二元一次方程组和不等式组的综合应用题
不等式组、一次函数、分式方程、二元一次方程组综合应用题各类中考题展-推荐下载
【关键词】不等式组的应用 【答 案】
解:设计划生产甲产品 x 件,则生产乙产品 20 x件,
45x 7520 x 1150, 根据题意,得 45x 7520 x 1200.
解得10 x 35 . 3
x 为整数,∴ x 11.此时, 20 x 9 ( 件).
(3)实验设备的买法共有 10 种
方案二 39 61
3.(2009 年漳州)为了防控甲型 H1N1 流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共 100 瓶,其中 甲种 6 元/瓶,乙种 9 元/瓶. (1)如果购买这两种消毒液共用 780 元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再次购买这两种消毒液(不包括已购买的 100 瓶),使乙种瓶数是甲种瓶数的 2 倍,且所需费用不多于 1200 元(不包括 780 元),求甲种消毒液最多能再购买多少瓶? 【关键词】不等式的简单的应用
【关键词】不等式组的简单应用
【答 案】解:(1)设生产 A 型冰箱 x 台,则 B 型冰箱为 100 x台,由题意得:
1
47500 ≤≤(2800 2200)x (3000 2600) (100 x) 48000
解得: 37.5 ≤≤x 40 x 是正整数 x 取 38,39 或 40.
【答 案】(1)解法一:设甲种消毒液购买 x 瓶,则乙种消毒液购买 (100 x) 瓶.
依题意,得 6x 9(100 x) 780 .
解得: x 40 .
100 x 100 40 60 (瓶).
答:甲种消毒液购买 40 瓶,乙种消毒液购买 60 瓶.
解法二:设甲种消毒液购买 x 瓶,乙种消毒液购买 y 瓶.
二元一次方程组与一元一次不等式组经典应用题
二元一次方程组及一元一次不等式(组)应用题1.某商店准备购进甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。
(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件?(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少?2.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310 元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m3/台•时)甲型挖掘机100 60乙型挖掘机120 80(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?4.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1 块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?5.某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购4套A型和6套B型课桌凳共需1820元。
二元一次方程组与不等式组应用题市级联考题(含答案)
二元一次方程组与不等式组应用题专题练习(2007年中考)市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:方案一,甲种货车2辆,乙种货车6辆方案二,甲种货车3辆,乙种货车5辆方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元;方案三所需运费 216042404300=⨯+⨯元.所以王灿应选择方案一运费最少,最少运费是2040元.(2007年)某校准备组织290名学生进行野外考察活动,行共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行,乙种汽车每辆最多能载30人和20件行.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.(2007资阳)年老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ”王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;⑵ 老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1) 设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=-(2) 解之得:44.5x =(不符合题意)(3) 所以王老师肯定搞错了.⑵ 设单价为8.0元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得:812(105)1500418y y a +-=-- .解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数,又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意;当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 .∴ 笔记本的单价可能2元或6元 . ················· 8分解法2:设笔记本的单价为b 元,依题意得:[][]⎩⎨⎧+-+-+-+-10418)105(1281500418)105(12815000<<x x x x 解得:475.44<<x∴ x 应为45本或46本 .当x =45本时,b =1500-[8×45+12(105-45)+418]=2,当x =46本时,b =1500-[8×46+12(105-46)+418]=6,(2012,6分)某商店准备购进甲、乙两种商品。
二元一次方程(不等式)组应用
二元一次方程1.你知道吗?中国在近几届亚运会金牌榜上一直位居榜首,下表是第十五届亚运会中某日的金牌榜.根据此表你能列出方程组求出中国获得的金牌数吗?请试之.2.根据条件,设出适当的未知数,并列出二元一次方程或方程组.(1)摩托车的速度是货车的倍,它们速度之和是150km/h;(2)某时装的价格是某皮装价格的1.4倍,5件皮装要比3件时装贵2800元.3.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?4.根据题意列二元一次方程组:(1)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?(2)某校课外小组的学生准备外出活动;若每组7人,则余下3人;若每组8人,则有一组只有3人;求这个课外小组分成几组?共有多少人?5.甲、乙、丙三队要完成A、B两项工程.B工程的工作量比A工程的工作量多25%,甲、乙、丙三队单独完成A工程所需的时间分别是20天、24天、30天.为了共同完成这两项工程,先派甲队做A 工程,乙、丙二队做B工程;经过几天后,又调丙队与甲队共同完成A工程.问乙、丙二队合作了多少天?6.(2018•株洲)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7.(2018•扬州)古运河是扬州的母亲河.为打造古运河风光带,现有一段长为180M的河道整治任务由A、B两工程队先后接力完成.A工程队每天整治12M,B工程队每天整治8M,共用时20天.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:根据甲、乙两名问学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x表示,y表示乙:x表示,y表示(2)求A、B两工程队分别整治河道多少M.8.(2018•烟台)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60M,下坡路每分钟走80M,上坡路每分钟走40M,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?9.(2018•威海)为了参加2018年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑工程进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600M,跑步的平均速度为每分钟200M,自行车路段和长跑路段共5千M,用时15分钟.求自行车路段和长跑路段的长度.10.(2018•台州)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?11.(2018•泉州)某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?12.(2018•娄底)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2018年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.13.(2018•临沂)去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?14.(2018•济南)某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?20(2018•长沙)某工程队承包了某标段全长1755M的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6M,经过5天施工,两组共掘进了45M.(1)求甲、乙两个班组平均每天各掘进多少M?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2M,乙组平均每天能比原来多掘进0.3M.按此旄工进度,能够比原来少用多少天完成任务?21.(2018•长春)在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.不等式(组)1.(2018•永州)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?2.(2018•温州)2018年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6、(2018•铜仁地区)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案?7、(2018•绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务.该厂生产桌子的必须5人一组.每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均毎天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.8、(2018•邵阳)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛.规则一:合唱队的总人数不得少于50人,且不得超过55人.规则二:合唱队的队员中,九年级学生占合唱团总人数的,八年级学生占合唱团总人数的,余下的为七年级学生.请求出该合唱团中七年级学生的人数.9、(2018•清远)某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?10、(2018•宁波)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.11、(2018•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?12、(2018•绵阳)王伟准备用一段长30M的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为aM,由于受地势限制,第二条边长只能是第一条边长的2倍多2M.(1)请用a表示第三条边长;(2)问第一条边长可以为7M吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.数量的.请你通过计算,求出义洁中学从荣威公司购买18、(2018•桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得一盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示).(2)该敬老院至少有多少名老人?最多有多少名老人?19、(2018•毕节地区)小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情景解决问题.(1)这个学校九年级学生总数在什么范围内?(2)若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?。
二元一次方程(组)和不等式(组)的应用
二元一次方程(组)和不等式(组)的应用1、端午节是我国传统的节日,人们素有吃粽子的习俗。
某商场在端午节来临之际,用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A种粽子的单价是B种粽子的单价的1.2倍。
(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共260 0个,已知A、B 两种粽子的进价不变,求A种粽子最多能购进多少个?2、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品,这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:老板:如果你在多买一个,就可以打八五折,花费比现在还省17元。
小明:那就多买一个吧,谢谢!(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?3、在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的总量比A型粽子的2倍少20千克,购进两种粽子公用了2560元,求两种型号粽子各多少千克?4、刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用了140元又买了一些,两次一共购买了40 kg,这种大米的原价是多少?5、随着中国传统几日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折销售,乙品牌粽子打七五折销售,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需要660元,打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元。
(1)打折前甲乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?6、某商场购进甲乙两种商品,甲种商品公用了2000元,乙种商品公用了2400元。
二元一次方程组和不等式应用题专题
. (•湖州)为进一步建设秀美、宜居地生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树地价格之比为::,甲种树每棵元,现计划用元资金,购买这三种树共棵.()求乙、丙两种树每棵各多少元?文档收集自网络,仅用于个人学习()若购买甲种树地棵树是乙种树地倍,恰好用完计划资金,求这三种树各能购买多少棵?()若又增加了元地购树款,在购买总棵树不变地前提下,求丙种树最多可以购买多少棵?文档收集自网络,仅用于个人学习.某商店第一次用元购进铅笔若干支,第二次又用元购进该款铅笔,但这次每支地进价是第一次进价地倍,购进数量比第一次少了支.文档收集自网络,仅用于个人学习()求第一次每支铅笔地进价是多少元?()若要求这两次购进地铅笔按同一价格全部销售完毕后获利不低于元,问每支售价至少是多少元?.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表地部分信息:文档收集自网络,仅用于个人学习(说明:①每户产生地污水量等于该户自来水用水量;②水费自来水费用污水处理费用)已知小王家年月份用水吨,交水费元;月份用水吨,交水费元.()求、地值;()随着夏天地到来,用水量将增加.为了节省开支,小王计划把月份地水费控制在不超过家庭月收入地.若小王家地月收入为元,则小王家月份最多能用水多少吨?文档收集自网络,仅用于个人学习计划购置一批电子白板和一批笔记本电脑,经投标,购买块电子白板比买台笔记本电脑多元,购买块电子白板和台笔记本电脑共需元.()求购买块电子白板和一台笔记本电脑各需多少元?文档收集自网络,仅用于个人学习()根据该校实际情况,需购买电子白板和笔记本电脑地总数为,要求购买地总费用不超过元,该校最多能购买多少台电脑?文档收集自网络,仅用于个人学习.为了解决农民工子女就近入学问题,我市第一小学计划年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买地课桌凳与办公桌椅地数量比为,购买电脑地资金不超过元.已知一套办公桌椅比一套课桌凳贵元,用元恰好可以买到套课桌凳和套办公桌椅.(课桌凳和办公桌椅均成套购进)文档收集自网络,仅用于个人学习()一套课桌凳和一套办公桌椅地价格分别为多少元?()最多能买多少办公桌和课桌凳..为奖励在文艺汇演中表现突出地同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买个笔记本和支钢笔,则需要元;如果买个笔记本和支钢笔,则需要元.文档收集自网络,仅用于个人学习()求购买每个笔记本和每支钢笔各多少元?()班主任给小亮地班费是元,需要奖励地同学是名(每人奖励一件奖品),若购买地钢笔数不少于笔记本数,小亮最多能买多少个笔记本?文档收集自网络,仅用于个人学习班级姓名.为了抓住梵净山文化艺术节地商机,某商店决定购进、两种艺术节纪念品.若购进种纪念品件,种纪念品件,需要元;若购进种纪念品件,种纪念品件,需要元.文档收集自网络,仅用于个人学习()求购进、两种纪念品每件各需多少元?()若该商店决定购进这两种纪念品共件,考虑市场需求和资金周转,用于购买这件纪念品地资金不少于元,,那么该商店至少能购进多少件种纪念品?文档收集自网络,仅用于个人学习. 我市某校为了创建书香校园,去年购进一批图书.经了解,科普书地单价比文学书地单价多元,用元购进地科普书与用元购进地文学书本数相等.今年文学书和科普书地单价和去年相比保持不变,该校打算用元再购进一批文学书和科普书,问购进文学书本后至多还能购进多少本科普书?文档收集自网络,仅用于个人学习.商城经销甲、乙两种商品,甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.()若商城同时购进甲、乙两种商品共件恰好用去元,求能购进甲、乙两种商品各多少件?按上述优惠条件,若小王第一天只购买甲种商品一次性付款元,第二天只购买乙种商品打折后一次性付款元,那么这两天他在商城购买甲、乙两种商品一共多少件?文档收集自网络,仅用于个人学习.一批货物要运往某地,货主准备租用汽车运输公司地甲、乙两种货车,已知过去租用这两种货现租用该公司地辆甲种货车与辆乙种货车一次刚好运完这批货物,如果按每吨付运费元计算,问:货主应付运费多少元.文档收集自网络,仅用于个人学习.某商场用元购进甲、乙两种商品,销售完后共获利元.其中甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.文档收集自网络,仅用于个人学习()该商场购进甲、乙两种商品各多少件?()商场第二次以原进价购进甲、乙两种商品.购进乙种商品地件数不变,而购进甲种商品地件数是第一次地倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于元,乙种商品最低售价为每件多少元?文档收集自网络,仅用于个人学习. 同庆中学为丰富学生地校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球地价格相同,每个篮球地价格相同),若购买个足球和个篮球共需元.购买个足球和个篮球共需元.文档收集自网络,仅用于个人学习()购买一个足球、一个篮球各需多少元?()根据同庆中学地实际情况,需从军跃体育用品商店一次性购买足球和篮球共个.要求购买足球和篮球地总费用不超过元,这所中学最多可以购买多少个篮球?文档收集自网络,仅用于个人学习。
方程与不等式之二元一次方程组综合练习
方程与不等式之二元一次方程组综合练习一、选择题1.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C 【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.2.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费.津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元.设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则下列方程正确的是( )A .7161328x y x y +=⎧⎨+=⎩B .()72161328x y x y ⎧+-=⎨+=⎩C .()71613228x y x y +=⎧⎨+-=⎩D .()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩【答案】D 【解析】 【分析】根据津津乘坐这种出租车走了7km ,付了16元;盼盼乘坐这种出租车走了13km ,付了28元可列方程组. 【详解】设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组为()()721613228x y x y ⎧+-=⎪⎨+-=⎪⎩,故选D . 【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.3.已知x、y满足方程组2827x yx y+=⎧⎨+=⎩,则x+y的值是()A.3 B.5 C.7 D.9【答案】B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x文,乙原有钱y文,可得方程组()A.14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.14822483y xx y⎧+=⎪⎪⎨⎪+=⎪⎩C.14822483x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.14822483y xx y⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x文钱,乙原有y文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.5.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵51 33 x y ax y a-=+⎧⎨+=-⎩①②②-①×3得,38ay+ =-①+②×5得,378ax-=∴方程组的解为:37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,即3x y-=∴3733 88a a-+⎛⎫--=⎪⎝⎭∴7a=.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a的方程是解决问题的关键.6.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B 【解析】 【分析】二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解. 【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解. 故选B . 【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.7.下列方程组中,是二元一次方程组的是( )A .2113x y x⎧+=⎪⎨⎪=⎩ B .3526x y y z -=⎧⎨-=⎩C .1521x y xy ⎧+=⎪⎨⎪=⎩D .2224xy x ⎧=⎪⎨⎪-=⎩【答案】D 【解析】 【分析】根据二元一次方程组的定义进行判断即可. 【详解】解:A 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; B 、该方程组中含有3个未知数,属于三元一次方程组,故本选项错误; C 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; D 、该方程组符合二元一次方程组的定义,故本选项正确; 故选D . 【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.8.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k 是( )A.-3 B.-2 C.-1 D.1【答案】A【解析】【分析】根据“x的值比y的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y的值,进而得出x的值,把x,y的值代入方程组中第二方程中求出k的值即可.【详解】∵x的值比y的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A.【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.9.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.1204016x yy x+=⎧⎨=⎩B.1204332x yy x+=⎧⎨=⎩C.12040210x yy x+=⎧⎨=⨯⎩D.以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组120 40210x yy x+=⎧⎨=⨯⎩.故选:C.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.10.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d+=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x by c e x fy d ⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩, ∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A 【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可. 【详解】 解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =, ∴方程组的解为75a b =⎧⎨=⎩,故选:A . 【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆, 根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.13.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.14.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.15.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A .B .C .D .【答案】A 【解析】 【分析】设甲需带钱x ,乙带钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得. 【详解】解:设甲需带钱x ,乙带钱y ,根据题意,得:故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.16.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y=⎧⎪⎨+=⎪⎩ 【答案】C 【解析】 【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得:2 2.260100x y xy =⎧⎪⎨+=⎪⎩ 故答案为:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ).A .m >2B .m >-3C .-3<m <2D .m <3或m >2【答案】A 【解析】 【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可. 【详解】解325x y m x y m -=+⎧⎨+=⎩,得212x m y m =+⎧⎨=-⎩. ∵x >y >0, ∴21220m m m +>-⎧⎨->⎩ , 解之得 m >2. 故选A. 【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.已知方程组31331x y mx y m +=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( )A .m >1B .m <-1C .m >-1D .m <1【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>, ∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12m x y ++=,然后进行解题.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩ B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩ C .35 1.216x y x y +=⎧⎨+=⎩ D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∵小颖家离学校1200米, ∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.已知方程组32422x y x y -=⎧⎨-=⎩,则()2x y --=( ) A .14 B .12 C .2 D .4【答案】A【解析】32422x y x y =①=②-⎧⎨-⎩, ①-②得:x-y=2,则原式=-22=14. 故选A.。
二元一次方程组及不等式应用题
1)篮球联赛中,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分,那么这个队胜、负场数分别是多少?2)加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件,现在7位工人参加这两个工序,应怎样安排人力,才能使每天第一,第二道工序所完成的件数相等?3)有48只队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队有12人,每名运动员只能参加一项比赛。
篮球队、排球队各有多少支参赛?4)张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5h后到达县城。
他骑车的平均速度是15km/h,步行的平均速度是5km/h,路程全长20km,他骑车与步行各用多少时间?5)某种消毒液大瓶装500g和小瓶装250g两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大,小瓶两种产品各多少瓶?6)2台大收割机和5台小收割机同时工作2h共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?7)一条船顺流航行,每小时行20km;逆流航行,每小时行16km,求轮船在静水中的速度与水的流速。
8)运输360t化肥,装载6节火车车厢和15辆汽车;运输440t 化肥,装载8节火车车厢和10辆汽车,每节火车车厢与每辆汽车平均各装多少吨化肥?9)养牛场原有30头大牛和15头小牛,1天约用饲料675kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg,求每头大牛和每头小牛一天所需饲料约多少kg?10)甲,乙两种作物单位面积产量的比是1:2,现要把一块长200m,宽100m的长方形土地,分为两块小长方形土地,分别中值这种两种作物,怎样划分这块土地,使甲乙两种作物的总产量的比是3:4?111)长青化工厂与A:B两地有公路,铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
不等式、二元一次方程应用题
二元一次方程组(应用题)1. 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大小瓶装两种产品各多少瓶?2. 张翔从学校出发骑自行车去县城,中途道路施工步行一段路,1小时后到答县城.他骑车的平均速度是25千米/时,步行的平均速度是5千米/时,路程全长是20千米.他骑车与步行各用多少时间?3.2台大收割机和5台小收割机2小时收割小麦3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机1小时各收割小麦多少公顷?4.甲乙两人相距6千米,两人同时出发相向而行一小时后相遇;同时出发同向而行,甲3小时可追上乙,两人的平均速度各是多少?5. 据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1.5,现要在一块长200 m,宽100 m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3,4(结果取整数)?6. 长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,公路运价为1.5元/(吨.千米),铁路运价为1.2元/(吨.千米),这两次运输共支出公路运费15000元,铁路运费97200元。
这批产品的销售款比原料费与运输费的和多多少元?7.A市至B市的航线A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需要2小时30从B市逆风飞往A市需3小时20分。
求飞机的平均速度和风速。
8.甲乙二人都以不变的速度在环形路上跑步。
如果同时同地出发,相向而行,每隔2分钟相遇一次;如果同向而行,每隔六分钟相遇一次.已知甲比乙跑得快,甲乙每分各跑多少圈?不等式与不等式组(应用题)1.2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量状况良好的天数要比2002年至少增加多少?2采石场爆破时为了确保安全,操作人员点燃炸药导火线后,要在炸药爆炸前跑到400m以外的安全区域。
七年下册二元一次方程组及不等式应用题练习
12、某童装厂现有甲种布料38米,乙种布料 、某童装厂现有甲种布料 米 乙种布料26 现计划用这两种布料生产L、 两种型号的 米,现计划用这两种布料生产 、M两种型号的 童装共50套 已知做一套L型号的童装需用甲种 童装共 套。已知做一套 型号的童装需用甲种 布料0.5米 乙种布料1米 可获利45元 布料 米,乙种布料 米,可获利 元;做一套 M型号的童装需用甲布料 米,乙种布料 米, 型号的童装需用甲布料0.9米 乙种布料0.2米 型号的童装需用甲布料 可获利30元 设生产L型号的童装为 型号的童装为x套 可获利 元,设生产 型号的童装为 套。 求童装生产有多少种方案? ①求童装生产有多少种方案? 该厂在生产这批童装中, ②该厂在生产这批童装中,当L型号的童装为多 型号的童装为多 少套时,能使该厂所获的利润最大? 少套时,能使该厂所获的利润最大?最大利润为 多少? 多少?
7、有人问一位老师,他所教的班有多少学生,老师说: 、有人问一位老师,他所教的班有多少学生,老师说: 现在班中有一半的学生正在做数学作业, “现在班中有一半的学生正在做数学作业,四分之一 的学生做语文作业,七分之一的学生在做英语作业, 的学生做语文作业,七分之一的学生在做英语作业, 还剩不足6位的学生在操场踢足球 位的学生在操场踢足球。 还剩不足 位的学生在操场踢足球。”试问这个班共有 多少学生? 多少学生? 8、八年级数学兴趣小组在老师带领下去社会实践,其 、八年级数学兴趣小组在老师带领下去社会实践, 中老师有x人 学生数比教师数的7倍多 倍多4人 中老师有 人,学生数比教师数的 倍多 人,且老师和 学生的总数在40和 之间 包括40和 , 之间(包括 学生的总数在 和50之间 包括 和50),求老师和学 生的人数。 生的人数。 9、甲、乙两人各有书若干本,如果甲从乙处拿来10本, 、 乙两人各有书若干本,如果甲从乙处拿来 本 那么甲拥有的书是乙所剩书的5倍 那么甲拥有的书是乙所剩书的 倍;如果乙从甲处拿来 10本,那么乙所有的书与甲所剩的书相等,问甲、乙 本 那么乙所有的书与甲所剩的书相等,问甲、 两人原来各有几本书? 两人原来各有几本书?
二元一次方程组与不等式(组)习题14篇
二元一次方程组⑴1、下列方程:①xy+3x-y=5②3x+2=x-y ③y=5x ④x+y 1=3⑤xy=2⑥x 2-y 2=1⑦x+y+z=1中,二元一次方程有 (填序号).2、已知x a+b -3y a-1=2是关于x 、y 的二元一次方程,则a= ,b= . 3、已知x 、y 的值:①⎩⎨⎧==22x y ②⎩⎨⎧==23y x ③⎩⎨⎧-==21x y ④⎩⎨⎧-=-=23y x ,其中是二元一次方程2x-y=4的解是 (填序号).4、已知⎩⎨⎧==12x y 是方程3x+ay=4的一个解,则a= .5、方程5x-2y=1,当x= -2时,y= ;当y= -3时,x= .6、若方程x-ky=6的一个解是⎩⎨⎧==32y x ,则k 的值是 .7、若⎩⎨⎧-=-=121m y mx ,则x 与y 的关系是8、把下列方程化成用含x 的式子表示y 的形式:(1)x+3y=4 (2)3x-5y=29、判断⎩⎨⎧==13y x 是否是方程组⎩⎨⎧=-=+43252y x y x 的解?为什么?1、在下列二元一次方程中,有无数个正整数的解的是( )A 、x+3y=2008B 、x-y=3C 、2x+4y=7D 、x+2y=12、方程x-my=y+3是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠1C 、m ≠-1D 、m ≠33、下列方程组中不是二元一次方程组的是( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧=-=+21y x y xC 、⎩⎨⎧==+15xy y xD 、⎩⎨⎧=-=12y x x y 4、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧-==12y xD 、⎩⎨⎧==21y x 5、在方程3x+4y=6中,如果2y=3,那么x= .6、某人只带了面值2元和5元的两种货币,他要买一件27元的商品,则他在不需要找钱的情况下可以有几种付款方式.7、解方程组(1)⎩⎨⎧=+=-74823y x y x (2)⎩⎨⎧=+-=-33225y x y x1、已知方程12(x+1)=7(y-1),写出用x 表示y 的式子得 ,当x=2时,y= .2、将x=23-y-1代入方程4x-9y=8中,可得到一元一次方程的解是 . 3、若方程3x+y=51的一个解中的两个数互为相反数,则这个解是 . 4、用代入法解方程组⎩⎨⎧=-=+1472x y x y 由②得y= ③,把③代入①, 得 ,解得x= ,再把求得的x 值代入③得,y= ;所以方程组的解为 .5、已知⎩⎨⎧==32x y 是方程组⎩⎨⎧=-=-7253ny x y mx 的解,则2m+3n= .6、解方程组(1)⎩⎨⎧=--=52332b a b a (2)⎩⎨⎧=+=-15255s 3t s t7、已知关于x 、y 的方程mx+ny=8的两个解分别为⎩⎨⎧-==13y x 和⎩⎨⎧=-=21y x ,求m 、n 的值.二元一次方程组⑷1、若(2x-3y+5)2+︱x+y-2︱=0,则x= ,y= .2、已知3x 3m+5n+9+9y 4m-2n+3=5是二元一次方程,则n m 的值是 . 3、如果x+y=-4,x-y=8,那么多项式x 2-y 2的值是 .4、已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x 则2a-3b= . 5、已知⎩⎨⎧=-=+32423t y t x ,则x 与y 之间的关系式是 .6、解方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x7、已知(3x-2y+1)2与︱4x-3y-3︱互为相反数,求x-y 的值.1、某电视机厂第一季度和第二季度共生产液晶电视机144000台,已知第一季度的产量是第二季度的80%,设第一季度的产量为x 台,第二季度的产量为y 台,则列出方程组是 .2、一艘轮船顺水航行104km,需要2h ;逆水航行3h 的路程为96km ;则轮船在静水中航2h 的路程是多少千米.可采取间接设的方法.设轮船在静水中航行的速度为xkm/h ,水流速度为ykm/h ,则列出方程组为 .3、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?4、甲乙二人从相距20千米的两地同时出发,若同向而行甲5小时可追上乙;若相向而行35小时相遇,求甲乙二人的速度各是多少.5、已知甲、乙两种商品的原价和为200元.因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价和比原单价和提高了5%.求甲、乙两种商品的原单价各是多少元.1、要把一张面值为10元的人民币换成零钱,现在只有面值1元和5元的人民币,数量足够多,那么不同的换法共有种.2、某校运动员进行分组训练,若每组5人,则余2人;若每组6人,则缺少3人;设运动员人数共有x人,组数为y人,则列出方程组为 .3、某文具商店星期一共售出毛笔和签字笔200支,其中毛笔的数量是签字笔数量的3倍多8支,设售出毛笔x支,售出签字笔y支,则列出方程组为 .4、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?5、已知一艘轮船载重量是500吨,容积是1000立方米.现有甲乙两种货物等待装运,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度的利用船的载重量和体积?6、用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用多少张铁皮制作盒身,用多少张铁皮制作盒底,正好全部配套.1、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.2、一张方桌是由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条.现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张?3、加工某种产品需要经过两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人加工这种产品,问应怎样安排人力,才能使每天第一道工序、第二道工序所完成的产品件数相等?不等式⑴1、用不等式表示:(1) x 是负数;___________ (2) x 是非负数;____________(3) x 的一半小于-1;__________ (4) x 与4的和大于0.5;_________(5)a 与1的和是正数;__________ (6)x 的21与y 的31的差是非负数;__________ 2、当实数a <0时,6+a 6-a (填“<”或“>”).3、不等式2x ﹣1>3的解集为 .4、不等式2x+9≥3(x+2)的正整数解是 .5、下列各式中,是一元一次不等式的是( ).A.5+4>8 B.12-x C.x 2+3≤5D.x y 3-≥06、下列命题中正确的是( ).A.若m ≠n,则|m|≠|n| B.若a+b=0,则ab >0C.若ab <0,且a <b,则|a|<|b| D.互为倒数的两数之积必为正.7、无论x 取什么数,下列不等式总成立的是( ).A.x+5>0; B.x+5<0; C.-(x+5)2<0; D. (x-5)2≥0.8、若,a a -则a 必为( ).A 、负整数 B、 正整数 C、负数 D、正数9、下列说法,错误的是( ).A.33- x 的解集是1- x B.-10是102- x 的解C.2 x 的整数解有无数多个 D.2 x 的负整数解只有有限多个 10、下列按要求列出的不等式中正确的是 ( ).A.a 不是负数,则a>0B.b 是不大于0的数,则b<0C.m 不小于-1,则m>-1D.a+b 是负数,则a+b<011、不等式2-x<1的解集是( ).A.x>1B.x>-1C.x<1D.x<-1不等式⑵1、不等式6(x +1)-3x >3x +3的解集为( ).A .x >1B .无解C .x >-1D .任意数2、不等式4x -7≥5(x -1)的解集是( ).A .x ≥ 2B .x ≥-2C .x ≤-2D .x ≤23、若不等式(m -2)x >n 的解集为x <1,则m ,n 满足的条件是( ).A .m=n -2且m >2B .m=n -2且m <2C .n=m -2且m >2D .n=m -2且m <24、当k _____时,3k 与k 的差小于1. 5、不等式0823≤--x 的解集是____________. 6、解下列不等式,并把它们得解集在数轴上表示出来.(1) 7x+5>8x+6 (2)2x-1>5x+5(3)3(x +2)-1>8-2(x -1) (4)2[x -3(x -1)]≥5x不等式⑶1、若∣x -2∣=2-x ,则x 应满足( ).A .x ≥ 2B .x >2C .x <2D .x ≤22、如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ).A .9 ≤m <12B .9 <m ≤12C .m <12D .m ≥ 93、不等式3x -k ≤0的正整数解是1,2,那么k 的取值范围是___________.4、不等式3x -2≥4(x -1)的所有非负整数解的和等于___________.5、关于x 的不等式3x -2a ≤-2的解集是x ≤1,则a 的值是_________.6、若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.7、解不等式,并在数轴表示不等式的解集.(1))4(410--x ≤1)-x (2 (2)145261≥--+y y(3)612131-≥--+x x x (4)12162312----+x x x >不等式⑷1、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )..13.31.22.22 A m B m C m D m-<≤-≤<-≤<-<≤2、满足-1<x≤2的数在数轴上表示为().3、不等式45111x-<的正整数解为( ).A.1个B.3个C.4个D.5个4、已知不等式组2113xx m-⎧>⎪⎨⎪>⎩的解集为2x>,则m满足条件为( )..2.2.2.2 A m B m C m D m><=≤5、(1)不等式组21xx>-⎧⎨>⎩的解集是(2)不等式组12xx<⎧⎨>-⎩的解集是;6、解下列不等式组:(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(2)()2 1.55261x xx x≤+⎧⎪⎨->-⎪⎩不等式⑸7、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个正确,要求学生把正确答案选出,每道题选对的4分,不选或错选倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对多少道题?8、某商店要选购甲、乙两种零件,若购进甲种零件10件,乙种12件,共需要2100元,若购进甲种零件5件,乙种零件8件,共需要1250元.(1)求甲、乙两种零件每件分别为多少元?(2)若每件甲种零件的销售价格为108元,每件乙种销售价格为140元,根据市场需求,商店决定,购进甲种零件的数量比购进乙种的数量3倍多2件,这样零件的全部售出后,要是总获利超过976元,至少应购进乙种零件多少件?1、用不等式表示图中的解集,其中正确的是 ( )A. x≥-2B. x >-2C. x <-2D. x≤-22、不等式2-x>1的解集是____________3、方程2x +3y =10中,当3x -6=0时,y =_________4、若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围.5、某商店欲购进A,B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元,若购进A 种商品6件和B 种商品8件共需440元;(1)求A,B 两种商品每件的进价分别为多少元?(2)若该商品每销售1件A 种商品可获利8元,每销售1件B 种商品可获利6元,且商店将购进A,B 共50件的商品全部售出后,要获得的利润超过348元,问A 种商品至少购进多少件?1、下列方程中的二元一次方程组的是()A.32141x yy z-=⎧⎨=+⎩B.3232ab a=⎧⎨-=⎩C.13124yxxy⎧+=⎪⎪⎨⎪+=⎪⎩D.13mnm n=-⎧⎨+=⎩2、不等式4(x-2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3、庐城出租车的收费标准:起步价4元(即行使距离不超过3千米都须付4元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人乘出租车从甲地到乙地共付车费18元,那么甲地到乙地路程是( )A.9.5千米B.10千米C.至多10千米D.至少9千米4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为.5、某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?6、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?。
二元一次方程组和不等式组的综合应用题
二元一次方程组和不等式组的综合应用题1、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆,经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2 000元.乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?2、某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需资金4 120元.(1)每台电脑机箱和液晶显示器进价各多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,电脑机箱、液晶显示器销售一台获利分别为10元、160元.该经销商希望销售完这两种商品后,所获利润不少于4 100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?3、响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?4、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?5、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。
二元一次方程组与一元一次不等式组综合应用经典练习题
二元一次方程组与一元一次不等式组综合应用经典练习题祖π数学之高分速成-新人教七年级下册题型4-二元一次方程组与一元一次不等式在春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元。
1) 求甲、乙两种商品每件的进价分别是多少元?2) 商场决定以每件40元的价格出售甲商品,以每件90元的价格出售乙商品,为了满足市场需求,商场需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,利润不得低于100元。
请你求出获利最大的进货方案。
变式训练1.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵,共花费265元(两次购进的A、B两种花草价格均分别相同)。
1) A、B两种花草每棵的价格分别是多少元?2) 若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,所花费用不超过500元,请你设计出购买方案。
2.荔枝是云南的特色水果,小王的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元。
(每次两种荔枝的售价都不变)1) 求桂味和糯米糍的售价分别是每千克多少元。
2) 如果还需购买两种荔枝共12千克,身上仅剩下了200元,要求糯米糍的数量不少于桂味数量的两倍,请设计购买方案。
3.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元。
1) A、B两种商品的单价分别是多少元?2) 已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?4.我省中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元。
二元一次方程组和不等式的结合应用题
二元一次方程组和不等式的结合应用题二元一次方程组和不等式的结合应用题一、引言在数学学习中,二元一次方程组和不等式是基础且重要的内容。
它们不仅有着独特的解题方法,还能灵活地应用于各种实际情境中。
本文将通过深入讨论二元一次方程组和不等式的结合应用题,探索其在现实生活中的应用和意义。
二、二元一次方程组和不等式的概念回顾在开始探讨二元一次方程组和不等式的结合应用题之前,我们先来回顾一下二元一次方程组和不等式的基本概念。
二元一次方程组是指由两个未知数的一次方程组成的方程组,通常表示为:\[ \begin{cases} ax + by = c \\ dx + ey = f \end{cases} \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
而不等式则表示不同数之间的大小关系,一般形式为:\[ ax + by < c \]\[ dx + ey > f \]其中,a、b、c、d、e、f为已知数,x、y为未知数。
三、二元一次方程组和不等式的结合应用题1. 题目:某商场正在进行促销活动,A品牌和B品牌的T恤分别售价为x和y元,现有总预算为z元,且希望购买数量尽量多,同时要求品牌A的T恤数量不少于品牌B的T恤数量。
请问应该如何安排购买数量才能使总购买数量最多?解析:我们可以建立以下二元一次方程组来表示购买数量:\[ \begin{cases} x \geq y \\ x + y \leq z \end{cases} \]其中,x表示品牌A的T恤数量,y表示品牌B的T恤数量。
根据题意,我们需要找到满足方程组的x和y的取值,使得x+y的值最大。
接下来,我们可以将不等式转化为方程表示:\[ x = y \]\[ x + y = z \]我们可以将x代入x+y=z的方程中,得到:\[ y + y = z \]\[ 2y = z \]\[ y = \frac{z}{2} \]同理,代入x的方程,得到:\[ x = \frac{z}{2} \]品牌A和品牌B的T恤数量应该相等,且都等于预算的一半,这样购买数量才能最多。
二元一次方程组与一元一次不等式组经典应用题
二元一次方程组与一元一次不等式经典应用题(2007年绵阳中考)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得解此不等式组, 即 2≤x ≤4.⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x ∵ x 是正整数, ∴ x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:方案一,甲种货车2辆,乙种货车6辆方案二,甲种货车3辆,乙种货车5辆方案三,甲种货车4辆,乙种货车4辆(2)方案一所需运费 元;204062402300=⨯+⨯方案二所需运费 元;210052043300=⨯+⨯方案三所需运费 元.216042404300=⨯+⨯所以王灿应选择方案一运费最少,最少运费是元.2040(2007年济南)某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车辆,请你帮助学校设计所有可能的租车方案;x (2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车辆,则租用乙种汽车辆x (8)x -由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为元;520003180015400⨯+⨯=第二种租车方案的费用为元620002180015600⨯+⨯=∴第一种租车方案更省费用.(2007资阳)年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ” 王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了?试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?(1)设单价为8.0元的课外书为x 本,得:812(105)1500418x x +-=-(2)解之得:(不符合题意)44.5x =(3)所以王老师肯定搞错了.⑵ 设单价为8.0元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得:.812(105)1500418y y a +-=--解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数,又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =45.5,不符合题意;当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =46.5,不符合题意 . ∴ 笔记本的单价可能2元或6元 . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分解法2:设笔记本的单价为b 元,依题意得:[][]⎩⎨⎧+-+-+-+-10418)105(1281500418)105(12815000<<x x x x 解得:475.44<<x ∴ x 应为45本或46本 .当x =45本时,b =1500-[8×45+12(105-45)+418]=2,当x =46本时,b =1500-[8×46+12(105-46)+418]=6,(2012四川泸州,6分)某商店准备购进甲、乙两种商品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组和不等式组的综合应用题
1、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆,经了
解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2 000元.乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?
2、某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需资金4 120元.
(1)每台电脑机箱和液晶显示器进价各多少元?
(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22 240元.根据市场行情,电脑
机箱、液晶显示器销售一台获利分别为10元、160元.该经销商希望销售完这两种商品后,所获利润不少于4 100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?
3、响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过...132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
4、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(
1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过5所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?
5、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年
同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。