初三数学总复习教案-二次函数
二次函数复习教案-【通用,经典教学资料】
二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
(二次函数复习)教学设计
课题摘要
学科
数学
学段
初中
年级
初三
单元
教材版本
浙教版
课程名称
二次函数复习
一、学习内容分析
1.教材分析
二次函数是中考的重点内容之一,二次函数的应用是培养学生数学建模和数学思想的重要素材,是每年必考的压轴题。本部分包括了初中代数的所有数学思想和方法,复习时必须高度重视。二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数和不等式打下基础,积累经验,提供可以借鉴的方法。通过对二次函数的复习,加深学生对函数知识的理解和应用。
3.教学目标(含重难点)
1、理解二次函数的意义,会画二次函数的图象,会求二次函数的解析式。
2、会用配方法把二次函数的表达式化为顶点式,并能利用性质解决简单的实际问题,体会模型思想。
3、会利用二次函数的图象求一元二次方程的近似解。
复习重点:
二次函数的图象、性质和应用。
复习难点:
二次函数的应用和图象法解一元二次方程。
规律总结:__________________________________________
3、2015年上半年,某种农产品受不良炒作的影响,价格一路上扬.8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价袼y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.
PPT
活动3:课堂回眸,归纳巩固
小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进,方法以学具
二次函数教学设计(精选6篇)
二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数中考复习专题教案
二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。
2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。
3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。
4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。
5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。
三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。
五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。
六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。
二次函数复习教案
二次函数复习教案
一、教学目标:
1. 理解二次函数的定义和性质;
2. 能够将二次函数的图像进行标注和解释;
3. 掌握二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 能够通过顶点坐标或其他已知条件求解二次函数的参数;
5. 能够解二次方程和二次不等式。
二、教学内容:
1. 二次函数的定义和性质讲解;
2. 二次函数的图像标注和解释;
3. 二次函数的顶点、轴对称、对称轴和对称点的相关概念;
4. 二次函数参数的求解;
5. 二次方程和二次不等式的解法。
三、教学过程:
1. 探究:通过变化a、b、c的值,观察二次函数图像的变化,并总结二次函数的性质。
2. 概念讲解:介绍二次函数的定义和性质,引入顶点、轴对称、对称轴和对称点的概念。
3. 例题演练:通过给定顶点坐标或其他已知条件,求解二次
函数的参数。
4. 解二次方程和二次不等式:介绍解二次方程和二次不等式
的方法和步骤。
5. 课堂练习:提供一些练习题,学生独立完成,然后进行批
改和讲解。
6. 拓展训练:布置课后作业,要求学生进一步加深对二次函数的理解和掌握。
四、教学评价:
1. 在课堂练习和课后作业中,观察学生解题过程和答案,评价学生对二次函数的掌握程度。
2. 对课堂练习中出现的常见错误进行讲解和纠正。
3. 针对学生困惑的问题进行答疑和解释。
五、教学资源:
1. 教材教辅资料;
2. 多媒体教学设备;
3. 课前准备好的例题、练习题和答案;
4. 批改和讲解学生练习的纸质材料。
九年级数学《二次函数》总复习教案
教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
(完整版)二次函数复习课教案.docx
二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。
二次函数的复习教案
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
《二次函数》教案(优秀7篇)
《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
《二次函数》的复习教学设计
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
《二次函数》的复习教学设计
《二次函数》的复习教学设计复习教学设计:二次函数一、教学目标:1.理解二次函数的定义及其特点;2.掌握二次函数的图像、顶点、轴、对称轴等性质;3.能够根据二次函数的特点解决实际问题。
二、教学内容:1.二次函数的定义和基本形式;2.二次函数的图像和性质;3.二次函数的最值、零点及其应用。
三、教学步骤:步骤一:导入新知1.导入教学话题:“二次函数”,以回顾前几节课所学内容,引发学生对二次函数的认识和兴趣。
2.提问:“你能简单回忆一下二次函数是什么吗?”让学生简单复述二次函数的定义。
步骤二:概念及定义讲解1. 讲解二次函数的定义和基本形式,即f(x) = ax^2 + bx + c,其中a、b和c为实数。
2.引导学生理解a、b和c对二次函数图像的影响,如a决定了抛物线的开口方向和宽度,b决定了抛物线的位置偏移,c决定了抛物线与y轴的交点位置。
步骤三:图像及性质讲解1.讲解二次函数图像的性质,包括图像的开口方向、顶点、对称轴等。
2.通过示例分析,引导学生找出二次函数的顶点、对称轴及其它特征,让学生能够根据函数表达式确定图像的形状。
步骤四:实例分析及概念巩固1.给出一些具体的函数表达式,引导学生根据图像的特征进行分析,并求出对应的顶点、对称轴、开口方向等。
2.提问:“当a为正数时,抛物线的开口方向是向上还是向下?当a为负数时又怎样?”让学生总结出结论。
3.给出一些特殊情况的函数表达式,让学生分析并给出对应的图像和性质。
步骤五:最值、零点及应用讲解1.讲解二次函数的最值和零点,包括二次函数最值的判断和求解,以及二次函数零点的判断和求解。
2.引导学生通过实例分析,掌握解二次函数实际问题的方法和步骤。
3.给出一些实际问题,让学生通过建立等式或不等式解决,加深对二次函数的运用和理解。
步骤六:巩固练习1.布置相应的练习题,让学生通过计算和绘图巩固所学内容。
2.引导学生将练习题的解答和图像进行对比,分析解题方法和图像的关系。
数学《二次函数》优秀教案(精选8篇)
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
初中数学二次函数教案(5篇)
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
最新-二次函数数学教案(优秀11篇)二次函数教案
二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。
《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。
【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。
【教学重点】二次函数的概念。
【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。
一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。
二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。
《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
二次函数数学教案(优秀6篇)
二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
二次函数的复习课教案
二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。
复习重点:1、二次函数的图像与性质。
2、二次函数解析式的确定。
复习难点:如何正确利用图像信息解决二次函数的相关问题。
复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。
通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。
1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。
九年级数学《二次函数》教案最新3篇
九年级数学《二次函数》教案最新3篇次函数数学教案篇一在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。
那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、重视每一个学生学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。
而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点四、要多了解学生。
你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的`改进教学方法。
2二次函数教学方法一一、立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要。
并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现二、立足课堂,提高效率:做到教师入题海,学生出题海。
教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要。
(教案)二次函数图象和性质复习教案(共五篇)
(教案)二次函数图象和性质复习教案(共五篇)第一篇:(教案)二次函数图象和性质复习教案《二次函数的图象和性质》复习课教案海洲初级中学初三数学备课组内容来源:初中九年级《数学(上册)》教科书教学内容:二次函数图像与性质复习课时:两课时教学目标:1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。
2.会利用二次函数的图象判断a、b、c的取值情况。
3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。
教材分析:二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。
本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。
学情分析学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。
本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。
通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。
教学过程一、旧知回顾1、已知关于x的函数y=2、已知函数y=-2x-2,化为y=a+3x-4是二次函数,则a的取值范围是.+k的形式:此抛物线的开口向,对称轴为,顶点坐标;当x= 时,抛物线有最值,最值为;当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。
3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。
二次函数中考复习专题教案
二次函数中考复习专题教学目标:(1)了解二次函数的概念,掌握二次函数的图象和性质,能正确画出二次函数的图象,并能根据图象探索函数的性质;(2)能根据具体条件求出二次函数的解析式;运用函数的观点,分析、探究实际问题中的数量关系和变化规律。
教学重点◆ 二次函数的三种解析式形式 ◆ 二次函数的图像与性质教学难点◆ 二次函数与其他函数共存问题◆ 根据二次函数图像的对称性、增减性解决相应的综合问题教学过程一、 数学知识及要求层次二次函数知识点1、二次函数的解析式三种形式一般式 y=ax 2 +bx+c(a ≠0)顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 交点式 12()()y a x x x x =-- 2、二次函数图像与性质 对称轴:2b x a=-顶点坐标:24(,)24b ac b a a-- 与y 轴交点坐标(0,c )增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 二次函数图像画法:勾画草图关键点:○1开口方向;○2对称轴;○3顶点;○4与x 轴交点;○5与y 轴交点。
图像平移步骤(1)配方 2()y a x h k =-+,确定顶点(h,k );(2)对x 轴 左加右减;对y 轴 上加下减。
二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x +=根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 3.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。
抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点4.二次函数的应用如物体运动规律、销售问题、利润问题、几何图形变化问题等 【典型例题】题型 1 二次函数的概念例1.二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 例2.下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学总复习教案—二次函数
知识结构
⎪⎪⎩
⎪⎪⎨
⎧--=≠+-=≠++=)
)0,)0,(())(()
),(()0()()
0(212122轴的交点坐标是与、(交点式表示图象顶点顶点式一般式x x x x x x x a y k h a k h x a y a c bx ax y
重点、热点
已知三点求二次函数的解析式.
根据所给条件合理选择表达式求二次函数的解析式. 目标要求
1. 了解二次函数解析式的三种方法表示. 2. 会用待定系数法求二次函数的解析式.
3. 能从某些实际问题中抽象出二次函数的解析式.
检查学生的学案,了解学生课前预习情况。
二、【典型例析】
例1, (2002年宁夏)二次函数y=-2(X-3)2+5图象的开口方向,对称轴和顶点坐标分别为()。
A .开口向下,对称轴为X=-3,顶点坐标为(3,5); B .开口向下,对称轴为X=3,顶点坐标为(3,5); C .开口向上,对称轴为X=-3,顶点坐标为(-3,5); D .开口向上,对称轴为X=3, 顶点坐标为(-3,5);
分析:要熟练掌握二次函数y=a(X+h)2+k 的性质:当a>0时,开口向上,当a<0时,开口向下;对称轴为直线X=-h;顶点坐标为(-h,k )
解:∵在y=-2(X-3)2+5中,a=-2<0 ∴抛物线开口向下。
其对称轴为直线x=-(-3)=3,顶点坐标为(3,5) 综上所述,应选择(B )
例2,(2002年 山西) 若点P(1,a)和Q(-1,b)都在抛物线y= —X 2+1上,则线段PQ 的长是
分析:既然P 、Q 两点在y= —X 2+1上,那么就可求出a 与b 的值,这样就确定了P 、Q 两点的坐标,进而求出PQ 的长。
解:依题意有
a=-12+1
b=-(-1)2+1
∴P(1,0), Q(-1,0)
∴ a=0
b=0
∴PQ=1-(-1)=2
例3, (2002年 黑龙江)若二次函数y=x2+bx+c 的图象经过点(-4,0),(2,6),则这个二次函数的解析式为 。
分析:欲求y=aX 2+bX+c 的解析式,实际上就是求的值。
根据所给的两个条件,很容易就能求得。
解:因为y=aX 2+bX+c 过(-4,0),(2,6)两点 所以 (-4)2+(-4)b+c=0
22+2b+c=6
解得 b=3 c=-4
所以,所求的二次函数的解析式为y=X 2+3X-4.
例4, (2002年 江西)已知抛物线y=-X 2+bX+c 与x 轴的两个交点分别为A(m,o),B(n,o),且m+n=4 , m/n=1/3. 求此抛物线的解析式
设此抛物线与y
过C 作一条平行于X 轴的直线交抛物线于另一点P 求 △ACP 的面积S △ACP 。
分析:(1)利用m+n=4,m/n+1/3,求出m, n 的值,进而求出A ,B 两 点坐标 代入y=-X 2+bX+c 之中,即可求得b,c.
先求得C 点坐标,进而求出P 点坐标,利用S △ACP =1/2CP ×OC ,可求得
△ACP 的面积。
解:(1)由 m+n=4
m/n=1/3
解得 m=1 n=3
将A (1,0),B (3,0)的坐标代入y=-X 2+bX+c 得 0=-12+1×b+c 0=-32+3×b+c 解得 b=4
c=-3
所以,此抛物线的解折式为y=-X 2+4X-3.
(2)抛物线y=-X 2+4X-3.与y 轴相交于点C(0,3),令y=-3,则有-3=-X 2+4X-3 解之 X 1=0
X 2=4
所以点P 的坐标为P (4,-3),CP=4 所以S △ACP =
21×CP ×OC= 2
1
×4×3=6 例5、(03河北)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入
资金1500万元进行批量生产。
已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年
二次函数解析式的三种表示形式
销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x 元,年销售量为y 万件,年获利
(年获利=年销售额-生产成本-投资)z 万元。
(1)试写出
y 与x 之间的函数关系式;(不必写出x 的取值范围)
(2)试写出z 与x 之间的函数关系式;(不必写出x 的取值范围)
(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?
(4)公司计划:在第一年按年获利最大确定的销售单价进行销售,第二年年获利不低于1130万元。
请你借助函数的大致图象说明,第二年的销售单价x (元)应确定在什么范围内? 解:(1)依题意知,当销售单价定为x 元时,年销售量减少1
10(x-100)万件.
∴y=20-110(x-100) = - 1
10
x+30. 即y 与x 之间的函数关系式是: y = -
1
10
x+30. (2)由题意,得:z = (30-110)(x-40)-500-1500 = - 1
10x 2+34x-3200.
即z 与x 之间的函数关系式是: z = -
110
x 2
+34x-3200. (3) ∵当x 取160时,z= - 1
10×1602+34×160-3200 = - 320.
∴ - 320 = -
110
x 2
+34x-3200. 整理,得x 2-340+28800=0.
由根与系数的关系,得 160+x=340. ∴x=180. 即同样的年获利,销售单价还可以定为180元. 当x=160时,y= - 1
10
×160+30=14; 当x=180时,y= -
1
10
×180+30=12. 即相应的年销售量分别为14万件和12万件. (4)∵z = -
110x 2+34x-3200= - 1
10
(x-170)2-310. ∴当x=170时,z 取最大值,最大值为-310.
也就是说:当销售单价定为170元时,年获利最大,并且到第一年底公司还差310万元就可以收回全部投资. 第二年的销售单价定为x 元时,则年获利为: z = (30- 1
10
x)(x-40)-310 = -
110
x 2
+34x-1510. 当z =1130时,即1130 = -
1
10
+34 -1510. 整理,得 x 2-340x+26400=0. 解得 x 1=120, x 2=220. 函数z = -
110
x 2
+34x-1510的图象大致如图所示: 由图象可以看出:当120≤x ≤220时,z ≥1130.
所以第二年的销售单价应确定在不低于120元且不高于220元的范围内.
这节课没有配备课堂练习题,其原因是课内要讲解的内容多。
附课后作业第9题答案:
解:(1)设s 与t 的函数关系式为s=at 2+bt+c
由题意得 1.5422255 2.5a b c a b c a b c ++=-⎧⎪++=-⎨⎪++=⎩ (或 1.5
4220a b c a b c c ++=-⎧⎪
++=-⎨⎪=⎩
)
解得1220
a b c ⎧=⎪⎪⎨=-⎪⎪=⎩
∴s=
2
122
t t - (2)把s=30代入s=2
122
t t - 得30=
2
122
t t -
解得t 1=10,t 2=-6(舍)
答:截止到10月末公司累积利润可达到30万元
(3)把t=7代入,得
s=
2121
72710.522⨯-⨯== 把t=8代入,得 s=
2
1828162
⨯-⨯= 16-10.5=5.5
答:第8个月公司获利润5.5万元.
)。