九年级数学确定圆的条件练习题

合集下载

苏科版九年级数学上册《确定圆的条件》期中复习专题培优训练

苏科版九年级数学上册《确定圆的条件》期中复习专题培优训练

苏科版九年级数学上册《确定圆的条件》期中复习专题培优训练1.已知一个点到圆上的点的最大距离是5cm,最小距离是1cm,则这个圆的半径是( )A.3cm B.2cm C.3cm或2cm D.不能确定2.已知OA=4,以O为圆心,r为半径作⊙O.若使点A在⊙O内,则r的值可以是( )A.2B.3C.4D.53.如图,在正方形ABCD中,点E、F分别是DC、AD边上的动点,且AE⊥BF,垂足为P,连接CP.若正方形的边长为1,则线段CP的最小值为( )A.B.C.D.4.下列各组图形中,四个顶点一定在同一圆上的是( )A.矩形,菱形B.矩形,正方形C.菱形,正方形D.平行四边形,菱形5.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连接弦AE,已知OE=1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是( )A.①②B.①③C.②③D.②6.下面说法正确的是( )A.三点确定一个圆B.外心在三角形的内部C.平分弦的直径垂直于弦D.等弧所对的圆周角相等7.给出下列说法:①经过三点一定可以作圆;②任何一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离相等,其中正确的有( )A.4个B.3个C.2个D.1个8.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是( )A.15°B.30°C.45°D.60°9.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A.第①块B.第②块C.第③块D.第④块10.如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是( )A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定11.下列命题中,真命题的个数是( )①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个12.如图,在平面直角坐标系中,A(4,0)、B(0,﹣3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为 .13.在平面直角坐标系中,M(6,8),P是以M为圆心,2为半径的⊙M上一动点,A(﹣2,0)、B(2,0),连接PA、PB,则PA2+PB2最大值是 .14.如图,在平面直角坐标系中,已知点A(1,0)、B(1﹣t,0)、C(1+t,0)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是 .15.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为 .16.在直角坐标系中,抛物线y=ax2﹣4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,若△ABC的外接圆经过原点O,则a的值为 .17.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE 于F,连接DF.若OE=2,DF=1,则△ABC的周长为 .18.如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线.19.如图,四边形ABCD中,∠A=90°,AB=5,BC=8,CD=6,AD=5,试判断点A、B、C、D是否在同一个圆上,并证明你的结论.20.已知:△AC内接于⊙O,D是上一点,OD⊥BC,垂足为H(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P.求证:∠ACD=∠APB.21如图,已知⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD.求证:四边形AGCE是平行四边形.22、如图,残破的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D. 已知AB=24cm,CD=6cm(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径23.已知,如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证:CD=CE;(2)当AC=2时,求BF的长;(3)若∠A=α,∠ACD=25°,且△CDE的外心在该三角形的外部,请直接写出α的取值范围.24.如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=,求AD的长.。

北师大版九年级数学下册3.5确定圆的条件 同步达标测评

北师大版九年级数学下册3.5确定圆的条件 同步达标测评

北师大版九年级数学下册《3.5确定圆的条件》同步达标测评(附答案)一.选择题(共10小题,满分40分)1.如图,△ABC是⊙O的内接三角形,若∠ABC=60°,则∠AOC的大小是()A.30°B.120°C.135°D.150°2.如图,△ADC内接于⊙O,BC是⊙O的直径,若∠A=66°,则∠BCD等于()A.14°B.24°C.34°D.66°3.如图,△ABC中,∠A=70°,O为△ABC的外心,则∠BOC的度数为()A.110°B.125°C.135°D.140°4.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,若AD=8,∠B=30°,则AC 的长度为()A.3B.4C.4D.45.如图,△ABC内接于⊙O,射线AO交BC边于点D,AD平分∠BAC,若AD=BC=8,则⊙O的半径长为()A.3B.4C.5D.66.△ABC的外心在三角形的内部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断7.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30°B.40°C.50°D.60°8.如图,⊙O是△ABC的外接圆,∠CAB=30°,∠ACB=105°,CD⊥AB于点D且CD =2,则⊙O的半径为()A.2B.4C.4D.49.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.410.如图,⊙O是△ABC的外接圆,∠A=50°,E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠CBD的大小为()A.20°B.21°C.23°D.25°二.填空题(共8小题,满分40分)11.如图,△ABC内接于圆O,∠A=50°,则∠D等于.12.如图,△ABD内接于⊙O,∠ADB=90°,∠ADB的角平分线DC交⊙O于C.若BD =8,BC=,则AD的长为.13.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则⊙O的半径为.14.当点A(1,2),B(3,﹣3),C(5,n)三点可以确定一个圆,则n需要满足的条件为.15.平面直角坐标系内的三个点A(1,﹣3)、B(0,﹣3)、C(2,﹣3),确定一个圆,(填“能”或“不能”).16.如图,△ABC内接于半径为3cm的⊙O,且∠BAC=30°,则BC的长为m.17.一个直角三角形的两条边长是方程x2﹣7x+12=0的两个根,则此直角三角形的外接圆的直径为.18.一个已知点P到圆周上的最长距离是7,最短距离是3,则此圆的半径是.三.解答题(共4小题,满分40分)19.如图所示,☉O是△ABC的外接圆,AB是☉O的直径,D为☉O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.20.如图,AB是⊙O的直径,三角形ABC内接于⊙O,OE⊥AC,OE的延长线交⊙O于点D.(1)若AB=6,BC=2,求DE的长;(2)若OE=DE,判断四边形OBCD的形状.21.如图,正方形网格中每个小正方形的边长为1,点A,B,C,D都在小正方形的顶点上.(1)判断△ABC的形状,并说明理由.(2)若△ABC的外接圆为⊙O,判断点D与⊙O的位置关系,并说明理由.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.参考答案一.选择题(共10小题,满分40分)1.解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,∴∠AOC=2∠ABC=120°;故选:B.2.解:∵AB是直径,∴∠CDB=90°,∵∠A=∠DBC=66°,∴∠BCD=90°﹣66°=24°.故选:B.3.解:∵△ABC中,∠A=70°,O为△ABC的外心,∴∠BOC=2∠A=140°故选:D.4.解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,又∵∠B=∠D=30°,∴AC=AD=4,故选:B.5.解:如图,连接OB.∵AD平分∠BAC,∴AD⊥BC,BD=CD=BC=4,设半径为r,在Rt△ODB中,OD2+BD2=OB2,即(8﹣r)2+42=r2,解得r=5故选:C.6.解:若外心在三角形的外部,则三角形是钝角三角形;若外心在三角形的内部,则三角形是锐角三角形;若外心在三角形的边上,则三角形是直角三角形,且这边是斜边.故选:A.7.解:∵,⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=50°.故选:C.8.解:如图,连接OA,OC,∵CD⊥AB,∴∠ADC=90°,∵∠CAB=30°,CD=2,∴AC=2CD=4,∵∠ACB=105°,∠ACD=60°,∴∠CBA=45°,∵∠COA=2∠CBA=2×45°=90°,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2,∵OA=OC,∴OA=AC=4,∴⊙O的半径为4,故选:B.9.解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.10.解:连接CD,∵四边形ABDC是圆内接四边形,∠A=50°,∴∠CDB+∠A=180°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠CBD=∠BCD=(180°﹣∠BDC)=25°,故选:D.二.填空题(共8小题,满分40分)11.解:∵∠A与∠D所对的弧都是,∴∠A=∠D=50°,故答案为:50°.12.解:连接AC,∵∠ADB=90°,∴AB为⊙O的直径,∴∠ACB=90°,∵CD平分∠ADB,∴∠ADC=∠BDC,∴=,∴AC=BC=5,∴AB=AC=10,∵BD=8,∴AD==6,故答案为:6.13.解:连接AD,∵∠BAC=120°,AB=AC=4,∴∠C=∠ABC=(180°﹣∠BAC)=30°,∴∠D=∠C=30°,∵BD是直径,∴∠BAD=90°∴AB=2AB=8,∴⊙O的半径为4,故答案为:4.14.解:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,﹣3),∴,解得:k=﹣,b=,∴直线AB的解析式为y=﹣x+,∵点A(1,2),B(3,﹣3),C(5,n)三点可以确定一个圆时,∴点C不在直线AB上,∴n=﹣×5+=﹣8,∴当点A(1,2),B(3,﹣3),C(5,n)三点可以确定一个圆,则n需要满足的条件为n≠﹣8,故答案为:n≠﹣8.15.解:∵B(0,﹣3)、C(2,﹣3),A(1,﹣3),∴点A、B、C共线,∴三个点A(1,﹣3)、B(0,﹣3)、C(2,﹣3)不能确定一个圆.故答案为:不能.16.解:连接OB,OC.如图,∵∠BAC=∠BOC,∠BAC=30°,∴∠BOC=60°.∵OB=OC,∴△OBC为等边三角形.∴BC=OB=OC=3(cm)=0.03(m).故答案为:0.03.17.解:x2﹣7x+12=0,(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,①当直角边分别为3,4时,斜边为:=5,此时直角三角形外接圆的直径为5,②当直角边为3,斜边为4时,此时直角三角形外接圆直径为4.故答案为4或5.18.解:①当点在圆外时,∵圆外一点和圆周的最短距离为3,最长距离为7,∴圆的直径为7﹣3=4,∴该圆的半径是2;②当点在圆内时,∵点到圆周的最短距离为3,最长距离为7,∴圆的直径=7+3=10,∴圆的半径为5,故答案为2或5.三.解答题(共4小题,满分40分)19.证明:(1)∵AB是☉O的直径,OD⊥AC,∴=,∴∠CBD=∠ABD,即BD平分∠ABC;(2)连接AD,∵OB=OD,∴∠OBD=∠ODB=30°,由圆周角定理得,∠DOA=2∠ADB=60°,∴△AOD为等边三角形,∴OD=OA,∵∠DOA=60°,∠C=90°,∴BC=AB=OD.20.解:(1)∵OE⊥AC,∴AE=EC,∵AO=OB,∴OE=BC=×2=1,∴DE=OD﹣OE=3﹣1=2;(2)四边形OBCD的形状是菱形,理由如下:连接OC,∵OE=DE,∴OE=OA,∴∠OAE=30°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OBC=60°,∵OB=OC,∴△OBC为等边三角形,∴OB=BC,∴OD=BC,∴AO=OB,AE=EC,∴OD∥BC,∴四边形OBCD为平行四边形,∵OB=OD,∴平行四边形OBCD为菱形.21.解:(1)△ABC是等腰直角三角形,理由如下:根据网格可知:AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形;(2)点D在⊙O上,理由如下:根据网格可知:△ABC的外接圆如图,∵OD=OA,∴点D在⊙O上.则点D与⊙O的位置关系是:点D在⊙O上.22.(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.。

北师版九年级数学下册作业课件 第三章 圆 确定圆的条件

北师版九年级数学下册作业课件 第三章 圆 确定圆的条件

直径,AD⊥BC,∴BC=2BE =8,∵BG 是⊙O 的直径,∴∠BCG=90°,∴GC=
BG2-BC2 =6,∵AD⊥BC,∠BCG=90°,∴AE∥GC,∴△AFO∽△CFG,∴OA GC
=OF FG
,即5 6
= OF 5-OF
,解得 OF=25 11
,即 GC 的长为 6,OF 的长为25 11
(2)过点 A 作 AH⊥BE 于点 H,∵AB=AE,BE=2,∴BH=EH=1,∠ABE=
∠AEB=∠ADB,又∵cos ∠ADB=1 ,∴cos ∠ABE=cos ∠ADB=1 ,即BH =1 ,
3
3 AB 3
∴AC=AB=3.∵∠BAC=90°,∴BC=3 2
Hale Waihona Puke 14.(北京中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,AD⊥BC 于 点 E.
(1)求证:A E =A B ; (2)若∠CAB=90°,cos ∠ADB=1 ,BE=2,求 BC 的长.
3
解:(1)由折叠的性质可知,△A DE ≌△A DC ,∴∠A E D=∠A CD,A E =A C,
∵∠A B D=∠A E D,∴∠A B D=∠A CD,∴A B =A C,∴A E =A B
第三章 圆
3.5 确定圆的条件
知识点 1:不在同一直线上的三个点确定一个圆 1.下列命题中不正确的是( C ) A.过一点有无数个圆 B.过两点有无数个圆 C.过三个点可以作一个圆 D.直径是圆中最长的弦
2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来 大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是( B )
= AB2-BD2 = 102-62 =8,∴OD=8-x,在 Rt△ODB 中,OB2-OD2=BD2,

九年级数学下册《第二十四章 圆》练习题及答案解析

九年级数学下册《第二十四章 圆》练习题及答案解析

九年级数学下册《第二十四章圆》练习题及答案解析一、单选题1.如图,O的半径为4,点A为O上一点,OA的垂直平分线分别交O于点B,C,则BC的长为()A.3B.4C.3D.32.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点3.如图,在正方形网格中,点A,B,C,D,O都在格点上.下列说法正确的是()A.点O是ABC的内心B.点O是ABC的外心C.点O是ABD的内心D.点O是ABD的外心4.若⊙O的半径为5cm,点A到圆心O的距离为4cm,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定5.如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A.AB=AD B.BC=CD C.=AB AD D.∠BCA=∠DCA6.有下到结论:(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)三角形的外心到三角形各边的距离相等,其中正确的结论的个数有()A.0个B.1个C.2个D.3个7.一个点到圆的最大距离为11,最小距离为5,则圆的半径为().A.16或6 B.3或8 C.3 D.8 8.⊙O的面积是25π,点P到圆心O的距离为d,下列说法正确的是( ) A.当d≥5时,点在圆⊙O外B.当d<5时,点在圆⊙O上C.当d>5时,点在圆⊙O外D.当d≤5时,点在圆⊙O内9.如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=45,BD=5,则OH的长为()A.23B.56C.1 D.7610.如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.5 2B.3C.25 11D5二、填空题11.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是. 12.如图,⊙O的直径为10,圆心O到弦AB的距离OM=3,则弦AB的长是13.如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB=.14.如图, AB 是圆 O 的直径, AD DC CB AC ==, 与 OD 交于点 E .如果 3AC = ,那么 DE 的长为 .三、计算题15.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB , AC 的度数为70°.求∠EOC 的度数.16.如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,弧 CE 的度数为50°,求∠AOC 的度数.17.如图,A 、B 、C 、D 均为⊙O 上的点,其中A 、B 两点的连线经过圆心O ,线段AB 、CD 的延长线交于点E ,已知AB=2DE ,∠E=18°,求∠AOC 的度数.四、解答题18.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.19.已知AB,AC为弦,OM⊥AB于M,ON⊥AC于N,求证:MN∥BC且MN=12BC.20.已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且OE=OF.求证:AE=BF.五、综合题21.如图,在Rt△ABC中,∠BAC=90°,以点A为圆心,AC长为半径作圆,交BC于点D,交AB于点E,连结DE.(1)若∠ABC=20°,求∠DEA的度数;(2)若AC=3,AB=4,求CD的长.22.如图,在平面直角坐标系中,O(0,0),A(0,-6),B(8,0)三点在⊙P上.(1)求⊙P的半径及圆心P的坐标;(2)M为劣弧OB的中点,求证:AM是∠OAB的平分线.23.定义:有两个相邻内角和等于另两个内角和的一半的四边形称为半四边形,这两个角的夹边称为对半线.(1)如图1,在对半四边形ABCD中,∠A+∠B=12(∠C+∠D),求∠A与∠B的度数之和;(2)如图2,O为锐角△ABC的外心,过点O的直线交AC,BC于点D,E,∠OAB=30°,求证:四边形ABED是对半四边形;(3)如图3,在△ABC中,D,E分别是AC,BC上一点,CD=CE=3,CE=3EB,F为DE的中点,∠AFB=120°,当AB为对半四边形ABED的对半线时,求AC的长.参考答案与解析1.【答案】D【解析】【解答】解:设OA与BC相交于点D,连接OB,BC是OA的垂直平分线,2OD AD∴==,90BDO∠=︒,2BC BD∴=,在Rt BDO中,224223BD=-=22343BC∴=⨯=故答案为:D.【分析】设OA与BC相交于点D,连接OB,先利用勾股定理求出BD的长,再利用BC=2BD可得答案。

3.5 确定圆的条件 课时练习(含答案解析)

3.5 确定圆的条件 课时练习(含答案解析)

北师大版数学九年级下册第3章第5节确定圆的条件同步检测一、选择题1.下列命题中,正确的是()A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线答案:B解析:解答:A.三个点不共线的点确定一个平面,故A不正确;B.由圆心角、弧、弦的关系及圆周角定理可知:在同圆或等圆中,同弧或等弧所对圆周角相等,故选项B正确;C.平分弦的直径垂直于弦,被平分的弦不能是直径,故此选项错误;D.与某圆一条半径垂直的直线是该圆的切线,错误,正确的应该是:一条直线垂直于圆的半径的外端,这条直线一定就是圆的切线.故此选项错误;故选:B.分析:根据在一条直线上的三点就不能确定一个圆可以判断A,再利用圆心角定理得出B 正确;由当弦为直径时不垂直也平分,以及利用切线的判定对D进行判定.2.下列说法错误的是()A.直径是弦B.最长的弦是直径C.垂直弦的直径平分弦D.经过三点可以确定一个圆答案:D解析:解答:A.直径是弦,根据弦的定义是连接圆上两点的线段,∴故此选项正确,但不符合题意,B.最长的弦是直径,根据直径是圆中最长的弦,∴故此选项正确,但不符合题意,C.垂直弦的直径平分弦,利用垂径定理即可得出,故此选项正确,但不符合题意,D.经过三点可以确定一个圆,利用经过不在同一直线上的三点可以作一个圆,故此选项错误,符合题意,故选:D.分析:根据弦的定义,以及经过不在同一直线上的三点可以作一个圆可判断和垂径定理分别得出即可.3.下列命题中的假命题是()A.三点确定一个圆B.三角形的内心到三角形各边的距离都相等C.同圆中,同弧或等弧所对的圆周角相等D.同圆中,相等的弧所对的弦相等答案:A解析:解答:A.应为不在同一直线上的三点确定一个圆,故本选项错误;B.三角形的内心到三角形各边的距离都相等,是三角形的内心的性质,故本选项正确;C.同圆中,同弧或等弧所对的圆周角相等,正确;D.同圆中,相等的弧所对的弦相等,正确.故选A.分析:根据确定圆的条件,三角形内心性质,以及圆心角、弧、弦的关系,对各选项分析判断后利用排除法求解.4.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4)、(5,4)、(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)答案:D解析:解答:如图:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).故选D.分析:根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.5.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块答案:B解析:解答:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.分析:要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.6.到三角形各顶点的距离相等的点是三角形()A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点答案:A解析:解答:因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.故选:A分析:根据三角形外心的作法,确定到三定点距离相等的点.7.小红的衣服被铁钉划了一个呈直角三角形的洞,其中三角形的两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这块圆布的直径最小应等于()A.2cm B.3cm C.2cm或3cm D.2cm或cm答案:A解析:解答:由题意,若圆布的直径最小,那么2cm必为直角三角形的斜边长;由于直角三角形的外接圆等于斜边的长,所以圆布的最小直径为2cm,故选A.分析:由于已知的三角形两边没有明确是直角边还是斜边,因此有两种情况:①1cm、2cm同为直角边,②1cm为直角边,2cm为斜边;由于直角三角形的外接圆直径等于斜边的长,若外接圆直径最小,那么直角三角形的斜边最小,显然①是不符合题意,因此直角三角形的斜边为2cm,即圆布的最小直径是2cm.8.下列说法中错误的是()A.三角形的外心不一定在三角形的外部B.圆的两条非直径的弦不可能互相平分C.两个三角形可能有公共的外心D.任何梯形都没有外接圆答案:D解析:解答:A.根据三角形的外心是三角形三条垂直平分线的交点,则三角形的外心的位置有三种情况.正确;B.根据垂径定理的推论可以运用反证法证明可知,该选项错误;C.因为一个圆有无数个内接三角形,所以两个三角形可能有公共的外心.正确;D.等腰梯形一定有外接圆.错误.故选D .分析:本题根据三角形的外接圆与外心的位置及其性质特点,逐项进行分析即可求解.9.如图,已知△ABC 的外接圆⊙O 的半径为1,D ,E 分别为AB ,AC 的中点,则sin ∠BAC 的值等于线段( )A .BC 的长B .DE 的长C .AD 的长 D .AE 的长答案:B 解析:解答:如图:过B 作⊙O 的直径BF ,交⊙O 于F ,连接FC ,则∠BCF =90°,Rt △BCF 中,sinF =2BC BC BF = ∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,即DE =,∴sinA =sinF =2BC =DE . 故选B .分析:本题需将∠BAC 构建到直角三角形中求解,过B 作⊙O 的直径,交⊙O 于点F ,由圆周角定理,知∠F =∠A ;在Rt △BCF 中,易求得sinF =2BC BC BF =,而DE 是△ABC 的中位线,即DE =2BC ,由此得解. 10.如图,AD 是△ABC 的高,AE 是△ABC 的外接圆⊙O 的直径,且AC =5,DC =3,AB =42 ,则⊙O 的直径AE =( )A .52B .5C .42D .32答案:A 解析:解答: 如图:连接BE ,则∠BEA =∠ACB ,且三角形ABE 是直角三角形.在Rt △ACD 中,AC =5,DC =3,则AD =2222534AC DC -=-= sin ∠BEA =sin ∠ACB =45AD AC = 故⊙O 的直径52sin AB AE BEA ==Ð 故选A .分析:连接BE .易知∠BEA =∠ACB ,解直角三角形ABE 即可求出AE .11.如图,⊙O 是△ABC 的外接圆,连接OA 、OC ,⊙O 的半径R =2,sinB =4,则弦AC 的长为( )A .3B .C .D .答案:A解析:解答:延长AO 交圆于点D ,连接CD ,由圆周角定理,得:∠ACD=90°,∠D=∠B∴sinD=sinB=,Rt△ADC中,sinD=,AD=2R=4,∴AC=AD•sinD=3.故选A.分析:若想利用∠B的正弦值,需构建与它相等的圆周角,延长AO交⊙O于D,在Rt△ADC 中,由圆周角定理,易得∠D=∠B,即可根据∠D的正弦值和直径AD的长,求出AC的长.12.三角形的外心是三角形中()A.三边垂直平分线的交点B.三条中线的交点C.三条角平分线的交D.三条高的交点答案:A解析:解答:三角形的外心是三角形三边垂直平分线的交点.故选:A.分析:根据三角形外接圆的圆心是三角形三条边垂直平分线的交点,解答即可.13、有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个答案:C解析:解答:①圆的对称轴是直径所在的直线;故此选项错误;②当三点共线的时候,不能作圆,故此选项错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故此选项正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故此选项正确.故选:C.分析:根据圆中的有关概念、定理进行分析判断.14、若一个三角形的外心在它的一条边上,那么这个三角形一定是()A.等腰三角形B.直角三角形C.等边三角形D.钝角三角形答案:B解析:解答:锐角三角形的外心在三角形的内部,直角三角形的外心是其斜边的中点,钝角三角形的外心在其三角形的外部;由此可知若三角形的外心在它的一条边上,那么这个三角形是直角三角形.故选:B.分析:根据直径所对的圆周角是直角得该三角形是直角三角形.15.如图,△ABC中,∠A、∠B、∠C所对的三边分别记为a,b,c,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF=()A.a:b:c B.111::a b cC.cosA:cosB:cosC D.sinA:sinB:sinC答案:C解析:解答:设三角形的外接圆的半径是R.连接OB,OC.∵O是△ABC的外心,且OD⊥BC.∴∠BOD=∠COD=∠A在直角△OBD中,OD=OB•cos∠BOD=R•cosA.同理,OE=R•cosB,OF=R•cosC.∴OD:OE:OF=cosA:cosB:cosC.故选C.分析:设三角形的外接圆的半径是R,根据垂径定理,在直角△OBD中,利用三角函数即可用外接圆的半径表示出OD的长,同理可以表示出OE,OF的长,即可求解.二、填空题16.当点A(1,2),B(3,-3),C(m,n)三点可以确定一个圆时,m,n需要满足的条件.答案:5m+2n≠9.解析:解答:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,-3),∴解得:k=-2.5 ,b=4.5 ,∴直线AB的解析式为y=-2.5 x+4.5 ,∵点A(1,2),B(3,-3),C(m,n)三点可以确定一个圆时,∴点C不在直线AB上,∴5m+2n≠9,故答案为:5m+2n≠9.分析:能确定一个圆就是不在同一直线上,首先确定直线AB的解析式,然后点C不满足求得的直线即可.17.平面直角坐标系内的三个点A(1,0)、B(0,-3)、C(2,-3)确定一个圆(填“能”或“不能”).答案:能解析:解答:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,0)在x轴上,∴点A、B、C不共线,∴三个点A(1,0)、B(0,-3)、C(2,-3)能确定一个圆.故答案为:能.分析:根据三个点的坐标特征得到它们不共线,于是根据确定圆的条件可判断它们能确定一个圆.18.如图△ABC中外接圆的圆心坐标是.答案:(6,2).解析:解答:如图:分别做三角形的三边的垂直平分线,可知相交于点(6,2),即△ABC中外接圆的圆心坐标是(6,2).故答案为:(6,2).分析:本题可借助网格在网格中根据三角形三边的位置作出它们的垂直平分线,垂直平分线相交于一点,该点就是圆心,根据网格中的单位长度即可求解.19.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是. 答案:30°或150°.解析:解答:如图:连接BO,CO,∵△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,∴△OBC是等边三角形,∴∠BOC=60°,∴∠A=30°.若点A在劣弧BC上时,∠A=150°.∴∠A=30°或150°.故答案为:30°或150°.分析:利用等边三角形的判定与性质得出∠BOC=60°,再利用圆周角定理得出答案.20.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt△ABC和Rt△ACD中,∠ACB=∠ACD=90°,点D在边BC的延长线上,如果BC=DC=3,那么△ABC和△ACD的外心距是.答案:3解析:解答:∵∠ACB=∠ACD=90°,∴Rt△ABC和Rt△ACD分别是AB,AD的中点,∴两三角形的外心距为△ABD的中位线,即为12BD=3.故答案为:3.分析:利用直角三角形的性质得出两三角形的外心距为△ABD的中位线,即可得出答案.三、证明题21.如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.答案:见解析解析:解答:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,12BC为半径的圆上.分析:求证E,B,C,D四点在同一个圆上,△BCD是直角三角形,则三个顶点在斜边中点为圆心的圆上,因而只要再证明F到BC的中点的距离等于BC的一半就可以.22.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.答案:略解析:解答:(1)证明:∵AD为直径,AD⊥BC,∴»»BD CD=∴BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:BD=CD,∴∠BAD=∠CBD,又∵BE平分∠ABC,∴∠CBE=∠ABE,∵∠DBE=∠CBD+∠CBE,∠DEB=∠BAD+∠ABE,∠CBE=∠ABE,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.分析:(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.23.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE⊥AB交BC于点D,交⊙O于点E,F在DA的延长线上,且AF=AD.若AF=3,tan∠ABD=34,求⊙O的直径.答案:20 3解析:解答:如图,连接BE.∵AF=AD,AB⊥EF,∴BF=BD.是直径∵AB=AC,∴∠FBA=∠ABC=∠C=∠E.∵tan∠ABD=3 4,∴tanE=tan∠FBA=3 4.在Rt△ABF中,∠BAF=90°.∵tan∠FBA=AFAB=34,AF=3,∴AB=4.∵∠BAE=90°,∴BE是⊙O的直径.∵tanE=tan∠FBA=34,AB=4,∴设AB=3x,AE=4x,∴BE=5x,∵3x=4,∴BE=5x=203,即⊙O的直径是203.分析:如图,连接BE.利用等腰三角形“三线合一”的性质得到BF=BD;然后根据圆周角定理推知∠FBA=∠ABC=∠C=∠E,BE是⊙O的直径.利用锐角三角函数的定义可以来求BE的长度.24.已知在△ABC中,AB=AC=10,BC=16,求△ABC外接圆的半径.答案:25 3解析:解答:过A作AD⊥BC于D,连接BO,△ABC中,AB=AC,AD⊥BC,则AD必过圆心O,Rt△ABD中,AB=10,BD=8∴AD=6,设⊙O的半径为x,Rt△OBD中,OB=x,OD=6-x根据勾股定理,得:,即:,解得:x=253,则△ABC外接圆的半径为:253.分析:已知△ABC是等腰三角形,根据等腰三角形的性质,若过A作底边BC的垂线,则AD必过圆心O,在Rt△OBD中,用半径表示出OD的长,即可用勾股定理求得半径的长.25.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,过A,C,D三点的圆与斜边AB 交于点E,连接DE.(1)求证:AC=AE;(2)若AC=6,CB=8,求△ACD外接圆的直径.答案:(1)略;(2)35解析:解答:(1)证明:∵Rt△ABC中,∠ACB=90°,∴AD为圆的直径,∴∠AED =90°,∵AD 是△BAC 的∠CAB 的角平分线,∴∠CAD =∠EAD ,Rt △ACD 与Rt △ADE 中,∠CAD =∠BAD , ∠ACB =∠AED ,AD =AD ,∴Rt △ACD ≌Rt △ADE (AAS ),∴AC =AE .(2)∵在Rt △ABC 中,∠ACB =90°,AC =6,CB =8,∴10AB = ∵由(1)知,AC =AE ,CD =DE ,∠ACD =∠AED =90°,∴设CD =x ,则BD =8-x ,BE =AB -AE =10-6=4,在Rt △BDE 中,222BE DE BD +=,即2224(8)x x +=-解得x =3.在Rt △ACD 中222AC CD AD +=即22263AD +=解得AD =分析:(1)由Rt △ABC 中,∠ACB =90°,可得AD 是直径,可得△ADE 为直角三角形,在两个直角三角形中,利用AAS 可得两三角形全等,得到答案;(2)先根据勾股定理求出AB 的长,由(1)知,AC =AE ,CD =DE ,设CD =x ,则BD =8-x ,在Rt △BDE 中,根据勾股定理求出x 的值,同理,在Rt ∠ACD 中求出AD 的长,进而可得出结论.。

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件 同步练习题(含答案)

2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画( )A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是( )A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm 和24 cm ,则这个三角形的外接圆的直径长为_____cm.7.已知圆的半径是6,则圆内接正三角形的边长是_____.8.已知直线l :y =x -4,点A(1,0),点B(0,2),设点P 为直线l 上一动点,则当点P 的坐标为_____时,过P ,A ,B 不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A ,B ,C ,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC 中,AB =8米,AC =6米,∠BAC =90°,试求小明家圆形花坛的面积.B 组(中档题)10.如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是_____11.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.若BC =6,sin ∠BAC =35,则AC =_____,CD =_____12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是_____13.如图,已知锐角△ABC的外接圆圆心为O,半径为R.(1)求证:ACsinB=2R;(2)若在△ABC中,∠A=45°,∠B=60°,AC=3,求BC的长及sinC的值.14.已知:如图1,在△ABC中,BA=BC,D是平面内不与A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.C组(综合题)15.如图,在正方形ABCD中,AB=42,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG 的最小值为_____.参考答案2020-2021学年北师大版九年级数学下册第三章 3.5确定圆的条件同步练习题A组(基础题)1.如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)A.点P B.点Q C.点R D.点M2.在同一平面上有A,B,C三点,若经过A,B,C这三点画圆,则可画(C)A.0个 B.1个C.0个或1个D.无数个3.如图,AC,BE是⊙O的直径,弦AD与BE相交于点F,则下列三角形中,外心不是点O的是(B)A.△ABE B.△ACF C.△ABD D.△ADE4.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是(B)A.第①块 B.第②块C.第③块D.第④块5.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A的度数.”嘉嘉的解答为:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是(A)A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值6.若一个直角三角形的两条直角边长分别为7 cm和24 cm,则这个三角形的外接圆的直径长为25cm.7.已知圆的半径是6,则圆内接正三角形的边长是8.已知直线l:y=x-4,点A(1,0),点B(0,2),设点P为直线l上一动点,则当点P的坐标为(2,-2)时,过P,A,B不能作出一个圆.9.小明家的房前有一块矩形的空地,空地上有三棵树A,B,C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若在△ABC中,AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.解:(1)用尺规作出AB,AC的垂直平分线,交于O点,以O为圆心,OA长为半径作出⊙O,⊙O即为花坛的位置,如图.(2)∵∠BAC=90°,AB=8米,AC=6米,∴BC=10米.∴△ABC外接圆的半径为5米.∴小明家圆形花坛的面积为25π平方米.B组(中档题)10.如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片311.(2020·成都树德中学二诊)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB于点D.若BC =6,sin ∠BAC =35,则AC CD =9013.12.如图,在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE ︵(可以是劣弧、优弧或半圆)上的所有点都在△ABC 的内部或边上,则称DE ︵为△ABC 的中内弧,例如,图中DE ︵是△ABC 其中的某一条中内弧.若在平面直角坐标系中,已知点F(0,4),O(0,0),H(4,0),在△FOH 中,M ,N 分别是FO ,FH 的中点,则△FOH 的中内弧MN ︵所在圆的圆心P 的纵坐标m 的取值范围是m ≤1或m ≥2.13.如图,已知锐角△ABC 的外接圆圆心为O ,半径为R. (1)求证:ACsinB=2R ;(2)若在△ABC 中,∠A =45°,∠B =60°,AC =3,求BC 的长及sinC 的值.解:(1)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∵AD 为直径, ∴∠ACD =90°.在Rt △ACD 中,sin ∠ADC =AC AD =AC2R ,∵∠B =∠ADC ,∴sinB =AC2R .∴ACsinB=2R. (2)由(1)知AC sinB =2R ,同理可得AB sin ∠ACB =BC sin ∠BAC=2R. ∴2R =3sin60°=2.∴BC =2R ·sin ∠BAC =2sin45°= 2. 作CE ⊥AB ,垂足为E , ∴BE =BC ·cosB =2cos60°=22, AE =AC ·cos ∠BAC =3cos45°=62. ∴AB =AE +BE =62+22. ∴sin ∠ACB =AB 2R =6+24.14.已知:如图1,在△ABC 中,BA =BC ,D 是平面内不与A ,B ,C 重合的任意一点,∠ABC =∠DBE ,BD =BE.(1)求证:△ABD ≌△CBE ;(2)如图2,当点D 是△ABC 的外接圆圆心时,请判断四边形BECD 的形状,并证明你的结论.解:(1)证明:∵∠ABC =∠DBE , ∴∠ABD =∠CBE.又∵BA =BC ,BD =BE , ∴△ABD ≌△CBE(SAS). (2)四边形BECD 是菱形.证明:∵△ABD ≌△CBE ,∴AD =CE. ∵点D 是△ABC 的外接圆圆心, ∴AD =BD =CD.又∵BD =BE ,∴BD =BE =EC =CD. ∴四边形BECD 是菱形.C 组(综合题)15.如图,在正方形ABCD 中,AB =42,E ,F 分别为BC ,AD 上的点,过点E ,F 的直线将正方形ABCD 的面积分为相等的两部分,过点A 作AG ⊥EF 于点G ,连接DG ,则线段DG的最小值为。

北师大版九年级数学下册第三章圆第5节确定圆的条件课堂练习

北师大版九年级数学下册第三章圆第5节确定圆的条件课堂练习

第三章圆第5节确定圆的条件课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内B.三角形外C.斜边的中点D.不能确定2.如图所示,△ABC内接于△O,△C=45°.AB=4,则△O的半径为()A.22B.4C.23D.53.在同一平面内,过已知A,B,C三个点可以作的圆的个数为()A.0B.1C.2D.0或1 4.有下列四个命题:△经过三个点一定可以作圆;△等弧所对的圆周角相等;△三角形的外心到三角形各顶点的距离都相等;△在同圆中,平分弦的直径一定垂直于这条弦.其中正确的有()A.0B.1C.2D.35.有一边长为23的正三角形,则它的外接圆的面积为()A.23πB.43πC.4πD.12π6.A,B,C为平面上的三点,AB=2,BC=3,AC=5,则()A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内7.用一根铁丝围成一个正方形,正方形的边长是4.71厘米,如果用这根铁丝围成一个圆,这个圆的直径是()厘米?(π取3.14)A.6B.3C.60D.208.下列命题:①三角形的内心是三角形内切圆的圆心;②三角形的外心是三角形三边垂直平分线的交点;③平分弦的直径垂直于这条弦;④平面上任意三点确定一个圆.⑤圆内接四边形的对角互补.其中,真命题有().A.两个B.三个C.四个D.五个评卷人得分二、填空题9.已知三角形的边长分别为6,8,10,则它的外接圆的半径是___________.10.如图,O的半径为1,P是O外一点,2OP ,Q是O上的动点,线段PQ 的中点为M,连接OP、OM.则线段OM的最小值是__________.11.下面是“作出弧AB所在的圆”的尺规作图过程.已知:弧AB.求作:弧AB所在的圆.作法:如图,(1)在弧AB上任取三个点D,C,E;(2)连接DC,EC;(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.(4)以O为圆心,OC长为半径作圆,所以⊙O即为所求作的弧AB所在的圆.请回答:该尺规作图的依据是_____.12.如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是________,半径是________.13.以矩形ABCD的顶点A为圆心作A,要使B、C、D三点中至少有一点在A 内,且至少有一点在A外,如果12BC=,5CD=,则A的半径r的取值范围为________.14.已知正ABC的边长为6,那么能够完全覆盖这个正ABC的最小圆的半径是_____.15.如图,ABC与DEF均为等边三角形,△O是ABC的内切圆,同时也是DEF的外接圆.若AB=1cm,则DE=_____cm.16.如图,在△O中,弦BC=1,点A是圆上一点,且△BAC=30°,则△O的半径是.评卷人得分三、解答题17.尺规作图:已知△ABC,如图.(1)求作:△ABC的外接圆△O;(2)若AC=4,△B=30°,则△ABC的外接圆△O的半径为.18.(1)如图,已知AB、CD是大圆△O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆△O.判断CD与小圆△O的位置关系,并说明理由;(2)已知△O,线段MN,P是△O外一点.求作射线PQ,使PQ被△O截得的弦长等于MN.(不写作法,但保留作图痕迹)19.如图,AD为△ABC外接圆的直径,AD△BC,垂足为点F,△ABC的平分线交AD 于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.如图,在Rt△ABC中,△ACB=90°,AC=6,CB=8,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求证:AC=AE;(2)求△ACD外接圆的直径.参考答案:1.C【解析】【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【详解】△直角三角形的外接圆圆心在斜边中点,△直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选:C.【点睛】本题主要考查了三角形外接圆的性质,熟练掌握相关概念是解题关键.2.A【解析】【详解】试题解析:连接OA,OB.45,C∠=︒90AOB∴∠=︒,△在Rt AOB△中,2 2.OA OB==故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.3.D【解析】【详解】分析:分两种情况讨论:△A、B、C三个点共线,不能做圆;△A、B、C三个点不在同一条直线上,有且只有一个圆.解答:解:当A、B、C三个点共线,过A、B、C三个点不能作圆;当A、B、C不在同一条直线上,过A、B、C三个点的圆有且只有一个,即三角形的外接圆;故选D.4.C【解析】【分析】根据圆的认识、圆周角定理、三角形外心的性质对各小题进行逐一分析即可.【详解】解:△经过在同一条直线上的三个点不能作圆,只有三个点不在同一条直线上时才可以作圆,故本小题错误;△等弧所对的圆周角相等,符合圆周角定理,故本小题正确;△三角形的外心是三角形三边垂直平分线的交点,所以到三角形各顶点的距离都相等,故本小题正确;△在同圆中,平分弦(不是直径)的直径一定垂直于这条弦,故本小题错误.故选:C.【点睛】本题考查的是命题与定理,熟知圆的性质、圆周角定理、三角形外心的性质及其垂径定理的推论是解答此题的关键.5.C【解析】【详解】解:△正三角形的边长为3,可得其外接圆的半径为223cos3023︒÷⨯=,故其面积为4π故选C.【点睛】本题考查等边三角形的性质与运用,其三边相等,三个内角相等,均为60度.6.D【解析】【分析】由已知可得AB+BC=AC,故可知可以画一个圆,使A,C在圆上,B在圆内.【详解】△A,B,C是平面内的三点,AB=2,BC=3,AC=5,△AB+BC=AC,△可以画一个圆,使A,C在圆上,B在圆内.故选D.【点睛】本题主要考查确定圆的条件,正确确定A、B、C三点的位置关系是解决本题的关键.7.A【解析】【分析】根据正方形的周长与圆的周长公式即可列出方程进行求解.【详解】设圆的直径为d,依题意得4×4.71=3.14×d解得d=6,故选A.【点睛】此题主要考查一元一次方程的应用,解题的关键根据题意找到等量关系进行求解.8.B【解析】【分析】根据三角形的内心△进行判断;根据三角形的外心对△进行判断;根据垂径定理对△进行判断;根据确定圆的条件△进行判断;根据圆内接四边形的性质对△进行判断;【详解】①三角形的内心是三角形内切圆的圆心;正确.②三角形的外心是三角形三边垂直平分线的交点;正确.③平分弦(不是直径)的直径垂直于这条弦;故错误.④平面上不在同一条直线上的三点确定一个圆.故错误.⑤圆内接四边形的对角互补.正确.正确的有3个.故选B.【点睛】考查三角形的内心,外心,垂径定理等,比较基础.难度不大.9.5【解析】【分析】根据勾股定理的逆定理得到三角形为直角三角形,那么外接圆的半径等于斜边的一半,计算即可解答.根据直角三角形外接圆的圆心是斜边的中点,由勾股定理求得斜边,即可得出答案.【详解】△三角形的三条边长分别为6,8,10,62+82=102,△此三角形是以10为斜边的直角三角形,△这个三角形外接圆的半径为10÷2=5.故答案为5.【点睛】本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆;三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.10.0.5【解析】【分析】设OP与△O交于点N,连结MN,OQ,如图可判断MN为△POQ的中位线,则MN=1 2OQ=12,则点M在以N为圆心,12为半径的圆上,当点M在ON上时,OM最小,最小值为12.【详解】解:设OP与△O交于点N,连结MN,OQ,如图,△OP=2,ON=1,△N是OP的中点,△M为PQ的中点,△MN为△POQ的中位线,△MN=12OQ=12×1=12,△点M在以N为圆心,12为半径的圆上,当点M在ON上时,OM最小,最小值为12,△线段OM的最小值为0.5.故答案为0.5.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.11.线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【解析】【分析】由中垂线的性质知OD=OC=OE,继而根据“平面内,到定点的距离等于定长的点在同一个圆上”可得.【详解】△分别作DC和EC的垂直平分线,两垂直平分线的交点为点O,△OD=OC=OE(线段垂直平分线上的点到线段两个端点的距离相等),△点A、B、C、D、E在以O为圆心,OC长为半径的圆上(平面内,到定点的距离等于定长的点在同一个圆上),故答案为线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【点睛】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握中垂线的性质和圆的概念.12.(5,2)25【解析】【分析】找出三角形两边的垂直平分线的交点即可确定三角形的外心,再利用勾股定理即可求出半径.【详解】△△ABC 外接圆的圆心到三角形三个顶点的距离相等,又△BC 与AB 的垂直平分线交于点(5,2),△点(5,2)到三角形三个顶点距离相等,△(5,2)点是三角形的外接圆圆心.△△ABC 外接圆的半径为,224225+=.故答案为(5,2);25.【点睛】本题主要考查了三角形的外接圆与外心.利用三角形两边的垂直平分线的交点确定△ABC 外接圆的圆心是解题的关键.13.513r <<【解析】【分析】先求出矩形对角线的长,然后由B 、C 、D 与△A 的位置,确定△A 的半径的取值范围.【详解】根据题意画出图形如下所示:△AB=CD=5,AD=BC=12,△AC=BD=22512+=13.△B 、C 、D 中至少有一个点在△A 内,且至少有一个点在△A 外,△点B 在△A 内,点C 在△A 外.△5<r <13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.14.23【解析】【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.【详解】如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设△O是△ABC的外接圆,连接OB,OC,作OE△BC于E,△△ABC是等边三角形,△△A=60°,△BOC=2△A=120°,△OB=OC,OE△BC,△△BOE=60°,BE=EC=3,△sin60°=BEOB,△OB=23考点:(1)三角形的外接圆与外心;(2)等边三角形的性质15.12.【解析】【详解】试题分析:设AB与△O相切于M,连接OB,OM,得到OM△AB,由△O是等边△ABC的内切圆和等边三角形的性质,求出圆的半径,连接OD,过O作ON△DE于N,由△O 是等边△DEF的外接圆.解直角三角形即可得到结论.试题解析:设AB与△O相切于M,连接OB,OM,△OM△AB,△△O是等边△ABC的内切圆△△ABO=30°,OA=OB,△BM=12AB=12,△OM=36,连接OD,过O作ON△DE于N,△△O是等边△DEF的外接圆.△OD=OM=36,△ODN=30°,△DN=14,△DE=2DN=12.考点:1.三角形的内切圆与内心;2.等边三角形的性质;3.三角形的外接圆与外心.16.1【解析】【分析】连接OB,OC,根据△BAC=30°可得△BOC=60°,则△OBC为等边三角形,则OB=BC=1,即可得圆的半径是1.【详解】如图,连接OB,OC,△△BAC=30°,△△BOC=2△BAC=60°.△OB=OC,△△BOC是等边三角形.△OB=BC=1.故答案为:1.17.(1)答案见解析;(2)4.【解析】【分析】(1)确定三角形的外接圆的圆心,根据其是三角形边的垂直平分线的交点进行确定即可;(2)连接OA,OC,先证明△AOC是等边三角形,从而得到圆的半径.【详解】解:(1)作法如下:△作线段AB的垂直平分线,△作线段BC的垂直平分线,△以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆;(2)连接OA,OC,△△B=30°,△△AOC=60°,△OA=OC,△△AOC是等边三角形,△AC=4,△OA=OC=4,即圆的半径是4,故答案为4.【点睛】本题考查了尺规作三角形外接圆、圆中的计算问题,解题的关键是熟知“三角形边的垂直平分线的交点是三角形的外接圆的圆心”.18.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON△CD,连接OA,OC,根据垂径定理及其推论可得△AMO=△ONC=90°,AM=CN,从而求证△AOM△△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O 做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON△CD,连接OA,OC△AB、CD是大圆△O的弦,AB=CD,M是AB的中点,ON△CD△△AMO=△ONC=90°,AM=12AB,CN12CD,△AM=CN又△OA=OC△△AOM△△CON △ON=OM△CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.19.(1)见解析(2)是【解析】【详解】试题分析:()1利用等弧对等弦即可证明.()2利用等弧所对的圆周角相等,BAD CBD∠=∠再等量代换得出DBE DEB∠=∠,从而证明DB DE DC==,所以B E C,,三点在以D为圆心,以DB为半径的圆.试题解析:(1)证明:△AD为直径,AD△BC,△由垂径定理得:.BD CD=△根据圆心角、弧、弦之间的关系得:BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:.BD CD=△△1=△2,又△△2=△3,△△1=△3,△△DBE =△3+△4,△DEB =△1+△5, △BE 是△ABC 的平分线,△△4=△5,△△DBE =△DEB ,△DB =DE .由(1)知:BD =CD△DB =DE =DC .△B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 20.(1)见解析;(2)35【解析】【详解】试题分析:()1先根据:90ACB ∠=︒得出AD 为圆O 的直径,可得出ACB AED ∠=∠.再由AD 是ABC 中BAC ∠的平分线可知CAD EAD ∠=∠,由HL 得出ACD AED △≌△,根据全等三角形的性质可知=.AC AE ()2根据勾股定理求出AB 的长,设,CD DE x == 则8,DB BC CD x =-=-1064EB AB AE =-=-=,在Rt BED △中,根据勾股定理得出x 的值,再由ACD △ 是直角三角形即可得出AD 的长. (1)证明△90ACB ∠=︒,且ACB ∠为圆O 的圆周角, △AD 为圆O 的直径,90AED ∴∠=︒,.ACB AED ∴∠=∠又AD 是ABC 中BAC ∠的平分线, △CAD EAD ∠=∠CD DE ∴=,△.ACD AED ≌△=.AC AE(2)△ABC 为直角三角形,且6,8AC CB ==,△根据勾股定理得:10.AB =由()1得到90,AED ∠=︒ 则有90BED ∠=︒,设,CD DE x == 则8,DB BC CD x =-=-1064EB AB AE =-=-=,在Rt BED △中,根据勾股定理得:222BD BE ED =+, 即222(8)4x x ,-=+解得: 3.x =3CD ∴=,又6AC =,ACD △为直角三角形, △根据勾股定理得:222226345.AD AC CD =+=+= 3 5.AD =。

人教版九年级数学下册圆周角定理及确定圆的条件专项同步练习

 人教版九年级数学下册圆周角定理及确定圆的条件专项同步练习

圆周角定理及确定圆的条件一、选择题1.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠BOC的度数为()A. 18°B. 36°C. 60°D. 72°2.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为()A. 30°B. 50°C. 60°D. 70°3.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD4.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A. 3B. 4C. 5D. 65.如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A. 43°B. 35°C. 34°D. 44°6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A. B. 2 C. D.7.如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=,BD=5,则OH的长度为()A. B. C. 1 D.8.如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A. B. 5 C. D. 59.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=()A. 2πB. πC. πD. π10.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB=()A. 10°B. 20°C. 30°D. 40°11.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A. 50°B. 60°C. 80°D. 90°12.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A. 130°B. 100°C. 65°D. 50°13.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A. 正三角形B. 正方形C. 正五边形D. 正六边形14.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A. 80°B. 120°C. 100°D. 90°15.如图,圆内接四边形ABCD的两组对边的延长线分别相较于点E,F,若∠A=55°,∠E=30°,则∠F=()A. 25°B. 30°C. 40°D. 55°16.如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为()A. 1B.C.D.17.已知:如图,⊙O是△ABC的外接圆,D为CB延长线上一点,∠AOC=130°,则∠ABD的度数为()A. 40°B. 50°C. 65°D. 100°18.如图,两圆相交于A,B两点,小圆经过大圆的圆心O,点C,D分别在两圆上,若∠ADB=100°,则∠ACB的度数为()A. 35°B. 40°C. 50°D. 80°19.如图,平行四边形ABCD内接于⊙O,则∠ADC=()A. 45°B. 50°C. 60°D. 75°20.如图所示,点A、B、C、D分别是⊙O上的四点,∠BAC=50°,BD是直径,则∠DBC的度数是()A. 40°B. 50°C. 20°D. 35°二、填空题1.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB=______度.2.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为______.3.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为______ .4.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是______.5.如图,在⊙O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=______度.6.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=______ °.7.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=______.8.如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE=______.9.如图,正方形ABCD是⊙O的内接正方形,点P是劣弧上不同于点B的任意一点,则∠BPC=______度.10.如图,A、B、C、D是⊙O上四点,BD是⊙O的直径.若四边形ABCO是平行四边形,则∠ADB=______°.11.如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为1个长度单位每秒,以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第______秒.12.在Rt△ABC中,∠A=30°,直角边AC=6cm,以C为圆心,3cm为半径作圆,则⊙C与AB的位置关系是______.13.如图,⊙O的半径为3cm,当圆心0到直线AB的距离为______cm时,直线AB与⊙O相切.14.Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是______.15.如图,直线l:y=-x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为______.三、解答题1.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.2.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=6,sin∠P=,求AB的值.4.如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O 于点D,连接CD交AB于点E.求证:(1)PD=PE;(2)PE2=PA•PB.5.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.6.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.。

九年级数学圆的练习题

九年级数学圆的练习题

九年级数学圆的练习题 九年级数学关于圆的知识点即将学完,教师们要准备哪些练习题呢?下⾯是店铺为⼤家带来的九年级数学关于圆的练习题,希望会给⼤家带来帮助。

九年级数学圆的练习题⽬ ⼀、选择题(本⼤题共30⼩题,每⼩题1分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定⼀个圆③相等的圆⼼⾓所对的弦相等④外⼼在三⾓形的⼀条边上的三⾓形是直⾓三⾓形,其中真命题共有( )A.0个B.1个C.2个D.3个 2.同⼀平⾯内两圆的半径是R和r,圆⼼距是d,若以R、r、d为边长,能围成⼀个三⾓形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含 3.四边形ABCD内接于⊙O,若它的⼀个外⾓∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140° 第3题第4题第5题 4.⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )A.3≤OM≤5B.4≤OM≤5C.3 5.⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )A.42 °B.28°C.21°D.20° 6.△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )A.2cmB.4cmC.6cmD.8cm 第6题第7题第10题 7.圆⼼⾓都是90°的扇形OAB与扇形OCD叠放在⼀起,OA=3,OC=1,分别连结AC、BD,则图中阴影部分的⾯积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相切,则满⾜条件的⊙C有( )A.2个B.4个C.5个D.6个 9.设⊙O的半径为2,圆⼼O到直线的距离OP=m,且m使得关于x的⽅程有实数根,则直线与⊙O的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.⽆法确定 10.把直⾓△ABC的斜边AC放在定直线上,按顺时针的⽅向在直线上转动两次,使它转到△A2B2C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 11.(成都)⼩红同学要⽤纸板制作⼀个⾼4cm,底⾯周长是6πcm的圆锥形漏⽃模型,若不计接缝和损耗,则她所需纸板的⾯积是( )A.12πcm2B.15πcm2 C .18πcm2 D.24πcm2 第11题第12题第13题 12.扇形OAB是⼀个圆锥的侧⾯展开图,若⼩正⽅形⽅格的边长为1,则这个圆锥的底⾯半径为( ) A. B. C. D. 13.如图是⼀个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )A.内含B.外切C.相交D.外离 14.AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为( )A.130°B.120°C.110°D.100° 第14题第16题第17题 15.有4个命题:①直径相等的两个圆是等圆; ②长度相等的两条弧是等弧;③圆中最⼤的弧是过圆⼼的弧;④⼀条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A.①③B.①③④C.①④D.① 16.点I为△ABC的内⼼,点O为△ABC的外⼼,∠O=140°,则∠I为( )A.140°B.125°C.130°D.110° 17.等腰直⾓三⾓形AOB的⾯积为S1,以点O为圆⼼,OA为半径的弧与以AB为直径的半圆围成的图形的⾯积为S2,则S1与S2的关系是( )A. S1>S2B. S1 18.如果正多边形的⼀个外⾓等于60°,那么它的边数为( )A. 4B. 5C. 6D. 7 19.等边三⾓形的周长为18,则它的内切圆半径是( )A. 6B. )3C.D. 20.⼀个扇形的弧长为厘⽶,⾯积是厘⽶2,则扇形的圆⼼⾓是( )A. 120°B. 150°C. 210°D. 240° 21.两圆半径之⽐为2:3,当两圆内切时,圆⼼距是4厘⽶,当两圆外切时,圆⼼距为( )A. 5厘⽶B. 11厘⽶C. 14厘⽶D. 20厘⽶ 22.⼀个圆锥的侧⾯积是底⾯积的2倍,则这个圆锥的侧⾯展开图的圆周⾓是( )A. 60°B. 90°C. 120°D. 180° 23.圆内接正五边形ABCDE中,对⾓线AC和BD相交于点P,则∠APB的度数是( )A.36°B.60°C.72°D.108° 24.如图所⽰,把边长为2的正⽅形ABCD的⼀边放在定直线上,按顺时针⽅向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为( )A.1B.C.D. 第24题第26题第27题 25.如果⼀个正三⾓形和⼀个正六边形⾯积相等,那么它们边长的⽐为( )A.6:1B.C.3:1D. 26.如图所⽰,圆锥的母线长是3,底⾯半径是1,A是底⾯圆周上⼀点,从点A出发绕侧⾯⼀周,再回到点A的最短的路线长是( ) A. B. C. D.3 27.在中,, .将其绕点顺时针旋转⼀周,则分别以为半径的圆形成⼀圆环.该圆环的⾯积为( ) A. B. C. D. 28. 是等腰直⾓三⾓形,且 .曲线 …叫做“等腰直⾓三⾓形的渐开线”,其中,,,…的圆⼼依次按循环.如果,那么曲线和线段围成图形的⾯积为( ) A. B. C. D. 第28题第29题第30题 29.图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为( )A.2B.1C.1.5D.0. 5 30.在平⾯直⾓坐标系中,点P在第⼀象限,⊙P与轴相切于点Q,与轴交于M(0,2),N(0,8) 两点,则点P的坐标是( ) A. B. C. D. ⼆、填空题(本⼤题共30⼩题,每⼩2分,共计60分) 31.某圆柱形⽹球筒,其底⾯直径是10cm,长为80cm,将七个这样的⽹球筒如图所⽰放置并包装侧⾯,则需________________ 的包装膜(不计接缝,取3). 第31题第32题 32.在“世界杯”⾜球⽐赛中,甲带球向对⽅球门PQ进攻,当他带球冲到A点时,同样⼄已经助攻冲到B点.有两种射门⽅式:第⼀种是甲直接射门;第⼆种是甲将球传给⼄,由⼄射门.仅从射门⾓度考虑,应选择________种射门⽅式. 33.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________. 34.直⾓坐标系中⼀条圆弧经过⽹格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆⼼坐标为_____________. 35.两条互相垂直的弦将⊙O分成四部分,相对的两部分⾯积之和分别记为S1、S2,若圆⼼到两弦的距离分别为2和3,则|S1-S2|=__________. 36.⊙O的直径CD垂直于弦EF,垂⾜为G,若∠EOD=40°,则∠DCF等于________度. 第36题第37题第38题 37.A是半径为2的⊙O外⼀点,OA=4,AB是⊙O的切线,点B是切点,弦BC ∥OA,连结AC,则图中阴影部分的⾯积为_________. 38.劳技课上,王芳制作了⼀个圆锥形纸帽,其尺⼨如图.则将这个纸帽展开成扇形时的圆⼼⾓等于_______. 39.已知PA是⊙O的切线,切点为A,PA=3,∠APO=30°,那么OP=_______. 第39题第40题第41题 40.某花园⼩区⼀圆形管道破裂,修理⼯准备更换⼀段新管道,现在量得污⽔⽔⾯宽度为80cm,⽔⾯到管道顶部距离为20cm,则修理⼯应准备内直径是________cm的管道. 41. 为的直径,点在上,,则 ________. 42.在⊙O中,AB为⊙O 的直径,弦CD⊥AB,∠AOC=60°,则∠B=________. 第42题第47题第48题 43.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2=______. 44.已知四边形ABCD是⊙O的外切等腰梯形,其周长为20,则梯形的中位线长为_____. 45.⽤铁⽪制造⼀个圆柱形的油桶,上⾯有盖,它的⾼为80厘⽶,底⾯圆的直径为50厘⽶,那么这个油桶需要铁⽪(不计接缝)_________厘⽶2(不取近似值). 46.已知两圆的半径分别为3和7,圆⼼距为5,则这两个圆的公切线有_____条. 47.以AB为直径的⊙O与直线CD相切于点E,且AC⊥CD,BD⊥CD,AC=8cm,BD=2cm,则四边形ACDB的⾯积为______. 48.PA、PB、DE分别切⊙O于A、B、C,⊙O的半径长为6cm,PO=10cm,则△PDE的周长是______. 49.⼀个正⽅形和⼀个正六边形的外接圆半径相等,则此正⽅形与正六边形的⾯积之⽐为_______. 50.已知正六边形边长为a,则它的内切圆⾯积为_______. 51.有⼀个边长为2cm的正六边形,若要剪⼀张圆形纸⽚完全盖住这个图形,则这个圆形纸⽚的最⼩半径是________. 第51题第53题 52.如果⼀条弧长等于,它的半径是R,那么这条弧所对的圆⼼⾓度数为______,当圆⼼⾓增加30°时,这条弧长增加______. 53.如图所⽰,OA=30B,则的长是的长的_____倍. 54.母线长为,底⾯半径为r的圆锥的表⾯积=_______. 55.已知扇形半径为2cm,⾯积是,扇形的圆⼼⾓为_____°,扇形的弧长是______cm. 56.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转⼀周,所得圆柱体的表⾯积是_______.(⽤含的代数式表⽰) 57.粮仓顶部是⼀个圆锥形,其底⾯周长为36m,母线长为8m,为防⾬需在粮仓顶部铺上油毡,如果按⽤料的10%计接头的重合部分,那么这座粮仓实际需⽤________m2的油毡. 58.某机械传动装置静⽌状态时,连杆与点运动所形成的⊙O交于点,现测得, .⊙O半径,此时点到圆⼼的距离是______cm. 59. 是⊙O的直径,点在的延长线上,过点作⊙O的切线,切点为,若,则 ______. 第59题第60题 60.⊙O1和⊙O2相交于A,B,且AO1和AO2分别是两圆的切线,A为切点,若⊙O1的半径r1=3cm,⊙O2的半径为r2=4cm,则弦AB=___cm. 三、解答题(63~64题,每题2分,其他每题8分,共计60分) 61.AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂⾜为E. (1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O半径为5,∠BAC=60°,求DE的长. 62.如图所⽰,已知△ABC中,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC相切于点D、与BC相切于点E.设⊙O交OB于F,连DF并延长交CB的延长线于G. (1)∠BFG与∠BGF是否相等?为什么? (2)求由DG、GE和所围成的图形的⾯积(阴影部分). 63.以等腰三⾓形的⼀腰为直径的⊙O交底边于点,交于点,连结,并过点作,垂⾜为 .根据以上条件写出三个正确结论(除外)是: (1)___________________________ _____________________________________; (2)________________________________________________________________; (3)________________________________________________________________. 64.要在直径为50厘⽶的圆形⽊板上截出四个⼤⼩相同的圆形凳⾯.问怎样才能截出直径最⼤的凳⾯,最⼤直径是多少厘⽶? 65.如图是⼀纸杯,它的母线AC和EF延长后形成的⽴体图形是圆锥,该圆锥的侧⾯展开图形是扇形OAB .经测量,纸杯上开⼝圆的直径是6cm,下底⾯直径为4cm,母线长为EF=8cm.求扇形OAB的圆⼼⾓及这个纸杯的表⾯积(⾯积计算结果⽤表⽰) . 66.在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由. 67.有这样⼀道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任⼀点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R. (1)证明:RP=RQ. (2)请探究下列变化: A、变化⼀:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任⼀点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上⼀点,且RP=RQ. 证明:RQ为⊙O的切线. B、变化⼆:运动探求.(1)如图2,若OA向上平移,变化⼀中结论还成⽴吗?(只交待判断) 答:_________. (2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成⽴吗?为什么? 68.在平⾯直⾓坐标系中,矩形ABCO的⾯积为15,边OA⽐OC⼤2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F. (1)求OA、OC的长; (2)求证:DF为⊙O′的切线; (3)⼩明在解答本题时,发现△AOE是等腰三⾓形.由此,他断定:“直线BC上⼀定存在除点E以外的点P,使△AOP也是等腰三⾓形,且点P⼀定在⊙O′外”.你同意他的看法吗?请充分说明理由. 69.已知:如图(1),⊙O1与⊙O2相交于A、B两点,经过A点的直线分别交⊙O1、⊙O2于C、D两点(C、D不与B重合),连结BD,过点C作BD的平⾏线交⊙O1于点E,连BE. (1)求证:BE是⊙O2的切线; (2)如图(2),若两圆圆⼼在公共弦AB的同侧,其他条件不变,判断BE和⊙O2的位置关系(不要求证明). 九年级数学圆的练习题答案 ⼀、选择题 01.B 02.C 03.D 04.A 05.B 06.C 07.C 08.D 09.B 10.B 11.B 12.B 13.D 14.C 15.A 16.B 17.C 18.C 19.C 20.B 21.D 22.D 23.C 24.D 25.B 26.C 27.C 28.C 29.B 30.D ⼆、填空题 31. 【答案】12000 32. 【答案】第⼆种 33 . 【答案】6cm 34. 【答案】(2,0) 35. 【答案】24(提⽰:由圆的对称性可知,等于e的⾯积,即为4×6=24) 36. 【答案】200 37. 【答案】 38. 【答案】90° 39. 【答案】 40. 【答案】100 41. 【答案】40° 42. 【答案】30° 43. 【答案】2 ± 44. 【答案】5. 45. 【答案】厘⽶ 46. 【答案】2 47. 【答案】40cm2 48.【答案】16cm. 49.【答案】4 :9. 50. 【答案】 51 . 【答案】2cm 52. 【答案】45°, 53. 【答案】 3 54. 【答案】 55 . 【答案】, ; 56. 【答案】130 cm2 57. 【答案】158.4 58. 【答案】 7.5 59. 【答案】40° 60. 【答案】 三、解答题 61.解:(1)证明:连接AD ∵AB是⊙O的直径 ∴∠ADB=90° ⼜BD=CD ∴AD是BC的垂直平分线 ∴AB=AC (2)连接OD ∵点O、D分别是AB、BC的中点 ∴OD∥AC ⼜DE⊥AC ∴OD⊥DE ∴DE为⊙O的切线 (3)由AB=AC,∠BAC=60 °知△ABC是等边三⾓形 ∵⊙O的半径为5 ∴AB=BC=10, CD= BC=5 ⼜∠C=60° ∴ . 62.解:(1)∠BFG=∠BGF 连接OD,∵ OD=OF(⊙O的半径), ∴∠ODF=∠OFD. ∵⊙O与AC相切于点D,∴ OD⊥AC ⼜∵∠C=90°,即GC⊥AC,∴ OD∥GC, ∴∠BGF=∠OD F. ⼜∵∠BFG=∠OFD,∴∠BFG=∠BGF. (2)如图所⽰,连接OE,则ODCE为正⽅形且边长为3. ∵∠BFG=∠BGF, ∴ BG=BF=OB-OF= , 从⽽CG=CB+BG= , ∴阴影部分的⾯积=△DCG的⾯积-(正⽅形ODCE的⾯积 - 扇形ODE的⾯积) 63.(1) ,(2)∠BAD=∠CAD,(3) 是的切线(以及AD⊥BC,弧BD=弧DG等). 64.设计⽅案如左图所⽰,在右图中,易证四边形OAO′C为正⽅形,OO′+O′B=25, 所以圆形凳⾯的最⼤直径为25( -1)厘⽶. 65.扇形OAB的圆⼼⾓为45°,纸杯的表⾯积为44 . 解:设扇形OAB的圆⼼⾓为n° 弧长AB等于纸杯上开⼝圆周长: 弧长CD等于纸杯下底⾯圆周长: 可列⽅程组,解得 所以扇形OAB的圆⼼⾓为45°,OF等于16cm 纸杯表⾯积=纸杯侧⾯积+纸杯底⾯积=扇形OAB的⾯积-扇形OCD的⾯积+纸杯底⾯积即 S纸杯表⾯积 66.连接OP、CP,则∠OPC=∠OCP. 由题意知△ACP是直⾓三⾓形,⼜Q是AC的中点,因此QP=QC,∠QPC=∠QCP. ⽽∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切. 67.解:连接OQ, ∵OQ=OB,∴∠OBP=∠OQP ⼜∵QR为⊙O的切线,∴OQ⊥QR 即∠OQP+∠PQR=90° ⽽∠OBP+∠OPB=90° 故∠PQR=∠OPB ⼜∵∠OPB与∠QPR为对顶⾓ ∴∠OPB=∠QPR,∴∠PQR=∠QPR ∴RP=RQ 变化⼀、连接OQ,证明OQ⊥QR; 变化⼆、(1)结论成⽴ (2)结论成⽴,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR. 68.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得 解得: (不合题意,舍去) ∴OC=3, OA=5 (2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE= ∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2 在⊙O′中,∵ O′O= O′D ∴∠1=∠3 ∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D ⼜∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线. (3)不同意. 理由如下: ①当AO=AP时, 以点A为圆⼼,以AO为半径画弧交BC于P1和P4两点 过P1点作P1H⊥OA于点H,P1H=OC=3,∵AP1=OA=5 ∴AH=4,∴OH =1 求得点P1(1,3) 同理可得:P4(9,3) ②当OA=OP时,同上可求得:P2(4,3),P3( 4,3) 因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,⼜存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三⾓形. 69.【提⽰】(1)过B作⊙O2的直径BH,连结AB、AH,证∠EBH=90°.(2)⽤类似的⽅法去探求. 【证明】(1)连结AB,作⊙O2的直径BH,连结AH. 则∠ABH+∠H=90°,∠H=∠ADB,∠EBA=∠ECA. ∵ EC∥BD, ∴∠ADB=∠ACE=∠EBA. ∴∠EBA+∠ABH=90°. 即∠EBH=90°. ∴ BE是⊙O2的切线. (2)同理可知,BE仍是⊙O2的切线. 【点评】证明⼀与圆有公共点的直线是圆的切线的⼀般⽅法是过公共点作半径(或直径),再证直径与半径垂直,但此题已知条件中⽆9 0°的⾓,故作直径构造90°的⾓,再进⾏⾓的转换.同时两圆相交,通常作它们的公共弦,这样把两圆中的⾓都联系起来了.另外,当问题进⾏了变式时,要学会借鉴已有的思路解题.。

北师大版九年级数学下第三章5 确定圆的条件(含答案)

北师大版九年级数学下第三章5  确定圆的条件(含答案)

北师大版九年级数学下第三章5 确定圆的条件(含答案)一、选择题1.下列四个命题中,正确的有()①经过三角形顶点的圆是三角形的外接圆;②任何一个三角形一定有一个外接圆,并且只有一个外接圆;③任何一个圆一定有一个内接三角形,并且只有一个内接三角形;④三角形的外心是三角形三条边的垂直平分线的交点.A.1个B.2个C.3个D.4个2.下列关于三角形的外心的说法中,正确的是()A.到三角形三个顶点的距离相等B.到三角形三条边的距离相等C.是三角形三条角平分线的交点D.是三角形三条中线的交点3.如图1,点A,B,C在同一条直线上,点D在直线AB外,过这四个点中的任意三个点,能画圆的个数是()图1A.1 B.2C.3 D.44.如图2,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(2,1),点C的坐标为(2,-3),则经画图操作可知,△ABC的外心的坐标应是()图2A.(0,0) B.(1,0)C.(-2,-1) D.(2,0)5.如图3,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()图3A.△ABE B.△ACF C.△ABD D.△ADE6.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图4所示,利用三块碎片中的一块最有可能配到与原来一样大小的圆形镜子的碎片是()图4A.①B.②C.③D.均不可能7.若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为()A.35°B.110°C.35°或145°D.35°或140°二、填空题8.如图5,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是________.图59.如图6,△ABC是⊙O的内接三角形,且AB是⊙O的直径,P为⊙O上的动点,且∠BPC=60°,⊙O 的半径为6,则点P到AC的距离的最大值是________.图610.若点O 是等腰三角形ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为________________________________________________.三、解答题11.如图7,已知圆弧上有三点A ,B ,C.(1)用尺规作图法,找出BAC ︵所在圆的圆心O(保留作图痕迹,不写作法);链接听P34例1归纳总结 (2)若△ABC 为等腰三角形,底边BC =16 cm ,腰AB =10 cm ,求圆片的半径R.图712.如图8,O 为平面直角坐标系的原点,点A 的坐标为(6,8),点B 的坐标为(12,0). (1)求证:AO =AB ;(2)用直尺和圆规作出△AOB 的外心P ; (3)求点P 的坐标.图813.如图9①,在△ABC中,BA=BC,D是平面内不与点A,B,C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图②,当点D是△ABC的外接圆圆心时,请判断四边形BECD的形状,并证明你的结论.图9附加题我们知道:过任意一个三角形的三个顶点都能作一个圆,那么我们来探究过四边形的四个顶点作圆的条件.(1)分别测量图10①②③中四边形的内角,如果过某个四边形的四个顶点能作一个圆,那么其相对的两个角之间有什么关系?图10(2)如果过某个四边形的四个顶点不能作一个圆,那么其相对的两个角之间有上面的关系吗?试写出图④⑤中∠B+∠D与180°之间的关系;(3)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.。

名师课堂--2.3确定圆的条件 一课一练 苏科版九年级 上册 数学

名师课堂--2.3确定圆的条件   一课一练 苏科版九年级 上册 数学
5.A
【解析】∵直径R=6cm,R<AB,
∴这样的圆不存在.
故选A.
6.D
【解析】解:根据垂径定理的推论,则
作弦AB、AC的垂直平分线,交点O1即为圆心,且坐标是(3,1).
故选D.
7.B
【分析】
连接AC,作出AB、AC的垂直平分线,其交点即为圆心.
【解析】如图所示,
连接AC,作出AB、AC的垂直平分线,其交点即为圆心.
∵点A的坐标为(-2,3),
∴该圆弧所在圆的圆心坐标是(-3,0).
故选:B.
8.B
【解析】解:连接OB,OC,令M为OP中点,连接MA,MB,
∵B,C为切点,
∴∠OBP=∠OAP=90°,
∵OA=OB,OP=OP,
∴Rt△OPB≌Rt△OPA,
∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,
故答案为:16
14.线段MN的垂直平分线.
【解析】解:根据同圆的半径相等,则圆心应满足到点M和点N的距离相等,即经过已知点M和点N的圆的圆心的轨迹是线段MN的垂直平分线.
故答案为线段MN的垂直平分线.
15. 或 或 或
【解析】分三种情况讨论:(1)若四点共线,则过其中三点作圆,可作0个圆;
(2)若有三点共线,则过其中三点作圆,可作3圆;
A.(﹣1,1)B.(﹣3,0)C.(﹣3,1)D.(0,1)
8.如图, 、 为⊙O的切线,切点分别为A、B, 交 于点C, 的延长线交⊙O于点D.下列结论不一定成立的是()
A. 为等腰三角形B. 与 相互垂直平分
C.点A、B都在以 为直径的圆上D. 为 的边 上的中线
二、填空题
9.已知: ,求作 的外接圆,作法:①分别作线段BC,AC的垂直平分线EF和MN,它们交于点O;②以点O为圆心,OB的长为半径画弧,如图⊙O即为所求,以上作图用到的数学依据是___________________.

2014年九年级苏教版数学4.1-4.4圆 圆的对称性 确定圆的条件 圆周角 测试及答案

2014年九年级苏教版数学4.1-4.4圆 圆的对称性 确定圆的条件 圆周角 测试及答案

BD C A2014年九年级苏教版数学4.1-4.4圆 圆的对称性 确定圆的条件 圆周角 测试 20140730 有答案1、如图1,已知O 中,MN 是直径,AB 是弦,MN ⊥AB ,垂足为C ,由这些条件可推出结论________________________.(不添加辅助线,只写出2个结论).图1 图2 图3 图42、如图2,AB 是⊙O 的直径,点C D,是圆上两点,100AOC ∠=,则D ∠=________. 3、如图3,AD 是⊙O 的直径,AC 是弦,OB ⊥AD ,若OB=5,且∠CAD=30°,则BC=________. 4、如图4,已知AB=AC ,∠APC=60°.(1)求证:△ABC 是等边三角形.(2)若BC=4cm,求⊙O 的半径.5、如图5,圆O 在△ABC 三边上截得的弦长相等,∠A=800,求∠BOC 的度数.6、如图6,AB AC ,是圆的两条弦,AD 是圆的一条直径,且AD 平分BAC ∠,下列结论中不一定...正确..的是( ) A 、AB DB =B 、BD CD =C 、BC AD ⊥ D 、B C∠=∠图5 图6 图7 图87、如图7,O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则O 的半径长为( ) A 、3cm B 、4cm C 、5cm D 、6cm8、如图8,AB 为⊙O 的直径,点C 、D 、E 均在⊙O 上,且∠BED=30°,那么∠ACD 的度数是( ) A .60° B .50° C .40° D .30°9、如图9,在⊙O 中,弦AB 、CD 相交于点E ,∠BDC =45°,∠BED =95°,则∠C 的度数为______.图9 图10 图11 图1210、如图10,在△ABC 中,∠ACB =90°,D 是AB 的中点,以DC 为直径的⊙O 交△ABC 的边于G ,F ,E 点. 求证:(1)F 是BC 的中点;(2)∠A =∠GEF .11、如图11,⊙O 1和⊙O 2相交于A 、B 两点,动点P 在⊙O 2上,且在⊙1外,直线PA 、PB 分别交⊙O 1于C 、D ,问:⊙O 1的弦CD 的长是否随点P 的运动而发生变化?如果发生变化,请你确定CD 最长和最短时P 的位置,如果不发生变化,请你给出证明.12、(2009年,绍兴市)如图12,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M,N 两点.若点M 的坐标是(2,-1),则点N 的坐标是( ) A 、(2,-4) B 、(2,-4.5) C 、(2,-5) D 、(2,-5.5)13、(2009,宁夏)如图13,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°.(1)求EBC ∠的度数;(2)求证:BD CD =.图13 图14 图15 图1614、(2009,荆门市)如图14,在□ABCD 中,∠BAD 为钝角,且AE⊥BC,AF⊥CD. (1)求证:A 、E 、C 、F 四点共圆;(2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND . 15、如图15,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,求圆心O 到弦AD 的距离.16、如图16,∆ABC 内接于⊙O,∠BAC=120°,AB=AC,BD 为⊙O 的直径,AD=6,求BC 的长.17. 如图17,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.18. 如图18,圆柱形水管内原有积水的水平面宽CD=20cm ,水深GF=2cm.若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少? 19、(2008年,河北)如右图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A .1个 B .2个 C .3个 D .4个20、(2009年,莆田)(1)如图19. 根据下列步骤画图..并标明相应的字母:(直接在图1中画图) ①以已知线段AB (图1)为直径画半圆O ;②在半圆O 上取不同于点A B 、的一点C ,连接AC BC 、; ③过点O 画OD BC ∥交半圆O 于点D .(2)尺规作图..:(保留作图痕迹,不要求写作法、证明) 已知:AOB ∠(图2).求作:AOB ∠的平分线.图17 图18 图19答案OA B C D E F GOADFCM EBN DCBAAD1、AC=BC ,AM BM =等.2、40°.3、5.4、(1)证明:∵∠ABC=∠APC=60°,又AB AC =,∴∠ACB=∠ABC=60°,∴△ABC 为等边三角形. (2)解:连结OC ,过点O 作OD ⊥BC ,垂足为D , 在Rt △ODC 中,DC=2,∠OCD=30°,设OD=x ,则OC=2x ,∴2244x x -=,∴OC=435. 分析:本题是经常易解错的题.由于对圆周角、圆心角两个概念理解不深刻,经常易错把∠A 当成圆周角,错得∠BOC=2∠A=1600.本题应充分利用圆O 在△ABC 三边上截得的弦长相等这个条件.得到0是△ABC 的内心. 解:∵圆O 在△ABC 三边上截得的弦长相等,∴圆心O 到三边的距离相等,∴0是内心,即OB,OC 平分∠ABC,∠ACB. ∵∠A=800,∴∠ABC+∠ACB=1000,∠OBC+∠OCB=21(∠ABC+∠ACB)=500, ∴∠BOC=1300. 6、A . 7、C . 8、A . 9、40°.10、证明:(1)连结DF ,∵∠ACB =90°,D 是AB 的中点,∴BD =DC =12AB ,∵DC 是⊙O 的直径,∴DF ⊥BC .∴BF =FC ,即F 是BC 的中点. (2)∵D ,F 分别是AB ,BC 的中点,∴DF ∥AC ,∠A =∠BDF , ∵∠BDF =∠GEF ,∴∠A =∠GEF .11、解:当点P 运动时,CD 的长保持不变.理由如下:连结AD.∵A 、B 是⊙O 1与⊙O 2的交点,∴弦AB 与点P 的位置关系无关. ∵∠ADP 在⊙O 1中所对的弦为AB ,∴∠ADP 为定值. ∵∠P 在⊙O 2中所对的弦为AB ,∴∠P 为定值.∵∠CAD =∠ADP+∠P ,∴∠CAD 为定值,在⊙O 1中∠CAD 对弦CD. ∴CD 的长与点P 的位置无关. 12、B . 运用垂径定理. 13. 1、(1)解:AB 是O ⊙的直径,∴90AEB ∠=°.又45BAC ∠=°,∴45ABE ∠=°.又AB AC =,∴67.5ABC C ∠=∠=°.∴22.5EBC ∠=°.(2)证明:连结AD .AB 是O ⊙的直径,∴90ADB ∠=°.∴AD BC ⊥.又AB AC =,∴BD CD =.14. 2、(1)证明:∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°. ∴∠AEC+∠AFC=180°.∴A、E 、C 、F 四点共圆.(2)解:由(1)可知,圆的直径是AC ,设AC 、BD 相交于点O , ∵ABCD 是平行四边形,∴O 为圆心.∴OM=ON .∴BM=DN .15、解:由已知条件易证Rt△AOB ≌Rt△ODC ,可得OB=CD=4cm, ∴在Rt△AOB 中=∴在Rt△AOD 中,AD∴圆心O 到弦AD16、解:∵∠BAC=120,AB=AC ,∴BCA=30,又∵BD 为直径,∴∠BAD=90,∴∠DAC=30,∵∠BDA=∠BCA=30,∴∠BDA=∠DAC ,∴BD//AC ,∴ABDC 是等腰梯形,∴BC=AD=6.17、解:由图可得,在Rt △OCF 中,222(90)300R R --=,解得545R =. ∴这段弯路的半径是545R m =.18. 解:连结OA 、OC ,在Rt △OCG 中,22210(2)r r =+-, Rt △26r =,在Rt △OAE 中,222(4)r AE R =+-,∴解得AE =∴2AB AE ==.19.C. 在弦AB 的两侧分别有1个和两个点符合要求,故选C.20、解:(1)略.(2)①以点O 为圆心,以适当长为半径作弧交OA OB 、于两点C D 、.②分别以点C D 、为圆心,以大于12CD 长为半径作弧,两弧相交于点E .③作射线OE.。

九年级数学练习题(圆的基本性质)5

九年级数学练习题(圆的基本性质)5

九年级数学下练习题(圆的基本性质)一、 填空题:(21分)1、如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,15C ∠=︒,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________(((44、如图,AB 是⊙O 的直径,弧BC=弧BD ,25A ∠=︒,则BOD ∠= . 5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________(5题图) (6题图) (7题图) (二、解答题1题) 二、解答题(70分)1、如上图4,AB 是⊙O 的直径. (1)若OD ∥AC ,与 的大小有什么关系?为什么? (2)把(1)中的条件和结论交换一下,还能成立吗?说明理由.2、已知:如图,在⊙O 中,弦AB=CD.求证:⑴弧AC=弧BD ; ⑵∠AOC=∠BOD3、如图,已知:⊙O 中,AB 、CB 为弦,OC 交AB 于D ,求证:(1)∠ODB>∠OBD ,BBBDCA(2)∠ODB =∠OBC ;4、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D ,且AC=BD 。

求证:CE=DF5、已知如图,,AB 、AC 为弦,OM ⊥AB 于M ,ON ⊥AC 于N ,MN 是△ABC 的中位线吗?6、已知⊙O 中,M 、N 分别是不平行的两条弦AB 和CD 的中点,且AB = CD , 求证:∠AMN=∠CNM7、已知如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE ,CDC求证:∠D=∠B8、已知如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E , 求证:弧AE=弧EB9、已知如图,以等腰△ABC 的一腰AB 为直径的⊙O 交另一腰于F ,交底边BC 于D ,则BC 与DF 的关系,证明你的观点。

九年级数学同步练习-圆的有关性质

九年级数学同步练习-圆的有关性质

24.1圆的有关性质1、有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是().A. 1B. 2C. 3D. 42、如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是cm.3、下列结论正确的是().A. 优弧一定大于劣弧B. 相等的圆心角所对的弧相等C. 外心到三角形各边的距离相等D. 同弧或等弧所对的圆周角相等4、下列结论正确的是().A. 经过圆心的直线是圆的对称轴B. 直径是圆的对称轴C. 与圆相交的直线是圆的对称轴D. 与直径相交的直线是圆的对称轴5、下列说法正确的是().A. 弦是直径B. 弧是半圆C. 直径是圆中最长的弦D. 半圆是圆中最长的弧6、在同圆或等圆中,下列说法错误的是().A. 相等弦所对的弧相等B. 相等弦所对的圆心角相等C. 相等圆心角所对的弧相等D. 相等圆心角所对的弦相等7、半径为9cm的圆中,长为12πcm的一条弧所对的圆心角的度数为.8、如图,⊙O中,如果∠AOB=2∠COD,那么().A. AB=2CDB. AB<DCC. AB<2DCD. AB>2DC9、如图,AB,CD是⊙O的直径,AE⌢=BD⌢,若∠AOE=32°,则∠COE的度数是().A. 32°B. 60°C. 68°D. 64°10、下列命题中正确的是().A. 弦是圆上任意两点之间的部分B. 半径是弦C. 直径是最长的弦D. 弧是半圆,半圆是弧11、已知⊙O的半径为5cm,则圆中最长的弦长为cm.12、以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③相等的弦所对的弧也相等;④圆的对称轴是直径;其中正确的个数是().A. 4B. 3C. 2D. 113、下列说法中,不正确的是().A. 直径是最长的弦B. 同圆中,所有的半径都相等C. 圆既是轴对称图形又是中心对称图形D. 长度相等的弧是等弧14、下列说法:(1)长度相等的弧是等弧,(2)相等的圆心角所对的弧相等,(3)劣弧一定比优弧短,(4)直径是圆中最长的弦.其中正确的有().A. 1个B. 2个C. 3个D. 4个15、下列说法中,正确的是().A. 相等的圆心角所对的弦相等B. 圆心角的度数等于它所对弧的度数C. 相等的弦所对的弧相等D. 相等的圆心角所对的弧相等16、下列说法中正确的是().A. 长度相等的两条弧相等B. 相等的圆心角所对的弧相等C. 相等的弦所对的弧相等D. 相等的弧所对的圆心角相等17、下面四个图中的角,为圆心角的是().A.B.C.D.18、已知,如图,∠AOB=∠COD,下列结论不一定成立的是().A. AB=CDB. AB⌢=CD⌢C. △AOB≌△CODD. △AOB、△COD都是等边三角形1 、【答案】 B;【解析】①确定一个圆的条件是确定圆心与半径,故此说法错误;②直径是弦,直径是圆内最长的弦,故此说法正确;③只有过圆心的弦才是直径,故此说法错误;④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,故此说法正确.故错误的说法是①③,共2个.故选B.2 、【答案】4;【解析】∵AB=2cm,∴圆的直径是4cm.故答案为:4.3 、【答案】 D;【解析】 A选项 : 必须在同圆或等圆中,优弧一定大于劣弧,故本选项说法错误.B选项 : 必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误.C选项 : 外心到三角形各顶点的距离相等,故本选项说法错误.D选项 : 同弧或等弧所对的圆周角相等,故本选项说法正确.4 、【答案】 A;【解析】A.对称轴是直线且过圆心,故A正确;B.直径是线段,故B错误;C.不符合圆的对称轴性,故C错误;D.没有说过圆心,故D错误.故选A.5 、【答案】 C;【解析】 A选项 : 直径是弦,但弦不一定是直径,故A错误;B选项 : 半圆是弧,但弧不一定是半圆,故B错误;C选项 : 直径是圆中最长的弦,故C正确;D选项 : 半圆是小于优弧而大于劣弧的弧,故D错误;6 、【答案】 A;【解析】A、相等弦所对的弧不一定相等,故本选项错误;B、相等弦所对的圆心角相等,故本选项正确;C、相等圆心角所对的弧相等,故本选项正确;D、相等圆心角所对的弦相等,故本选项正确.7 、【答案】240°;【解析】设圆心角的度数为n,=12π,则nπ×9180解得n=240,所以所求圆心角为240°.8 、【答案】 C;【解析】如图,过点O作OE⊥AB交⊙O于点E,连接AE、BE,∠AOB,∴∠AOE=∠BOE=12∠AOB,又∵∠COD=12∴∠AOE=∠BOE=∠COD,∴CD=AE=BE,∵在△ABE中,AE+BE>AB,∴2CD>AB.故选C.9 、【答案】 D;【解析】∵AE⌢=BD⌢,∴∠BOD=∠AOE=32°,又∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°.故选D.10 、【答案】 C;【解析】 A选项 : 弧是圆上任意两点之间的部分,弦是圆上任意两点的连线,故A错误;B选项 : 半径不是弦,故B错误;C选项 : 直径是最长的弦,故C正确;D选项 : 半圆是弧,弧不一定是半圆,故D错误.11 、【答案】10;【解析】∵⊙O的半径为5cm,∴⊙O的直径为10cm,即圆中最长的弦长为10cm.故答案为10.12 、【答案】 D;【解析】①直径相等的圆是等圆,符合等圆的性质,故本小题正确;②长度相等弧不一定重合,因此不一定是等弧,故本小题错误;③在同圆或等圆中,相等的弦所对的弧也相等,故本小题错误;④圆的对称轴是直径所在的直线,故本小题错误;所以D选项是正确的.13 、【答案】 D;【解析】 A选项 : 直径是最长的弦,正确;B选项 : 同圆中,所有的半径都相等,正确;C选项 : 圆既是轴对称图形,也是中心对称图形,正确;D选项 : 只有在同圆和等圆中,长度相等的弧是等弧,错误.14 、【答案】 A;【解析】①同圆或等圆中长度相等的弧是等弧,所以本选项说法错误,不符合题意;②同圆或等圆中相等的圆心角所对的弧相等,所以本选项说法错误,不符合题意;③同圆或等圆中劣弧一定比优弧短,所以本选项说法错误,不符合题意;④直径是圆中最长的弦,本选项说法正确,符合题意;故选A.15 、【答案】 B;【解析】A.必须在“同圆或等圆”中.C.相等的弦所对的弧有优弧、劣弧之分.D.必须在“同圆或等圆”中.16 、【答案】 D;【解析】 A、在同圆或等圆中,两个长度相等的弧是等弧,故本选项错误;B、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、在同圆或等圆中,相等的弦所对的优弧或劣弧相等,故本选项错误;D、相等的弧所对的圆心角相等,正确,故选D.17 、【答案】 D;【解析】圆心角的顶点必须在圆心上,∴选项A,B,C均不正确,故选D.18 、【答案】 D;【解析】∵∠AOB=∠COD,∴AB=CD,AB⌢=CD⌢,∵OA=OB=OC=OD,∴△AOB≌△COD,∴A、B、C成立,D不一定成立,故选:D.。

精品 九年级数学上册 圆的相关性质练习题

精品 九年级数学上册 圆的相关性质练习题

九年级数学上册圆的相关性质练习题1.下列命题中,真命题的个数为()①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④直径所对的角是直角;⑤圆周角相等,则它们所对的弧也相等;⑥同弧或等弧所对的圆周角相等.A. 1 个B. 2 个C. 3 个D. 4 个2.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对3.如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对4.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是()A.AB=2CDB.AB>CDC.AB<2CDD.不能确定5.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若∠K=200,∠PMQ =400,则∠MQP等于()A. 300B. 350C. 400 D . 5006.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长为整数, 则满足条件的点P有( )A.2个B.3个C.4个D.5个7.如图,AC是⊙O的直径,点B, D在⊙O上,那么图中等于12∠BOC的角有()A. l 个B. 2 个C.3 个D. 4 个8.如图,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为()A.3:2 B.5:2 C.5:2D.5:49.如图,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条10.如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____. 11.如图,点A 、B 、C 、D 都在⊙O 上,BC 是直径,AD=DC ,︒=∠201,则2∠和3∠分别为 ° BCA D.O1452313.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.14.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____. 15.如图,已知AB 是⊙O 的直径,CD 与AB 相交于点E ,∠ACD=600,∠ADC=500 ,则∠AEC= . 16.如图,A, B, C 为⊙O 上三点,∠BAC=1200,∠ABC=450 , M, N 分别为BC, AC 的中点,则OM:ON 的值为17.如图,⊙O 中,半径CO 垂直于直径AB ,D 为OC 的中点,过D 作弦EF ∥AB ,则∠CBE =18.在⊙O 中,直径CD =15cm ,弦AB ⊥CD 于点M ,OM ∶MD =3∶2,则AB 的长是 19.若圆中一弦与弦高之和等于直径,弦高长为1,则圆的半径长为 20.在半径为1的⊙O 中,弦AB 、AC 的长分别为2和3,则∠BAC 的度数为 21.如图,⊙O 的弦AB 、半径OC 延长交于点D ,BD=OA ,若∠AOC=105°,求∠D 的度数.22.如图已知BC为直径,G为半圆上任一点,A为⋂BG中点,AP⊥BC于P,求证:AE=BE=EF。

苏教版九年级数学上册第二章 2.3 确定圆的条件 同步练习题(含答案解析)

苏教版九年级数学上册第二章 2.3 确定圆的条件 同步练习题(含答案解析)

2.3确定圆的条件一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•金湖县期末)△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高2.(2019秋•梁溪区期末)已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④B.①③C.②③④D.①③④3.(2019秋•太仓市期末)在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为()A.15 B.7.5 C.6 D.34.(2019秋•相城区期中)如图,⊙O的半径为5,△ABC是⊙O的内接三角形,过点C作CD垂直AB于点D.若CD=3,AC=6,则BC长为()A.3 B.5 C.3D.65.(2019秋•盐都区期中)下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等6.(2019秋•崇川区校级月考)下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆的轴对称图形,任何一条直径所在直线都是它的对称轴;④三点确定一个圆.A.1个B.2个C.3个D.4个7.(2019秋•新沂市期末)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B 的坐标为(2,1),点C的坐标为(2,﹣3).经画图操作可知△ABC的外心坐标可能是()A.(﹣2,﹣1)B.(1,0)C.(0,0)D.(2,0)8.(2019•碑林区校级模拟)如图,△ABC为⊙O内接等边三角形,将△ABC绕圆心O旋转30°到△DEF处,连接AD,AE,则∠EAD的度数为()A.150°B.135°C.120°D.105°二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020•姑苏区一模)如图,△ABC内接于⊙O,C为弧BD的中点,若∠A=30°,则∠BCD=°.10.(2020•滨湖区一模)若一个直角三角形的两条直角边长分别为7cm和24cm,则这个三角形的外接圆的直径长为cm.11.(2019秋•苏州月考)半径为2的圆的内接正三角形的面积是.12.(2020•泰州二模)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.13.(2019秋•张家港市期末)如图,在平面直角坐标系中,点A,B分别在x,y的正半轴上,以AB所在的直线为对称轴将△ABO翻折,使点O落在点C处,若点C的坐标为(4,8),则△AOC的外接圆半径为.14.(2019秋•南通期中)如图,已知⊙O是△ABC的外接圆,连接OA,若∠B=65°,则∠OAC=.15.(2019秋•阜宁县期中)①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中错误的是.(填序号)16.(2019秋•江都区期中)若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为.三、解答题(本大题共4小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•淮阴区期中)在△ABC中,∠C=90°,AC=6,BC=8,求这个三角形外接圆的半径和面积.18.(2019•兴化市二模)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.19.(2020•海门市校级模拟)如图1,⊙O是△ABC的外接圆,连接AO,若∠BAC+∠OAB =90°.(1)求证:(2)如图2,作CD⊥AB交于D,AO的延长线交CD于E,若AO=3,AE=4,求线段AC的长.20.(2019秋•鼓楼区校级月考)△ABC中,AB=AC=5,BC=6,⊙O是△ABC的外接圆.(1)如图①,求⊙O的半径;(2)如图②,∠ABC的平分线交半径OA于点E,交⊙O于点D.求OE的长.答案解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•金湖县期末)△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线B.三条中线C.三条角平分线D.三条高【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【解析】△ABC的外接圆圆心是△ABC三边中垂线的交点,故选:A.2.(2019秋•梁溪区期末)已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④B.①③C.②③④D.①③④【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【解析】连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.3.(2019秋•太仓市期末)在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为()A.15 B.7.5 C.6 D.3【分析】直角三角形的斜边是它的外接圆的直径,通过勾股定理求出AB即可.【解析】如图,∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB15.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.5.故选:B.4.(2019秋•相城区期中)如图,⊙O的半径为5,△ABC是⊙O的内接三角形,过点C作CD垂直AB于点D.若CD=3,AC=6,则BC长为()A.3 B.5 C.3D.6【分析】连接OC,OB,由垂直的定义得到∠ADC=90°,得到CD AC,根据直角三角形的性质的∠A=30°,由圆周角定理得到∠O=60°,推出△OBC是等边三角形,得到BC=OB,于是得到结论.【解析】连接OC,OB,∵CD垂直AB,∴∠ADC=90°,∵CD=3,AC=6,∴CD AC,∴∠A=30°,∴∠O=60°,∵OC=OB,∴△OBC是等边三角形,∴BC=OB,∵⊙O的半径为5,∴BC=5,故选:B.5.(2019秋•盐都区期中)下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等【分析】根据三角形的外心的性质,确定圆的条件,圆心角、弧、弦的关系判定即可.【解析】A等弧所对的圆心角相等,故不符合题意;B、弧的度数等于该弧所对的圆心角的度数,故不符合题意;C、经过不在同一条直线上的三点可以作一个圆,故符合题意;D、三角形的外心到三角形各顶点距离相等,故不符合题意;故选:C.6.(2019秋•崇川区校级月考)下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆的轴对称图形,任何一条直径所在直线都是它的对称轴;④三点确定一个圆.A.1个B.2个C.3个D.4个【分析】利用确定圆的条件、垂径定理及圆心角、弧、弦之间的关系逐一作出判断即可得到答案.【解析】①同圆或等圆中,相等的圆心角所对的弧相等,故不符合题意;②平分弦(弦不是直径)的直径垂直于弦;故不符合题意;③圆是轴对称图形,任何一条直径所在直线都是它的对称轴;故符合题意;④把这题一条直线上的三点确定一个圆,故不符合题意,故选:A.7.(2019秋•新沂市期末)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B 的坐标为(2,1),点C的坐标为(2,﹣3).经画图操作可知△ABC的外心坐标可能是()A.(﹣2,﹣1)B.(1,0)C.(0,0)D.(2,0)【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.【解析】∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故选:A.8.(2019•碑林区校级模拟)如图,△ABC为⊙O内接等边三角形,将△ABC绕圆心O旋转30°到△DEF处,连接AD,AE,则∠EAD的度数为()A.150°B.135°C.120°D.105°【分析】连结OA、OE、OD、AE、AD,根据旋转的性质得∠AOD=30°,再根据圆周角定理得∠AED∠AOD=15°,然后根据等边三角形的性质得∠EFD=60°,则∠DOE=120°,求出∠AOE=∠DOE﹣∠AOD=90°,则∠ADE=45°,根据三角形内角和可求出∠EAD的度数.【解析】如图,连结OA、OE、OD、AE、AD,∵△ABC绕点O顺时针旋转30°得到△DEF,∴∠AOD=30°,∴∠AED∠AOD=15°,∵△DEF为等边三角形,∴∠EFD=60°,∴∠DOE=2∠EFD=120°,∴∠AOE=∠DOE﹣∠AOD=120°﹣30°=90°,∴∠ADE45°,∴∠EAD=180°﹣∠AED﹣∠ADE=180°﹣15°﹣45°=120°.故选:C.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020•姑苏区一模)如图,△ABC内接于⊙O,C为弧BD的中点,若∠A=30°,则∠BCD=120°.【分析】根据圆周角定理求出∠BDC,根据圆心角、弧、弦之间的关系定理得到CB=CD,根据等腰三角形的性质、三角形内角和定理计算,得到答案.【解析】由圆周角定理得,∠BDC=∠A=30°,∵C为弧BD的中点,∴,∴CB=CD,∴∠CBD=∠BDC=30°,∴∠BCD=180°﹣30°﹣30°=120°,故答案为:120.10.(2020•滨湖区一模)若一个直角三角形的两条直角边长分别为7cm和24cm,则这个三角形的外接圆的直径长为25cm.【分析】根据勾股定理求出斜边长,根据圆周角定理解答即可.【解析】由勾股定理得,直角三角形的斜边长25,∴这个三角形的外接圆的直径长为25cm,故答案为:25.11.(2019秋•苏州月考)半径为2的圆的内接正三角形的面积是3.【分析】连接OB、OC,作OD⊥BC于D,根据垂径定理得到BD=CD,∠OBC=30°,根据直角三角形的性质求出OD,由勾股定理求出BD,得到BC的长,根据三角形的面积公式计算即可.【解析】如图所示,连接OB、OC,作OD⊥BC于D,则∠ODB=90°,BD=CD,∠BOC120°,则∠OBC=30°,∴OD OB=1,由勾股定理得,BD,∴BC=2BD=2,∴△ABC的面积=3S△OBC=321=3,故答案为:3.12.(2020•泰州二模)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解析】如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).13.(2019秋•张家港市期末)如图,在平面直角坐标系中,点A,B分别在x,y的正半轴上,以AB所在的直线为对称轴将△ABO翻折,使点O落在点C处,若点C的坐标为(4,8),则△AOC的外接圆半径为.【分析】先确定三角形外接圆的圆心,再根据已知条件和勾股定理分别求出OC、OB和AO的长,进而可以求出外接圆的半径.【解析】如图,过点C作CE⊥y轴于点E,连接OC交AB于点D,根据翻折可知:AB是OC的垂直平分线,作AO的垂直平分线交AB于点O′,则点O′即为△AOC的外心,设OB=CB=x,∵点C(4,8)∴CE=4,OE=8,则OC4∴CD=OD=2,EB=8﹣x,在Rt△CEB中,根据勾股定理,得x2=(8﹣x)2+42,解得x=5,即OB=BC=5,∴BD∵OD2=BD•AD∴AD=4设OO′=AO′=r,则DO′=4r,∴(4r)2+(2)2=r2解得r.所以△AOC的外接圆半径为:.故答案为:.14.(2019秋•南通期中)如图,已知⊙O是△ABC的外接圆,连接OA,若∠B=65°,则∠OAC=25°.【分析】如图,连接OC.利用圆周角定理求出∠AOC,再利用等腰三角形的性质解决问题即可.【解析】如图,连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠AOC=2∠ABC=130°,∴∠OAC(180°﹣∠AOC)=25°,故答案为25°.15.(2019秋•阜宁县期中)①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中错误的是②.(填序号)【分析】根据直径与弦的定义判断①;根据确定圆的条件判断②;根据三角形的外心的性质判断③;根据半圆与等弧的定义判断④.【解析】①直径是圆中最长的弦,正确;②经过不在同一直线上的三个点一定可以作圆,错误;③三角形的外心到三角形各顶点的距离都相等,正确;④半径相等的两个半圆是等弧,正确.其中正确的有①③④,错误的为②.故答案为:②.16.(2019秋•江都区期中)若点O是△ABC的外心,且∠BOC=70°,则∠BAC的度数为35°或145°.【分析】根据题意画出图形、运用分情况讨论思想和圆周角定理解得即可.【解析】①当点O在三角形的内部时,如图所示:则∠BAC∠BOC=35°;②当点O在三角形的外部时,如图所示;则∠BAC(360°﹣70°)=145°故答案为:35°或145°.三、解答题(本大题共4小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•淮阴区期中)在△ABC中,∠C=90°,AC=6,BC=8,求这个三角形外接圆的半径和面积.【分析】根据勾股定理求出AB的长,根据直角三角形外心的特点求出外接圆的半径和面积.【解析】∵∠C=90°,AC=6,BC=8,∴AB10,∴Rt△ABC的外接圆的半径为5,面积为π×52=25π.18.(2019•兴化市二模)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解析】(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r,∴AD,∵AE=AD﹣DE,∴AE2.19.(2020•海门市校级模拟)如图1,⊙O是△ABC的外接圆,连接AO,若∠BAC+∠OAB =90°.(1)求证:(2)如图2,作CD⊥AB交于D,AO的延长线交CD于E,若AO=3,AE=4,求线段AC的长.【分析】(1)连BO并延长BO交AC于T.只要证明BT⊥AC,利用垂径定理即可解决问题;(2)延长AO并交⊙O于F,连接CF.在Rt△AFC中,求出CF,AF即可解决问题;【解答】(1)证明:连BO并延长BO交AC于T.∵AO=BO,∴∠OAB=∠OBA,又∵∠BAC+∠OAB=90°,∴∠BAC+∠OBA=90°,∴∠BTA=90°,∴BT⊥AC,∴.(2)延长AO并交⊙O于F,连接CF.∵CD⊥AB于D,∴∠CDA=90°,∴∠OAB+∠AED=90°,∵∠OAB+∠BAC=90°,∴∠AED=∠BAC=∠FEC,∵AF为⊙O直径,∴∠ACF=90°,同理:∠FCE=∠BAC,∴∠FEC=∠FCE,∴FE=FC,∵AO=3,AE=4,∴OE=1,FE=FC=2,在Rt△FCA中∴AC420.(2019秋•鼓楼区校级月考)△ABC中,AB=AC=5,BC=6,⊙O是△ABC的外接圆.(1)如图①,求⊙O的半径;(2)如图②,∠ABC的平分线交半径OA于点E,交⊙O于点D.求OE的长.【分析】(1)过A点作AH⊥BC于H,如图①,利用等腰三角形的性质得BH=CH=3,根据垂径定理的推论可判断点O在AH上,则利用勾股定理可计算出AH=4,连接OB,设⊙O的半径为r,在Rt△OBH中利用勾股定理得到32+(4﹣r)2=r2,然后解方程即可;(2)作EF⊥AB于F,如图,根据角平分线的性质得到EH=EF,利用面积法得到,所以EH AH,然后利用(1)得OH,从而计算EH﹣OH得到OE的长.【解析】(1)过A点作AH⊥BC于H,如图①,∵AB=AC,∴BH=CH BC=3,即AH垂直平分BC,∴点O在AH上,在Rt△ABH中,AH4,连接OB,设⊙O的半径为r,则OB=r,OH=AH﹣OA=4﹣r,在Rt△OBH中,32+(4﹣r)2=r2,解得r,即⊙O的半径为;(2)作EF⊥AB于F,如图,∵BD平分∠ABC,∴EH=EF,∵S△ABE BH•AE AB•EF,∴,∴EH AH4,由(1)得OH=AH﹣OA=4,∴OE.。

九年级数学上册第二章对称图形_圆第22讲确定圆的条件

九年级数学上册第二章对称图形_圆第22讲确定圆的条件

第22讲确定圆的条件A.三角形的三个顶点可以确定一个圆.B.经过不在同一直线上的四个点一定可以作圆.C.一个三角形有无数个外接圆,一个圆有无数个内接三角形.D.三角形的外心到三角形的三边距离相等.个圆;(3)三角形的外心在三角形的外面;(4)三角形的外心是这个三角形三条角平分线的交点;(5)同一平面内,过已知点A、B、C三个点可以作圆的个数为1.其中正确的说法有( )个.A.1 B.2 C.3 D.4题三:若一个三角形的外心在该三角形的外部,则该三角形的形状是.A.锐角三角形B.直角三角形C.等腰三角形 D.钝角三角形题四:如果一个三角形的外心恰好在它一边的中线上,那么这个三角形是()A.等边三角形B.直角三角形C.等腰三角形 D.直角三角形或等腰三角形第22讲确定圆的条件题一:A.详解:A.三角形的三个顶点不在同一直线上,可以确定一个圆,所以A选项正确.B.经过不在同一直线上的三个点确定一个圆,所以B选项错误.C.一个三角形有且只有一个外接圆,所以C选项错误.D.三角形的外心到这个三角形各顶点的距离相等,所以D选项错误.故答案为A.题二:B.详解:(1)过直线上两点和直线外一点,可以确定一个圆,正确;(2)已知线段为直径可以确定圆心和半径,可以作出一个圆,正确.(3)锐角三角形的外心在三角形的内部;直角三角形的外心在三角形的斜边上;钝角三角形的外心在三角形的外部,所以该说法错误.(4)三角形的外心是这个三角形三边垂直平分线的交点,所以该说法错误.(5)同一平面内,如果A、B、C三个点在同一条直线上,作圆的个数为0,如果不在同一直线上作圆的个数为1,所以该说法错误.故答案为 B.题三:D.详解:对于直角三角形,其外心是斜边的中点;对于锐角三角形,其外心是在三角形内部的;对于钝角三角形,其外心是在三角形外部的.所以答案选D.题四:D.详解:一个三角形的外心恰好在它一边的中线上,可分两种情况讨论:(1)如果三角形的外心是这边的中点,那这条边是外接圆的直径,根据圆周角定理:直径所对的圆周角是直角,∴该三角形是直角三角形.(2)如果三角形的外心在它一边的中线上(这边的中点除外),如下图,外心O在△ABC的中线AD上(A、D点除外),∵AD是△ABC的中线,∴BD=DC,在△DOB和△DOC中,BD=DC,DO=DO,OC=OB,∴△DOB≌△DOC,∴∠DOB=∠DOC,∴∠AOB=∠AOC,在△AOB和△AOC中,AO=AO,∠AOB=∠AOC,OB=OC,∴△AOB≌△AOC,∴AB=AC,∴△ABC是等腰三角形,综上所述,满足条件的三角形可能是直角三角形或等腰三角形,故选D.。

(含答案)九年级数学苏科版上册课时练第2单元《2.3 确定圆的条件 》(2)

(含答案)九年级数学苏科版上册课时练第2单元《2.3 确定圆的条件 》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练2.3确定圆的条件一、选择题(本大题共7小题,共35分)1.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A. B.C. D.2.如图,AC、BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△B.△C.△D.△3.如图,在△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC的外接圆的面积为()A.3B.4C.6D.94.已知点A、B,且AB<4,则经过A、B两点且半径为2的圆有()A.0个B.1个C.2个D.无数个5.边长为2的正三角形的外接圆的半径是()A.23B.2C.D.6.有一题目:“已知:点O为△ABC的外心,∠BOC=130∘,求∠A.”嘉嘉的解答:画△ABC以及它的外接圆⊙O,连接OB,OC,如图,由∠BOC=2∠A=130∘,得∠A=65∘,而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”则下列判断正确的是()A.淇淇说的对,且∠的另一个值是115∘B.淇淇说的不对,∠就得65∘C.嘉嘉求的结果不对,∠应得50∘D.两人都不对,∠应有3个不同值7.如图,O为锐角三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,下列叙述不正确的是()A.是△的外心,不是△的外心B.是△的外心,不是△的外心C.是△的外心,不是△的外心D.是△的外心,不是△的外心二、填空题(本大题共5小题,共25分)8.如图,方格纸上每个小正方形的边长均为1个单位长度,点O、A、B、C在格点(两条网格线的交点叫格点)处,以点O为原点建立平面直角坐标系,则过A、B、C三点的圆的圆心坐标为.9.直角三角形的两边长分别为16、12,则此三角形的外接圆的半径为.10.如图,将△ABC放在每个小正方形的边长均为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.11.已知平面直角坐标系中的三个点分别为A(1,-1)、B(-2,5)、C(4,-6),则A、B、C这三个点确定一个圆(填“可以”或“不可以”).12.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0)、(2,5)、(4,2),若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.三、解答题(本大题共4小题,共40分)13.如图,AD既是△ABC的中线,又是∠BAC的平分线.(1)判断△ABC的形状,并证明你的结论;(2)判断AD是否过△ABC的外接圆的圆心O,并证明你的结论.14.某居民小区一处圆柱形的输水管道破裂,维修人员为了更换管道,需确定管道圆形截面的半径,如图所示为水平放置的破裂管道有水部分的截面.(1)请利用直尺和圆规补全这个输水管道的圆形截面(不写作法,保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB=16cm,最深处距离水面的深度为4cm,求这个管道圆形截面的半径.15.如图,在△ABC中,AB=AC=5,BC=6.⊙O经过B、C两点,且AO=3,求⊙O的半径.16.探究问题(1)阅读理解:如图(A),在△ABC所在平面上存在一点P,使它到三角形各顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离.如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB⋅CD+BC⋅DA=AC⋅BD,此为托勒密定理.(2)知识迁移:请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA;根据(2)中的结论,我们有如下探寻△ABC(其中∠BAC、∠ABC、∠ACB均小于120∘)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC的长为边长作等边△BCD及其外接圆;第二步:在上任取一点P',连接P'A、P'B、P'C、P'D.易知P'A+P'B+P'C=P'A+(P'B+P'C)=P'A +;第三步:请你根据(1)中的定义,在图(D)中找出△ABC的费马点P,并指出线段的长度即为△ABC的费马距离.(3)知识应用:今年以来某市持续干旱,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到该市某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120∘),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.参考答案1.C2.B3.D4.C5.C6.A7.D8.(-1,-2)9.10或810.511.可以12.(7,4)或(1,4)或(6,5)13.解:(1)△ABC是等腰三角形.如图,过点D作DE⊥AB于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE=DF.又∵AD是△ABC的中线,∴BD=CD.在Rt△BDE和Rt△CDF中,=, =,∴Rt△BDE≌Rt△CDF.∴∠B=∠C.∴AB=AC,即△ABC是等腰三角形(2)AD过△ABC的外接圆的圆心O.∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC.又∵BD=CD,∴AD是BC的垂直平分线.∴AD过△ABC的外接圆的圆心O.14.解:(1)如图所示,在上任取一点H,连接AH、BH,分别作AH、BH的垂直平分线交于点O,则点O即为圆形截面的圆心.(2)过圆心O作OC⊥AB于点D,交于点C,连接OB.∵OC⊥AB,∴BD=12AB=12×16=8(cm).根据题意,可知CD=4cm.设这个管道圆形截面的半径为xcm,则OD=(x-4)cm.在Rt△BOD中,由勾股定理,得2+2=2,即(−4)2+82=2,解得x=10.∴这个管道圆形截面的半径为10cm.15.解:如图,过点A作AD⊥BC,垂足为D.∵AB=AC=5,AD⊥BC,BC=6,∴易得点O在直线AD上,BD=12BC=3.∴在Rt△ABD中,AD=2−2=4.当点1在射线AD的反向延长线上时,连接1.1=AD+1=4+3=7,在Rt△1中,1=12+2=72+32=58.当点2在线段AD上时,连接2.=AD-2=4-3=1,在Rt△2中,2=22+2=12+32=10.2综上所述,⊙O的半径为58或10.16.(2)证明:由托勒密定理可知PB⋅AC+PC⋅AB=PA⋅BC.∵△ABC是等边三角形,∴AB=AC=BC,∴PB+PC=PA.P'D;点P的位置如图所示(AD与的交点);AD.(3)以BC为一边作如图所示的等边三角形BCD,连接AD,则线段AD的长即为△ABC的费马距离.∵△BCD为等边三角形,BC=4km,∴∠CBD=60∘,BD=BC=4km.∵∠ABC=30∘,∴∠ABD=90∘.在Rt△ABD中,∵AB=3km,BD=4km,∴AD=2+2=32+42=5(km).∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 确定圆的条件 同步练习
一、填空题:
1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.
2.边长为6cm 的等边三角形的外接圆半径是________.
3.△ABC 的三边为2,3,
,设其外心为
O,三条高的交点为H,则OH
的长为_____.
4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等.
5.已知⊙O 的直径为2,则⊙O 的内接正三角形的边长为_______.
6.如图,MN 所在的直线垂直平分线段AB,利用这样的工具,最少使用________ 次就可以找到圆形工件的圆心. 二、选择题:
7.下列条件,可以画出圆的是( )
A.已知圆心
B.已知半径;
C.已知不在同一直线上的三点
D.已知直径 8.三角形的外心是( )
A.三条中线的交点;
B.三条边的中垂线的交点;
C.三条高的交点;
D.三条角平分线的交点 9.下列命题不正确的是( )
A.三点确定一个圆
B.三角形的外接圆有且只有一个
C.经过一点有无数个圆
D.经过两点有无数个圆
10.一个三角形的外心在它的内部,则这个三角形一定是( )
A.等腰三角形
B.直角三角形;
C.锐角三角形
D.等边三角形
11.等腰直角三角形的外接圆半径等于( )
A.腰长
B.
; C.
D.腰上的高
12.平面上不共线的四点,可以确定圆的个数为( )
A.1个或3个
B.3个或4个
C.1个或3个或4个
D.1个或2个或3个或4个
三、解答题:
13.如图,已知:线段AB和一点C(点C不在直线AB上),求作:⊙O,使它经过A、B、C三点。

(要求:尺规作图,不写法,保留作图痕迹)
B
A
14.如图,A、B、C三点表示三个工厂,要建立一个供水站, 使它到这三个工厂的距离相等,求作供水站的位置(不写作法,尺规作图,保留作图痕迹).
A
15.如图,已知△ABC 的一个外角∠CAM=120°,AD 是∠CAM 的平分线,且AD 与△ABC 的外接圆交于F,连接FB 、FC,且FC 与AB 交于E.
(1)判断△FBC 的形状,并说明理由.
(2)请给出一个能反映AB 、AC 和FA 的数量关系的一个等式,并说明你给出的等式成立.
D E
F
C
M
B
A
16.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆
心和半径?(写出找圆心和半径的步骤).
B
A
, 问17.已知:AB是⊙O中长为4的弦,P是⊙O上一动点,cos∠APB=1
3
是否存在以A、P、B为顶点的面积最大的三角形?若不存在,试说明理由;若存在,求出这个三角形的面积.
18.如图,在钝角△ABC中,AD⊥BC,垂足为D点,且AD与DC的长度为x2-7x+12=0的两个根(AD<DC),⊙O为△ABC的外接圆,如果BD 的长为6,求△ABC的外接圆⊙O的面积.
O
D
C
B
A
答案:
1.三角形内部 直角三角形 钝角三角形
2.2
3.
4.其外接圆 三角形三条边的垂直平分线 三角形
三个顶点
6.两
7.C
8.B
9.A 10.C 11.B 12.C
13.略.
14. 略.
15.(1)△FBC是等边三角形,由已知得:
∠BAF=∠MAD=∠DAC=60°=180°-120°=∠BAC,
∴∠BFC=∠BAC=60°,∠BCF=∠BAF=60°,
∴△FBC是等边三角形.
(2)AB=AC+FA.在AB上取一点G,使AG=AC,则由于∠BAC=60°, 故△AGC是等边三角形,
从而∠BGC=∠FAC=120°,
又∠CBG=∠CFA,BC=FC,
故△BCG≌△FCA,
从而BG=FA,又AG=AC,
∴AC+FA=AG+BG=AB.
【探究创新】
16.(1)在残圆上任取三点A、B、C。

(2)分别作弦AB、AC的垂直平分线, 则这两垂直平分线的交点即是所求的圆心
(3)连接OA,则OA的长即是残圆的半径.
17.存在.∵AB不是直径(否则∠APB=90°,而由cos∠APB=1

3
∠APB<90°,矛盾)
∴取优弧AB的中点为P点,过P作PD⊥AB于D,
则PD 是圆上所有的点中到AB 距离最大的点. ∵AB 的长为定值,
∴当P 为优弧AB 的中点时,△APB 的面积最大,连接PA 、PB, 则等腰三角形APB 即为所求.
由作法知:圆心O 必在PD 上,如图所示,连接AO,则由垂径定理得AD=
12
AB=2.
又∠AOD=∠1+∠2,而∠2=∠3,∠1=∠2
故∠AOD=∠2+∠1=∠2+∠3=∠APB,即cos ∠AOD= ,
∴cos ∠AOD=1
3
,设OD=x,OA=3x,则 ,

=2 ,故x=
2


∴S △APB=
1
2
AB · 18.过O 作OE ⊥AB 于E,连接OB,则∠AOE=12
∠AOB,AE=12
AB, ∴∠C=12
∠AOB=∠AOE.
解方程x 2-7x+12=0可得DC=4,AD=3,

,
可证Rt △ADC ∽Rt △AEO, 故AE AO AD
AC
=,
又,

从而S⊙O=
2
55125
4
ππ⎛⎫
=


⎝⎭
.。

相关文档
最新文档