC y ∴=⨯⨯=--⨯=⎡⎤⎣⎦△。
北师大版八年级上册数学期中考试试卷有答案
北师大版八年级上册数学期中考试试题一、单选题1.下列数是无理数的是( )A.227- B .π C .0 D 2.已知点A(﹣2,y 1),B(3,y 2)在函数y =﹣3x+2的图象上,则y 1与y 2的大小关系是() A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .无法确定 3.下列几组数中,不能作为直角三角形三边长的是( )A .5,12,13B .9,40,41C .3,4,5D .2,3,4 4.在平面直角坐标系中,下列各点属于第四象限的是( )A .(1,2)B .(3,8)-C .(3,5)--D .(6,7)- 5.在同一坐标系中,函数y kx =与y x k =-的图象大致是( )A .B .C .D . 6.如图,长方体的高为9m ,底面是边长为6m 的正方形,一只蚂蚁从如图的顶点A 开始,爬向顶点B.那么它爬行的最短路程为( )A .10mB .12mC .15mD .20m7.已知:如图,在△ABC ,△ADE 中,△BAC =△DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:△BD =CE ;△BD△CE ;△CD 2+CE 2=2CA 2;△BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .48.下列说法:△实数和数轴上的点是一一对应的;△-1-有意义,则x≥1;±8,其中正确的有( )A .1个B .2个C .3个D .4个9.点M (﹣4,3)关于x 轴对称的点的坐标为( )A .(3,﹣4)B .(4,﹣3)C .(﹣4,﹣3)D .(4,3) 10.已知正比例函数y kx =,且y 随x 的增大而减少,则直线2y x k =+的图像是( ) A . B . C . D .二、填空题11.﹣125的立方根是 .12.若直线y =2x 是直线m 向左平移3个单位再向下平移1个单位后得到的,则直线m 的表达式为____.13a 的小数部分是b ,则ab =___.14.如图,在平面直角坐标系中,直线y =x+2和直线y =ax+b (a≠0)相交于点P .根据图象可知,方程x+2=ax+b 的解是x =___.15.如图,一次函数483y x =-+的图像与x 轴、y 轴分别交于A 、B 两点,P 是x 轴正半轴上的一个动点,连接BP ,将△OBP 沿BP 翻折,点O 恰好落在AB 上,则点P 的坐标为______.16.点P (2,4)与点Q (-3,4)之间的距离是____.17.如图,在平面直角坐标系中,A(0,6),B(﹣4,0),C(2,0),点D,E分别在射线CA上,并且DE=AC,P为线段AB上一点,当△DPE为以ED为斜边的等腰直角三角形时,Р点坐标为____.三、解答题18.计算:(1(2)3).19.如图,在直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5).请回答下列问题:(1)△ABC关于x轴的对称图形为△A1B1C1,则A1点坐标为.(2)△ABC的面积=,点C到AB的距离为.(3)P为x轴上一点,PA+PB最小值=.20.我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫可爱三角形.(1)△根据“可爱三角形”的定义,请判断:等边三角形一定是可爱三角形,是否正确.并填空 (填“正确”或“不正确”);△若三角形的三边长分别是4、、,则该三角形 (是或不是)可爱三角形;(2)△,则周长为 ;△若Rt△ABC 是可爱三角形,且一条直角边长为,则斜边长为 .21.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为300AC km =,400BC km =,又500AB km =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数.(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即250CE CF km ==,则台风影响该海港持续的时间有多长?22.甲骑电动车,乙骑自行车从同一出发地点沿同一路线到棋盘山游玩,设乙行驶的时间x (h ),甲、乙两人距出发点的路程S 甲、S 乙关于x 的函数图象如图△所示,甲、乙两人之间的路程差y 关于x 的函数图象如图△所示.请你解决以下问题:(1)甲的速度是 km/h ,乙的速度是 km/h ;(2)甲出发 h 时,与乙相遇;(3)对比图△、图△可知:a = ;(4)乙出发 h 时,甲、乙两人之间的路程差为7.5km .23.如图,直线l1分别与x轴,y轴交于A,B两点,A,B的坐标分别为(2,0)、(0,3),过点B的直线l2:y=132x 交x轴于点C、D(n,6)是直线l1上的一点,连接CD.(1)求l1的解析式;(2)求C、D的坐标;(3)P为直线l1线上的动点,△DCP面积等于16时,直接写出Р点坐标为.24.如图,在平面直角坐标系中,直线y=﹣0.5x+2与x轴,y轴分别交于点A和点B,与直线y=x交于点C、P(m,0)为x轴上一动点(P不与原点重合),过P作x轴垂线与直线y=x和y=﹣0.5x+2分别交于点M和点N,过N作x轴的平行线交直线y=x于D.(1)求C点坐标;(2)求当MN=OB时,m的值;并直接写出此时四边形COPN的面积=;(3)直接写出当DN=2NP时,m的值=;(4)过D作y轴平行线交直线AB于点E,P点在运动过程中,MNDE的值=.25.如图所示,在直角坐标系xOy中,A(3,4),B(1,2),C(5,1).(1)作出△ABC关于y轴的对称图形△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△ABC的面积.26.如图所示的一块地,已知AD=4米,CD=3米,△ADC=90°,AB=13米,BC=12米,则这块地的面积为多少?参考答案1.B2.A3.D4.D5.B6.C7.C8.B9.C10.D11.-5【解析】【分析】根据立方根的定义计算即可【详解】因为3(5)125-=-,所以-125的立方根是-5故答案为:-5【点睛】本题考查了求一个数的立方根,熟知立方根的定义是解决本题的关键12.25y x =-【解析】【分析】根据直线的平移规律求解即可.函数的平移规律:左加右减,上加下减.【详解】解:△直线y =2x 是直线m 向左平移3个单位再向下平移1个单位后得到的,△直线y =2x 向右平移3个单位再向上平移1个单位后可得到直线m ,△()23125y x x =-+=-,△直线m 的表达式为25y x =-.故答案为:25y x =-.【点睛】此题考查了函数的平移规律,解题的关键是熟练掌握函数的平移规律:左加右减,上加下减.132 ( 2-)【分析】的大小,a 的小数部分b ,再代入计算即可.【详解】解:<<12∴<,的整数部分1a =,<<23∴<<,的小数部分2b =,△12)2ab =⨯=.2.【点睛】此题主要考查了无理数的估算能力,能够正确的估算出无理数的大小是解答此类题的关键.14.5【解析】【分析】两直线的交点坐标横坐标为方程x+2=ax+b 的解.【详解】解:把y =7代入y =x+2得,7=x+2,解得x =5,△P 点的横坐标为5,△直线y =x+2和直线y =ax+b (a≠0)相交于点P ,△方程x+2=ax+b 的解是x =5.故答案为5.【点睛】本题考查了根据一次函数图像解二元一次方程组,数形结合是解题的关键.15.(83,0) 【解析】【分析】过P 作PC△AB 于C ,设OP=x ,由一次函数解析式求出点A 、B 坐标,进而求得OA 、OB 、AB ,由折叠性质得PC=OP=x ,BC=OB ,在Rt△APC 中,由勾股定理即可求解.【详解】解:过P 作PC△AB 于C ,设OP=x ,当x=0时,y=8,当y=0时,由4083x =-+得:x=6, △OA=6,OB=8,10,由折叠性质得:PC=OP=x ,BC=OB=8,△AP=6﹣x ,AC=AB ﹣BC=10﹣8=2,在Rt△APC 中,由勾股定理得:2222(6)x x +=-,解得:x=83, △点P 的坐标为(83,0),故答案为:(83,0). 16.5【分析】P 、Q 两点纵坐标相等,在平行于x 轴是直线上,其距离为两点横坐标差的绝对值.【详解】△P (2,4)、Q (-3,4)两点纵坐标相等,△PQ△x 轴,△点P (2,4)与点Q (-3,4)之间的距离PQ=|-3-2|=5,故答案为5.17.208,93⎛⎫- ⎪⎝⎭【解析】如图所示,过点P 作直线l△y 轴,分别过点D 作DG△直线l 于G ,EH△直线l 于H ,过点D 作DN△y 轴于N ,过点E 作EM△x 轴于M,设直线AB ,直线CD 的解析式分别为11y k x b =+,22y k x b =+,则可求得直线AB ,直线CD 的解析式分别为362y x =+,36y x =-+,然后证明△NDA△△MCE 得到DN=CM ,NA=EM ,△PDG△△EPH 得到DG=PH ,GP=EH ,设3,62P m m ⎛⎫+ ⎪⎝⎭,(),36E n n -+,则OH n =,36EM n =-+,EH n m =-2DN CM n ==-,36NA EM n ==-+,312ON n =-+,2DG m n =--+,33636322PH m n m n =++-=+,3331263622GP n m n m =-+--=--+由此即可得到33623232n m n m m n m n ⎧-=--+⎪⎪⎨⎪--+=+⎪⎩,解方程即可. 【详解】解:如图所示,过点P 作直线l△y 轴,分别过点D 作DG△直线l 于G ,EH△直线l 于H ,过点D 作DN△y 轴于N ,过点E 作EM△x 轴于M ,设直线AB ,直线CD 的解析式分别为11y k x b =+,22y k x b =+,△111046k b b =-+⎧⎨=⎩,222026k b b =+⎧⎨=⎩解得1126b ⎨⎪=⎩,26b ⎨=⎩,△直线AB ,直线CD 的解析式分别为362y x =+,36y x =-+, △DE=AC , △DA=CE ,△DN△y 轴,EM△x 轴△DN△CM ,△DNA=△CME=90° △△NDA=△MCE , △△NDA△△MCE (AAS ), △DN=CM ,NA=EM ,△△DPE 是以DE 为斜边的等腰直角三角形, △PD=PE ,△DPE=90°, △△DPG+△EPH=90°, △DG△GH ,EH△GH , △△DGP=△PHE=90°, △△PDG+△DPG=90°, △△PDG=△EPH , △△PDG△△EPH (AAS ), △DG=PH ,GP=EH ,△A (0,6),B (-4,0),C (2,0), △OA=6,OB=4,OC=2, 设3,62P m m ⎛⎫+ ⎪⎝⎭,(),36E n n -+,△OH n =,36EM n =-+,EH n m =- △2DN CM n ==-,36NA EM n ==-+,△312ON n =-+,2DG m n =--+,33636322PH m n m n =++-=+△3331263622GP n m n m =-+--=--+,△23232m n m n⎪⎪⎨⎪--+=+⎪⎩,解得209169mn⎧=-⎪⎪⎨⎪=⎪⎩,△208,93P⎛⎫-⎪⎝⎭,故答案为:208,93⎛⎫- ⎪⎝⎭.18.(1)40;(2)3【分析】(1)先化简二次根式,再按二次根式的乘法法则计算即可;(2)利用平方差公式计算即可;【详解】解:(1)原式=10,=30+10=40,(2)原式=223-,=12-9,=319.(1)作图见解析,(1,4)-;(2)72(3)【解析】(1)根据题意作△ABC 的顶点,,A B C 关于x 轴的点111,,A B C ,顺次连接111,,A B C 则△A 1B 1C 1即为所求,根据坐标系写出1A 的坐标即可;(2)根据△ABC 的面积等于长方形的面积减去三个三角形的面积即可求得,根据勾股定理求,A B 两点的距离,进而根据等面积法求得C 到AB 的距离;(3)连接1A B 交x 轴于点P ,连接PA ,根据11PA PB PA PB A B +=+≥,根据勾股定理以及1,A B 的坐标求解即可.【详解】(1)如图,根据题意作△ABC 的顶点,,A B C 关于x 轴的点111,,A B C ,顺次连接111,,A B C 则△A 1B 1C 1即为所求;点1A (1,4)- 故答案为:(1,4)-(2)1117331213232222ABCS =⨯-⨯⨯-⨯⨯-⨯⨯=△()()1,4,4,2A BAB ∴==∴点C 到AB72⨯=故答案为:72(3)连接1A B 交x 轴于点P ,连接PA ,根据11PA PB PA PB A B +=+≥,()()11,4,4,2A B -1A B ∴==故答案为: 【点睛】本题考查了轴对称的性质,轴对称作图,勾股定理,两点之间线段最短,掌握以上知识是解题的关键.20.(1)△正确;△是;(2)△4或【解析】 【分析】(1)△设等边三角形的边长为a ,根据定义即可判断;△根据定义将已知数据代入验证即可; (2)△根据定义分类讨论,根据最短边的平方与最长边的平方和等于第三边的平方的2倍,列出方程求解即可;△设斜边长为m ,根据新定义以及勾股定理列出方程解方程即可 【详解】(1)△设等边三角形的边长为a ()0a >,2222a a a∴等边三角形一定是可爱三角形,故答案为:正确;△((222416,24,20===((22242∴+=⨯∴该三角形是可爱三角形(2)△c ,根据题意可得: 2222c +=或2222c +=c ∴=∴周长为=d ,根据题意得: 2222d d +=或2222d d +=解得d =∴周长为=△Rt ABC 一条直角边长为m ,,Rt△ABC 是可爱三角形,((22222m m ⎡⎤+=-⎢⎥⎣⎦或((22222m m +-=⨯解得:4m =或m =故答案为:4或【点睛】本题考查了新定义,实数的运算,勾股定理,等腰三角形的性质,分类讨论是解题的关键. 21.(1)90︒;(2)海港C 受台风影响,证明见解析;(3)台风影响该海港持续的时间为7小时. 【解析】 【分析】(1)根据勾股定理的逆定理进行判断;(2)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(3)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间. 【详解】 (1)300AC km =,400BC km =,500AB km =,222AC BC AB ∴+=,ABC ∆∴是直角三角形,△△ACB=90°;(2)海港C 受台风影响, 过点C 作CD AB ⊥,ABC ∆是直角三角形,AC BC CD AB ∴⨯=⨯, 300400500CD ∴⨯=⨯,240()CD km ∴=,以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响.(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km =,140EF km ∴=,台风的速度为20千米/小时, 140207∴÷=(小时)答:台风影响该海港持续的时间为7小时. 【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.22.(1)25,10;(2)13;(3)10;(4)43或74.【解析】【分析】(1)根据图象即可得出;(2)根据甲乙距离差为0,即可求得(2)结合图象△△,a是甲到达终点,乙还为到达终点,此时 1.5x=,求得两者距离差即可;(3)分时间段列二元一次方程即可得出.【详解】(1)根据函数图象可知,甲用了1h行驶了25km,根据v=st,得v甲=25km1h=25km/h;乙用了2.5h行驶了25km,根据v=st,得v乙=25km2.5h=10 km/h .故答案分别为25,10.由图△当甲、乙两人之间的路程差为0时,甲、乙两人相遇S乙=S甲设甲出发t h,与乙相遇,()250.510t t=+⨯解得13 t=∴甲出发13h时,与乙相遇(3)当x=1.5时,根据图象可知,S甲=25将x=1.5代入S乙=10x中得S乙=10⨯1.5=15km甲乙之间路程差为:S甲-S乙=25-15=10km 故答案为10(4)由(3)可知:a=10,b=1.5,相遇的时间为x=150.536 +=由(1)可知:当甲到达目的地时,甲的行驶时间为1h,乙的行驶时间为1.5h,此时a=10,设图△中函数解析式为y=mx+n(m≠0),当56≤ x≤1.5时,函数y =mx +n(m≠0)的图象经过(56,0),(1.5,10)两点, △5061.510m n m n ⎧+=⎪⎨⎪+=⎩, 解得 1.512.5m n =⎧⎨=-⎩△y =15x -12.5 5 1.56x ⎛⎫≤≤ ⎪⎝⎭.当1.5≤x≤2.5时,函数y =mx +n(m≠0)的图象经过(56,0),(2.5,0)两点,△5062.50m n m n ⎧+=⎪⎨⎪+=⎩, 解得1025m n =-⎧⎨=⎩,△y =-10x +25(1.5≤x≤2.5).由题意得:15x -12.5=7.5或-10x +25=7.5,解得:x =43,或x =74.故乙出发43或74小时,甲、乙两人路程差为 7.5km .故答案为:43或7423.(1)332y x =-+;(2)(6,0)-,()2,6-;(3)2(,2)3或14(,10)3-【分析】(1)用待定系数法求解函数解析式即可;(2)将0y =代入直线2l 解析式,将6y =代入直线1l 解析式,分别求解即可; (3)设3(,3)2P x x -+,分情况讨论,求解△DCP 的面积,列方程求解即可.【详解】解:(1)设直线1l 解析式为y kx b =+ 将A ,B 的坐标代入解析式,可得 320b k b =⎧⎨+=⎩解得323k b ⎧=-⎪⎨⎪=⎩,即332y x =-+故直线1l 的解析式为332y x =-+(2)将0y =代入直线2l 解析式132y x =+,可得:1302x +=,解得6x =- 将6y =代入直线1l 解析式332y x =-+,可得3632x =-+,解得2x =-△(6,0)C -,(2,6)D - 故答案为(6,0)-,()2,6-(3)由题意可得,3(,3)2P x x -+,8AC =△124162ACD D S AC y =⨯=>△ △点P 在点A 的左侧当点P 在线段AD 上时,134(3)61222ACP P S AC y x x =⨯=⨯-+=-+△ 2461216CDP ACD ACP S S S x =-=+-=△△△,解得23x =,323223y =-⨯+=△2(,2)3P当点P 在点D 的左侧时,134(3)61222ACP P S AC y x x =⨯=⨯-+=-+△ 6122416CDP ACP ACD S S S x =-=-+-=△△△,解得143x =-,31431023y ⎛⎫=-⨯-+= ⎪⎝⎭△14(,10)3P -综上,2(,2)3或14(,10)3-故答案为2(,2)3或14(,10)3-24.(1)44(,)33;(2)83m =,209;(3)2.4或4-;(4)2【分析】(1)联立两直线解析式求解即可;(2)设(,0)P m ,求得点M N 、坐标,再求得线段MN ,求解即可; (3)设(,0)P m ,求得点D N 、坐标,根据题意列方程求解即可; (4)设(,0)P m ,求得线段MN 、DE ,求解即可. 【详解】解:(1)联立两直线解析式,可得0.52y x y x =⎧⎨=-+⎩解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,即点C 坐标为44(,)33 故答案为44(,)33(2)设(,0)P m ,则,()M m m ,(,0.52)N m m -+ 线段 1.52MN m =-由题意可得:(0,2)B ,(4,0)A ,则2OB = △1.522m -=,解得83m =或0m =(舍去) 四边形COPN 的面积11()22OPMCMN M C S S OP PM MN x x =-=⨯-⨯-△△188184324202()233233939=⨯⨯-⨯⨯-=-= 故答案为83m =,209(3)设(,0)P m ,则,()M m m ,(,0.52)N m m -+则D 的纵坐标为0.52m -+又△D 在y x =直线上,△D 的横坐标为0.52m -+即(0.52,0.52)D m m -+-+NP =0.52m -+, 1.52DN m =- 由题意可得:1.5220.52m m -=-+化简可得:2.56m =或0.52m =-解得 2.4m =或4m =-故答案为2.4或4-;(4)由(3)得(0.52,0.52)D m m -+-+,则E 的横坐标为0.52m -+则E 的纵坐标为10.5(0.52)214m m --++=+,即1(0.52,1)4E m m -++ 则13341(0.52)14443DE m m m m =+--+=-=-由(1)得341.5223MN m m =-=- △342323443m MN DE m -==-故答案为2此题考查了一次函数的性质,一次函数的交点问题,解题的关键是熟练掌握一次函数的性质,求得对应线段的长度.25.(1)如图,△A 1B 1C 1即为所求;见解析;(2)A 1(﹣3,4),B 1(﹣1,2),C 1(﹣5,1);(3)S △ABC =5.【解析】【分析】(1)根据轴对称图形的画法,以y 轴为对称轴作图即可;(2)根据平面直角坐标系中的任意一点(,)x y 关于y 轴的对称点为(,)x y -即可求解;(3)根据割补法将三角形补成一个长方形,减去多余三角形的面积即可.【详解】(1)如图,△A 1B 1C 1即为所求;(2)由图可知,A 1(﹣3,4),B 1(﹣1,2),C 1(﹣5,1);(3)11143412223122235222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=---=. 【点睛】本题主要考查了平面直角坐标系中轴对称图形的画法及对称点坐标的表示,同时还考查了特殊三角形面积的求法,熟练掌握平面直角坐标系对称点的表示及割补法求面积时解决本题的关键.26.24平方米【解析】【分析】利用割补法,将图形补齐,连接AC ,根据勾股定理判定ABC 是直角三角形,即可求出四【详解】解:如图,连接AC ,在ACD △中,△AD=4米,CD=3米,△ADC=90°, △AC=5米,又△22222251213AC BC AB +=+==, △ABC 是直角三角形, △这块地的面积=ABC S -ACD S =11512342422⨯⨯-⨯⨯=(平方米)。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1227,0.1010010001 (2)π中无理数有()A .4个B .3个C .2个D .1个2.16的平方根是()A .±8B .8C .4D .±43.下列数据中不能确定物体的位置的是()A .南偏西40°B .红旗小区3号楼701号C .龙山路461号D .东经130°,北纬54°4.下列计算结果正确的是()A3=-B .3=C 2=D .2(5=5.已知点1(1,5)P a -和2(2,1)P b -关于x 轴对称,则a+b 的值为()A .1-B .0C .1D .56.若y =(k ﹣2)x |k ﹣1|+1表示一次函数,则k 等于()A .0B .2C .0或2D .﹣2或07.若点P 位于平面直角坐标系第四象限,且点P 到x 轴的距离是1,到y 轴的距离是2,则点P 的坐标为()A .()1,2-B .()1,2-C .()2,1-D .()2,1-8.满足下列条件时,ABC 不是直角三角形的是()A .AB =,4BC =,5AC =B .::3:4:5AB BC AC =C .::3:4:5A B C ∠∠∠=D .40A ∠=︒,50B ∠=︒9.实数a ,b =()A .﹣bB .bC .﹣2a ﹣bD .﹣2a+b10.下列图形中,表示一次函数y mx n =+切与正比例函数y mnx =(m ,n 为常数,且0mn ≠)的图象的是()A B C D二、填空题1116_____.12.一个实数的平方根为33x +与1x -,则这个实数是________.1321x -x 的取值范围是____.14.如图,正方形ODBC 中,2OA=OB ,则数轴上点A 表示的数是________.15.a 13b 133a b -=_______;16.如图,有一圆柱,其高为14cm ,它的底面周长为10cm ,在圆柱下底面A 处有一只蚂蚁,它想得到上面B 处的食物,其中B 离上沿2cm ,则蚂蚁经过的最短路程为________.17.在平面直角坐标系中,直线l :1y x =-与x 轴交于点1A ,如图所示依次作正方形111A B C O 、正方形2221A B C C 、…、正方形n 1n n n A B C C -,使得点1A 、2A 、3A 、…在直线1上,点1C 、2C 、3C 、…在y 轴正半轴上,则点n B 的坐标是________.三、解答题18183222+19.△ABC 在直角坐标系内的位置如图.(1)分别写出A 、B 、C 的坐标;(2)请在这个坐标系内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 关于y 轴对称,并写出B 1的坐标.20.如图,有一块直角三角形纸片,两直角边6AC =cm ,8BC =cm ,现将直角边AC 沿直线AD 对折,使它落在斜边AB 上,且与AE 重合,求CD 的长.21.已知3a+b-1的平方根为±4,5a+2的立方根为3.(1)求a ,b 的值;(2)求2a-b+1的算术平方根.22.如图,在四边形ABCD 中,已知90B ∠=︒,213AB BC AD CD ====,,.(1)求DAB ∠的度数;(2)求四边形ABCD 的面积.23.已知函数y=(m+1)x 2-|m |+n+4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?24.小明在解决问题:已知a,求2a 2﹣8a+1的值,他是这样分析与解答的:∵a 2=-∴a ﹣2∴(a ﹣2)2=3,即a 2﹣4a+4=3.∴a 2﹣4a =﹣1,∴2a 2﹣8a+1=2(a 2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1=;(2(3)若a2a 2﹣8a+1的值.25.在平面直角坐标系中,O 为坐标原点,过点A (8,6)分别做x 轴、y 轴的平行线,交y 轴于点B ,交x 轴于点C ,点P 是从点B 出发,沿B→A→C 以2个单位长度/秒的速度向终点C 运动的一个动点,运动时间为t (秒).(1)直接写出点B 和点C 的坐标:B (,)C (,).(2)当点P 运动时,用含t 的代数式表示线段AP 的长,并写出t 的取范围;(3)点D (2,0),连结PD 、AD ,在(2)的条件下是否存在这样的t 值,使S △APD =18S 四边形ABOC,若存在,请求t 值,若不存在,请说明理由.参考答案1.B 【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】4=2,是整数,属于有理数;227是分数,属于有理数;无理数有0.1010010001 (32),共3个.故选:B .【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.D【解析】【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.3.A【解析】【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【详解】解:A.南偏西40︒,不是有序数对,不能确定物体的位置,故本选项符合题意;B.红旗小区3号楼701号,相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;C.龙山路461号,是有序数对,能确定物体的位置,故本选项不合题意;D.东经130︒,北纬54︒,是有序数对,能确定物体的位置,故本选项不合题意;故选:A.【点睛】本题考查了坐标确定点的位置,解题的关键是要明确,一个有序数对才能确定一个点的位置.4.D【解析】【分析】直接利用二次根式的除法运算、加减运算法则分别计算得出答案.【详解】解:3=,故此选项不合题意;B.==,故此选项不合题意;D.2(5=,故此选项符合题意.故选:D .【点睛】本题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5.A 【解析】【分析】根据两个点关于x 轴对称,则横坐标相等,纵坐标互为相反数,即可求出结果.【详解】解:∵点1(1,5)P a -和2(2,1)P b -关于x 轴对称,∴12a -=,510b +-=,即3a =,4b =-,∴()a b 341+=+-=-.故选:A .【点睛】本题考查点坐标的对称,解题的关键是掌握关于坐标轴对称的点坐标的特点.6.A 【解析】【分析】依据一次函数的定义可知|k ﹣1|=1且k ﹣2≠0,从而可求得k 的值.【详解】解:∵函数y =(k ﹣2)x |k ﹣1|+3是一次函数,∴|k ﹣1|=1且(k ﹣2)≠0,解得:k =0.故选:A .此题考查一次函数的定义,注意一次项系数不为0是关键,难度一般.7.D 【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点P 的横坐标为2,纵坐标为1-∴点P 的坐标为()2,1-故选D .【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.8.C 【解析】【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.【详解】解:A 、22245=+符合勾股定理的逆定理,故A 选项是直角三角形,不符合题意;B 、32+42=52,符合勾股定理的逆定理,故B 选项是直角三角形,不符合题意;C 、根据三角形内角和定理,求得各角分别为45°,60°,75°,故C 选项不是直角三角形,符合题意;D 、根据三角形内角和定理,求得各角分别为90°,40°,50°,故D 选项是直角三角形,不符合题意.故选:C .9.D 【解析】【分析】先根据数轴可确定a <﹣1,0<b <1,然后根据二次根式的性质化简,即可求解.解:由数轴可得:a <﹣1,0<b <1,∴a ﹣b <0,故原式2a b a a b =-+-=-+故选:D .【点睛】本题主要考查了数轴和二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.10.A 【解析】【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项不符合题意;C.由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn <,两结论不一致,故本选项不符合题意;D.由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项不符合题意;故选A .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.11.2【解析】【分析】根据算术平方根的运算法则,直接计算即可.【详解】,4的算术平方根是2,2.故答案为:2【点睛】此题考查了求一个数的算术平方根,16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.12.9 4【解析】【分析】根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果.【详解】解:根据题意得:①这个实数为正数时:3x+3+x-1=0,∴x=-12,∴(x-1)2=9 4,②这个实数为0时:3x+3=x-1,∴x=-2,∵x-1=-3≠0,∴这个实数不为0.故答案为:9 4.【点睛】本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.13.12 x≥【解析】【分析】根据二次根式有意义的条件可直接进行求解.【详解】210x-≥,解得:12 x≥;故答案为12 x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.14.【解析】【分析】在直角三角形中根据勾股定理求得OB的值,即OA的值,进而求出数轴上点A表示的数.【详解】解:∵,∴∵点A在数轴上原点的左边,∴点A表示的数是,故答案为【点睛】本题考查了实数与数轴,勾股定理,解题时需注意根据点的位置确定数的符号.15.12【解析】【分析】由34,可得,a b的值,再把,a b的值代入3,a b-即可得到答案.【详解】解: 34,的整数部分是3,则3,a =3,-则3,b -)39312a b ∴-=-=-故答案为:12-【点睛】本题考查的是无理数的估算,无理数的整数部分与小数部分,熟悉判断无理数的整数部分与小数部分的方法是解题的关键.16.13cm【解析】【分析】如图,在A 点沿母线剪开,连接AB 即为最短的路径,过B 向底边作垂线交点为C ,在Rt ABC ,1105cm 14212cm2AC BC =⨯==-=,,对AB =【详解】解:如图,在A 点沿母线剪开,连接AB 即为最短的路径,过B 向底边作垂线交点为C在Rt ABC ,1105cm 14212cm 2AC BC =⨯==-=,∴13cmAB =故答案为:13cm .【点睛】本题考查了几何体的展开图,勾股定理.解题的关键在于找到最短的路径.17.()12,21n n --【解析】【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A 1、B 1的坐标,同理可得出A 2、A 3、A 4、A 5、…及B 2、B 3、B 4、B 5、…的坐标,根据点的坐标的变化可找出变化规律“Bn (2n -1,2n-1)(n 为正整数)”,依此规律即可得出结论.【详解】解:当y=0时,有x-1=0,解得:x=1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…,∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…,∴Bn (2n -1,2n-1)(n 为正整数),故答案为:()12,21n n --【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn (2n -1,2n-1)(n 为正整数)”是解题的关键.18.【解析】【分析】先将二次根式化简,再去括号、合并即可.【详解】⎝===【点睛】本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.19.(1)A(0,3);B(-4,4);C(-2,1);(2)画图见解析;B 1(4,4)【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点B 1的坐标.(1)根据平面直角坐标系得:A(0,3);B(-4,4);C(-2,1);(2)△A 1B 1C 1如图所示,B 1(4,4).【点睛】本题考查了利用轴对称作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.CD 长为3cm【解析】【分析】在Rt ABC 中,由勾股定理得AB =,由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒,BE AB AE =-,设DE CD x ==,则8BD x =-,在Rt BDE 中,由勾股定理得222BD DE BE =+,计算求解即可.【详解】解:∵6AC =cm ,8BC =cm∴在Rt ABC 中,AB =由折叠对称可知CD DE =,6AE AC ==cm ,90BED ∠=︒∴1064BE AB AE =-=-=cm设DE CD x ==,则8BD x=-∴在Rt BDE 中,由勾股定理得222BD DE BE =+即()22284x x -=+解得3x =∴CD 的长为3cm .【点睛】本题考查了轴对称,勾股定理等知识.解题的关键在于找出线段的数量关系.21.(1)a=5,b=2;(2)2a-b+1的算术平方根是3.【解析】【分析】(1)根据题意及平方根、立方根可直接进行求解;(2)由(1)及算术平方根的定义可进行求解.【详解】解:(1)∵3a+b-1的平方根为±4,5a+2的立方根为3,∴()23314,523a b a +-=±+=,∴5,2a b ==;(2)由(1)可得:2125219a b -+=⨯-+=,∵()239±=,∴2a-b+1的算术平方根为3.【点睛】本题主要考查立方根、算术平方根及平方根,熟练掌握求一个数的立方根、算术平方根及平方根是解题的关键.22.(1)135︒;(2)2S =+【解析】【分析】(1)由于∠B=90°,AB=BC=2,利用勾股定理可求AC ,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD;(2)连接AC,则可以计算△ABC的面积,根据AB、BC可以计算AC的长,根据AC,AD,CD可以判定△ACD为直角三角形,根据AD,CD可以计算△ACD的面积,四边形ABCD的面积为△ABC和△ADC面积之和.【详解】(1)连结AC,∵∠B=90°,AB=BC=2,∴AC=,∠BAC=45°,∵AD=1,CD=3,∴AD2+AC2=122=9,CD2=9,∴AD2+AC2=CD2,∴△ADC是直角三角形,∴∠DAC=90°,∴∠DAB=∠DAC+∠BAC=135°.(2)在Rt△ABC中,S△ABC =12•BC•AB=12×2×2=2,在Rt△ADC中,S△ADC =12•AD•AC=12∴S四边形ABCD=S△ABC+S△ADC=【点睛】此题考查等腰三角形的性质,勾股定理,勾股定理的逆定理.解题的关键是连接AC,并证明△ACD是直角三角形.23.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.【解析】【分析】(1)直接利用一次函数的定义分析得出答案;(2)直接利用正比例函数的定义分析得出答案.【详解】(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.【点睛】此题考查一次函数的定义,正比例函数的定义,解题关键在于利用其各定义进行解答. 24.(11;(2)1;(3)3【解析】【分析】(1)根据小明的解答过程即可进行计算;(2)结合(1)进行分母有理化,再合并即可得结果;(3)根据平方差公式,可分母有理化,根据整体代入,可得答案.【详解】==-,解:(111;(2)原式1=-+⋯1=1=;(3)2a = ,222)9a ∴==+2281a a ∴-+2(92)1=+-+18161=+--+3=.答:2281a a -+的值为3.【点睛】本题考查了分母有理化的应用,能求出a 的值和正确变形是解此题的关键.25.(1)B (0,6)C (8,0)(2)()820428(47)AP t t AP t t =-≤≤=-<≤(3)3,5【解析】【分析】(1)根据题意即可得到结论;(2)当点P 在线段BA 上时,根据A (8,6),B (0,6),C (8,0),得到AB=8,AC=6当点P 在线段AC 上时,于是得到结论;(3)当点P 在线段BA 上时,当点P 在线段AC 上时,根据三角形的面积公式即可得到结论.【详解】(1)B (0,6),C (8,0),故答案为0、6,8、0;(2)当点P 在线段BA 上时,由A (8,6),B (0,6),C (8,0)可得:AB=8,AC=6,∵AP=AB-BP ,BP=2t ,∴AP=8-2t (0≤t <4);当点P 在线段AC 上时,∵AP=点P 走过的路程-AB=2t-8(4≤t≤7);(3)存在两个符合条件的t 值,当点P 在线段BA 上时,∵S △APD =12AP•AC ,S ABOC =AB•AC ,∴12•(8-2t )×6=18×8×6,解得:t=3<4,当点P 在线段AC 上时,∵S △APD =12AP•CD ,CD=8-2=6,∴12•(2t-8)×6=18×8×6,解得:t=5<7,综上所述:当t 为3秒和5秒时S △APD =18S ABOC ,。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数中,是无理数的是()A .B C .0.575757D .4π2.下面四组数中是勾股数的一组是()A .6,7,8B .5,8,18C .1.5,2,2.5D .21,28,353.下列根式中,是最简二次根式的是()A BC D 4.下列计算正确的是()A =B=C .(2=6D 55.若一次函数4y kx =-的图象经过点(2,4)-,则k 等于()A .–4B .4C .-2D .26.一次函数43y x =-的图象经过()A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限7.已知点A(a +2,5),B(-4,1-2a),若AB 平行于x 轴,则a 的值为()A .-6B .2C .3D .-28.对于一次函数y =﹣2x+4,下列结论错误的是()A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 29. ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定 ABC 为直角三角形的是()A .∠A+∠B=∠CB .∠A :∠B :∠C=1:2:3C .a 2=c 2﹣b 2D .a :b :c=3:4:610.一次函数y 1=ax +b 与一次函数y 2=bx -a 在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题11.比较大小:12___________1212=______,8是___的立方根.13.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是_______.14.若点P(﹣2,y)与Q(x,3)关于y轴对称,则x=_____,y=_____.15.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为_____.16.如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将 AOB 的面积平分的直线l2的表达式为_______.17.一长方体容器(如图1),长、宽均为2,高为8,里面盛有水,水面高为5,若沿底面一棱进行旋转倾斜,倾斜后的长方体容器的主视图如图2所示,若倾斜容器使水恰好倒出容器,则CD=________.三、解答题18.计算题:(1)27123(2)|1﹣3(π﹣2021)0﹣1448.19.如图,矩形纸片ABCD的长AD=6cm,宽AB=2cm,将其折叠,使点D与点B重合,求折叠后DE的长?20.如图所示,直线AB与x轴交于A,与y轴交于B.(1)请直接写出A,B两点的坐标:A,B;(2)求直线AB的函数表达式;(3)当x=5时,求y的值.21.如图是由边长为1个单位长度的小正方形组成的网格, ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3) ABC的面积为;(4)点P在y轴上,且 ABP的面积等于 ABC的面积,则点P的坐标为.22.甲、乙两人从学校出发,沿相同的线路跑向公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度继续跑向公园.如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)之间函数关系的图象,根据题意填空:(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒;(2)图中b的值为;(3)乙最早出发时跑步的速度为米/秒,乙在途中等候甲的时间为秒;(4)乙出发秒后与甲第一次相遇.23.如图,Rt△ABC中,∠C=90°,D为AC边上一点,连接BD,将△ABC沿BD折叠,顶点C恰好落在边AB上的点E处,若AC=2,BC=1,求CD的长.24.已知:一次函数图象如图,(1)求一次函数的解析式;(2)若点P为该一次函数图象上一动点,且点A为该函数图象与x轴的交点,若S△OAP =2,求点P的坐标.25.甲、乙两人在净月大街上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA﹣AB﹣BC﹣CD所示.(1)甲的速度为米/分,乙的速度为米/分.(2)求线段AB的表达式,并写出自变量x的取值范围.(3)求乙比甲早几分钟到达终点?26.如图1,直线y=1x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.2(1)直线BC的函数表达式为;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.①若∠MBC=90°,请直接写出点P的坐标;②若 PQB的面积为94,请直接写出点M的坐标;③若点K为线段OB的中点,连接CK,如图2,若在线段OC上有一点F,满足∠CKF=45°,请直接写出点P的坐标.参考答案1.D2.D3.C4.B5.A6.B7.D8.D9.D10.D11.<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1∴0<11.2故答案为:<.12.9±2512【分析】根据平方根和立方根的性质和定义,对上式进行一一计算,从而求解.【详解】=9,,∴4的平方根是±2;∵83=512,∴8是512的立方根,故答案为:9,±2,512.13【分析】先根据勾股定理求出OB的长,进而可得出结论.【详解】解:∵=,∴∵点A在原点的右边,∴点A,.14.23【分析】让纵坐标相等,横坐标互为相反数列式求值.【详解】∵P(-2,y)与Q(x,3)关于y轴对称,∴-2+x=0,y=3,解得x=2,y=3.故答案为2,3.15.(4,-2)【分析】直接利用已知点确立平面直角坐标系进而得出C点的坐标.【详解】如图所示:C点的坐标为:(4,﹣2).故答案为(4,﹣2).16.y=2x【分析】根据坐标轴上点的坐标特征求出A(2,0),B(0,4),则AB的中点为(1,2),所以l2经过AB的中点,直线l2把△AOB平分,然后利用待定系数法求l2的解析式.【详解】解:如图,当y=0,-2x+4=0,解得x=2,则A(2,0);当x=0,y=-2x+4=4,则B (0,4),∴AB 的中点坐标为(1,2),∵直线l 2把△AOB 面积平分∴直线l 2过AB 的中点,设直线l 2的解析式为y=kx ,把(1,2)代入得2=k ,解得k=2,∴l 2的解析式为y=2x ,故答案为:y=2x .【点睛】本题考查了待定系数法求一次函数的解析式,明确直线l 2过AB 的中点是解题的关键.17.10【解析】【详解】如图所示:设DE=x ,则AD=8-x ,根据题意得:12(8-x+8)×2×2=2×2×5,解得:x=6,∴DE=6,∵∠E=90°,由勾股定理得:22226+210DE CE故答案为:【点睛】考点:勾股定理的应用18.(1)3;(2)0【解析】【分析】(1)首先化简二次根式,再计算减法,最后计算乘法;(2)先去绝对值,计算零指数幂,化简二次根式,再算乘法,最后计算加减.【详解】解:(1)=(=3;(2)()01120214π+--1114-+-⨯11+-=0【点睛】此题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.19.103cm 【解析】【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】解:由折叠的性质得:BE=DE ,设DE 长为x cm ,则AE=(6-x )cm ,BE=x cm ,∵四边形ABCD 是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(6-x)2+22=x2,解得:x=10 3,即DE长为103 cm.【点睛】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.20.(1)(4,0);B(0,2);(2)y=-0.5x+2;(3)-0.5【解析】【分析】(1)从函数图象可直接写出两点坐标;(2)把A,B两点代入函数解析式即可求出k的值,从而求出其解析式;(3)把x=5代入函数解析式即可求出y的值.【详解】解:(1)A(4,0);B(0,2);(2)把b=2,以及A(4,0)代入y=kx+b,得到:0=4k+2,解得:k=-0.5,所以解析式:y=-0.5x+2;(3)当x=5时,y=-0.5.【点睛】本题考查的是用待定系数法求一次函数的解析式,通过函数图象可直接求出两点坐标,从而求出函数解析式,体现了数形结合的重要作用.21.(1)A(3,4),B(0,2);(2;(3)112;(4)(0,173)或(0,53 )【解析】【分析】(1)根据点的位置直接写出坐标;(2)利用勾股定理结合点的坐标计算;(3)利用割补法计算即可;(4)根据△ABC的面积得到△ABP的面积,再设P(0,a),根据三角形面积公式列出方程,解之即可.【详解】解:(1)由图可知:A(3,4),B(0,2);(2);(3)S△ABC=111 34234131222⨯-⨯⨯-⨯⨯-⨯⨯=112;(4)由题意可得:S△ABP=11 2,∵点P在y轴,则设P(0,a),∴1113222a⨯⨯-=,解得:173a=或53a=-,∴点P的坐标为(0,173)或(0,53-).22.(1)900,1.5;(2)400;(3)2.5,100;(4)150【解析】【分析】(1)根据函数图象可以得到甲跑的路程和甲的速度;(2)根据所求甲的速度,可得b值;(3)根据函数图象和题意,可以得到乙跑步的速度及乙在途中等候甲的时间;(4)根据函数图象可以分别求得甲乙的函数关系式,然后联立组成二元一次方程组,即可【详解】解:(1)由函数图象可得,在跑步的全过程中,甲共跑了900米,甲的速度为:900÷600=1.5米/秒,故答案为:900,1.5;(2)由图象可得,a=500×1.5=750,c=750-150=600,∴b=600÷1.5=400,(3)由图象可得,甲跑500秒的路程是:500×1.5=750米,甲跑600米的时间是:(750-150)÷1.5=400秒,乙跑步的速度是:750÷(400-100)=2.5米/秒,乙在途中等候甲的时间是:500-400=100秒,即乙跑步的速度是2.5米/秒,乙在途中等候甲的时间是100秒;(4)∵D(600,900),A(100,0),B(400,750),∴OD的函数关系式是y=1.5x,AB的函数关系式是y=2.5x-250,根据题意得,1.52.5250 y xy x=⎧⎨=-⎩,解得x=250,250-100=150(秒),即乙出发150秒时第一次与甲相遇.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23【解析】【分析】依据翻折的性质得到BE=BC,再根据勾股定理解答即可.解:由折叠及对称性可得:BE=BC=1,DE=DC ,∠DEA=∠C=90°.在Rt △ABC 中,根据勾股定理,可得:=,则1.在Rt △ADE 中,根据勾股定理,AD 2=DE 2+AE 2,即22221CD CD -=+-()),解得:.【点睛】本题主要考查的是勾股定理和翻折的性质,熟练掌握勾股定理和翻折的性质是解题的关键.24.(1)y =﹣x+1;(2)P 点坐标为(﹣3,4)或(5,﹣4).【解析】【分析】(1)利用待定系数法求一次函数解析式;(2)先计算出函数值为0所对应的自变量的值得到A 点坐标,设P (t ,-t+1),根据三角形面积公式得到12×1×|-t+1|=2,然后解绝对值方程求出t 即可得到P 点坐标.【详解】(1)设一次函数解析式为y =kx+b ,把(﹣2,3)、(2,﹣1)分别代入得2321k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩,所以一次函数解析式为y =﹣x+1;(2)当y =0时,﹣x+1=0,解得x =1,则A (1,0),设P (t ,﹣t +1),因为S △OAP =2,所以12×1×|﹣t+1|=2,解得t =﹣3或t =5,所以P 点坐标为(﹣3,4)或(5,﹣4).【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.25.(1)60,80;(2)y =﹣20x+320(4≤x≤16);(3)乙比甲早6分钟到达终点.【解析】(1)根据线段OA ,求出甲的速度,根据图可知:乙在点A 处开始追甲,在点B 处追上甲,乙的速度=,计算求值即可;(2)根据图示,设线段AB 的表达式为:y =kx+b ,把把(4,240)、(16,0)代入得到关于k 、b 的二元一次方程组,解之即可得到答案;(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】解:(1)由线段OA 可知:甲的速度为:2404=60(米/分),乙的步行速度为:()24016460164+-⨯-=80(米/分),故答案为:60;80;(2)根据题意得:设线段AB 的表达式为:y =kx+b ()416x ≤≤,把(4,240),(16,0)代入得:4240160k b k b +=⎧⎨+=⎩,解得20320k b =-⎧⎨=⎩,即线段AB 的表达式为:()20320416y x x =-+≤≤;(3)在B 处甲乙相遇时,与出发点的距离为:240+(16﹣4)×60=960(米),与终点的距离为:2400﹣960=1440(米),相遇后,到达终点甲所用的时间为:144060=24(分),相遇后,到达终点乙所用的时间为:144080=18(分),24﹣18=6(分),答:乙比甲早6分钟到达终点.【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象结合题意分析出两个人的运动过程,求出速度、路程、时间等因素解决问题.26.(1)132y x =-+;(2)①39,24⎛⎫- ⎪⎝⎭;②⎫⎪⎝⎭或⎛⎫ ⎪ ⎪⎝⎭;③9,010⎛⎫ ⎪⎝⎭【分析】(1)先确定出点B 坐标和点A 坐标,进而求出点C 坐标,最后用待定系数法求出直线BC 解析式;(2)①设点M(m ,0),则点P(m ,132x +),则OM m =-,由B (0,3),C (6,0),则3OB =,6OC =,6MC m =-,再由勾股定理得222BM BC MC +=,222BM OM OB =+,222BC OC OB =+则()222223636m m +++=-,由此求解即可;②设点M(m ,0),则点P(m ,132x +),Q(m,132x -+)过点B 作BD ⊥PQ 于点D ,则113322PQ m m m =-+--=,BD OM m ==,再由2119==224PQB S PQ BD m ⋅=△进行求解即可;③过点K 以KC 为直角边作等腰直角△KHC ,延长KF 交HC 于T ,过点H 作HG ⊥y 轴于G ,△KHG ≌△CKO 得到KG=OC ,HG=OK ,由此求出3922H ⎛⎫-- ⎪⎝⎭,,再由∠HKC=90°,HK=CK ,∠TKC=45°,得到HT=CT ,即T 为HC 的中点,则99,44T ⎛⎫- ⎪⎝⎭,设直线KT 的解析式为11y k x b =+,求出直线KT 的解析式为5332y x =-+,则直线KT 与x 轴的交点坐标为即为所求.【详解】解:(1)对于132y x =+与x 轴、y 轴的交点,∴A (-6,0),B (0,3),∵点C 与点A 关于y 轴对称,∴C(6,0),设直线BC 的函数解析式为y kx b =+,则360b k b =⎧⎨+=⎩,解得123k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数解析式为132y x =-+;故答案为:132y x =-+;(2)①设点M(m ,0),则点P(m ,132x +),∴OM m =-,∵B (0,3),C (6,0),∴3OB =,6OC =,∴6MC m =-,∵∠MBC=90º,∴△BMC 是直角三角形,∴222BM BC MC +=,∵222BM OM OB =+,222BC OC OB =+,∴()222223636m m +++=-,解得32m =-,∴39,24P ⎛⎫- ⎪⎝⎭;故答案为:39,24⎛⎫- ⎪⎝⎭;②如图1,设点M(m ,0),则点P(m ,132x +),Q(m ,132x -+),过点B 作BD ⊥PQ 于点D ,∴113322PQ m m m =-+--=,∵BD OM m ==,∴2119==224PQB S PQ BD m ⋅=△,解得2m =±,∴M ⎫⎪⎪⎝⎭或,02M ⎛⎫- ⎪⎝⎭;故答案为:2⎛⎫ ⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭;③如图所示,过点K 以KC 为直角边作等腰直角△KHC ,延长KF 交HC 于T ,过点H 作HG ⊥y 轴于G ,∴∠CKH=∠HGK=∠KOC=90°,KC=KH ,∴∠HKG+∠KHG=∠HKG+∠CKO ,∴∠KHG=∠CKO ,∴△KHG ≌△CKO (AAS ),∴KG=OC ,HG=OK ,∵B (0,3),C (6,0),∴OB=3,KG=OC=6,∵K 是OB 的中点,∴1322HG OK ===,∴92OG KG OK =-=,∴3922H ⎛⎫-- ⎝⎭,,∵∠HKC=90°,HK=CK ,∠TKC=45°,∴HT=CT ,即T 为HC 的中点,∴99,44T ⎛⎫- ⎪⎝⎭,设直线KT 的解析式为11y k x b =+,∴111329944b k b ⎧=⎪⎪⎨⎪+=-⎪⎩,∴115332k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线KT 的解析式为5332y x =-+,∴直线KT 与x 轴的交点坐标为9,010⎛⎫ ⎪⎝⎭,∴F 的坐标为9,010⎛⎫⎪⎝⎭.。
北师大版八年级上册数学期中考试试卷附答案
北师大版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在实数:3.14159,364,1.010010001,4.21,π,227中,无理数有()A .1个B .2个C .3个D .4个2.下列根式中是最简二次根式的是()A .15B .213C .8D .273.若()2 1 3my m x -=-+是关于x 的一次函数,则m 的值为()A .1B .1-C .±1D .2±4.以下四组数中,不是勾股数的是()A .3n ,4n ,5n (n 为正整数)B .5,12,13C .20,21,29D .8,5,75.已知点A (4,3)和点B 在坐标平面内关于x 轴对称,则点B 的坐标是()A .(4,3)B .(﹣4,3)C .(4,﹣3)D .(﹣4,﹣3)6.已知a<7<b ,且a ,b 为两个连续的整数,则a+b 等于()A .3B .5C .6D .77.如图,长方体的长为15宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是()A .20B .25C .30D .328.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为()A .23-B .29-C .47-D .27-9.如图,三级台阶,每一级的长、宽、高分别为8dm 、3dm 、2dm .A 和B 是这个台阶上两个相对的端点,点A 处有一只蚂蚁,想到点B 处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B 的最短路程为()A.15dm B.17dm C.20dm D.25dm10.如图,在平面直角坐标系中,△ABC与△DEF关于直线m:x=1对称,M,N分别是这两个三角形中的对应点.如果点M的横坐标是a,那么点N的横坐标是()A.-a B.-a+1C.a+2D.2-a二、填空题11.点M(﹣3,4)到y轴的距离是__.12.已知a+2的平方根是±3,a﹣3b立方根是﹣2,求a+b的平方根为_____.13.若已知a、b5a-5a-,则a b+=_____.14.△ABC中,∠ABC=30°,AB=3AC=4,则BC=____.15.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=___________三、解答题16.计算与解方程(1(π﹣3)0(2)⎛ ⎝(3(4)解方程23(1)471x +-=17.已知2a ﹣1的算术平方根是5,b +1的立方根是﹣2,求3a ﹣b 算术平方根.18.在平面直角坐标系中,已知点()1,24P m m -+,试分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 横坐标比纵坐标大3;(3)点P 在过()5,2A -点,且与y 轴平行的直线上.19.如图,在四边形ABCD 中,已知AB =AD =2,BC =3,CD =1,∠A =90°.(1)求BD 的长;(2)求∠ADC 的度数.20.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y (元)与印制宣传材料数量x (份)之间的关系式;(2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由.(3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?21.如图,已知A (0,4),B (﹣2,2),C (3,0).(1)作△ABC 关于x 轴对称的△A 1B 1C 1;(2)求△A1B1C1的面积与A1B1边上的高;(3)在x轴上有一点P,使PA+PB最小,求PA+PB的最小值.22.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.23.如图,小亮发现升旗的绳子放下时,末端刚好接触到地面E处,但将绳子末端拉到距离旗杆8米的B处,发现此时绳子末端距离地面2米.求旗杆的高度.24.某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当0<x≤5时,单价y为元.当单价y=8.8时,x的取值范围为.(2)根据函数图象,求第②段函数图象中单价y(元)与购买量(千克)的函数关系式,并写出x的取值范围.(3)促销活动期间,张老师计划去该店购买A种水果10千克,那么张老师共需花费多少钱?参考答案1.A【分析】根据无理数的定义逐一判断即可.【详解】解:3.14159,1.010010001,4.21,227都是有理数;根据无理数的定义得,只有π是无理数.故选A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:含π的式子;开方开不尽的数;以及像0.1010010001…,等有这样有规律但不循环的小数.2.B 【分析】最简二次根式应满足的条件:①被开方数的因数或因式的指数小于2;②被开方数的因数或因式是整数.【详解】解:A.B.C.,不是最简二次根式D.不是最简二次根式故选B.【点睛】此题考查了最简二次根式应满足的条件.3.B 【分析】根据一次函数定义求出m 的值即可.【详解】∵()2 1 3my m x -=-+是一次函数∴21m -=∴1m =±∵10m -≠∴1m =-故选B 【点睛】本题主要考查了一次函数的定义,掌握一次函数的定义是解题的关键.4.D 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.A、(3n)2+(4n)2=(5n)2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D、72+52≠82,不是勾股数;故选:D.【点睛】此题考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.5.C【分析】根据关于x轴对称的点的坐标,纵坐标互为相反数,横坐标相等求出点B的坐标即可.【详解】点A(4,3)关于x轴对称的点的坐标为(4,﹣3),∴B(4,﹣3).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6.B【分析】a、b为两个连续整数,若a b,即可得到a=2,b=3,从而求出a+b.【详解】解:∵,,∴a=2,b=3,∴a+b=5.【点睛】本题考查估算无理数的方法:找到与这个数相邻的两个完全平方数,这样就能确定这个无理数的大小范围.7.B【详解】试题解析:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:.(2)如图,BC=5,AC=20+10=30,由勾股定理得,(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴;由于25<<故选B .8.A 【详解】如图,梯形的面积=1(26)282⨯+⨯=,直线把梯形的面积分成相等的两部分,每部分为4,∴直线2y kx =+一定过(0,2),即点D ,设直线与横轴交于点E ,则1242AE ⨯⨯=,∴4AE =,即点E 坐标为(3,0),把点(3,0)代入2y kx =+,得23k =-.故选A .9.B 【分析】根据勾股定理求解出最短路程即可.【详解】最短路径17dm =故答案为:B .【点睛】本题考查了利用勾股定理求最短路程的问题,掌握勾股定理是解题的关键.10.D 【分析】根据对应点的中点在对称轴上,可得点N 与M 点的关系,根据解方程,可得答案【详解】解:设N 点的横坐标为b ,由△ABC 与△DEF 关于直线m=1对称,点M 、N 分别是这两个三角形中的对应点,得12a b+=,解得2b a =-.故选:D .【点睛】此题考查坐标与图形变化对称,解题关键在于列出方程11.3.【分析】根据点到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点A 的坐标(﹣3,4),它到y 轴的距离为|﹣3|=3,故答案为:3.【点睛】本题考查了点的坐标,点到y 轴的距离是点的横坐标的绝对值,点到x 轴的距离是点的纵坐标的绝对值.12.【分析】先根据平方根,立方根的定义列出关于a 、b 的二元一次方程组,再求出a+b 的值,然后根据平方根的定义求解即可.【详解】∵a+2的平方根是±3,a ﹣3b 立方根是﹣2,∴2038a ab +=⎧⎨-=-⎩,解得75a b =⎧⎨=⎩,∴a+b =12,∴a+b 的平方根为故答案为:【点睛】本题考查了平方根,立方根的定义,列式求出a 、b 的值是解题的关键.13.1【解析】有意义,所以50{50a a -≥-≥,所以a=5,所以b+4=0,所以b=-4,所以a+b=5-4=1.考点:二次根式.14.8或4.【分析】分两种情况进行解答,一是∠ACB 为锐角,另一种∠ACB 为钝角,分别画出图形,通过作高,构造直角三角形,利用直角三角形的性质和边角关系进行解答即可.【详解】①当∠ACB 为锐角时,如图1,过点A 作AD ⊥BC ,垂足为D ,在Rt △ABD 中,∵∠ABC =30°,AB =∴AD =12AB =BD =cos30°×AB =6,在Rt △ADC 中,DC 2,∴BC =BD+DC =6+2=8;②当∠ACB 为钝角时,如图2,过点A 作AD ⊥BC ,交BC 的延长线于点D ,在Rt △ABD 中,∵∠ABC =30°,AB =∴AD =12AB =BD =cos30°×AB =6,在Rt △ADC 中,DC 2,∴BC =BD ﹣DC =6﹣2=4;因此BC 的长为8或4,故答案为:8或4.【点睛】本题考查直角三角形的性质、直角三角形的边角关系等知识,分类画出相应的图形,作高构造直角三角形是常用的方法.15【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,BD 8==,∵CE 是AB 边上的中线,CD =AE ,∴152CD AE BE AB ====,取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线,∴132EF AD ==,EF//AD ,∴∠EFB=∠D=90°,在Rt △BEF 中,根据勾股定理,4BF ==,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,CE ===,.【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.16.(1)(2)4;(3)(4)1=3x ,2=-5x 【分析】(1)利用立方根,算术平方根及零指数幂的运算进行计算;(2)利用二次根式的混合运算的计算;(3)二次根式的化简,进行计算;(4)利用开平方法解方程.【详解】解:(1(π﹣3)0=(-3+1-(2)⎛ ⎝()3-5=2+2=4(3==(4)解方程23(1)471x +-=解:23(1)=48x +2(1)=16x +=41x +±=41x +1=3x -41=x +2=-5x 【点睛】本题考查了二次根式的混合运算及一元二次方程-直接开平方法,掌握二次根式的化简及运算顺序是本题的解题关键.17.【分析】利用平方根,立方根定义求出a 与b 的值,即可求出所求.【详解】解:∵2a ﹣1的算术平方根是5,b+1的立方根是﹣2,∴2a ﹣1=25,b+1=﹣8,解得:a =13,b =﹣9,∴3a ﹣b =48,48的算术平方根是【点睛】本题是对算术平方根和立方根的考查,熟练掌握算术平方根和立方根知识是解决本题的关键.18.(1)()3,0-;(2)()9,12--;(3)()5,4--【分析】(1)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让横坐标-纵坐标=3得m 的值,代入点P 的坐标即可求解;(3)让横坐标为-5求得m 的值,代入点P 的坐标即可求解.【详解】解:(1)∵点P 在x 轴上,∴令2m+4=0,解得m=-2,则P 点的坐标为(-3,0);(2)∵点P 横坐标比纵坐标大3,∴令m-1-(2m+4)=3,解得m=-8,则P 点的坐标为(-9,-12);(3)∵点P 在过()5,2A -点,且与y 轴平行的直线上,∴令m-1=-5,解得m=-4.则P 点的坐标为(-5,-4).【点睛】本题考查了点的坐标,用到的知识点为:x 轴上的点的纵坐标为0;平行于y 轴的直线上的点的横坐标相等.19.(1)(2)135°.【分析】(1)首先在Rt △BAD 中,利用勾股定理求出BD 的长;(2)根据等腰直角三角形的性质求出∠ADB =45°,再根据勾股定理逆定理在△BCD 中,证明△BCD 是直角三角形,即可求出答案.【详解】解:(1)在Rt △BAD 中,∵AB =AD =2,∴BD =(2)在Rt △BAD 中,∵AB =AD =2,∴∠ADB =45°,在△BCD 中,DB 2+CD 2=8+12=9=CB 2,∴△BCD 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =45°+90°=135°.【点睛】此题主要考查了勾股定理以及逆定理的运用,解决问题的关键是求出∠ADB =45°,再求出∠BDC =90°.20.(1)y 甲=x +1500,y 乙=2.5x ;(2)选择乙印刷厂比较合算;(3)选择甲印刷厂印制宣传材料能多一些.【分析】(1)利用题目中所给等量关系即可求得答案;(2)把800x =分别代入两函数解析式,分别计算y 甲、y 乙的值,比较大小即可;(3)令3000y =代入两函数解析式分别求x 的值,比较大小即可.【详解】解:(1)由题意可得y 甲=x +1500,y 乙=2.5x ;(2)当x =800时,y 甲=2300,y 乙=2000,∵y 甲>y 乙,∴选择乙印刷厂比较合算;(3)当y =3000时,甲:x =1500,乙:x =1200,∵1500>1200,∴选择甲印刷厂印制宣传材料能多一些.【点睛】本题主要考查一次函数的应用,利用题目中所给的等量关系求得两函数解析式是解题的关键.21.答案见解析.【分析】(1)依据轴对称的性质,即可作△ABC 关于x 轴对称的△A 1B 1C 1;(2)依据割补法即可得到△A 1B 1C 1的面积,进而得出A 1B 1边上的高;(3)连接AB 1,交x 轴于点P ,则BP=B 1P ,PA+PB 的最小值等于AB 1的长,运用勾股定理即可得到结论.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积=111 452522347 222⨯-⨯⨯-⨯⨯-⨯⨯=∵A1B1=,∴A1B1边上的高2=;(3)如图所示,连接AB1,交x轴于点P,则BP=B1P,∴PA+PB的最小值等于AB1的长,∵AB1=∴PA+PB的最小值等于.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.22.(1)y=﹣x+6;(2)S△OAC=12;(3)存在,M的坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7)【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的14时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB的解析式是y kx b=+,根据题意得:42 60 k bk b+=⎧⎨+=⎩,解得:16kb=-⎧⎨=⎩,则直线的解析式是:y x6=-+;(2)在y=﹣x+6中,令x=0,解得:y=6,OAC 1S64122∆=⨯⨯=;(3)设OA的解析式是y=mx,则4m=2,解得:1 m2 =,则直线的解析式是:12y x =,∵当△OMC的面积是△OAC的面积的14时,∴当M的横坐标是141 4⨯=,在12y x=中,当x=1时,y=12,则M的坐标是1(1,2;在y x6=-+中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,12)或M2(1,5).当M的横坐标是:﹣1,在y x6=-+中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7).【点睛】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.23.17米【分析】如图:作BC AE ⊥于点C ,由题意得8BC =,设AE x =,则AB x =,2AC x =-,然后运用勾股定理求得x 即可.【详解】解:作BC AE ⊥于点C ,由题意得8BC =设AE x =,则AB x =,2AC x =-.在Rt ABC ∆中,222AC BC AB +=222(2)8x x -+=解得17x =.答:旗杆的高度是17米.【点睛】本题主要考查了勾股定理的应用,做出辅助线、构造直角三角形成为解答本题的关键.24.(1)10,x ≥11;(2)y =﹣0.2x +11(5≤x ≤11);(3)促销活动期间,张老师计划去该店购买A 种水果10千克,那么张老师共需花费9元.【分析】(1)根据观察函数图象的横坐标,纵坐标,可得答案;(2)根据待定系数法,可得函数的解析式;(3)根据(2)的结论解答即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;x ≥11;(2)设②段函数图象的解析式y =kx +b (k 是常数,b 是常数,k ≠0),图象过点(5,10)(11,8.8),510118.8k b k b +=⎧⎨+=⎩,解得k 0.2b 11=-⎧⎨=⎩,第②段函数图象的解析式y =﹣0.2x +11(5≤x ≤11);(3)当x =10时,y =﹣0.2×10+11=9,答:促销活动期间,张老师计划去该店购买A 种水果10千克,那么张老师共需花费9元.【点睛】本题考查了一次函数的应用,(1)观察图象是解题关键;(2)待定系数法是求函数解析式的关键.。
北师大都亭初中2008年秋期中考试八年级数学试卷
都亭初中2008年秋期中考试八年级数 学 试 卷满分:120分 考时 :120分钟 得分: 一.选择题(每小题3分,共30分) 1.下列命题中,正确的是 ( ) A 有两边和一角对应相等的两个三角形全等 B 有一边和两角对应相等的两个三角形全等 C 有三个角对应相等的两个三角形全等 D 有一边对应相等的两个直角三角形全等 2.下列命题正确的是 ( ) A 062=-x x 不是一元二次方程 B 把一元二次方程73)12(2-=-x x 化成一般形式是073)12(2=---x x C 52=x 的两个根是5和5- D 0122=-x 不是一元二次方程 3.方程2650x x +-=的左边配成完全平方后所得方程为 ( ) A. 14)3(2=+x B 14)3(2=-x C 21)6(2=+x D 以上答案都不对 4、如图,□ABCD 的周长为cm 16,AC 、BD 相交于点O , OE ⊥AC 交AD 于E ,则△DCE 的周长为 ( ) A 4 cm B 8 cm C 10 cm D 不能确定 5、某物体的三视图是如图所示的三个图形,则该物体形状是 ( ) A 、长方体 B 、圆锥体 C 、立方体 D 、圆柱体 6.已知,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形, 四边形ABCD 应具备的条件是 ( ) A 、对角线相等 B 、一组对边平行而另一组对边不平行 C 、对角线互相垂直 D 、对角线互相平分7、党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在2001年~2020年,要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为( )A 、(1+x)2=2B 、(1+x)2=4C 、1+2x=2D 、(1+x)+2(1+x)=48.已知菱形的两条对角线长分别为4cm 和10cm ,则菱形的边长为 ( )A 116cmB 29cmC 292cmD 29cm9、如图:折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=12,∠B = 30º,则DE 的长是 ( )A 6B 4C 3D 210.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是 ( )A 矩形B三角形 C 梯形 D 菱形CEB AD 正视图视图左视图俯视图二.填空题(每小题3分,共24分)11、请写出一个根为1=x 的一元二次方程12、 已知1+2是方程x 2-2x+c=0一个根,则c 为13、方程0)1)(2(=+-x x 的根是 ;14、直角三角形两直角边的和为6,面积为4,则其斜边长为15、等腰三角形一腰上的高与另一腰的夹角为300,则其项角为_____________度;16、一个梯形的中位线的长是高的2倍, 面积是18cm 2, 则这梯形的高是17、如图所示,△ABC 中,AB =AC =10,AB 的垂直平分线交AC 于E ,△BEC 的周长为14,那么底边BC 的长为18、如图,菱形ABCD 的对角线的长分别为4和6,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.三.解答题19.解下列方程:(每小题6分,共12分)(1)0322=--x x (2)20、(4分)如图,ABCD 是一张矩形纸片,点O 为对角线的交点。
北师大版八年级上册数学期中考试试卷含答案
北师大版八年级上册数学期中考试试题一、单选题1.下面说法中,正确的是()A .实数分为正实数和负实数B .带根号的数都是无理数C .无限不循环小数都是无理数D .平方根等于本身的数是1和02.在△ABC 中,AB=12,BC=16,AC=20,则△ABC 的面积为()A .96B .120C .160D .2003.若一个正数的两个平方根为1a +和27a -,则这个正数是()A .2B .3C .8D .94.在平面直角坐标系中,若点P(a -3,1)与点Q(2,b +1)关于x 轴对称,则a +b 的值是()A .1B .2C .3D .45.有理数a 和b -∣a-b ∣等于()A .aB .-aC .2b+aD .2b-a6.如图,分别以Rt ABC 的三边为斜边向外作等腰直角三角形,若斜边6AB =,则图中阴影部分的面积为()A .6B .12C .16D .187.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .748.在平面直角坐标系中,一次函数的图象是()A.B.C.D.9.点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)10.如图,在数轴上点A所表示的数为a,则a的值为()A.1-B.1C.D.1-+二、填空题11.如图数轴上的点O表示的数是0,点A表示的数是2,OB⊥OA,垂足为O,且OB=1,以A为圆心,AB长为半径画弧,交数轴于点C,则点C表示的数为_______.12.a b3a b-=_______;13.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为__________.14.已知点P的坐标为(3-2a,a-9),且点P到两坐标轴的距离相等,则点P的坐标为_______.156b -=+,则-a b 的算术平方根为______.16.如图,圆柱形无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm 的F 处有一苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为__________cm (容器壁厚度忽略不计).三、解答题17.计算:(1(2)2)22.18.阅读下列材料,然后解答下列问题:这样的式子,其实我们还可以将其进一步化简:(一)=;(二)1-;(三)221=-.以上这种化简的方法叫分母有理化.(1):①参照(二)__________.②参照(三)=_____________(2)+19.如图,已知等腰△ABC 的底边BC =13,D 是腰AB 上一点,且CD =12,BD =5.(1)求证:△BDC是直角三角形;(2)求AC的长.20.在平面直角坐标系中,已知点A(8,0),点B(3,0),点C是点A关于点B的对称点,(1)求点C的坐标;(2)如果点P在y轴上,过点P作直线l∥x轴,点A关于直线l的对称点是点D,当△BCD 的面积等于10时,求点P的坐标.21.如图,将一张长方形纸片ABCD沿E折叠,使,C A两点重合.点D落在点G处.已知=4AB,BC=.8(1)求证:AEF∆是等腰三角形;(2)求线段FD的长.22.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,若BD=3,CF=4,求DF的长.23.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点B、C的坐标分别为(﹣2,0),(﹣1,2).(1)请在如图所示的网格中根据上述点的坐标建立对应的直角坐标系;(只要画图,不需要说明)(2)在(1)中建立的平面直角坐标系中,先画出△ABC关于y轴对称的图形△A1B1C1,再画出△A1B1C1关于x轴对称的图形△A2B2C2.24.已知:如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2.(1)求证:∠A=90°;(2)若AB=8,BC=10,求AE的长.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a、b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动3.5秒时,求出点P的坐标;(3)在移动过程中,若点P到x轴的距离为4个单位长度时,求点P移动的时间.参考答案1.C【解析】【分析】直接利用有关实数的性质分别分析得出答案.【详解】解:A、实数分为正实数、负实数和0,故选项错误,不符合题意;B2,故选项错误,不符合题意;C、无限不循环小数都是无理数,故选项正确,符合题意;D、平方根等于本身的数是0,故选项错误,不符合题意;故选:C.【点睛】本题主要考查了实数,解题的关键是正确掌握实数的分类及概念.2.A【解析】【详解】∵122+162=202,即AC2=AB2+BC2,∴△ABC是直角三角形,且AC是直角边,∴△ABC的面积是12×12×16=96.故选:A.3.D【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a的值,即可确定出这个正数.【详解】解:根据题意得:a+1+2a-7=0,解得:a=2,则这个正数是(2+1)2=9.故选:D .【点睛】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.4.C 【解析】【分析】直接利用关于x 轴对称点的性质:横坐标不变,纵坐标互为相反数,即可得出a ,b 的值,进而得出答案.【详解】解: 点(3,1)P a -与点(2,1)Q b +关于x 轴对称,32a ∴-=,11b +=-,5a ∴=,2b =-,则523a b +=-=.故选:C .【点睛】此题主要考查了关于x 轴对称点的性质,正确记忆关于x 轴对称点的符号关系是解题关键.5.B 【解析】【分析】先观察数轴得b <0<a ,判断0a b ->,再化简a b a b -=-a =,然后合并同类项即可【详解】解:观察数轴可知:b <0<a ,b b ==-,0a b ->,a b a b -=-()a b b a b b a b a --=---=--+=-,故答案为:B.【点睛】本题主要考查二次根式中一些化简公式的运用以及绝对值符号的化简,整式的加减计算,需要熟练掌握以上基本概念方法.6.D【解析】【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【详解】解:在Rt△AHC中,AC2=AH2+HC2,AH=HC,∴AC2=2AH2,∴,同理:在Rt△ABC中,AB2=AC2+BC2,AB=6,S阴影=S△AHC+S△BFC+S△AEB=12HC•AH+12CF•BF+12AE•BE,即22211112224⎛⎛++=⎝⎝(AC2+BC2+AB2)14=(AB2+AB2) 12=AB22162=⨯18=.故选:D.【点睛】本题考查了勾股定理的知识,难度适中,解题关键是运用勾股定理证明三个等腰直角三角形的面积之间的关系.7.D【解析】【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE2=BC2+CE2,∴x2=62+(8-x)2,解得x=25 4,∴CE=2584-=74,故选:D.【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.8.B【解析】【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【详解】一次函数y=x-1的图象过(1,0)、(0,-1)两个点,观察图象可得,只有选项B符合要求,故选B.【点睛】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.9.D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m+3,m+1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.10.A【解析】【分析】首先根据勾股定理得出圆弧的半径,然后得出点A的坐标.【详解】∴由图可知:点A所表示的数为:1-故选:A【点睛】本题主要考查的就是数轴上点所表示的数,属于基础题型.解决这个问题的关键就是求出斜边的长度.在数轴上两点之间的距离是指两点所表示的数的差的绝对值.11.2【解析】【分析】利用勾股定理求出AB的长,可得AB AC==2OC即可解决问题.【详解】解:在Rt AOB中,AB==,AB AC∴==,2OC AC OA∴=-=-,C点在x轴负半轴,∴点C表示的数为2-故答案为:2【点睛】本题考查实数与数轴、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.12.12【解析】【分析】由34,可得,a b的值,再把,a b的值代入3,a b-即可得到答案.【详解】解: 34,的整数部分是3,则3,a=3,-则3,b-)39312a b ∴-=-=-故答案为:12-【点睛】本题考查的是无理数的估算,无理数的整数部分与小数部分,熟悉判断无理数的整数部分与小数部分的方法是解题的关键.13.8【解析】【分析】根据勾股定理的几何意义:S 正方形A+S正方形B=S 正方形E ,S 正方形D-S 正方形C=S 正方形E 解得即可.【详解】解:由题意:S 正方形A+S 正方形B=S 正方形E ,S 正方形D-S 正方形C=S 正方形E ,∴S 正方形A+S 正方形B=S 正方形D-S 正方形C ,∵正方形A 、C 、D 的面积依次为4、6、18,∴S 正方形B+4=18-6,∴S 正方形B=8.故答案为:8.【点睛】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.14.(-5,-5)或(15,-15)也可以(15,-15)或(-5,-5)【解析】【分析】由点P 的坐标为(3-2a ,a-9),且点P 到两坐标轴的距离相等,可列方程:329a a -=-,再解绝对值方程可得答案.解:∵点P 的坐标为(3-2a ,a-9),且点P 到两坐标轴的距离相等,∴329a a -=-∴3-2a=a-9或3-2a=-a+9解之:a=4或a=-6当a=4时3-2a=3-8=-5,a-9=-5;当a=-6时3-2a=3+12=15,a-9=-15;∴点P 的坐标为(-5,-5)或(15,-15).故答案为:(-5,-5)或(15,-5)【点睛】本题考查的是点到坐标轴的距离,掌握“(),P x y 到x 轴的距离为,y 到y 轴的距离为x ,”是解题的关键.15.3【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式求出a ,代入原式求出b ,根据算术平方根的概念解答即可.【详解】解:由题意得,30a - ,30a -,解得,3a =,60b ∴+=,解得,6b =-,3(6)9a b ∴-=--=,a b ∴-算术平方根为3,故答案为:3.【点睛】本题考查的是二次根式有意义的条件、算术平方根的概念,解题的关键是掌握二次根式的被开方数是非负数.16.34【分析】首先展开圆柱的侧面,即是矩形,接下来根据两点之间线段最短,可知CF的长即为所求;然后结合已知条件求出DF与CD的长,再利用勾股定理进行计算即可.【详解】如图为圆柱形玻璃容器的侧面展开图,线段CF是蜘蛛由C到F的最短路程.根据题意,可知DF=18-1-1=16(cm),CD160302=⨯=(cm),∴34CF==(cm),即蜘蛛所走的最短路线的长度是34cm.故答案为34.【点睛】此题是有关最短路径的问题,关键在于把立体图形展开成平面图形,找出最短路径;17.(1)0;(2)2-【解析】【分析】(1)根据二次根式的计算原则,计算即可(2)根据平方差公式和平方运算,化简即可.【详解】解:(1)原式=-=0=(2)原式=22 23 --=543--=2-【点睛】本题考查二次根式的加减混合计算,平方差公式计算等知识点,根据相关运算规则解题是重点.18.见解析.【解析】【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)==-22===;(2)原式1131222222=+++==L .【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.19.(1)见解析;(2)AC =16.9【解析】【分析】(1)由BC =13,CD =12,BD =5,知道BC 2=BD 2+CD 2,所以△BDC 为直角三角形,(2)由(1)可求出AC 的长.【详解】证明:(1)∵BC =13,CD =12,BD =5,52+122=132,∴BC 2=BD 2+CD 2,∴△BDC 为直角三角形;(2)设AB =x ,∵△ABC 是等腰三角形,∴AB =AC =x ,∵AC 2=AD 2+CD 2,即x 2=(x ﹣5)2+122,解得:x =16.9,∴AC =16.9.【点睛】此题考查等腰三角形的性质、勾股定理以及逆定理的应用,关键是勾股定理的逆定理解答.20.(1)点C 的坐标为(-2,0);(2)点P 的坐标为(0,2)或(0,-2).【解析】【分析】(1)由A 、B 坐标得出AB=5,根据点C 是点A 关于点B 的对称点知BC=AB=5,据此可得;(2)根据S △BCD=12BC•AD=10且BC=5,可得AD=4,即可知OP=2,据此可得答案.【详解】解:(1)∵点A (8,0),点B (3,0),∴AB=5,∵点C 是点A 关于点B 的对称点,∴BC=AB ,则点C 的坐标为(-2,0);(2)由题意知S △BCD=12BC•AD=10,BC=5,∴AD=4,则OP=2,∴点P 的坐标为(0,2)或(0,-2).【点睛】本题主要考查了坐标与图形的变化-对称,解题的关键是掌握对称的定义和性质.21.(1)见解析;(2)3【解析】【分析】(1)根据矩形的性质可得//AD BC ,则FEC AFE ∠=∠,因为折叠,FEC AEF ∠=∠,即可得证;(2)设FD x =用含x 的代数式表示AF ,由折叠,AG DC =,再用勾股定理求解即可【详解】(1) 四边形ABCD 是矩形∴//AD BC∴FEC AFE∠=∠因为折叠,则FEC AEF∠=∠AEF AFE∴∠=∠∴AEF ∆是等腰三角形(2) 四边形ABCD 是矩形8,4AD BC CD AB ∴====,90D ∠=︒设FD x =,则8AF AD x x=-=-因为折叠,则FG x =,4AG CD ==,90G D ∠=∠=︒在Rt AGF △中222FG AF AG =-即222(8)4x x =--解得:3x =∴3FD =【点睛】本题考查了矩形的性质,等腰三角形的判定定理,图像的折叠,勾股定理,熟悉以上知识点是解题的关键.22.(1)证明见解析;(2)5DF =.【解析】【分析】(1)根据AE ⊥AD ,可得∠DAE=∠DAC+∠CAE=90°,根据∠BAC=∠DAC+∠BAD=90°,可得∠CAE=∠BAD ,可证△ABD ≌△ACE (SAS );(2)连接EF ,由△ABD ≌△ACE (SAS );可得∠ABD=∠ACE ,BD=CE ,由AF 平分∠DAE 交BC 于F ,可得∠DAF=∠EAF ,可证△DAF ≌△EAF (SAS ).得出DF=EF .由∠BAC=90°,AB=AC ,可得∠ABC=∠ACB=45°,可求∠ECF=90°,根据勾股定理可得CE 2+CF 2=EF 2,由DF=EF ,BD=CE ,可求DF 2=BD 2+FC 2=32+42=25.【详解】(1)证明:如图,∵AE ⊥AD ,∴∠DAE=∠DAC+∠CAE=90°,又∵∠BAC=∠DAC+∠BAD=90°,∴∠CAE=∠BAD ,在△ABD 和△ACE 中AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)解:连接EF ,∵△ABD ≌△ACE (SAS );∴∠ABD=∠ACE ,BD=CE∵AF 平分∠DAE 交BC 于F ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AFDAF EAF AD AE=⎧⎪∠=∠⎨⎪=⎩∴△DAF ≌△EAF (SAS ).∴DF=EF .∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,∴∠ECF=∠ACB+∠ACE=∠ACB+∠ABD=45°+45°=90°,∴CE 2+CF 2=EF 2,∵DF=EF ,BD=CE ,∴BD2+FC2=DF2.∴DF2=BD2+FC2=32+42=25.∴DF=5.23.(1)见解析;(2)见解析.【解析】(1)根据B、C两点的坐标即可判断出坐标原点的位置,画坐标系即可;(2)根据题意画图即可.【详解】解:(1)∵B点坐标为:(﹣2,0),∴坐标原点在B右侧,并距B点2个单位长度.如图:(2)如图:分别画出A、B、C三点关于y轴的对称点A1、B1、C1,连接各个顶点即可得到△A1B1C1.然后分别画出A1、B1、C1关于x轴的对称点A2、B2、C2,连接各个顶点即可得到△A2B2C2.【点睛】此题考查的是根据点的坐标画平面直角坐标系和在平面直角坐标系中画关于坐标轴对称的图形,掌握点的坐标与坐标原点的位置关系和关于坐标轴对称的两个图形的画法是解决此题的关键.24.(1)见解析;(2)7 4 .【解析】【分析】(1)连接CE,根据勾股定理的逆定理即可证出△ACE是直角三角形且∠A=90°;(2)先根据勾股定理求出AC,然后再利用勾股定理列方程即可求出AE的长.【详解】(1)证明:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE,∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解:∵AB=8,BC=10,∴AC6,设AE=x,在Rt△AEC中,62+x2=(8﹣x)2,∴x=7 4,∴AE的长为7 4.【点睛】此题考查的是勾股定理及逆定理,掌握利用勾股定理的逆定理判定直角三角形和利用勾股定理解直角三角形是解决此题的关键.25.(1)4;6;(4,6);(2)(1,6);(3)点P移动的时间为2秒或6秒.【解析】【分析】(1﹣6|=0、算术平方根的非负性及绝对值的非负性即可求出a和b,从而求出B的坐标;(2)根据P点的速度和时间,即可求出P移动的路程,从而判断出P点所在的边,然后计算P点坐标即可;(3)根据P到x轴的距离为4个单位长度,分类讨论即可.【详解】解:(1)由题意得,a﹣4=0,b﹣6=0,解得,a=4,b=6,∴OA=4,OB=6,∵四边形OABC为长方形,∴点B的坐标为(4,6),故答案为4;6;(4,6);(2)∵点P的速度是每秒2个单位长度,∴点P移动3.5秒时,移动的距离为:3.5×2=7,而6<7<10故此时P点在CB上∴CP=7﹣6=1,且P点纵坐标为6.∴点P的坐标(1,6);(3)当点P在OC上时,∵点P到x轴的距离为4个单位长度∴此时移动的路程为4,∴移动的时间为:4÷2=2(秒);当点P在BA上时,∴此时移动的路程为6+4+6﹣4=12,∴移动的时间为:12÷2=6(秒),综上所述,点P到x轴的距离为4个单位长度时,点P移动的时间为2秒或6秒.【点睛】此题考查的是坐标系中的动点问题,掌握算术平方根的非负性及绝对值的非负性、行程问题中速度、时间和路程的关系及分类讨论数学思想是解决此题的关键.21。
北师大版八年级上册数学期中考试试题附答案
北师大版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列计算正确的是()A4=-B 5112=C 1=D =2.以下列各组数中的三个数据为边长构建三角形,能组成直角三角形的一组是()A .7,14,15B .12,16,20C .4,6,8D3.下列计算不正确的是()AB 4=C D 2÷=4.下列各数:0.101001…(相邻两个1之间的0的个数逐次加1),227,2π,)A .1个B .2个C .3个D .4个5.在平面直角坐标系中,点A (﹣1,2)关于y 轴的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限6.如果点P (3,y 1),Q (2,y 2)在一次函数y=2x ﹣1的图象上,则y 1,y 2的大小关系是A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定7.已知A 在第三象限,到x 轴的距离为3,到y 轴的距离为4,则点A 的坐标为()A .(3,4)B .(﹣3,4)C .(﹣4,﹣3)D .(﹣3,﹣4)8.如图,在3×3的正方形网格中由四个格点A ,B ,C ,D ,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A .A 点B .B 点C .C 点D .D 点9.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对10.一次函数y =kx -k(k <0)的图象大致是()A .B .C .D .11.已知点M (3,2),N (1,﹣1),点P 在y 轴上,且PM+PN 最短,则最短距离为()A .3B .4C .5D12.一次函数y=﹣25x+2的图象与x 轴,y 轴分别交于A 、B 两点,以AB 为腰,作等腰Rt △ABC ,则直线BC 的解析式为()A .y=35x+2B .y=﹣37x+2C .y=﹣35x+2D .y=37x+2二、填空题13=______.14.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).15.如图,一扇卷闸门用一块宽18cm ,长80cm 的长方形木板撑住,用这块木板最多可将这扇卷闸门撑起_____cm 高.16.如图,在Rt △AOB 中,∠AOB 为直角,A (﹣3,a )、B (3,b ),a+b ﹣12=0,则△AOB 的面积为_____.三、解答题17.计算:(1)12×16(2)45+55(3)(22﹣3)(﹣3﹣22)(4)(2﹣10)2+4018.如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=______.19.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇被吹倒一边,顶端齐至水面,芦苇移动的水平距离为5尺,求水池的深度和芦苇的长度各是多少?20.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:(1)哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?(2)求出两个人在途中行驶的速度是多少?(3)分别求出表示自行车和摩托车行驶过程的函数关系式.21.如图,一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.22.如图,四边形ABCD 中,4AB BC ==,6CD =,2DA =,且90B = ∠.(1)求AC 的长;(2)求DAB ∠的度数.23.已知一次函数y=kx+b 的图象经过点(﹣2,﹣4),且与正比例函数12y x =的图象相交于点(4,a ),求:(1)a 的值;(2)k 、b 的值;(3)画出这两个函数图象,并求出它们与y 轴相交得到的三角形的面积.24.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(34)A -,,(41)B -,,(12)C -,.(1)在图中作出ABC ∆关于x 轴的对称图形111A B C ∆;(2)请直接写出点C 关于y 轴的对称点C '的坐标:;(3)ABC ∆的面积=;(4)在y 轴上找一点P ,使得PAC ∆周长最小,并求出PAC ∆周长的最小值.25.如图,在平面直角坐标系中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,OA=12,OC=9,连接AC .(1)填空:点A 的坐标:;点B 的坐标:;(2)若CD 平分∠ACO ,交x 轴于D ,求点D 的坐标;(3)在(2)的条件下,经过点D 的直线交直线BC 于E ,当△CDE 为以CD 为底的等腰三角形时,求点E的坐标.参考答案1.D【分析】正确运四则运算法则即可得出答案.【详解】A、应为4,错误;B、应为1312,错误;C D正确,所以答案选择D项.【点睛】本题考查了四则运算,仔细审题是解决本题的关键.2.B【分析】计算三角形有两边的平方和是否等于第三边的平方,再根据勾股定理的逆定理判定即可解答.【详解】选项A,72+142≠152,根据勾股定理的逆定理可知不能构成直角三角形;选项B,122+162=202,根据勾股定理的逆定理可知能构成直角三角形;选项C,42+62≠82,根据勾股定理的逆定理可知不能构成直角三角形;选项D ,222+≠,根据勾股定理的逆定理知不能构成直角三角形.故选B.【点睛】本题考查了勾股定理的逆定理,验证两条较小边的平方和与最大边的平方之间的关系是解决问题的关键.3.B 【分析】根据二次根式的加减法对A 、C 进行判断;根据二次根式的除法法则对D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式=所以A 选项正确;B 、原式4=,所以B 选项正确;C 、原式==C 选项错误;D 、原式2=,所以D 选项正确.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.4.C 【分析】结合有理数的定义,根据无理数的定义逐一进行分析即可得.【详解】0.101001…(相邻两个1之间的0的个数逐次加1)是无理数,227是有理数,2π是无理数,是有理数,所以无理数有:0.101001…(相邻两个1之间的0的个数逐次加1),2π共3个,故选C .【点睛】本题考查了无理数的定义,能熟记无理数的定义的内容是解此题的关键,注意:无理数是指无限不循环小数.解此类问题时通常结合有理数的定义进行判断.5.A【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】解:点A(﹣1,2)关于y轴的对称点是(1,2),在第一象限,故选:A.【点睛】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.6.A【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P(3,y1)、Q(2,y2)在一次函数y=2x﹣1的图象上,∴y1=2×3﹣1=5,y2=2×2﹣1=3,∵5>3,∴y1>y2.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.C【分析】根据第三象限内点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】解:∵点A位于第三象限,且点A到x轴的距离为3,点A到y轴的距离为4,∴点A的横坐标是﹣4,纵坐标是﹣3,∴点A的坐标为(﹣4,﹣3).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.8.B【详解】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.9.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C 10.A【详解】试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选A.考点:一次函数的图象.11.C【分析】由题意可得:点M(3,2)关于y轴的对称点为M'(﹣3,2),当点M',点N,点P三点共线时,PM+PN最短.根据两点距离公式可求最短距离M'N的长度.【详解】解:∵点M(3,2)关于y轴的对称点为M'(﹣3,2)∴PM+PN=PM'+PN∴当点M',点N,点P三点共线时,PM+PN最短.∴PM+PN最短距离为为=5故选C.【点睛】本题考查了最短路线问题,坐标与图形性质,熟练运用轴对称的性质解决最短路线问题是本题的关键.12.D【分析】先根据一次函数的解析式求出A、B两点的坐标,再作CE⊥x轴于点E,由全等三角形的判定定理可得出△ABO≌△CAE,得出C点坐标,用待定系数法即可求出直线BC的解析式;【详解】解:∵一次函数y=﹣25x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).如图,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,90BAO ACE BOA AEC AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABO ≌△CAE (AAS ),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C 的坐标是(7,5).设直线BC 的解析式是y=kx+b ,根据题意得:275b k b =⎧⎨+=⎩,解得3k 72b ⎧=⎪⎨⎪=⎩,∴直线BC 的解析式是y=37x+2.故选D .【点睛】本题考查的是一次函数问题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质、等腰直角三角形的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.13.3【详解】分析:根据算术平方根的概念求解即可.详解:因为32=9故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.14.大于【解析】【分析】根据一次函数的性质,当k <0时,y 随x 的增大而减小.【详解】∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为>.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.15.82【详解】试题解析:设长方形的长为a,宽为b,对角线的长度为c,∵a=80cm,b=18cm,∴===c cm82.故最多可将这扇卷闸门撑起82cm.故答案为82.16.18【解析】【分析】=S梯形ACDB﹣S△AOC﹣S△BOD 作AC⊥x轴于C,BD⊥x轴于D,根据三角形面积公式,利用S△AOB=32(a+b),然后根据a+b﹣12=0可计算出△AOB的面积.可得到S△AOB【详解】解:作AC⊥x轴于C,BD⊥x轴于D,∵A(﹣3,a)、B(3,b),∴AC=a,OC=3,OD=3,BD=b,=S梯形ACDB﹣S△AOC﹣S△BOD∴S△AOB=12(a+b)×6﹣12×3×a﹣12×3×b=3(a+b)﹣32(a+b)=32(a+b),而a+b=12,=32×12=18.∴S△AOB故答案为18.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.也考查了坐标与图形性质.17.(1)22;(2)4;(3)-5;(4)14﹣210.【解析】【分析】(1)直接利用二次根式的乘法运算法则计算得出答案;(2)首先化简二次根式进而计算得出答案;(3)直接利用平方差公式计算,得出答案;(4)直接利用完全平方公式计算,进而得出答案.【详解】解:(1×16=8=22;(25=4;(3)(22﹣3)(﹣3﹣22)=3﹣8=﹣5;(4)(2﹣10)2+40=4+10﹣410+210=14﹣210.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(1)图形见解析.(2)A 1(0,-4),B 1(-2,-2),C 1(3,0);(3)7【解析】试题分析:(1)根据网格结构找出点、、A B C 关于x 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)利用三角形所在矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.题解析:(1)如图即为所求.(2)()()()1110,42,230A B C ---,,,.(3)111111542234522026520137.222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=---=-= 故答案为(0,−4);(−2,−2);(3,0);7.19.水池深度为12尺,芦苇长度为13尺.【分析】仔细分析题意得出:此题中水深、芦苇长及芦苇移动的水平距离构成一直角三角形,解此直角三角形即可.【详解】解:若高水池深度为x 尺,则芦苇长为(x+1)尺,根据勾股定理得x 2+52=(x+1)2,解得:x=12尺,即水池深度为12尺,则芦苇长度为13尺.【点睛】本题考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.(1)见解析;(2)小王:10千米/小时;小李40千米/小时;(3)小王:y=8x;小李:y=40x﹣120.【解析】【分析】(1)根据函数图象容易得出结果;(2)根据速度=路程÷时间,即可得出结果;(3)设小王骑自行车行驶过程中函数关系式为:y=kx,把点(8,80)代入得出方程,解方程即可;设小李骑摩托车行驶过程中函数关系式为:y=ax+b,把点(3,0),(5,80)代入得出方程组,解方程组即可.【详解】解:(1)根据图象得:小王出发早,早3小时,小李早到达目的地,早3(即8﹣5)小时;(2)小王行驶的速度为80÷8=10(千米/小时);小李行驶的速度为80÷2=40(千米/小时);(3)设小王骑自行车行驶过程中函数关系式为:y=kx,把点(8,80)代入得:8k=80,解得:k=10,∴小王骑自行车行驶过程中函数关系式为y=8x;设小李骑摩托车行驶过程中函数关系式为:y=ax+b,把点(3,0),(5,80)代入得:3+=05+=0,解得:a=40b=-120,∴小李骑摩托车行驶过程中函数关系式为y=40x﹣120.【点睛】本题考查了用一次函数解决实际问题,渗透了函数与方程的思想;此类题是近年中考中的热点问题,根据函数图象获取信息是解决问题的关键.21.(1)这个零件符合要求;(2)S四边形=114.【分析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求.【详解】解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB2+AD2=BD2,BD2+BC2=DC2.∴△ABD、△BDC是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.S四边形=11292⨯⨯+18152⨯⨯=114.【点睛】本题考查了勾股定理的逆定理,关键是根据勾股定理的逆定理判断△ABD、△BDC的形状.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.22.(1)(2)135°【分析】(1)根据勾股定理即可求得AC的长;(2)根据勾股定理的逆定理可以求得∠CAD=90°,根据等腰三角形的性质可以求得∠BAC=45°,从而求解.【详解】解:(1)∵AB=BC=4,且∠B=90°,∴(2)∵CD=6,DA=2,AC=∴CD2=DA2+AC2,∴∠CAD=90°.∵AB=BC,且∠B=90°,∴∠BAC=45°.∴∠DAB=90°+45°=135°【点睛】此题综合考查了勾股定理及其逆定理.能够根据勾股定理由直角三角形的已知两边求得第三边;能够根据三角形的三边判断三角形是否是直角三角形.23.(1)k=1,b=-2(2)2(3)4【详解】解:(1)将点(4,a)代入正比例函数12 y x∴a=×4=2(2)将点(4,2)、(-2,-4)分别代入y=kx+b得由题意可得:解方程组得:k=1,b=-2(3)直线y=x-2交y轴于点(0,-2),S==424.(1)作图见解析;(2)(1,2);(3)4;(4)【解析】【分析】①关于x轴对称,对应点X值不变,Y值变成相反数.②关于Y轴对称,对应点Y值不变,X值变成相反数.③△ABC面积=外接矩形的面积-三个小三角形的面积④作点A关于Y轴对称的点E,连接CE交Y轴与点P,则三角形PAC周长最短是=AC+CE【详解】①如图所示②关于Y 轴对称,对应点Y 值不变,X 值变成相反数.C 为(-1,2),对称点为(1,2).③△ABC 面积=3·3-1·3·12-2·2·12-1·3·12=4.④作点A 关于Y 轴对称的点E ,连接CE 交Y 轴与点P ,则三角形PAC 周长最短是=AC+CE【点睛】本题主要考察轴对称的知识和综合运用,熟悉相关知识并知道求周长最小三角形时利用对称和两边之和大于第三边是解题关键.25.(1)(12,0),(12,9);(2)D (92,0);(3)E (454,9).【分析】(1)根据矩形的性质即可解决问题;(2)如图1中,作DM ⊥AC 于M .由Rt △CDO ≌Rt △CDM (HL ),推出CM=OC=9,由,推出AM=6,设OD=DM=m ,在Rt △ADM 中,根据AD 2=DM 2+AM 2,构建方程即可解决问题;(3)如图2中,作线段CD 的中垂线EF ,垂足为F ,交BC 于E ,则EC=ED ,△ECD 是以CD 为底的等腰三角形.想办法求出直线EF 的解析式即可解决问题;【详解】解:(1)∵四边形OABC 是矩形,∴AB=OC=9,BC=OA=12,∴A (12,0),B (12,9),故答案为(12,0),(12,9);(2)如图1中,作DM ⊥AC 于M .∵DC平分∠ACO,DO⊥CO,DM⊥AC,∴DO=DM,∠COD=∠CMD=90°,∵CD=CD,∴Rt△CDO≌△Rt△CDM(HL),∴CM=OC=9,∵229+12,∴AM=6,设OD=DM=m,在Rt△ADM中,∵AD2=DM2+AM2,∴x2+62=(12﹣x)2,解得x=9 2,∴D(92,0).(3)如图2中,作线段CD的中垂线EF,垂足为F,交BC于E,则EC=ED,△ECD是以CD为底的等腰三角形.∵C(0,9),D(92,0),∴直线CD的解析式为y=﹣2x+9,∴F(94,92),∴直线EF的解析式为y=12x+278,当y=9时,x=45 4,∴E(454,9).【点睛】本题是四边形综合题,考查了矩形的性质、全等三角形的判定和性质、角平分线的性质、等腰三角形的判定和性质、勾股定理、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数解决交点问题,属于中考压轴题.。
八年级数学上册北师大版第一学期期中考试试卷
八年级 数学 第1页 共4页BCA2007——2008学年第一学期期中考试试卷八年级 数学 命题人:兰炼二中李平亲爱的同学,貌似困难的数学最怕有信心的你,严谨的数学需要踏实仔细的你.祝你稳扎稳打,继续前进!本试卷分为第I 卷(选择题、填空题)和第II 卷(解答题)两部分,第I 卷1至2页,第II 卷3至4页.全卷满分150分,考试时间120分钟.第I 卷(选择题、填空题 共96分)注意事项:请务必将1~24小题的答案填写在第II 卷相应的答题卡上.一、选择题(每小题4分,共48分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.分析下列说法:①实数与数轴上的点一一对应;②2a -没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1. 其中正确的有( )A .1个B .2个C .3个D .4个2.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .3 3.下列关于12的说法中,错误..的是( ) A .12是无理数 B .3<12<4 C .12是12的算术平方根 D .12不能再化简 4.下列平方根中, 已经化简的是( ) A.31B. 20C. 22D. 1215.右图可以看作是一个等腰直角三角形旋转若干次而生成的则 每次旋转的度数可以是( )A .900B .600C .450D .3006.将一正方形纸片按图5中⑴、⑵的方式依次对折后,再沿⑶中的虚线裁剪,最后将⑷中的纸片打开铺平,所得图案应该是下面图案中的( )(1) (2) (3) (4)A B C D7.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A .3:4B .5:8C .9:16D .1:2 8.若菱形的边长为1cm ,其中一内角为60°,则它的面积为( ) A.223cm B.23cm C.22cm D.232cm 9.若在四边形内能找一点,使该点到各边的距离都相等,则这个四边形是( )A .平行四边形,矩形,菱形B .菱形,矩形,正方形C .菱形,正方形D .矩形,正方形10.若平行四边形一边长为10cm ,则两对角线的长可以是( ) A .4cm 和6cm B .6cm 和8cm C .8cm 和10cm D .10cm 和12cm12.如下图,经过平移和旋转变换可能将甲图案变成乙图案的是( ) (默认三角形都是全等的)甲 乙 甲 乙 甲 乙 甲 乙A B C D二、填空题(每小题4分,共48分)13.下列各数:12、0.32、π0.01020304…中是无理数的有___ _个.14.如图,是两个同心圆,其中两条直径互相垂直,其大圆的半径学校 班级 姓名 学号 A密 封 线 内 请 不 要 答 题C第7题图 第5题第2题八年级 数学 第2页 共4页密 封 线 内 请 不 要 答 题是2,则其阴影部分的面积之和 .(结果用π表示)15.16.估算比较大小:(填“>”、“<”或“=” )32;213- 21.17.下图中所有的四边形都是正方形,所有的三角形都是直角三角形(不包括组合图形)若最大的正方形的边长为cm 7,则正方形A 、B 、C 、D 的面积之和为 2cm18.已知0.3984, 1.260,≈≈ 1.166≈≈,聪明的同学你能不用计算器得出(1);(2≈ . 19.21.如下图,在□ABCD 中,对角线AC 、BD 相交于O ,AC+BD=18,BC=6,则△AOD 的周长为 .22.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动____ _米.23.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”). 24.工人师傅做铝合金窗框分为下面三个步骤: (1)先截出两对符合规格的铝合金窗料(图(1)),使CD AB =,GH EF =;(2)摆放成图(2)的四边形,则这时窗框的形状是 形,其依据是 . (3)将直角尺靠窗框的一个角(如图(3)),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图(4)),说明窗框合格,这时窗框是 形,其依据是 .(1)第I 卷答题卡请将1~24小题的答案填写在下面相应的位置:(每小题4分)DB第21题CDEABF第22题第23题第17题学校 班级 姓名 学号 A密 封 线 内 请 不 要 答 题八年级 数学 第3页 共4页13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.24.(1)(2)第II 卷(解答题 共54分)友情提示:解答题应写出必要的文字说明、证明过程或演算步骤三、解答题(本大题共7个小题,满分54分)25.计算:(每小题4分,共12分) (1) 483122+ (2)81221332-+ (3)32748515--⨯26.画图(每小题3分,共6分)(1)画出将小船先向右平移5格,再向下平移3格的图形; (2)画出将△ABC 绕点A 沿顺时针方向旋转90°后的图形.27.(6分)想一想:将等式23=3和27=7反过来的等式3=23和7=27还成立吗?式子:9271=2792=3和481=842=2成立吗?仿照上面的方法,化简下列各式:(1)221 (2)11112 (3)612128.(7分)如图,一棵36米高的巨大的加利福尼亚红木在一次强烈的地震中折断落下,树顶落在离树根24米处。
北师大版八年级上学期期中考试数学试题(含答案) (6)
八年级第一学期期中考试 数学试卷一、选择题(每题3分,共36分) 1、下列各数中,是无理数的是 ( )。
A 、16 B 、-2 C 、0 D 、π-2、平面直角坐标系内,点P (3,-4)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3、下列说法正确的是( )A 、若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B 、若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C 、若 a 、b 、c 是Rt△ABC 的三边,90=∠A ,则a 2+b 2=c 2;D 、若 a 、b 、c 是Rt△ABC 的三边,90=∠C ,则a 2+b 2=c 2. 4、下列各组数中,是勾股数的是( )A 、 12,8,5,B 、 30,40,50,C 、 9,13,15D 、 16 ,18 ,1105、0.64的平方根是( )A 、0.8B 、±0.8C 、0.08D 、±0.08 6、下列二次根式中, 是最简二次根式的是( )A.31B. 20C. 22D. 1217、点P (-3,5)关于x 轴的对称点P’的坐标是( )A 、(3,5)B 、(5,-3)C 、(3,-5)D 、(-3,-5)8、二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )A 、⎩⎨⎧==;3,4y xB 、⎩⎨⎧==;6,3y xC 、⎩⎨⎧==;4,2y xD 、⎩⎨⎧==.2,4y x9、下列计算正确的是( )A 、20=102B 3=-C 、224=-D 、632=⋅ 10、小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( )A .B .C .D .11、点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( ) A .(2,0) B .(0,-2) C .(4,0) D .(0,-4)12、在Rt△ABC 中,∠C=90°,AC=3.将其绕B 点顺时针旋转一周,则分别以BA 、BC 为半径的圆形成一圆环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.已知一个直角三角形的两边长分别为3和4,则第三边长是 ( )
A. 5 B. 25 C. D.5或
5.如图,在方格中的四叶风车,其中一个叶轮至少旋转( )度才能与相邻的叶轮重合。
10. 以下图形中,不能用来密铺的是( )
(A) 三角形 (B)四边形 (C)正五边形 (D)正六边形
二、填空题:(本大题共5小题,每小题3分,计15分)
11. 的算术平方根是_________。
12. 已知实数x、y满足|y-|+=0, 则yx=_________.
(A)AE=FC (B)AD=BC
(C)∠AEB=∠CFD (D)BE=AF
9. 4张扑克牌如图(1)所示放在桌子上,
小敏把其中一张旋转180°后得到如图
(2)所示,那么它旋转的牌从左数起是( )
A. 第一张
B. 第二张
C.第三张
D.第四张
求证:(1)AD2+BC2=AB2+CD2;
A
B
O
C
D
(2)若BC=2AD,AB=12,CD=9,求四边形ABCD的周长.
24. 如图,在矩形ABCD中,AB=6,BC=8。将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处。
(1)求EF的长;
四、解答题:(本大题共3小题,每小题7分,共21分)
B
A
D
C
20.已知:如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.
21. 已知:如图,菱形ABCD的周长为8cm,∠ABC:∠BAD=2:1,对角线AC、BD相交于点O,求AC的长及菱形的面积.
A、45° B、90° C、60° D、120°
A
D
G
B
C
E
F
H
O
6..如图平行四边形ABCD 中,EF∥AB,GH∥AD,EF与GH交于O,则该图中平行四边形的个数共有( )个,
A 7 B 8
C 9 D 10
※※※※※
考 号
_____
班 级
_____
姓 名
_____
分 数
_____※※※※※
二○○八年秋八年级数学期中检测题
(时限:120分钟 满分:120分)
一、选择题:(本大题共10小题,每小题3分,共30分)
题 号
1
2
3
4
5
6
7
8
9
10
22. 如图,已知:□ABCD的对角线AC、BD相交于O点,△AOB为等边三角形,AB=4cm。
(1)□ABCD为矩形吗?请说明理由.
(2)求四边形ABCD的面积.
五、解答题:(本大题共3小题,每小题10分,共30分)
23.如图,已知四边形ABCD中,AC和BD相交于点O, 且∠AOD=90°,
答 案
1.在,,–3.1416 ,π, , 0.161161116……,中无理数有 ( )
A.2个 B.3个 C.4个 D.5个
2.下列说法:①-是17的平方根;②的立方根是±;③-81没有立方根;④实数和数轴上的点一一对应。其中错误的有 ( )
13. 如图,的位置,BC上一点D也同时平移到点H的位置,若
。
14.一个多边形每个外角都等于72°,则此多边形是_______.
15. 如右图△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC。
请你补充一个条件____,小题6分,共24分)
A.①③ B.①④ C. ②③ D.②④
3.实数-、-2.5、-3的大小关系是 ( )
A.-<-2.5<-3 B. -3<-2.5<-
(2)求梯形ABCE的面积。
25. 如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC交BC的延长线于E点。
⑴求证:四边形ACED是平行四边形;(4分)
⑵若AD=3,BC=7,求梯形ABCD的面积;(6分)
A
D
B
C
E
16.化简:(1) (2)
17、如图:,以及旋转后的三角形位置
18.如图,平行四边形ABDC中,P,Q是对角线BD上的两个点,且BP=DQ.求证:AP=CQ
A
B
C
D
P
Q
19.小文房间的面积为10.8㎡,房间地面恰巧由120块相同的正方形地砖密铺而成,每块地砖的边长是多少?
7.下列四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的是( )。
E
D
B
C
A
F
(第8题)
A、①②③ B、①②③④ C、①② D、②③
8. 如图,四边形ABCD是矩形,F是AD上一点,E是CB延长线上一点,且四边形AECF是等腰梯形.下列结论中不一定正确的是( ).