2017年秋季新版北师大版八年级数学上学期7.2、定义与命题教学案4
八年级数学上册 7.2 定义与命题教案 (新版)北师大版
第七章平行线的证明7.2 定义与命题(一)总体说明在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.一、学生知识状况分析学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.二、教学任务分析在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.三、教学过程分析本节课的设计思路为:情景引入——命题含义(情景引入)——课堂练习——课堂小结——课后练习第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.第五环节课后练习学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.四、教学反思本节课的设计具有如下特点:(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。
北师大版八年级上册《7.2 定义与命题》教案x
北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。
教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。
二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。
但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。
因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。
2.学会如何书写和阅读命题。
3.学会从命题中提取信息。
四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。
2.难点:如何从命题中提取信息。
五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
六. 教学准备2.PPT。
3.教学案例。
七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。
例如,定义一个三角形:由三条线段首尾相连围成的图形。
然后,给出一个命题:所有的三角形都有三个顶点。
让学生思考这个命题是否正确。
2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。
让学生理解定义与命题的关系。
3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。
教师通过提问,引导学生理解命题的构成要素。
4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。
教师通过提问,检查学生对定义与命题的理解。
5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。
例如,给出一个命题,让学生判断其是否正确,并说明理由。
6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。
7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。
北师大版八年级数学上册7.2定义与命题优秀教学案例
3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。
八年级数学上册7.2定义与命题第1课时定义与命题说课稿 (新版北师大版)
八年级数学上册7.2定义与命题第1课时定义与命题说课稿(新版北师大版)一. 教材分析八年级数学上册7.2定义与命题是北师大版教材中的一节重要课程。
这部分内容主要介绍了定义与命题的概念、分类和判断方法。
教材通过丰富的实例和练习,使学生掌握定义与命题的基本知识,培养学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和命题有一定的认识。
但学生在学习过程中,往往对抽象的定义与命题理解不深,容易混淆。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生理解定义与命题的本质,提高学生的数学思维能力。
三. 说教学目标1.知识与技能目标:使学生理解定义与命题的概念,掌握定义与命题的分类和判断方法。
2.过程与方法目标:通过自主学习、合作交流,培养学生分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 说教学重难点1.教学重点:定义与命题的概念、分类和判断方法。
2.教学难点:对定义与命题的理解和运用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、教学卡片等辅助教学,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过生活实例,引导学生思考什么是定义与命题,激发学生的学习兴趣。
2.自主学习:让学生阅读教材,了解定义与命题的概念、分类和判断方法。
3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。
4.教师讲解:针对学生不易理解的知识点,进行详细讲解,突破教学难点。
5.练习巩固:布置课后练习,让学生运用所学知识解决问题。
6.课堂小结:总结本节课所学内容,加深学生对定义与命题的理解。
七. 说板书设计板书设计如下:判断方法:……八. 说教学评价1.学生自主学习能力的评价:观察学生在自主学习过程中的表现,如学习态度、问题解决能力等。
2.学生合作交流能力的评价:评价学生在小组讨论中的参与程度、观点阐述等。
北师大版八年级上册《7.2定义与命题》说课稿
北师大版八年级上册《7.2 定义与命题》说课稿一. 教材分析《7.2 定义与命题》这一节的内容是八年级上册数学课程的一部分,主要介绍定义和命题的概念,以及它们在数学中的重要性。
通过这一节的学习,学生可以理解定义和命题的含义,掌握如何正确地给出定义和写出命题,并能够分辨不同类型的命题。
教材中包含了丰富的例子和练习题,帮助学生通过实际操作来理解和巩固所学知识。
此外,教材还注重培养学生的逻辑思维能力和数学语言表达能力,为今后的数学学习打下坚实的基础。
二. 学情分析学生在进入八年级之前,已经学习了一定的数学知识,对一些基本概念和运算规则有一定的了解。
但在定义和命题方面,学生可能还存在一些困惑和误解。
因此,在教学过程中,需要关注学生的认知水平,采取适当的教学方法,帮助学生理解和掌握定义和命题的概念。
同时,学生可能对数学语言的表达方式还不够熟悉,因此在教学过程中,需要注重培养学生的数学语言表达能力,使其能够准确、清晰地表达自己的思想和观点。
三. 说教学目标1.知识与技能目标:学生能够理解定义和命题的概念,掌握如何正确地给出定义和写出命题,并能够分辨不同类型的命题。
2.过程与方法目标:通过观察、分析和归纳,学生能够掌握定义和命题的给出方法,培养逻辑思维能力和数学语言表达能力。
3.情感态度与价值观目标:学生能够体验到数学的严谨性和逻辑性,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:定义和命题的概念及其在数学中的应用。
2.教学难点:如何准确地给出定义和写出命题,以及如何分辨不同类型的命题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究、合作交流,培养学生的逻辑思维能力和数学语言表达能力。
2.教学手段:利用多媒体课件、实物模型和练习题,辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过一个具体的数学问题,引发学生对定义和命题的思考,激发学生的学习兴趣。
2017秋八年级数学上册 7.2 定义与命题 第2课时 定理与证明教案1 (新版)北师大版
第2课时 定理与证明1.了解公理、定理与证明的概念并了解本套教材所采用的公理;(重点) 2.体会命题证明的必要性,体验数学思维的严谨性. 一、情境导入体验证明的步骤:对于命题“如果一条直线与两条平行线中的一条垂直,那么这条直线也和另一条垂直”是否正确?转化为如图所示的图形,已知条件为AB∥CD,AB ⊥EF ,请问CD 与EF 垂直吗?为什么?二、合作探究探究点一:公理与定理下列平行线的判定方法中是公理的是( )A .平行于同一条直线的两条直线平行B .同位角相等,两直线平行C .内错角相等,两直线平行D .在同一平面内,不相交的两条直线叫做平行线解析:A 是由公理推出的定理;C 是由B 推出的平行线的判定定理;D 是平行线的定义,只有B 是由画图实践得来的,符合公理的定义,故选B.方法总结:公理是不需要推理判断的公认的真命题;定理是需要用推理的方法来判断其正确的命题.探究点二:证明【类型一】直接证明非文字题如图所示,在直线AC 上取一点O ,作射线OB ,OE 和OF分别平分∠AOB 和∠BOC.求证:OE⊥OF.解析:要证明某个结论,可从条件入手分析,也可以从结论逆推进行分析.要证OE⊥OF,只需证∠EOF=90°,而∠EOF=∠EOB+∠BOF,因此只需证∠EOB+∠BOF=90°.由OE 、OF 平分∠AOB 和∠BOC 可得∠EOB+∠BOF=12(∠AOB+∠BOC)=90°,所以得证OE⊥OF.证明:∵OE 和OF 分别平分∠AOB 和∠BOC,∴∠EOB =12∠AOB ,∠BOF =12∠BOC.又∵∠AOB +∠BOC =180°,∴∠EOB +∠B OF =12(∠AOB +∠BOC)=12×180°=90°,即∠EOF=90°,∴OE ⊥OF. 方法总结:从结论逆推进行分析得出条件,反过来的过程就是证明结论的过程.【类型二】直接证明文字题求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC 中,∠C =90°.求证:∠A 与∠B 互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A +∠B=180°-∠C=90°.∴∠A 与∠B 互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.2三、板书设计命题⎩⎪⎨⎪⎧分类⎩⎪⎨⎪⎧公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.。
北师大版八年级上册《7.2 定义与命题》教学设计
北师大版八年级上册《7.2 定义与命题》教学设计一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解它们在数学论证中的重要性。
北师大版八年级上册的教材通过生动的例子和丰富的练习,帮助学生理解和掌握定义与命题的基本知识。
二. 学情分析学生在七年级时已经初步接触过定义与命题的概念,但对其本质和应用可能还不是很清楚。
因此,在教学过程中,教师需要从学生的实际出发,通过生动的例子和实际操作,让学生理解和掌握定义与命题。
三. 教学目标1.知识与技能:使学生理解定义与命题的概念,能够正确判断一个命题是真命题还是假命题。
2.过程与方法:通过观察、分析和推理,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 教学重难点1.重点:定义与命题的概念及其应用。
2.难点:如何判断一个命题是真命题还是假命题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考;通过分析案例,让学生理解定义与命题;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的数学问题引入定义与命题的概念。
例如:“什么是一个角?”让学生思考并回答,然后给出正确的定义。
2.呈现(15分钟)呈现教材中的案例,让学生观察和分析。
例如:等腰三角形的性质。
引导学生发现这是一个命题,并尝试给出证明。
3.操练(15分钟)让学生分组,每组选一个命题进行分析和证明。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验他们对定义与命题的理解。
教师选取部分学生的作业进行点评。
5.拓展(10分钟)让学生尝试自己编写一个命题,并给出证明。
教师选取部分学生的命题进行点评。
6.小结(5分钟)总结本节课的主要内容,强调定义与命题在数学论证中的重要性。
北师大版八年级上册数学 7.2 第1课时 定义与命题 学案
7.2 定义与命题第1课时 定义与命题学习目标:1.了解定义、命题、真命题、假命题、定理的含义2.会区分命题的条件和结论一、学习过程:情景引入自学指导:独立完成下列问题,小组内完成统一(5分钟)2.如图表示某地的一个灌溉系统 图中A 、B 、C 、D 、E 、F 、G 、H 、I 、J 、K 处均有一化工厂,如果他们向河中处理污水,下游河水便会受到污染。
如果B 处水流受到污染,那么____处水流便受到污染;如果C 处水流受到污染,那么____处水流便受到污染;如果D 处水流受到污染,那么____处水流便受到污染;二、新知学习:自学指导:阅读165页内容,完成下列问题(10分钟)1.上面“如果……那么……”都是对事情进行判断的句子_________________________,叫做命题例如:熊猫没有翅膀. 对顶角相等. 你还须能举出这样的例子吗?2.举出一些不是命题的句子3.观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
结论:每个命题都由________和_________两部分组成. ________是已知的事项,_________是由已知事项推断出的事项.4.下列各命题的条件是什么?结论是什么?如果两个角相等,那么它们是对顶角。
如果a>b,b>c,那么a=c。
两角和其中一角的对边对应相等的两个三角形全等。
全等三角形的面积相等.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?结论:正确的命题称为________,不正确的命题称为________.要说明一个命题是假命题,常常可以举出一个例子,使之具备命题的条件,而不具有命题的结论,这种例子称为_________三、巩固练习:判断下列句子哪些是命题?1.动物都需要水2.猴子是动物的一种3.玫瑰花是动物4.美丽的天空5.三个角对应相等的两个三角形一定全等6.负数都小于零7.你的作业做完了吗?8.所有的质数都是奇数9.过直线l外一点作l的平行线 10.如果a>b, a>c, 那么b=c四、课堂小结:本节课你有哪些收获?(2分钟)五、作业:习题7.2 2、3六、课后反思:。
北师大版-数学-八年级上册-7.2定义与命题说课稿
北师大版-数学-八年级上册-7.2定义与命题说课稿定义与命题老师、各位同学:大家好!我说课的内容是北师大版初中数学八年级上册第七章第二节定义与命题,我将根据新课标的理念、初二学生的认知特点设计本节课的教学。
下面我从教材分析、学情分析、教法学法分析、教学过程等几个环节,谈谈我对这节课教材的理解和教学设计。
教材分析1.教材的地位和作用本节课是北师大版初中数学八年级上册第七章第二节第一课时的内容,是初中数学的重要内容之一。
本节课的学习主要让学生规范的表达数学命题,是学生学习后面的各种几何证明的基础。
因此本节课在教材中具有非常重要的作用。
通过本节课的学习让学生掌握初中阶段必备的基础命题判断能力,锻炼他们的观察、语言表达的能力,以及进一步发展逻辑思维。
2.教学目标(1)理解定义与命题的概念;能分清命题的条件和结论并能判断命题的真假。
(2)在实例中体会定义、命题的含义,通过举反例判定一个命题是假命题,使学生学会从反面思考问题的方法。
(3)通过具体的例子提炼出数学概念,培养学生数学的抽象能力和与实际相联系的能力。
3.重点与难点教学重点:正确理解命题的概念,能够找出命题的条件和结论;教学难点:找出命题的条件和结论,并判断命题的真假。
学情分析(1)知识层面:学生在上一节的学习中已经知道数学上的结论需要严谨的证明,并且学生在之前的学习中已经接触了一些数学命题。
(2)能力层面:学生的抽象思维能力和归纳能力已初步形成,能够进行一定的逻辑判断。
(3)情感层面:学生对数学新的容的学习有相当兴趣,但探究问题的能力及合作交流等方面发展仍不均衡。
教法学法教法:根据新课标的要求,为激发学生的积极性,提供学生积极参与的机会,结合本节课的教学内容和学生的实际情况,我将采用引导发现、小组合作和启发式的教学方法,提高学生的学习的积极性和主动性,让学生亲生经历概念的形成阶段,从而达到重点的突出。
学法:我将采用自主探究、合作交流的学习发方法,培养学生主动观察和思考的能力,通过合作交流、共同探索来逐步解决问题,发挥学生的主题作用。
北师大版八年级数学上册:7-2定义与命题(教案)
2.增强学生的数学抽象素养:引导学生从具体实例中提炼出数学命题,培养他们对数学概念、定理的抽象理解和运用。
3.提升学生的数学建模素养:通过命题在实际问题中的应用,使学生学会运用数学语言和符号来描述现实问题,建立数学模型,提高解决实际问题的能力。
3.命题的分类:根据命题之间的关系,将命题分为真命题、假命题和不确定命题,并通过实例进行分析。
4.命题的证明:引导学生学会运用已知定理、公理和定义来证明命题的正确性,培养他们的逻辑推理能力。
5.命题的应用:通过实际例题,让学生学会运用命题来解决问题,提高他们运用数学知识解决实际问题的能力。
二、核心素养目标
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个陈述是否正确的情况?”比如,有人说“所有的鸟都有翅膀”,这是不是一个正确的陈述呢?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索命题的奥秘。
-举例:命题“如果一个整数既是4的倍数也是6的倍数,那么它一定是12的倍数”,需要通过分析4、6和12的公倍数来理解。
-理解命题否定的逻辑:对于简单命题的否定,学生可能会混淆概念,需要通过具体的例子和逻辑解释来帮助学生理解。
-举例:解释“不是所有的猫都怕水”这个否定命题的逻辑结构,与原命题“所有的猫都怕水”的区别。
4.培养学生的数学运算素养:在命题的证明过程中,加强学生对数学运算规则和方法的理解,提高他们的运算速度和准确性。
北师大版八年级上册数学教案:7.2定义与命题
2.教学难点
(1)定义的抽象:学生对从具体实例中抽象出定义感到困难,需要教师通过生动形象的例子和引导性的问题,帮助学生理解定义的形成过程。
举例:在讲解“平行线”的定义时,学生可能难以理解“不相交的两条直线为何要在同一平面内”,教师可以通过实际操作或动画演示,让学生直观感受平行线的特点。
举例:在证明“如果一个三角形的两边相等,那么这两边的对角也相等”时,教师可以引导学生尝试直接证明和反证法,并分析两种方法的优缺点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《7.2定义与命题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断一个说法是否正确的情况?”比如,有人说“只要是正方形,其对角线就相等”,这个说法是否正确呢?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索定义与命题的奥秘。
2.增强学生的几何直观感知:通过观察、操作、探究等教学活动,培养学生的空间观念和几何直观,提高学生对几何图形的认识和理解。
3.提升学生的数学交流能力:在教学过程中,鼓励学生用准确、简洁的语言表达几何定义和命题,提高学生之间的合作交流能力。
4.培养学生的数学抽象能力:引导学生从具体实例中抽象出几何定义和命题,培养学生从具体到抽象的思维方式,提高数学抽象能力。
五、教学反思
今天我们在课堂上一起探讨了7.2定义与命题这一章节的内容,回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于定义的教学,我尝试通过生动的实例引入,让学生从具体情境中抽象出几何定义。我发现这种方法对于大多数学生来说是比较容易接受的,他们能够更好地理解定义的内涵与外延。但在实际操作中,仍有一部分学生对于定义的抽象过程感到困惑,我需要思考如何针对这部分学生进行更有针对性的指导。
八年级数学上册7.2定义与命题第1课时定义与命题教学设计 (新版北师大版)
八年级数学上册7.2定义与命题第1课时定义与命题教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册7.2定义与命题,主要介绍定义与命题的概念及其相互关系。
通过本节课的学习,使学生理解定义与命题的含义,掌握定义与命题的书写格式,能够正确书写定义与命题,并能够分析、判断命题的正确性。
二. 学情分析学生在七年级时已经学习了命题与定理的内容,对命题的概念有一定的了解。
但学生在定义与命题的书写格式、分析判断命题的正确性方面存在困难。
因此,在教学过程中,要注重引导学生理解定义与命题的关系,通过例题讲解,让学生掌握定义与命题的书写格式,提高学生分析判断命题正确性的能力。
三. 教学目标1.理解定义与命题的概念及其相互关系。
2.掌握定义与命题的书写格式。
3.能够正确书写定义与命题。
4.能够分析、判断命题的正确性。
四. 教学重难点1.教学重点:定义与命题的概念及其相互关系,定义与命题的书写格式。
2.教学难点:定义与命题的书写格式,分析判断命题的正确性。
五. 教学方法采用讲授法、例题解析法、小组合作法、问答法等教学方法,引导学生通过自主学习、合作交流,掌握定义与命题的概念及其相互关系,提高分析判断命题正确性的能力。
六. 教学准备1.准备相关定义与命题的例题。
2.准备投影仪、黑板等教学设备。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾七年级学习的命题与定理内容,为新课的学习做好铺垫。
2.呈现(10分钟)介绍定义与命题的概念,讲解定义与命题的相互关系。
让学生明确定义与命题的区别与联系。
3.操练(10分钟)让学生根据定义与命题的概念,尝试书写几个简单的定义与命题。
教师选取部分学生的作品进行点评,指出书写格式上的优点与不足。
4.巩固(10分钟)讲解定义与命题的书写格式,强调书写要求。
让学生再次尝试书写定义与命题,并相互检查,纠正错误。
5.拓展(10分钟)分析判断一些给定的命题是否正确。
教师引导学生运用定义与命题的知识,通过逻辑推理分析命题的正确性。
北师大版八年级上册 第七章 7.2.1 定义与命题 教案
7.2.1定义与命题(教案〕教学目的知识与技能:1.理解定义与命题的概念.2.分清命题的条件和结论,并能判断命题的真假.过程与方法:在实例中体会定义、命题的含义,通过举反例判断一个命题是假命题.情感态度与价值观:通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.教学重难点【重点】理解命题的概念,找出命题的条件和结论.【难点】正确找出命题的条件和结论.教学准备【老师准备】料想学生在学习本课时中会遇到的困难.【学生准备】复习最近学过的几个重要概念.教学过程一、导入新课上节课我们研究了命题,那么什么叫命题呢?下面大家来想一想:〔出示投影片〕今天我们就来学习“定义与命题〞.二、新知构建〔1〕定义与命题[过渡语]任何学科知识的构建,都离不开用概念表述相关的内容.本课时我们就要从数学的角度认识定义、命题等相关的概念.大家刚刚观察到上面的五个命题中,每个命题都有条件〔condition〕和结论〔conclusion〕两局部组成.条件是的事项,结论是由事项推断出的事项.一般地,命题都可以写成“假如……,那么……〞的形式.其中“假如〞引出的局部是条件,“那么〞引出的局部是结论.如:上面的命题〔1〕中,假如引出的局部“两个三角形的三条边对应相等〞是条件,那么引出的局部“这两个三角形全等〞是结论.有些命题没有写成“假如……,那么……〞的形式,题设和结论不明显.如:“同角的余角相等〞,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“假如……,那么……〞的形式.如:“同角的余角相等〞可以写成“假如两个角是同一个角的余角,那么这两个角相等〞.注意:命题的题设〔条件〕局部,有时也可用“……〞或者“假设……〞等形式表述,命题的结论局部,有时也可用“求证……〞或“那么……〞等形式表述.师:很好,同学们能举出学过的一些定义吗?生1:“含有未知数的等式叫做方程〞是“方程〞的定义.生2:“有两边相等的三角形叫做等腰三角形〞是“等腰三角形〞的定义.生3:“在一个方程中,只含有一个未知数,并且未知数的次数是1,这样的整式方程叫做一元一次方程〞是“一元一次方程〞的定义.生4:“具有中华人民共和国国籍的人叫做中华人民共和国公民〞是“中华人民共和国公民〞的定义.师:看来同学们对定义已经有了认识,你能发现“定义〞的根本形式是怎样的吗?生:定义的根本形式都是:“……叫做……〞.[设计意图]通过学生对定义的举例,加强学生对“什么是定义〞的理解.让学生从句子特点与形式上观察,认识定义.2.认识命题思路一[处理方式]独立考虑,仔细品味教材议一议的内容,理解什么是命题.下面的语句中,哪些语句对事情作出了判断?哪些没有?(多媒体出示)(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)假如两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.生:(1)(2)(3)(4)四个句子作出了判断,(5)(6)两个句子没有作出判断.师:是的,前四个句子作出了判断.像这样的句子,叫做命题.你能否给“命题〞下个定义呢?生:判断一件事情的句子,叫做命题.(老师板书:判断一件事情的句子,叫做命题)[设计意图]让学生初步认识命题,再引导学生以答复以下问题的形式对命题的定义进展总结,从感性思维上升到理性思维,培养学生自我学习的才能.思路二:师:给出命题的定义:命题是判断一件事情的句子.你能举出几个命题的例子吗?出示问题:(1)三条边对应相等的两个三角形一定全等;(2)锐角都小于直角;(3)美丽的天空;(4)所有的质数都是奇数;(5)过直线l外一点P作l的平行线;(6)假如明天是星期五,那么后天是星期六;(7)假设a2=4,求a的值;(8)熊猫有翅膀.【学生活动】小组交流,对提出的问题作出判断,哪些是命题?哪些不是命题?展示交流:生1:(1)(2)(4)(6)都是命题,其余不是.生2:不对,(8)“熊猫有翅膀〞也是命题.师:(质疑)你能说一说为什么吗?生:虽然这句话错了,但它作出了判断.只要是判断一件事情的句子就是命题,不管判断得对错.师:(给出肯定)说得好,谁还能列举出一些命题吗?生1:假如两条平行线被第三条直线所截,那么同位角相等.生2:我是一名学生.师:(作出判断)很好!想一想,定义是命题吗?任何一个命题都是定义吗?(学生考虑一会儿,交流后答复)生:定义一定是命题,但命题不一定是定义.[设计意图]通过对命题与非命题的辨析,让学生理解命题的特点,进一步培养学生的才能.老师强化对命题特点的掌握,也为真、假命题的判断打下根底.最后老师提出的问题让学生将本课时所学的两个知识点进展联络与拓广.(2)条件与结论[过渡语]观察以下命题,这些命题有什么共同的构造特征?〔1〕假如一个三角形是等腰三角形,那么这个三角形的两个底角相等;〔2〕假如a=b,那么a2=b2;(3)假如两个三角形中有两边和一角分别相等,那么这两个三角形全等.【学生活动】先独立考虑,再结合教材第166页想一想的内容,小组内开展交流讨论“命题有什么构造特征〞.展示交流成果:生1:都是用“假如……那么……〞的形式表达的.生2:每个命题都是由条件和结论两局部组成的.生3:条件是的事项,结论是由事项推断出的事项.生4:“假如〞引出的局部是条件,“那么〞引出的局部是结论.(老师板书:条件和结论)师:上题的条件、结论分别是什么?生1:(1)题的条件是一个三角形是等腰三角形,结论是这个三角形的两个底角相等.生2:(2)题的条件是a=b,结论是a2=b2.生3:(3)题的条件是两个三角形中有两边和一角分别相等,结论是这两个三角形全等.一般地,命题都可以写成“假如……那么……〞的形式.其中“假如〞引出的局部是条件,“那么〞引出的局部是结论.有些命题没有写成“假如……那么……〞的形式,条件和结论不明显,如“同角的余角相等〞.对于这样的命题,要经过分析才能找出条件和结论,也可以将它们改写成“假如……那么……〞的形式.[设计意图]对命题的构造进展分析,让学生会区分一个命题的条件和结论.引导学生,当一个命题不好区分条件和结论时,可以先改写成“假如……那么……〞的形式;但改写时不要机械地添上“假如〞和“那么〞,应适当地调整顺序或补充修饰词语,使改写后的语句通顺、完好.(3)、真命题与假命题[过渡语]命题的结论都是正确的吗?老师给出以下四个命题,并提问:(1)假如两个角相等,那么它们是对顶角;(2)假如a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)三角形三个内角的和等于180°.【学生活动】(1)指出命题的条件和结论;(2)命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?在学生答复的根底上进展总结,给出真命题、假命题的概念,以及如何判断一个命题是假命题的方法——举出反例.总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.(老师板书:真命题、假命题、反例)[设计意图]学生在判断命题的正误时主要根据过去的经历,老师可进一步追问,对于一个不正确的命题,还能怎样判断其错误呢?老师应让学生充分表达自己的判断方法,进而引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.[知识拓展]1.在定义中,要提示该事物与其他事物的本质属性的区别.2.根据命题的定义可知只要是对一件事情作出判断的句子都是命题,而不管这个判断正确与否.3.很多情况下,命题的形式并不是“假如……那么……〞的形式,在把命题改写成“假如……那么……〞的形式时,为保证语句的通畅和不改变原意,应对原句进展适当的修改或调整.三、课堂总结 —|||—定义—对名称或术语的含义进行描述,作出明确的规定—命题——||组成每个命题都由条件和结论组成形式都能写成“如果……那么……”的形式真假命题可分为真命题和假命题判断要说明一个命题是假命题,只要举出一个反例即可四、课堂练习1.以下命题中,属于定义的是 ( )C.两直线平行,内错角相等间隔 是该点到这条直线的垂线段的长度解析:A,B,C 分别是一个命题,但不是定义;D 是一个定义.应选D .2.以下语句中,是命题的是()AB上取一点C解析:A,B,D只是对一件事情的表达或询问,不是命题.应选C.3.以下语句中,不是命题的是 ()B.假如ab=0,那么a=0A,B解析:A,B,C分别是命题;D不是命题,是描绘性语言.应选D.4.以下命题是假命题的是 ()A.锐角小于90°C.假设a>b,那么a2>b2D.假设a2≠b2,那么a≠ba=1,b=-3,1>-3,但12=1<(-3)2=9,错误;D.两个数的平方相等,那么两个数相等或互为相反数,因此两个数的平方不相等,那么这两个数既不相等也不互为相反数,正确.应选C.5.以下选项中,可以用来说明命题“假设a2>1,那么a>1〞是假命题的反例是()A.a=-2B.a=-1C.a=1D.a=2解析:选项A,a=-2满足a2>1,而a=-2不满足a>1的要求,是原命题的反例;选项B和选项C,a=±1不满足a2>1,即不满足题设的条件,不是特例,故不是反例;选项D既满足a2>1,也满足a>1,不是反例.应选A.五、板书设计第1课时1.定义与命题2.条件和结论3.真命题、假命题、反例六、布置作业〔1〕、教材作业【必做题】教材随堂练习第2题.【选做题】教材习题7.2第3题.〔2〕、课后作业【根底稳固】1.以下语句中,是命题的为 ()CDAB的中点M2.命题“等角的补角相等〞中的“等角的补角〞是()局部 B.是条件,也是结论局部 D.不是条件,也不是结论3.以下说法不正确的选项是()A.“不等式2x>4的解集是x>2〞的条件是“不等式2x>4〞B.“假如x2=y2,那么x=y〞的结论是“x=y〞C.“平行四边形的对角线互相平分〞的条件是“平行四边形〞D.“对顶角相等〞的条件是“对顶角相等〞4.以下语句中:①平角都相等;②等于同一个角的两个角相等吗?③画两条相等的线段;④邻补角的平分线互相垂直;⑤两直线平行,同位角相等;⑥等腰三角形的两底角相等.其中是命题的有()5.以下命题错误的选项是()C.无理数包括正无理数,0,负无理数D.两点之间,线段最短6.要说明命题“绝对值相等的两个实数相等〞是假命题,你举的反例是.【才能提升】7.指出以下命题的条件和结论.(1)假如两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,假如同旁内角互补,那么两直线平行;(3)等角的补角相等;(4)平行四边形的对边相等.【拓展探究】8.如下图,下面有四个条件:(1)AE=AD,(2)AB=AC,(3)OB=OC,(4)∠B=∠C.请你写出一个由其中两个作为条件,另外两个中的一个作为结论的命题,并判断其真假. 【答案与解析】1.CD,是描绘性语言,它不是命题,错误;B.相等的角是对顶角是命题,正确;C.作平行线,是描绘AB的中点M,是描绘性语言,它不是命题,错误.应选B.)2.A(解析:把命题“等角的补角相等〞改写成“假如两个角是等角的补角,那么这两个角相等〞.“等角的补角〞是条件局部.应选A.)3.D(解析:“对顶角相等〞的条件是“两个角是对顶角〞,而不是“对顶角相等〞,故D选项错误.应选D.)4.B(解析:①④⑤⑥是命题;②③不是命题.所以命题有4个.应选B.)5.C6.|-3|=|3|,但-3≠3(答案不唯一)7.解析:对于条件和结论不非常清楚的命题,我们可以先把其改写成“假如……那么……〞的形式,再找出条件和结论.由于命题的改法不唯一,所以它的条件和结论也不唯一,如命题(3),还可以改写成“假如两个角相等,那么这两个角的补角相等〞.解:(1)条件:两条直线相交;结论:它们只有一个交点. (2)条件:两条直线被第三条直线所截,同旁内角互补;结论:两直线平行. (3)这个命题可以改写成“假如两个角是等角的补角,那么这两个角相等〞.条件:两个角是等角的补角;结论:这两个角相等. (4)这个命题可以改写成“假如一个四边形是平行四边形,那么它的对边相等〞.条件:一个四边形是平行四边形;结论:它的对边相等.8.解析:假如AE=AD,AB=AC,那么∠B=∠C.根据SAS得ΔABE≌ΔACD,推出∠B=∠C即可.解:假如AE=AD,AB=AC,那么∠B=∠C.在ΔABE和ΔACD中,{AE=AD,∠A=∠A,AB=AC,所以ΔABE≌ΔACD,所以∠B=∠C.所以这是真命题.(答案不唯一)。
北师大版八年级上册数学7.2定义与命题教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与角的平分线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用尺规作图画出一个角的平分线。
3.证明方法:指导学生运用角的平分线定义及基本图形性质进行简单命题的证明。
4.实践应用:结合实际情境,设计相关问题,让学生运用角的平分线知识解决实际问题。
本节课旨在帮助学生掌握角的平分线的定义和性质,培养他们的逻辑思维能力和解题技巧。
二、核心素养目标
1.理解与运用:通过学习角的平分线定义,使学生能够理解并运用角的平分线性质解决相关问题,培养他们的几何直观和空间观念。
5.情感态度:激发学生对几何学的兴趣,培养他们勇于探索、克服困难的意志,形成积极向上的学习态度。
三、教学难点与重点
1.教学重点
-角的平分线的定义:重点讲解角的平分线的概念,使学生理解并掌握角的平分线的表示方法。
-举例:如讲解角的平分线时,可以通过具体图形说明什么是角的平分线,如何用符号表示等。
-角的平分线性质:强调角的平分线上的点到角的两边的距离相等这一核心性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角的平分线的基本概念。角的平分线是从一个角的顶点出发,将这个角平分成两个相等角的射线。它是解决几何问题中非常重要的一部分,可以帮助我们更好地理解和处理角的关系。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何利用角的平分线性质解决实际问题,以及它如何帮助我们找到等边三角形。
八年级数学上册 7.2 定义与命题教案 (新版)北师大版
课题:定义与命题●教学目标:知识与技能目标:1.让学生了解定义的含义并了解给一些名称下定义的常用方法;2.让学生了解命题的含义.过程与方法目标:1.让学生经历术语定义产生的过程,在通过类比、完成填空的过程中培养自学的能力;2.让学生经历“命题”这个名词的定义产生过程,进一步了解命题的含义.情感态度与价值观目标:1.通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.●重点:1.了解命题的含义,能够区分“命题”与“正确的命题(真命题)”;2.理解命题的结构,把命题改写成“如果……,那么……”的形式.难点:命题的概念的理解.●教学流程:一、情境引入创设“一对父子的谈话”场景让学生发现有关的数学问题.在老师的描述中抢答出这是什么数学名词。
师总结:可见,在交流时对名称和术语要有共同的认识才行.设计说明:用这种形式引入,让学生及早融入课堂,积极思考,也作为本节课的一个贯穿的背景。
更重要的是,希望学生初步明白下定义的重要性.二、自主探究探究1:证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出他们的定义.解:设赤道的周长为x m,则铁丝与赤道的间隙为:如:1、“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?2、“两点之间线段的长度,叫做这两点之间的距离”是“”的定义;解:两点之间的距离3、“无限不循环小数称为无理数”是“”的定义;解:无理数4、“由不在同一直线上的若干线段首尾顺次连接所组成的平面图形叫做多边形”是“”的定义;解:多边形5、“有两条边相等的三角形叫做等腰三角形”是“”的定义;解:等腰三角形目的:鼓励学生自己动脑思考并与小组的其他同学相互讨论,对学生的答案进行肯定,激发他们学习数学的兴趣.为了真正做到有效的合作学习,让学生在进行讨论之前先进行独立思考,有了自己的想法,然后再与别人交换意见,产生思维的碰撞,以真正达到讨论的目的.考考你请说出下列名词的定义:(1)有理数(2)直角三角形(3)一次函数(4)一元二次方程(5)压强探究2:你认为线段a与线段b哪个比较长?线段a比线段b长.线段b比线段a长.线段a与线段b一样长.判断一件事情的句子,叫做命题.下面的语句中,哪些语句对事情作出了判断,哪些没有?与同伴进行交流.(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.解:(1)(2)(3)(4)对事情进行了判断,都是命题.(5)(6)没有对事情做出判断,不是命题.观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴进行交流.(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a²=b²;(3)如果两个三角形中有两边和一个角分别相等,那么这两个三角形全等.一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果‥‥‥那么‥‥‥”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.做一做:下列句子中哪些是命题?(1)动物都需要水;(2)猴子是动物的一种;(3)玫瑰花是动物;(4)美丽的天空;(5)相等的角是对顶角;(6)负数都小于零;(7)你的作业做完了吗?(8)所有的质数都是奇数;(9)过直线l 外一点作l 的平行线;(10)如果a=b,a=c,那么b=c.解:(1)(2)(3)(4)(5)(6)(8)(10)是命题.三、合作探究探究3:指出下列各命题的条件和结论,其中哪些命题是错误的?你是任何判断的?与同伴进行交流.(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)如果室外气温低于0℃,那么地面上的水一定会结冰.解:(1)条件:两个角相等,结论:它们是对顶角.(2)条件: a≠b,b≠c ,结论: a≠c.(3)条件:两个三角形全等,结论:它们的面积相等.(4)条件:室外气温低于0℃,结论:地面上的水一定会结冰.正确的命题称为真命题,不正确的命题称为假命题.说明假命题的方法:举反例使之具有命题的条件,而不具有命题的结论.做一做:四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角分别相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);④对角线互相垂直的四边形是菱形,其中正确的是()解①三角形的一条中线能将三角形分成面积相等的两部分,正确;②有两边和其中一边的对角对应相等的两个三角形全等,错误;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2),正确;④对角线互相垂直的平行四边形才是菱形,故错误.综上所述,正确的是①③.四、合作探究探究4:公理:公认的真命题称为公理.证明:除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明.定理:经过证明的真命题称为定理.本套教科书选用九条基本事实中已认识的其中八条是:1.两点确定一条直线。
北师大版数学八年级上册7.2定义与命题(第二课时)说课稿
在教学过程中,我预见到以下可能的问题或挑战:
1.学生可能对四种命题之间的真假关系理解不深,导致混淆;
2.在小组合作中,可能出现部分学生参与度不高的情况;
3.课堂时间安排可能紧张,影响教学内容的完整性。
应对策略如下:
1.通过丰富的实例和互动讨论,加深学生对命题真假关系的理解;
2.在小组活动中,明确每个成员的任务,确保全员参与;
4.设计互动环节,让学生尝试写出各种命题,并在小组内讨论、交流,共同发现四种命题之间的规律。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.个人练习:让学生完成教材中的相关习题,巩固四种命题的写法和真假性质;
2.小组合作:设计富有挑战性的问题,让学生在小组内合作解决,培养他们团队协作和问题解决能力;
板书在教学过程中的作用是帮助学生构建知识框架,直观地呈现教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
1.在课前精心设计板书的框架,确保教学内容条理清晰;
2.在课堂上适时更新板书内容,避免一次性书写过多信息;
3.使用箭头、框线等符号来表示不同知识点之间的联系,帮助学生形成知识网络。
作业的目的是让学生在课后进一步巩固所学知识,提高自己的问题解决能力,同时培养他们的自主学习能力和数学思维能力。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用清晰的层级结构和逻辑顺序,主要内容分为三个部分:命题的基本概念、四种命题的定义和真假关系、实例分析。板书风格简洁明了,突出重点,使用不同颜色的粉笔来区分不同类型的内容,如概念、性质、例子等。
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四巩固提高判断命题的真假
(1)两角和其中一角的对边对应相等的两个三角形全等;
(2)菱形的四条边都相等;
(3)全等三角形的面积相等.
五拓展提升
①介绍《几何原本》、公理、定理等知识.
②公理、定理、概念和证明的关系.
③介绍本教材的公理.
④读一读《原本与几何原本》
(3)一般地命题都可以写成“如果……,那么……”的形式,其中“如果”引 出的部分是条件,“那么”引出的结论,每个命题都有条件和结论.
活动:找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题?你又是如何知道的呢?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
定义与命题
学科
数学
课题
7.2.2定义与命题
授课教师
教学
目标
了解命题中的 真命题、假命题、定理的含义;
重点
能区分命题中的条件和结论。
德育
目标
经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理.
难点
培养学生的语言表达能力。
教学过,发现它 们的结构有什么共同特征?
探究真假命题的验证
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?
结论:正确的命题称为真命题,不正确的命题称为假命题.
三当堂检测写出已知和求证
(1)如果一个四边的对角线相等,那么这个四边形是矩形.
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.
(2)如果一 个三角形是等腰三角形,那么这个三 角形两个底角相等.
(3)如果一个四边形的一组对边平行且相等 ,那么这个四边形是平行四边形.
二、互动导 学
总结命题的结构特征
(1)上述命题都是“如果……,那么……”的形式.
(2)“如果…”是已知事项,“那么…”是由已知事项推断出的结论.
六 、反思与纠错
帮助学生归纳本节课所学知识,对本节课有一个系统的认识,从而能准确地区分命题的真假性,了解命题结构中的条件与结论.
励志名言成功=自信+方法+勤奋