九年级数学二次函数教学设计

合集下载

2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。

通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。

教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。

二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。

但学生在学习二次函数时,可能会觉得比较抽象,难以理解。

因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。

三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。

四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。

五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。

六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。

七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。

让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。

2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。

同时,引导学生总结二次函数的一般形式。

3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。

湘教版数学九年级下册第1章《二次函数》教学设计

湘教版数学九年级下册第1章《二次函数》教学设计

湘教版数学九年级下册第1章《二次函数》教学设计一. 教材分析湘教版数学九年级下册第1章《二次函数》是学生在学习了初中阶段函数知识后,进一步深入研究函数性质的重要内容。

本章主要介绍二次函数的定义、性质、图象及其应用。

通过学习二次函数,学生可以更好地理解数学与实际生活的联系,提高解决问题的能力。

教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。

但二次函数相对于一次函数和反比例函数,其性质和图象更具复杂性,需要学生在已有的知识基础上,通过观察、分析、归纳等方法,自主探究二次函数的性质。

此外,学生在生活中接触到的一些现象和问题,也需要用二次函数来解释和解决。

三. 教学目标1.理解二次函数的定义,掌握二次函数的表示方法。

2.掌握二次函数的性质,能够分析二次函数图象的特点。

3.会利用二次函数解决实际问题,提高数学应用能力。

4.培养学生的观察、分析、归纳、总结能力,提高学生的自主学习能力。

四. 教学重难点1.二次函数的定义和表示方法。

2.二次函数的性质及其图象特点。

3.二次函数在实际问题中的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的性质。

2.利用数形结合法,让学生直观地理解二次函数的图象特点。

3.运用实例分析法,让学生学会将二次函数应用于实际问题。

4.采用小组合作学习法,培养学生的团队协作能力。

六. 教学准备1.准备相关课件、图片、实例等教学资源。

2.安排适当的时间让学生进行自主学习和小组讨论。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用一个实际问题引入二次函数的概念,激发学生的兴趣。

例如:抛物线运动中,物体上升和下降的轨迹为什么是抛物线?2.呈现(10分钟)介绍二次函数的定义和表示方法,展示二次函数的一般形式:y=ax^2+bx+c(a≠0)。

通过示例,让学生理解二次函数的各项参数代表的意义。

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。

本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。

但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。

此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。

三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。

2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪和黑板。

3.准备教案和教学笔记。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。

例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。

例如,展示一个二次函数的图像,引导学生观察其特点。

沪科版数学九年级上册21.4《二次函数的应用》教学设计1

沪科版数学九年级上册21.4《二次函数的应用》教学设计1

沪科版数学九年级上册21.4《二次函数的应用》教学设计1一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容,主要介绍了二次函数在实际生活中的应用。

本节内容是在学生已经掌握了二次函数的图象和性质的基础上进行学习的,通过本节内容的学习,使学生能够运用二次函数解决一些实际问题,培养学生的数学应用能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的图象和性质有一定的了解。

但是,将二次函数应用于实际问题中,对学生来说可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。

三. 教学目标1.理解二次函数在实际生活中的应用,能够运用二次函数解决一些实际问题。

2.提高学生的数学应用能力,培养学生的创新意识和实践能力。

3.通过对实际问题的探讨,增强学生对数学的兴趣和信心。

四. 教学重难点1.重点:二次函数在实际生活中的应用。

2.难点:如何将实际问题转化为二次函数问题,并运用二次函数解决。

五. 教学方法1.讲授法:教师通过讲解,引导学生理解二次函数在实际生活中的应用。

2.案例分析法:教师通过给出具体的实际问题,引导学生运用二次函数解决。

3.小组讨论法:学生分组讨论,共同探讨实际问题的解决方法。

4.实践操作法:学生通过动手操作,加深对二次函数应用的理解。

六. 教学准备1.教师准备相关的实际问题,用于引导学生进行案例分析。

2.准备PPT,用于展示二次函数的图象和性质。

3.准备黑板,用于板书重要的知识点。

七. 教学过程1.导入(5分钟)教师通过复习二次函数的图象和性质,引导学生回顾已学的知识。

然后,提出本节课的主题——二次函数的应用,激发学生的学习兴趣。

2.呈现(10分钟)教师通过PPT展示一些实际的例子,让学生观察和分析这些例子中是否存在二次函数的关系。

引导学生认识到二次函数在实际生活中的重要性。

3.操练(10分钟)教师给出一个实际的例子,引导学生将其转化为二次函数问题,并运用二次函数解决。

湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计

湘教版数学九年级下册1.1《二次函数》教学设计一. 教材分析湘教版数学九年级下册1.1《二次函数》是本册教材中的重要内容,主要介绍了二次函数的定义、图像和性质。

通过本节课的学习,学生能够理解二次函数的概念,掌握二次函数的图像特点,了解二次函数的性质,并为后续学习二次方程和二次不等式打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了函数的基本概念和一次函数的知识,具备了一定的函数思维。

但二次函数相对于一次函数来说,概念较为抽象,图像和性质的理解也需要一定的空间想象能力。

因此,在教学过程中,需要关注学生的学习困难,引导学生通过观察、操作、思考、交流等方式,逐步理解二次函数的概念和性质。

三. 教学目标1.理解二次函数的定义,掌握二次函数的图像特点;2.了解二次函数的性质,能够运用二次函数解决实际问题;3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.二次函数的定义和图像特点;2.二次函数的性质及其运用。

五. 教学方法1.情境教学法:通过生活实例引入二次函数,激发学生的学习兴趣;2.启发式教学法:引导学生主动思考、探究二次函数的性质;3.小组合作学习:培养学生团队合作精神,提高学生的交流能力;4.动手操作:让学生通过实际操作,加深对二次函数图像和性质的理解。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次函数的图像和性质;2.教学素材:准备一些实际问题,供学生练习和讨论;3.板书设计:设计清晰、简洁的板书,便于学生记录和复习。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线射击、自行车刹车等问题,引导学生思考二次函数的应用,激发学生的学习兴趣。

2.呈现(10分钟)讲解二次函数的定义,通过课件展示二次函数的图像,让学生观察和理解二次函数的图像特点。

3.操练(10分钟)让学生通过实际操作,尝试绘制一些简单的二次函数图像,加深对二次函数图像特点的理解。

4.巩固(10分钟)讲解二次函数的性质,引导学生通过思考、交流,总结二次函数的性质。

人教版九年级数学上册22.1.1《二次函数》教学设计

人教版九年级数学上册22.1.1《二次函数》教学设计

人教版九年级数学上册22.1.1《二次函数》教学设计一. 教材分析人教版九年级数学上册22.1.1《二次函数》是整个初中数学的重要内容,它不仅巩固了之前学习的函数知识,还为高中阶段的数学学习奠定了基础。

这一节主要介绍二次函数的定义、性质和图象。

教材通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在,进而引导学生去探究、理解二次函数的性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对函数的概念、性质有所了解。

但是,二次函数相对于一次函数和反比例函数,其性质更为复杂,图象也更为抽象。

因此,学生在学习本节内容时可能会感到困惑。

另外,学生的数学思维能力和探究能力参差不齐,需要教师在教学中进行针对性的引导和帮助。

三. 教学目标1.理解二次函数的定义,掌握二次函数的一般形式。

2.了解二次函数的性质,包括对称轴、顶点、开口方向等。

3.能够绘制二次函数的图象,从图象中观察和理解二次函数的性质。

4.能够运用二次函数解决实际问题,提高解决问题的能力。

四. 教学重难点1.二次函数的定义和一般形式。

2.二次函数的性质,尤其是对称轴、顶点、开口方向等。

3.二次函数图象的绘制和分析。

4.运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过实例引入二次函数,让学生从实际问题中感受到二次函数的存在。

2.探究教学法:引导学生通过小组合作、讨论的方式,探究二次函数的性质。

3.数形结合教学法:利用图象展示二次函数的性质,让学生从图象中观察和理解二次函数。

4.实践教学法:让学生通过解决实际问题,运用二次函数的知识。

六. 教学准备1.教学课件:制作课件,展示二次函数的图象和性质。

2.实例:准备一些实际问题,用于引入二次函数。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次函数的概念。

例如:一个物体从地面抛出,其高度与时间的关系可以表示为一个二次函数。

让学生思考:这个二次函数是什么样子?它的图象是什么样的?2.呈现(10分钟)利用课件,呈现二次函数的一般形式和图象。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇

九年级数学上册二次函数教案模板优秀8篇二次函数教案篇一一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。

果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+ 60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况。

你能根据表格中的数据作出猜测吗 ?自己试一试。

x/棵y/个三。

做一做银行的储蓄利率是随时间的变化而变化的。

也就是说,利率是一个变量。

在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。

设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。

如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。

我们以前学过的正方形面积A与边长a的关系A=a2,圆面积s与半径r的关系s=Try2等也都是二次函数的例子。

随堂练习1.下列函数中(x,t是自变量),哪些是二次函数?y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t2.圆的半径是l㎝,假设半径增加x㎝时,圆的面积增加y㎝.(1)写出y与x之间的关系表达式;(2)当圆的半径分别增加lcm、㎝、2㎝时,圆的面积增加多少?五、课时小结1. 经历探索和表示二次函数关系的过程,猜想并归纳二次函数的定义及一般形式。

《二次函数》的复习教学设计

《二次函数》的复习教学设计

《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。

主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。

在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与设计说明本节课主要渗透类比、化归数学思想。

对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

二次函数教学设计(精选19篇)

二次函数教学设计(精选19篇)

二次函数教学设计二次函数教学设计(精选19篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

以下是小编为大家收集的二次函数教学设计,欢迎阅读与收藏。

二次函数教学设计篇1教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.3.通过学生共同观察和讨论,培养大家的合作交流意识.(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.具有初步的创新精神和实践能力.教学重点1.体会方程与函数之间的联系.2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.教学难点1.探索方程与函数之间的联系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.教学方法讨论探索法.教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.Ⅱ.讲授新课一、例题讲解投影片:(§2.8.1A)我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么(1)h与t的关系式是什么?(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.[师]请大家先发表自己的看法,然后再解答.[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式.(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可.还可以观察图象得到.[师]很好.能写出步骤吗?[生]解:(1)∵h=-5t2+v0t+h0,当v0=40,h0=0时,h=-5t2+40t.(2)从图象上看可知t=8时,小球落地或者令h=0,得:-5t2+40t=0,即t2-8t=0.∴t(t-8)=0.∴t=0或t=8.t=0时是小球没抛时的时间,t=8是小球落地时的时间.二、议一议投影片:(§2.8.1B)二次函数①y=x2+2x,②y=x2-2x+1,③y=x2-2x+2的图象如下图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?[师]还请大家先讨论后解答.[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点.(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根.(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根.由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根.[师]大家总结得非常棒.二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.三、想一想在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?[师]请大家讨论解决.[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有-5t2+40t=60,t2-8t+12=0,∴t=2或t=6.因此当小球离开地面2秒和6秒时,高度都是60m.Ⅲ.课堂练习随堂练习(P67)Ⅳ.课时小结本节课学了如下内容:1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系.2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根.Ⅴ.课后作业习题2.9板书设计§2.8.1 二次函数与一元二次方程(一)一、1.例题讲解(投影片§2.8.1A)2.议一议(投影片§2.8.1B)3.想一想二、课堂练习随堂练习三、课时小结四、课后作业备课资料思考、探索、交流把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625.即当x=25时,S最大=625.(2)S正方形=252=625.(3)∵正三角形的边长为 m,高为 m,∴S三角形= =≈481(m2).(4)∵2πr=100,∴r= .∴S圆=πr2=π·( )2=π· = ≈796(m2).所以圆的面积最大.二次函数教学设计篇2一、教学目标:1。

华师大版数学九年级下册《二次函数y=a2+b c的图象与性质》教学设计4

华师大版数学九年级下册《二次函数y=a2+b c的图象与性质》教学设计4

华师大版数学九年级下册《二次函数y=a2+b c的图象与性质》教学设计4一. 教材分析华师大版数学九年级下册《二次函数y=a^2+bx+c的图象与性质》这一章节是在学生已经掌握了函数的基本概念和一次函数的图象与性质的基础上进行学习的。

二次函数是初中数学中的重要内容,它在实际生活中有广泛的应用。

本章主要让学生了解二次函数的一般形式,学会用配方法求二次函数的最值,并能分析二次函数的图象与性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于一次函数的图象与性质有一定的了解。

但二次函数相对于一次函数来说,其图象与性质更为复杂,需要学生有一定的抽象思维能力。

在学习过程中,学生可能会对二次函数的图象与性质产生困惑,尤其是对于开口方向、顶点坐标、对称轴等方面的理解。

因此,在教学过程中,需要关注学生的学习情况,及时进行引导和解答疑问。

三. 教学目标1.理解二次函数的一般形式y=a^2+bx+c,并能运用配方法求出二次函数的最值。

2.能够分析二次函数的图象与性质,包括开口方向、顶点坐标、对称轴等。

3.能够运用二次函数解决实际问题,提高学生的应用能力。

四. 教学重难点1.二次函数的一般形式和配方法求最值。

2.二次函数的图象与性质,包括开口方向、顶点坐标、对称轴等。

五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的图象与性质。

2.运用多媒体辅助教学,展示二次函数的图象,帮助学生直观理解。

3.采用小组合作学习,让学生在讨论中加深对二次函数的理解。

4.注重实践与应用,让学生在解决实际问题中掌握二次函数的知识。

六. 教学准备1.准备多媒体教学课件,包括二次函数的图象、性质等。

2.准备相关的实际问题,用于巩固和拓展学生的知识。

3.准备练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,让学生感受二次函数的存在。

引导学生思考如何表示这些二次函数,从而引入二次函数的一般形式y=a^2+bx+c。

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。

2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。

3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。

二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。

2. 教学难点:通过图像理解和应用二次函数的性质。

三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。

四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。

2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。

3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。

4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。

五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。

六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3.通过学生共同观察和讨论,培养大家的合作交流意识。

(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.具有初步的创新精神和实践能力。

教学重点1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。

教学难点1.探索方程与函数之间的联系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法讨论探索法。

教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。

当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

沪科版数学九年级上册21.1《二次函数》教学设计

沪科版数学九年级上册21.1《二次函数》教学设计

沪科版数学九年级上册21.1《二次函数》教学设计一. 教材分析《二次函数》是沪科版数学九年级上册第21.1节的内容,本节主要让学生了解二次函数的定义、性质及其图象。

通过学习,学生能运用二次函数解决一些实际问题,为高中阶段更深入地学习函数打下基础。

二. 学情分析九年级的学生已经学习了初中阶段的数学基础知识,对函数有一定的认识。

但二次函数相对于一次函数和反比例函数,其性质和图象更为复杂,需要学生具有一定的抽象思维能力。

同时,学生需要掌握一些数学解题技巧和方法,提高解决问题的能力。

三. 教学目标1.让学生了解二次函数的定义、性质及其图象。

2.培养学生运用二次函数解决实际问题的能力。

3.提高学生的抽象思维能力和数学解题技巧。

四. 教学重难点1.二次函数的定义和性质。

2.二次函数图象的特点。

3.运用二次函数解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过设置问题,引导学生探究二次函数的性质;通过案例分析,让学生了解二次函数在实际问题中的应用;通过小组合作,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和实际问题。

2.制作课件,展示二次函数的图象和性质。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如抛物线、卫星轨迹等,引导学生思考这些问题的数学模型是什么。

让学生认识到二次函数在实际生活中的重要性。

2.呈现(10分钟)介绍二次函数的定义、性质及其图象。

通过课件展示,让学生直观地了解二次函数的特点。

同时,引导学生总结二次函数的性质,如开口方向、对称轴等。

3.操练(10分钟)让学生分组讨论,分析给出的实际问题,将其转化为二次函数模型。

每组选取一个问题,进行解答和分享。

教师在这个过程中给予指导,帮助学生掌握解题方法。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

题目包括判断题、填空题和解答题。

完成后,教师进行讲解和点评,确保学生掌握所学知识。

九年级数学上册(人教版)22.1.4二次函数y=ax^2+bx+c的图象和性质教学设计

九年级数学上册(人教版)22.1.4二次函数y=ax^2+bx+c的图象和性质教学设计
b.根据实际问题,建立二次函数模型,并求解。
3.解答与反馈:学生完成后,教师选取部分答案进行点评,给予反馈,帮助学生纠正错误。
(五)总结归纳
1.教学活动:引导学生回顾本节课所学内容,总结二次函数y=ax^2+bx+c的图象和性质。
2.知识梳理:
a.二次函数的一般式及其各参数的几何意义。
b.二次函数的图象绘制方法及其性质。
5.作业要求:
a.学生在完成作业时,要注意规范书写,保持解答过程的简洁。
b.对于选做题和思考题,鼓励学生积极思考,勇于探索,提高解决问题的能力。
c.课后阅读作业,学生可根据个人兴趣自主选择,做好阅读笔记,提升数学素养。
3.重点:培养学生的数学思维能力,提高解决问题的策略。
难点:引导学生从数形结合的角度,深入理解二次函数的图象与性质之间的关系。
(二)教学设想
1.设想一:以生活实例引入,激发学生兴趣
在教学开始时,可以引入一些生活中的实例,如抛物线运动的篮球、拱桥的形状等,让学生感受到二次函数在实际生活中的应用,从而激发他们的学习兴趣。
4.设想四:注重启发式教学,培养学生的思维能力
在教学过程中,教师应注重启发式教学,提出问题,引导学生思考。例如,在探讨二次函数的顶点式时,可以提问:“顶点式y=a(x-h)^2+k中的h、k分别代表什么意义?”让学生在思考中加深对知识点的理解。
5.设想五:巩固练习,提高学生应用能力
设计具有梯度、层次的练习题,让学生在解答过程中,逐步掌握二次函数的图象和性质。同时,结合实际问题,培养学生将数学知识应用于解决实际问题的能力。
2.在观察二次函数图象的变化过程中,培养学生发现规律、总结性质的能力。
3.通过小组合作交流,让学生在讨论中理解二次函数图象与性质之间的关系,提高合作学习的能力。

人教版初中数学九年级上册《二次函数》教学设计

人教版初中数学九年级上册《二次函数》教学设计

二次函数教学设计(1)一教材分析二次函数的应用本身是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,新课标中要求学生能通过对实际问题的情景的分析确定二次函数的表达式,体会其含义,能根据图像的性质解决简单的实际问题,而最值又是生活中利用二次函数知识解决最常见,最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,为求利润等问题奠定基础,目的在于让学生通过掌握求面积最大这一类问题,学会用建模的思想去解决其他和函数有关的应用问题,此内容是学习一次函数及其应用的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础二教学目标。

1;知识与技能:通过本节学习,巩固二次函数的图像与性质,理解顶点与最值的关系,会求解最值问题2.过程与方法:通过观察图像,理解顶点的特殊性,会把实际问题中的最值问题转化为二次函数的最值问题,通过动手动脑,提高分析解决问题能力,并体会一般与特殊的关系,了解数形结合思想,函数思想3.情感态度与价值观:通过学生之间的讨论,交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中的广泛应用价值,三教学重点难点教学重点:利用二次函数的图像与性质,求面积的最值问题教学难点:1.正确构建数学模型2.对函数顶点,端点与最值的理解与应用四教学方法“启发探究式”为主线开展教学活动,解决问题以学生动手动脑为主,必要时加以小组讨论,充分调动学生学习的积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的五教学手段多媒体课件六课时安排1课时七教学过程加深巩固布置作业自主评价梳理面靠墙围成一个矩形,要求面积最大,如何围才能使矩形的面积最大?2.如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

回答下面的问题:(1)设每个小矩形一边的长为xm,设四个小矩形的总面积为ym2,请写出用x表示y的函数表达式。

22.1.2二次函数 的图象和性质 教学设计 2022-2023学年 人教版九年级数学上册

22.1.2二次函数 的图象和性质 教学设计 2022-2023学年 人教版九年级数学上册

22.1.2 二次函数的图象和性质教学设计一、教学目标1.了解二次函数的定义和基本概念。

2.掌握二次函数的图象和性质。

3.能够用函数的性质解决实际问题。

二、教学内容本节课主要内容是关于二次函数的图象和性质。

具体包括: 1. 二次函数的定义和图象的基本特征。

2. 二次函数图象的平移、翻折和伸缩。

3. 二次函数与轴的交点。

4. 二次函数与零点、顶点的关系。

三、教学重点和难点1.教学重点:二次函数的图象和性质的基本概念和关系。

2.教学难点:如何利用二次函数的性质解决实际问题。

四、教学准备1.教材:人教版九年级数学上册。

2.PowerPoint 或其他教学软件。

3.板书工具。

五、教学过程1. 导入(5分钟)•利用教学软件或板书展示二次函数的定义和基本概念,并与学生进行交流讨论,激发学生的兴趣。

2. 知识讲解(15分钟)•利用教学软件或板书讲解二次函数图象的基本特征、平移、翻折和伸缩的关系。

重点强调二次函数与轴的交点和零点、顶点的关系。

3. 实例演示(15分钟)•根据教材提供的实例,通过教师的示范演示,让学生观察并发现不同二次函数图象的特点和性质。

同时,引导学生发现二次函数与轴的交点和零点、顶点的关系。

4. 小组活动(20分钟)•学生分成小组,针对教材中的练习题,让每个小组负责分析和解答其中的一道题目,并用Markdown文本格式回答和解释。

5. 展示和讨论(15分钟)•小组展示他们的回答和解释,并与全班进行讨论。

教师在此过程中纠正和指正学生答案中的错误,并解释正确答案的原因和方法。

6. 总结(5分钟)•教师对本节课的内容进行总结,并强调二次函数的图象和性质在实际问题中的应用价值。

六、课堂小结通过本节课的学习,学生应该对二次函数的图象和性质有了更深入的理解,并能够应用所学知识解决实际问题。

在以后的学习中,他们将可以更自主地探索和应用二次函数的相关内容。

注意:以上文档是根据提供的标题进行虚拟创作的,所写内容仅供参考,需根据实际情况进行调整和扩充。

人教版数学九年级上册22.1.2二次函数y=ax2的图象和性质(第1课时)教学设计

人教版数学九年级上册22.1.2二次函数y=ax2的图象和性质(第1课时)教学设计
3.分析二次函数y=ax^2图象和性质的关系,使学生理解a的几何意义。
三、课堂练习
1.让学生独立绘制二次函数y=ax^2的图象,并描述其性质。
2.通过小组合作,讨论并总结二次函数图象和性质的特点。
四、巩固拓展
1.让学生思考:如何通过观察二次函数图象,判断其开口方向和对称轴?
2.引导学生运用二次函数的图象和性质,解决实际问题。
4.注重分层教学,关注个体差异:
(1)针对不同层次的学生,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。
(2)鼓励学生主动提问,及时解答他们的疑惑,帮助他们建立信心。
5.强化课堂小结,巩固所学知识:
(1)让学生用自己的话总结二次函数y=ax^2的图象和性质,加深对知识的理解和记忆。
(2)通过课堂小结,检查学生的学习效果,及时发现问题并进行针对性的辅导。
3.组织学生进行小组合作交流,培养学生团队协作能力和表达能力,激发他们学习数学的兴趣。
(三)情感态度与价值观
1.培养学生勇于探索、积极思考的学习态度,使他们体会数学学习的乐趣,增强学习数学的自信心。
2.通过对二次函数y=ax^2图象和性质的探究,使学生感受数学的对称美、秩序美,提高他们的审美情趣。
3.使学生认识到数学知识在实际生活中的广泛应用,激发他们学习数学的积极性,培养他们运用数学知识解决实际问题的意识。
3.培养学生运用数形结合思想,通过观察、分析、归纳二次函数图象和性质,提高解决问题的能力。
(二)过程与方法
1.通过引导学生在探索二次函数y=ax^2图象和性质的过程中,培养他们提出问题、分析问题、解决问题的能力。
2.引导学生运用数形结合思想,将二次函数的图象与性质相互验证,提高他们的逻辑思维能力和推理能力。

浙教版数学九年级上册2.2《二次函数的图象》教学设计5

浙教版数学九年级上册2.2《二次函数的图象》教学设计5

浙教版数学九年级上册2.2《二次函数的图象》教学设计5一. 教材分析《二次函数的图象》是浙教版数学九年级上册第2.2节的内容,本节课主要让学生掌握二次函数的图象特点,了解二次函数图象与系数的关系,以及会用二次函数的图象解决一些实际问题。

教材通过实例引入二次函数的图象,使学生感受数学与生活的紧密联系,培养学生的数学应用能力。

二. 学情分析九年级的学生已具备一定的函数知识,对一次函数和正比例函数的图象有较深入的了解。

但二次函数图象的认识相对复杂,需要学生具有较强的空间想象能力和抽象思维能力。

此外,学生需要掌握如何利用二次函数图象解决实际问题,这要求他们在生活中多观察、多思考。

三. 教学目标1.理解二次函数的图象特点,掌握二次函数图象与系数的关系。

2.学会用二次函数的图象解决实际问题,提高学生的数学应用能力。

3.培养学生的空间想象能力和抽象思维能力,提高学生的数学素养。

四. 教学重难点1.二次函数的图象特点及与系数的关系。

2.如何利用二次函数图象解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生探究二次函数的图象特点。

2.利用数形结合法,让学生感受二次函数图象与系数的关系。

3.采用实例分析法,教授如何用二次函数图象解决实际问题。

4.小组讨论,培养学生的合作能力和沟通能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.安排学生预习相关内容,了解二次函数的基本概念。

3.准备一些实际问题,用于课堂讨论和练习。

七. 教学过程导入(5分钟)教师通过一个实际问题引出二次函数的图象,激发学生的兴趣。

例如:某商场举行打折活动,商品的原价为700元,打折力度为8折,求打折后的价格。

学生通过计算可以得到打折后的价格为560元。

教师引导学生思考:如果打折力度不是8折,而是根据商品的原价进行变化,该如何表示打折后的价格?从而引入二次函数的图象。

呈现(10分钟)教师通过课件展示二次函数的图象,让学生观察和分析二次函数图象的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图象与性质
(第一课时)
【教学目标】
知识与技能
通过复习,掌握二次函数 y=ax2+bx+c图象与性质;掌握二次函数解析式求解方法和思路,提高学生的思维能力。

过程与方法
通过二次函数的相关基础知识的复习,培养学生对知识的整合能力和分析问题的能力。

情感态度与价值观
通过复习,激发学生兴趣,感受数学之美。

在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

【教学重点】
掌握二次函数y=ax2+bx+c图象与性质。

【教学难点】
会利用二次函数的图象及性质解题,掌握数形结合的思想方法。

【教学方法】
提问法,练习法,总结法
【教学准备】多媒体课件、作图工具
【课型】复习课
【教学过程】
一、创设情境,引入新课
函数问题作为初中数学的重点和难点,在实际生活中有着广泛的应用。

二次函数更是历年中考的必考题和压轴题,本节课我们就共同来复习一下二次函数的图像和性质。

二、自主探究,合作交流
第一关知识要点说一说
(一)二次函数的概念
形如y=ax2+bx+c (a、b、c是常数,a≠0)的函数叫做二次函数。

请你写一个二次函数的解析式。

学生口述教师板书解析式。

课件展示问题:
下列函数中,哪些是二次函数?
1.y=x2
2.
3.y=x-x2
4.
5.y=x2+2x-4
学生口述,教师及时总结归纳。

二次函数的图象是一条抛物线。

利用课件展示图象草图。

1
2-
+
=x
x
y
x
x
y
1
2-
=
2当x 时,y 随x 的增大而增大,
当x 时,y 随x 的增大而减小,
当x 时,y 有最大值。

(三)用待定系数法求二次函数的解析式
求二次函数解析式时,如果已知抛物线上三点,用 式;如果已知抛物线的顶点坐标,用式;如果已知抛物线与x 轴的交点,用式。

利用课件展示问题。

介绍求二次函数解析式的方法。

第二关 基础题目轮一轮
1.二次函数y=x 2
+2x+1写成顶点式为:
对称轴为_____,顶点为______。

2.已知二次函数y= - x 2
+ax-5的图象的顶点在y 轴上,则a=___。

第三关 典型例题显一显
例1已知二次函数y =x 2-4x +3.
(1)用配方法求其图象的顶点
C 的坐标,并描述该函数的函数值随自变量的变化情况;
(2)求函数图象与x 轴的交点A ,B 的坐标及△AB C 的面积.
学生小组交流统一答案,学习好的帮扶学习差的,组长安排好组员代表本组进行班级展示;
解:(1)y =x 2-4x +3=x 2-4x +4-1
=(x -2)2-1,
∴其图象的顶点C 的坐标为(2,-1),
∴当x≤2时,y 随x 的增大而减小;当x>2时,y 随x 的增大而增大. (2)令y =0,则x 2-4x +3=0,解得x 1=1,x 2=3. ∴当点A 在点B 左侧时,A(1,0),B(3,0); 当点A 在点B 右侧时,A(3,0),B(1,0). ∴AB =2,过点C 作CD ⊥x 轴于点D ,
则△ABC 的面积=12AB ·CD =½1
2
×2×1=1.
例2如图13-1,已知二次函数y=ax2+bx+c的图象
过A(2,0),B(0,-1)和C(4,5)三点.
(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
(3)在同一平面直角坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.
学生独立完成,让一名学生板书解题过程。

第四关中考预测选一选
1.抛物线y=(x+3)(x-1)的对称轴是直线( )
A.x=1 B.x=-1
C.x=-3 D.x=3
2.二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是( )
A.-1<x<3 B.x<-1
C.x>3 D.x<-1或x>3
学生先独立尝试,后由两位学生口述其中原因。

三、课堂小结:
你说我说大家说:
通过今天的学习你有什么收获或感受?
四、布置作业:全品作业手册,预习下一节内容。

教学反思:。

相关文档
最新文档