九年级数学一元二次函数教案
一元二次不等式教案5篇

一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。
那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。
一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。
回顾下等比数列的性质。
生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。
九年级数学上册《一元二次方程》教案、教学设计

一、教学目标
(一)知识与技能
1.理解一元二次方程的概念,掌握一元二次方程的一般形式:ax² + bx + c = 0(a≠0),并掌握其系数a、b、c的含义。
2.学会使用直接开平方法、配方法、公式法等方法求解一元二次方程,并能熟练运用各种方法解决实际问题。
-操练与反馈相结合:让学生通过大量的练习,巩固所学知识,并及时给予反馈,指导学生纠正错误;
-探究与合作相结合:引导学生通过探究发现一元二次方程的性质,鼓励学生在小组内分享观点,共同解决问题。
3.教学评价:
-过程性评价:关注学生在课堂上的参与程度、思考过程和合作交流能力;
-结果性评价:定期进行书面测验,评估学生对一元二次方程知识点的掌握情况;
3.理解一元二次方程的根的性质,掌握判别式Δ=b²-4ac的求法及其与方程根的关系。
4.能够根据实际问题列出一元二次方程,并运用所学知识解决实际问题。
(二)过程与方法
1.通过观察、分析、归纳等思维活动,培养学生对一元二次方程概念的理解,提高学生的数学抽象思维能力。
2.通过讲解、示范、练习等教学环节,使学生掌握一元二次方程的求解方法,培养学生的运算能力和数学技能。
-思考一元二次方程与一元一次方程之间的联系与区别,提高学生的数学比较和概括能力。
在作业布置过程中,要注意以下几点:
1.针对不同层次的学生,布置不同难度的作业,使每个学生都能在作业中找到适合自己的挑战;
2.作业量要适中,避免过量导致学生负担过重,影响学习效果;
3.关注学生的作业完成情况,及时给予反馈,指导学生纠正错误,巩固所学知识;
1.创设情境:以生活中的实际问题为例,如“小明在计算一块矩形菜地的面积时,发现菜地的长比宽多2米,如果菜地的面积是20平方米,那么这块菜地的长和宽各是多少?”通过这个例子,让学生感受到数学与生活的紧密联系。
初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案

一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。
洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。
(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。
人教版九年级数学上册22.2二次函数与一元二次方程(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这两个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.培养学生的合作意识和团队精神,通过小组讨论、合作完成抛物线与坐标轴围成图形面积等问题的探讨,增强学生之间的沟通与协作。
三、教学难点与重点
1.教学重点
(1)二次函数的定义及其图像性质:理解并掌握二次函数的基本形式,明确a、b、c的取值对二次函数图像的影响,特别是a的正负决定图像开口方向,顶点坐标的求法等。
举例:y=x²+2x+1与y=-2x²+3x+1的图像区别及顶点坐标的求解。
(2)一元二次方程的解法:熟练掌握因式分解法、配方法、求根公式法等解一元二次方程的方法,并能够根据方程特点选择合适解法。
举例:解方程x²-5x+6=0,通过因式分解法求解;解方程x²-4x+3=0,通过配方法求解。
(3)二次函数与一元二次方程的关系:理解二次函数图像与x轴交点坐标即为相应一元二次方程的解,并能应用于实际问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过抛物线形状的情况?”(如抛掷物体时的轨迹)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与一元二次方程的奥秘。
九年级数学下册《二次函数与一元二次方程的关系》教案、教学设计

-例如:“已知二次函数y=ax^2+bx+c的图像开口向上,且顶点坐标为(-1,2),求该二次函数的解析式。”
4.小组合作探究题:这部分作业要求学生在小组内共同完成,培养学生的合作精神和探究能力。
(三)学生小组讨论
在讲授新知之后,我会组织学生进行小组讨论。我将设计一些具有探究性的问题,如:“二次函数的开口方向和顶点坐标是如何影响一元二次方程的解的?”、“在实际问题中,如何运用二次函数的性质求解一元二次方程?”等。学生通过小组合作,共同探讨这些问题,培养他们的合作精神和探究能力。
(四)课堂练习
-教师设计具有现实背景的实际问题,引导学生运用二次函数知识进行分析和解决。
-学生在解决问题的过程中,掌握数学建模、问题求解等数学方法。
3.通过对二次函数图像的观察与分析,培养学生的观察能力、逻辑思维能力和空间想象能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,激发学生主动参与学习的积极性。
五、作业布置
为了巩固学生对二次函数与一元二次方程关系的理解,提高学生的应用能力和解决问题的策略,我设计了以下几类作业:
1.基础知识巩固题:这部分作业主要针对课堂所学的基本概念和性质进行设计,包括填空题、选择题和简答题,旨在帮助学生巩固二次函数与一元二次方程的基本知识。
-填空题:如“二次函数y=ax^2+bx+c(a≠0)的图像开口向上,当a<0时,图像开口______。”
2.掌握一元二次方程的求解方法,了解一元二次方程与二次函数之间的关系,并能运用二次函数解决实际问题。
-学生能够运用直接开平方法、配方法、求根公式等求解一元二次方程。
初中数学教案模板一元二次方程(优秀7篇)

初中数学教案模板一元二次方程(优秀7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初中数学教案模板一元二次方程(优秀7篇)作为一名无私奉献的老师,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
九年级数学上册《二次函数与一元二次方程》教案、教学设计

(1)教师给出练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生的疑问。
(3)教师挑选部分学生的作业进行展示、讲解,总结解题方法。
(五)总结归纳
1.教学内容:总结二次函数与一元二次方程的知识点,梳理知识结构。
2.教学过程:
(1)教师引导学生回顾本节课所学内容,总结二次函数与一元二次方程的知识点。
(2)学生分享自己的学习心得,交流学习过程中遇到的困难和解决方法。
(3)教师总结归纳,强调重点,指出易错点,为课后复习提供指导。
五、作业布置
为了巩固学生对二次函数与一元二次方程知识点的掌握,提高学生的实际应用能力,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,加深对二次函数与一元二次方程概念的理解。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一次函数、一元一次方程等知识点有了深入的理解和掌握。在此基础上,学生对二次函数与一元二次方程的学习将更加顺利。然而,由于二次函数与一元二次方程的概念较为抽象,学生在理解上可能会遇到一定的困难。此外,学生在解决实际问题时,可能会对知识点的运用感到困惑。
2.从生活中的实际问题出发,选取一个案例,将其抽象为二次函数与一元二次方程模型,并求解。要求撰写解题过程,明确解题思路和方法。
3.小组合作,共同完成一道拓展题。题目如下:
拓展题:已知抛物线y = ax^2 + bx + c(a≠0)的图象,求该抛物线与x轴的交点坐标。
要求:各小组通过讨论、探究,给出至少两种解题方法,并在课堂上分享解题过程和心得。
4.培养学生面对困难、挑战的精神,鼓励学生勇于尝试、不断探索,树立克服困难的信心。
九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计

1.通过引导学生在自主探究、合作交流的过程中发现一元二次方程的根与系数的关系,培养学生发现问题、分析问题和解决问题的能力。
2.利用具体的实例,让学生在实际操作中掌握一元二次方程的根与系数的关系,提高学生的实际操作能力和应用能力。
3.通过对一元二次方程根与系数关系的探究,培养学生数形结合的思想,让学生学会从多角度分析问题,形成严密的逻辑思维。
5.拓展延伸,提高思维:
-通过拓展延伸性问题的设置,引导学生运用一元二次方程根与系数关系解决更复杂的问题,提高学生的思维能力和创新能力。
6.总结反馈,反思提升:
-在课堂结束前,引导学生总结所学内容,进行自我反馈,发现不足,及时改进。
-教师对课堂教学进行反思,了解学生的学习情况,调整教学策略,提高教学质量。
-根据实际问题,列出一元二次方程,并运用根与系数关系求解。
3.拓展题:
-探究一元二次方程ax^2 + bx + c = 0(a≠0)的根与系数之间的关系,并给出证明。
-通过阅读教材或其他资料,了解一元二次方程根与系数关系在其他数学分支中的应用。
4.实践题:
-调查生活中的一元二次方程问题,例如:物品的定价与折扣、投资收益等,并运用所学知识解决实际问题。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对本节课所学的一元二次方程根与系数关系,讨论以下问题:
a.一元二次方程根与系数关系在实际问题中的应用;
b.如何运用根与系数关系解决具体问题;
c.根的判别式和韦达定理在解题过程中的作用。
2.教学方法:
-采用小组合作学习法,促进学生之间的交流与讨论。
四、教学内容与过程
(一)导入新课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个性化教学辅导
设纵坐标为k ,则横坐标是k c bx ax =++2
的两个实数根.
(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02
≠++=a c bx ax y 的图像G 的交点,由
方程组
c
bx ax y n kx y ++=+=2
的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交
点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2
与x 轴两交点为
()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故
a
c x x a b x x =
⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭
⎫
⎝⎛-=--=
-=
-=44422
212
212
2121
课 后 作
业 1.抛物线y =x 2
+2x -2的顶点坐标是 ( )
A.(2,-2)
B.(1,-2)
C.(1,-3)
D.(-1,-3) 2.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )
A.ab >0,c >0 B.ab >0,c <0 C.ab <0,c >0 D.ab <0,c <0
C
A E
F B
D
第2,3题图 第4题图
3.二次函数c bx ax y ++=2
的图象如图所示,则下列结论正确的是( ) A .a >0,b <0,c >0 B .a <0,b <0,c >0 C .a <0,b >0,c <0 D .a <0,b >0,c >0
第9题
8.有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-. (1)求此二次函数的解析式;
(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.
9.某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:
⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?
⑵第三天12时这头骆驼的体温是多少?
⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.
12.已知:抛物线t ax ax y ++=42
与x 轴的一个交点为A (-1,0). (1)求抛物线与x 轴的另一个交点B 的坐标;
(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;
(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.
.
14.卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度AB=5 cm,
拱高OC=0.9 cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线AB为x 轴,抛物线的对称轴为y轴,以1 cm作为数轴的单位长度,建立平面直角坐标系,如图(2).
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;
2 ,计算
(2)如果DE与AB的距离OM=0.45 cm,求卢浦大桥拱内实际桥长(备用数据:4.1
结果精确到1米).
15.已知在平面直角坐标系内,O 为坐标原点,A 、B 是x 轴正半轴上的两点,点A 在点B 的左侧,如图.二次函数c bx ax y ++=2
(a ≠0)的图象经过点A 、B ,与y 轴相交于点C . (1)a 、c 的符号之间有何关系?
(2)如果线段OC 的长度是线段OA 、OB 长度的比例中项,试证
a 、c 互为倒数;
(3)在(2)的条件下,如果b =-4,34=AB ,求a 、c 的值.
16.如图,直线33
3+-=x y 分别与x 轴、y 轴交于点A 、B ,⊙E 经过原点O 及A 、B 两点. (1)C 是⊙E 上一点,连结BC 交OA 于点D ,若∠COD =∠CBO ,求点A 、B 、C 的坐标;
(2)求经过O 、C 、A 三点的抛物线的解析式:
(3)若延长BC 到P ,使DP =2,连结AP ,试判断直线PA 与⊙E 的位置关系,并说明理由.。