本科毕业设计论文--matlab课程设计报告基于matlab有噪声语音信号处理

合集下载

基于matlab语音信号处理 毕业设计

基于matlab语音信号处理   毕业设计

基于MATLAB 的语音信号处理系别:专业(班级):作者(学号):指导教师:完成日期:目录中文摘要 (1)英文摘要 (2)1 引言......................................................... - 3 -1.1课题的研究意义.................................................... - 3 -1.2设计任务.......................................................... - 3 -2 基本原理...................................................... - 4 -2.1 语音信号概述...................................................... - 4 -2.2数字滤波器原理.................................................... - 4 -2.2.1 数字滤波器的概念................................................ - 4 -2.2.2 数字滤波器的分类................................................ - 4 -3 总体设计思想................................................ - 6 -3.1 语音信号的采集.................................................... - 6 -3.2 语音信号处理工具的选择............................................ - 6 -3.3 数字滤波器的设计.................................................. - 7 -4 语音信号分析和滤波处理 ................................ - 10 -4.1 语音信号的采集................................................... - 10 -4.2 语音信号的读入与打开............................................. - 10 -4.3语言信号处理.................................................... - 10 -4.3.1 语音信号分析................................................... - 10 - 4.3.2 含噪语音信号的合成............................................. - 12 - 4.4.3双线性变换法设计Butterworth滤波器............................. - 13 -4.4.4 基于窗函数法的FIR滤器波....................................... - 16 -5 搻ȡ绗........................................... 错误!未定义书签。

基于MALTLAB的有噪音信号的处理_毕业设计论文

基于MALTLAB的有噪音信号的处理_毕业设计论文

基于MALTLAB的有噪音信号的处理前言在科技迅速发展的时代,数字信号处理在通信、语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。

而在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。

所以,用数字信号处理技术来对信号进行滤波除噪处理是很有必要的。

根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。

在数字信号处理中,滤波器占有非常重要的地位。

数字滤波器在语音和图像处理、模式识别、频谱分析等方面得到广泛应用。

所谓数字滤波器,是指输入、输出均为数字信号,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的硬件或软件。

由于数字滤波信号形式与实现滤波方法与模拟滤波方法不同,数字滤波器具有比模拟滤波器精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及可以避免模拟滤波器所无法克服的电压漂移和噪声问题。

数字滤波器的设计,其实质是数学逼近理论的应用,通过计算使物理可实现的实际滤波器频率特性逼近理想的或给定的频率特性,以达到去除干扰提取有用信号的目的。

在近代我们所面对的工程问题越来越复杂,利用电脑来分析及解决工程问题已是当今工程师的必要工具。

使用MATLAB软件进行科学计算,能够极大加快科研人员进行研究开发的进度,减少在编写程序和开发算法方面所消耗的时间和有限的经费,从而获得最大的效能。

所以,用MATLAB软件进行数字滤波系统的设计、开发和应用具有非常大的市场前景和实用价值。

1绪论1.1课题背景与意义当今,数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。

数字化、智能化和网络化是当代信息技术发展的大趋势,而数字化是智能化和网络化的基础,实际生活中遇到的信号多种多样,例如广播信号、电视信号、雷达信号、通信信号、导航信号、射电天文信号、生物医学信号、控制信号、气象信号、地震勘探信号、机械振动信号、遥感遥测信号等等。

基于MATLAB的有噪声语音信号处理毕设

基于MATLAB的有噪声语音信号处理毕设

大学本科毕业设计论文基于MATLAB的有噪声语音信号处理摘要滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。

Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。

特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。

利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。

课题基于MATLAB 有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。

在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。

关键词ﻩ数字滤波器;MATLAB;窗函数法;巴特沃斯; 切比雪夫; 双线性变换AbstractﻫFilterdesignin digital signal processingplaysan extre melyimportant role, FIR digital filters and IIR filter is an importan tpart of filter design.Matlab is powerful,easy to learn,programming efficiency,which was welcomed bythemajority ofsc ientists. Matlab alsohas a particular signalanalysis toolbox,it need nothave strongprogrammingskills can be easily signal analysis, processing and design. Using MATLAB Signal Processing Toolbox can quickly andefficiently design avarietyof digitalfilters. MATLAB basedon the noise issuespeech signal processing design and implementation of digital signalprocessing integrated use of the theoretical knowledge ofthe speechsignal plus noise, time domain, frequencydomainanalysis andfiltering. Thecorrespondingresults obtainedthroughtheoreticalderivation, and then use MATLAB as a programming toolfor computer implementation.Implemented inthe design process,usingthewindow function methodtodesign FIR digital filters with Butterworth, Chebyshev andbilinear Reform IIR digital filter design and use ofMATLAB as asupplementary tool to complete thecalculation and graphic design Drawing. Throughthesimulation of thedesigned filter and the frequency analysis shows thatusingMatlabSignal Processing Toolbox can quickly and easily design digital filters FIR andIIR,the processis simple and convenient, the results of the performance indicators to meetthe specifiedrequirements.ﻫKeywords: digital filter; MATLAB;Chebyshev;Butterworth;Window function method; bilinear transformation目录1.绪论.............................................. 错误!未定义书签。

《MATLAB课程设计》报告.DOC

《MATLAB课程设计》报告.DOC

《MATLAB课程设计》报告设计题目:基于MATLAB的语音信号采集与处理学生姓名:学生学号:********专业班级:光信息科学与技术答辩时间:2013年12月指导教师:冯明库广东技术师范学院电子与信息学院一、设计目的及意义1. MATLAB软件功能简介MATLAB的名称源自Matrix Laboratory,1984年由美国Mathworks公司推向市场。

它是一种科学计算软件,专门以矩阵的形式处理数据。

MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛的应用于科学计算、控制系统和信息处理等领域的分析、仿真和设计工作。

MATLAB软件包括五大通用功能,数值计算功能(Nemeric)、符号运算功能(Symbolic)、数据可视化功能(Graphic)、数字图形文字统一处理功能(Notebook)和建模仿真可视化功能(Simulink)。

其中,符号运算功能的实现是通过请求MAPLE 内核计算并将结果返回到MATLAB命令窗口。

该软件有三大特点,一是功能强大;二是界面友善、语言自然;三是开放性强。

目前,Mathworks公司已推出30多个应用工具箱。

MATLAB在线性代数、矩阵分析、数值及优化、数值统计和随机信号分析、电路与系统、系统动力学、次那好和图像处理、控制理论分析和系统设计、过程控制、建模和仿真、通信系统以及财政金融等众多领域的理论研究和工程设计中得到了广泛应用。

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。

由于信号与系统课程的许多内容都是基于公式演算,而MATLAB借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。

例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。

MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等内容。

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文语音信号在实际应用中通常不可避免地受到噪音的干扰,这使得语音信号的处理变得困难。

因此,在语音信号处理领域,去噪技术一直是一个热门的研究方向。

本文将介绍一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。

本文的主要内容分为以下几个部分。

首先,介绍语音信号处理的背景和意义。

在现实生活中,由于外界环境和设备的限制,语音信号往往会受到各种噪音的污染,如背景噪音、电磁干扰等。

因此,开发一种有效的语音信号处理去噪方法具有重要的实际意义。

其次,介绍基于MATLAB的语音信号处理去噪方法。

本文将采用小波降噪方法对语音信号进行去噪处理。

首先,对输入的语音信号进行小波变换,将信号转换到小波域。

然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪效果。

最后,通过逆小波变换将信号转换回时域,并输出去噪后的语音信号。

接下来,介绍实验设计和结果分析。

本文将使用MATLAB软件进行实验设计,并选取一组含有不同噪声干扰的语音信号进行测试。

通过对不同噪声信号进行处理,比较不同参数设置下的去噪效果,评估提出方法的性能。

最后,总结全文并展望未来的研究方向。

通过本次研究,我们可以看到基于MATLAB的语音信号处理去噪方法在去除噪音方面具有较好的效果,并具有很大的应用潜力。

然而,该方法仍然有改进的空间。

未来的研究可以在算法优化、参数选择和应用场景等方面进行深入研究,进一步提高语音信号处理去噪的效果和性能。

总的来说,本文介绍了一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。

通过对实验结果的分析和对未来研究方向的展望,本文为从事语音信号处理领域的研究人员提供了一定的参考和启示。

毕业论文-基于Matlab的语音信号处理【范本模板】

毕业论文-基于Matlab的语音信号处理【范本模板】

毕业论文语音信号分析与处理系统设计语音信号分析与处理系统设计摘要语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一.通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。

Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷.信号处理是Matlab重要应用的领域之一。

本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。

最后,本文对语音信号处理的进一步发展方向提出了自己的看法.关键字:Matlab;语音信号;傅里叶变换;信号处理;The Design of Analysis and Processing Voice SignalAbstractSpeech signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processing of the emerging discipline is the fastest growing areas of information science one of the core technology。

Transmission of information through the voice of humanity’s most important,most effective,most popular and most convenient form of exchange of information..Matlab language is a data analysis and processing functions are very powerful computer application software, sound files which can be transformed into discrete data files,then use its powerful ability to process the data matrix operations,such as digital filtering, Fourier transform,when domain and frequency domain analysis, sound playback and a variety of map rendering, and so on。

数字信号处理课程设计报告--基于MATLAB的语音去噪处理

数字信号处理课程设计报告--基于MATLAB的语音去噪处理

数字信号处理课程设计报告--基于MATLAB的语音去噪处理《数字信号处理》课程设计报告基于MATLAB的语音去噪处理专业: 通信工程班级: 通信1101班组次: 第7组姓名及学号: 胡政权(2011013825) 姓名及学号: 潘爽(2011013836)第1页组员承担任务负责程序的编写,并检验程序是否错误,利用课余时间去图书馆或上网查阅课题相关资料,深入理解课题含义及设计要求,注意材料收集胡政权与整理,对课程设计要求进行最后审核。

负责课程设计实验MATLAB仿真对实验结果进行分析,上网查阅材料对实验发表自己看法同时对实验要求进行扩展。

对论文进行抒写,排版潘爽使实验课程设计更加完善。

指导教师评价意见第2页基于MATLAB的语音去噪处理1、设计目的(1)巩固所学的数字信号处理理论知识,理解信号的采集、处理、加噪、去噪过程; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)学习资料的收集与整理,学会撰写课程设计报告。

2、设计任务(1)语音信号的录制。

(2)在MATLAB平台上读入语音信号。

(3)绘制频谱图并回放原始语音信号。

(4)利用MATLAB编程加入一段正弦波噪音,设计滤波器去噪。

(5)利用MATLAB 编程加入一段随机噪音信号,设计FIR和IIR滤波器去噪,并分别绘制频谱图、回放语音信号。

(6)通过仿真后的图像以及对语音信号的回放,对比两种去噪方式的优缺点。

其大概流程框图可如下表示:(图2-1)图2-1 课程设计的流程第3页3、设计原理3.1 去噪原理3.1.1 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5,10倍;采样定理又称奈奎斯特定理。

1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1?Δt),f(t1?2Δt),...来表示,只要这些采样点的时间间隔Δt?1/2F,便可根据各采样值完全恢复原来的信号f(t)。

数字信号处理课程设计报告--基于MATLAB的语音去噪处理

数字信号处理课程设计报告--基于MATLAB的语音去噪处理

数字信号处理课程设计报告--基于MATLAB的语音去噪处理《数字信号处理》课程设计报告基于MATLAB的语音去噪处理专业: 通信工程班级: 通信1101班组次: 第7组姓名及学号: 胡政权(2011013825) 姓名及学号: 潘爽(2011013836)第1页组员承担任务负责程序的编写,并检验程序是否错误,利用课余时间去图书馆或上网查阅课题相关资料,深入理解课题含义及设计要求,注意材料收集胡政权与整理,对课程设计要求进行最后审核。

负责课程设计实验MATLAB仿真对实验结果进行分析,上网查阅材料对实验发表自己看法同时对实验要求进行扩展。

对论文进行抒写,排版潘爽使实验课程设计更加完善。

指导教师评价意见第2页基于MATLAB的语音去噪处理1、设计目的(1)巩固所学的数字信号处理理论知识,理解信号的采集、处理、加噪、去噪过程; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)学习资料的收集与整理,学会撰写课程设计报告。

2、设计任务(1)语音信号的录制。

(2)在MATLAB平台上读入语音信号。

(3)绘制频谱图并回放原始语音信号。

(4)利用MATLAB编程加入一段正弦波噪音,设计滤波器去噪。

(5)利用MATLAB 编程加入一段随机噪音信号,设计FIR和IIR滤波器去噪,并分别绘制频谱图、回放语音信号。

(6)通过仿真后的图像以及对语音信号的回放,对比两种去噪方式的优缺点。

其大概流程框图可如下表示:(图2-1)图2-1 课程设计的流程第3页3、设计原理3.1 去噪原理3.1.1 采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5,10倍;采样定理又称奈奎斯特定理。

1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1?Δt),f(t1?2Δt),...来表示,只要这些采样点的时间间隔Δt?1/2F,便可根据各采样值完全恢复原来的信号f(t)。

数字信号处理课程设计--基于 MATLAB 的语音去噪处理

数字信号处理课程设计--基于 MATLAB 的语音去噪处理

数字信号处理课程设计课程名称数字信号处理基于MATLAB 的语音去噪处理题目名称专业班级13级通信工程本一学生姓名学号指导教师二○一五年十二月二十七日引言滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR滤波器是滤波器设计的重要组成部分。

利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。

课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。

在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。

通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。

关键词数字滤波器 MATLAB 窗函数法巴特沃斯切比雪夫双线性变换目录1 绪论 (4)2 课程设计内容 (5)3 课程设计的具体实现 (5)3.1 语音信号的采集 (4)3.2 语音信号的时频分析 (4)3.3 语音信号加噪与频谱分析 (6)3.4 利用双线性变换法设计低通滤波器 (8)3.5 用滤波器对加噪语音信号进行滤波 (9)3.6 分析滤波前后语音信号波形及频谱的变化 (10)3.7回放语音信号 (10)3.8小结 (11)结论 ···········································································错误!未定义书签。

基于matlab的音频信号处理毕业设计(含源文件)

基于matlab的音频信号处理毕业设计(含源文件)

基于matlab的音频信号处理毕业设计(含源文件)毕业设计题目:基于matlab的音频信号处理专业:电子信息工程学号:作者:指导教师(职称):基于MATLAB的语音信号处理【摘要】Matlab语音信号处理是指利用matlab软件对音频信号进行读取,并对音频信号进行采样分析及离散傅里叶变换,以方便对其在频域上进行调制滤波等相关的操作.本次实验在提取音频信号后会对该信号使用在MATLAB软件中设计的滤波器进行滤波,并观察其效果,验证滤波器是否可行。

本次使用了MATLAB软件,综合运用GUI界面设计、各种函数调用等来实现音频信号的傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义.软件中自带的信号处理与分析工具箱为语音信号分析实验提供了丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化。

信号处理是MATLAB重要应用的领域之一。

【关键词】 matlab 语音信号处理数字滤波器傅里叶变换Based on MATLAB of the signal processingAudio processing design【Abstract】: The contents of the research is to filter the signal noise with using MATLAB software。

signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processing of the emerging discipline is the fastest growing areas of information science one of the core technology。

基于MATLAB的有噪声的语音信号处理的课程设计报告书

基于MATLAB的有噪声的语音信号处理的课程设计报告书

DSP实验课程设计实验报告:学号:班级:1.课程设计题目:基于MATLAB的有噪声的语音信号处理的课程设计。

2.课程设计的目的:综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,再利用MATLAB做为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。

3.课程设计的要求:(1)熟悉离散信号和系统的时域特性。

(2)掌握序列快速傅里叶变换FFT方法。

(3)学会MATLAB的使用,掌握MATLAB的程序设计方法。

(4)利用MATLAB对语音信号进行频谱分析。

(5)掌握MATLAB设计各种数字滤波器的方法和对信号进行滤波的方法。

4.课程设计的容:录制一段语音信号,对语音信号进行频谱分析,利用MATLAB中的随机函数产生噪声加入到语音信号中,使语音信号被污染,然后进行频谱分析,设计FIR和IIR数字滤波器,并对噪声污染的语音信号进行滤波,分析滤波后的信号的时域和频域特征,回放语音信号。

5.课程设计的步骤:(1)语音信号的获取通过录音软件录制一段语音“数字信号处理”,命名为“OriSound”,时长大约1到2秒,在MATLAB中,通过使用wavread函数,对语音进行采样:[y,fs,nbits]=wavread('OriSound'); %语音信号的采集采样值放在向量y中,采样频率为fs,采样位数为nbits。

(2)语音信号的频谱分析画出语音信号的时域波形,然后对语音信号进行频谱分析,在MATLAB中,通过使用fft 函数对信号进行快速傅里叶变换,得到信号的频谱特性。

因此采集语音并绘出波形和频谱的模块程序如下:[y,fs,nbits]=wavread('OriSound'); %语音信号的采集sound(y,fs,nbits); %语音信号的播放n=length(y) ; %计算语音信号的长度Y=fft(y,n); %快速傅里叶变换figure;subplot(2,1,1); %绘出时域波形plot(y);title('原始信号波形','fontweight','bold');axis([ 00000 80000 -1 1]); %通过尝试确定合适的坐标参数grid;subplot(2,1,2); %绘出频域频谱plot(abs(Y));title('原始信号频谱','fontweight','bold');axis([ 0 150000 0 4000]); %通过尝试确定合适的坐标参数grid;结果如下:可以看到,语音信号的频率集中在低频部分。

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文

在Matlab平台上实现对语音信号的去噪研究和仿真作者姓名:王青天专业班级:电子1班指导教师:钟晓玲摘要语音信号在数字信号处理中占有极其重要的地位,因此选择通过对语音信号的研究来巩固和掌握数字信号处理的基本能力十分具有代表性。

对数字信号处理离不开滤波器,因此滤波器的设计在信号处理中占有极其重要的地位。

而MATLAB软件工具箱提供了对各种数字滤波器的设计。

本论文“在MATLAB平台上实现对语音信号的去噪研究与仿真”综合运用了数字信号处理的各种基本知识,进而对不带噪语音信号进行谱分析以及带噪语音信号进行谱分析和滤波处理。

通过理论推导得出相应的结论,再通过利用MATLAB作为编程工具来进行计算机实现比价已验证推导出来的结论。

在设计过程中,通过设计FIR数字滤波器和IIR数字滤波器来完成滤波处理。

在设计过程中,运用了MATLAB对整个设计中的图形的绘制和一些数据的计算以及仿真。

关键字滤波器;MATLAB;仿真;滤波Speech signle denoising and simulation inMATLAB platformABSTRACTDigital signal processing can not be separated from the filter,the filter design occupies an extremely important role in signal processing.The MATLAB software toolbox provides a variety of digital filter design.The subject of the use of basic knowledge of digital signal processing,speech signal and the noisy speech signal specctral snalysis and filtering,By the theoretical derivation of the corresponding conclusions,then to the computer through the use of MATLAB as a programming tool To achieve parity to verify the conclusions derived.In the design process,using the windoow function design FIR digital filter,IIR digital filter using cut design than Chebyshev,Butterworth and bilinear variation method.In the design process,the use of computer and simulation of MATLAB the entire design,graphics rendering,and some date.Key words filter;MATLAB;simulation;filtering目录摘要 (I)ABSTRACT (II)第1章前言 (1)1.1研究的意义 (1)1.2国内外研究现状 (1)1.3研究的内容 (2)第2章语音信号去噪方法的研究 (4)2.2去噪的原理 (4)2.2.1采样定理 (4)2.2.2采样频率 (5)2.2去噪的方法 (5)FIR滤波器基本结构: (7)IIR数字滤波器的设计 (8)第3章滤波器的设计及实现 (10)3.1数字滤波器设计的基本原理 (10)3.3IIR数字滤波器的设计及实现 (13)第四章去噪及仿真的研究 (16)4.1语音文件在MATLAB平台上的录入与打开 (16)4.2原始语音信号频谱分析及仿真 (16)4.3加噪语音信号频谱分析及仿真 (20)(1)正弦波信号加入原始语音信号 (20)4.4去噪及仿真 (23)4.5结合去噪后的频谱图对比两种方式滤波的优缺点 (25)总结 (27)致谢 (28)参考文献 (29)第1章前言1.1研究的意义语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。

基于MATLAB的有噪声语音信号处理毕业设计

基于MATLAB的有噪声语音信号处理毕业设计

摘要滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。

Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。

特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。

利用MATLAB 信号处理工具箱可以快速有效地设计各种数字滤波器。

课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。

在设计实现的过程中,使用窗函数法来设计FIR 数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。

关键词数字滤波器;MATLAB;窗函数法;巴特沃斯;切比雪夫;双线性变换AbstractFilter design in digital signal processing plays an extremely important role, FIR digital filters and IIR filter is an important part of filter design. Matlab is powerful, easy to learn, programming efficiency, which was welcomed by the majority of scientists. Matlab also has a particular signal analysis toolbox, it need not have strong programming skills can be easily signal analysis, processing and design. Using MATLAB Signal Processing Toolbox can quickly and efficiently design a variety of digital filters. MATLAB based on the noise issue speech signal processing design and implementation of digital signal processing integrated use of the theoretical knowledge of the speech signal plus noise, time domain, frequency domain analysis and filtering. The corresponding results obtained through theoretical derivation, and then use MATLAB as a programming tool for computer implementation.Implemented in the design process, using the window function method to design FIR digital filters with Butterworth, Chebyshev and bilinear Reform IIR digital filter design and use of MATLAB as a supplementary tool to complete the calculation and graphic design Drawing. Through the simulation of the designed filter and the frequency analysis shows that using Matlab Signal Processing Toolbox can quickly and easily design digital filters FIR and IIR, the process is simple and convenient, the results of the performance indicators to meet the specified requirements.Keywords:digital filter; MATLAB; Chebyshev; Butterworth;Window function method; bilinear transformation目录1.绪论 (1)1.1研究的目的和意义 (2)1.2 国内同行研究现状 (2)1.3本课题的研究内容 (4)2.原始语音信号采集与处理 (5)2.1 Matlab简单介绍 (5)2.2 语音信号的采样理论依据 (6)2.3语音信号的采集 (7)2.4程序流程图 (7)2.5语音信号的时频分析 (8)2.6 语音信号加噪与频谱分析 (9)2.7 本章小结 (11)3设计数字滤波器 (12)3.1 数字滤波器设计的基本思路 (12)3.2 模拟滤波器概述 (12)3.3 IIR数字滤波器概述 (12)3.4 FIR数字滤波器概述 (13)3.5 FIR数字滤波器和IIR数字滤波器比较 (13)3.6 低通,高通及带通滤波器 (14)3.7 设计FIR滤波器 (14)3.8 设计IIR滤波器 (15)3.9 双线性变换法和窗函数法 (15)3.10 本章小结 (18)4 进行滤波,比较滤波前后语音信号的波形及频谱 (19)4.1验证所设计的滤波器 (19)4.2滤波 (21)4.3本章小结 (23)5.GUI界面 (24)5.1系统界面设计工具—GUI概述 (24)5.2创建GUI界面 (24)5.3创建开关按钮 (25)5.4保存和修改fig文件 (26)5.5编写M文件 (28)5.6本章小结 (33)总结 (34)致谢 (35)参考文献 (36)附录 (38)附录(I)设计FIR和IIR数字滤波器 (38)附录(II)比较滤波前后语音信号的波形及频谱 (46)1.绪论数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。

基于matlab语音去噪课程设计

基于matlab语音去噪课程设计

基于matlab语音去噪课程设计一、教学目标本课程的目标是使学生掌握基于MATLAB的语音去噪技术,能够运用该技术进行实际的语音信号处理。

具体目标如下:知识目标:使学生了解语音信号去噪的基本理论和技术,理解MATLAB在语音去噪中的应用。

技能目标:培养学生使用MATLAB进行语音去噪的实践能力,能够独立完成语音去噪的实验。

情感态度价值观目标:培养学生对信号处理的兴趣,提高学生运用科学知识解决实际问题的能力。

二、教学内容教学内容主要包括三部分:语音信号去噪理论、MATLAB基本操作、基于MATLAB的语音去噪实践。

第一部分,语音信号去噪理论,包括噪声的类型、噪声的特性、语音信号去噪的基本方法等内容。

第二部分,MATLAB基本操作,包括MATLAB的安装和使用、MATLAB的基本语法、MATLAB的图形界面设计等内容。

第三部分,基于MATLAB的语音去噪实践,包括噪声的估计和消除、语音信号的去噪处理、去噪效果的评价等内容。

三、教学方法教学方法采用讲授法、实验法、讨论法相结合的方式。

讲授法用于讲解语音信号去噪理论和MATLAB的基本操作。

实验法用于让学生动手实践,进行基于MATLAB的语音去噪。

讨论法用于引导学生思考和探讨,提高学生对语音去噪技术的理解和应用能力。

四、教学资源教学资源包括教材、实验设备、多媒体资料等。

教材:《MATLAB语音去噪教程》实验设备:计算机、语音信号处理器多媒体资料:教学PPT、实验指导视频教学评估主要通过以下几个方面进行:1.平时表现:包括课堂参与度、提问回答、小组讨论等,占总评的30%。

2.作业:包括课后练习和实验报告,占总评的40%。

3.考试:包括期中和期末考试,占总评的30%。

评估方式将采用客观、公正的原则,全面反映学生的学习成果。

六、教学安排教学进度将按照教材《MATLAB语音去噪教程》的章节进行,共安排12周,每周2课时。

教学时间:每周二下午2:00-4:00教学地点:实验室教学安排将考虑学生的实际情况和需要,尽量安排在学生较为空闲的时间段,同时兼顾学生的兴趣爱好。

基于MATLAB的有噪声语音信号处理

基于MATLAB的有噪声语音信号处理

-课题名称:基于MATLAB的有噪声语音信号处理系、部:电气与信息工程学院学生姓名:陈荣灵指导教师:陈坚专业:电子信息工程班级:电子0901班完成时间:2012年10月21日摘要滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。

Matlab功能强大、简单易学、编程效率高,深受广大科技工作者的欢迎。

特别是Matlab还具有信号分析工具箱,不需具备很强的编程能力,就可以很方便地进行信号分析、处理和设计。

利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。

课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB 作为编程工具进行计算机实现。

在设计实现的过程中,使用窗函数法来设计FIR 数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。

关键词数字滤波器;MATLAB;窗函数法;巴特沃斯;切比雪夫;双线性变换AbstractFilter design in digital signal processing plays an extremely important role, FIR digital filters and IIR filter is an important part of filter design. Matlab is powerful, easy to learn, programming efficiency, which was welcomed by the majority of scientists. Matlab also has a particular signal analysis toolbox, it need not have strong programming skills can be easily signal analysis, processing and design. Using MATLAB Signal Processing Toolbox can quickly and efficiently design a variety of digital filters. MATLAB based on the noise issue speech signal processing design and implementation of digital signal processing integrated use of the theoretical knowledge of the speech signal plus noise, time domain, frequency domain analysis and filtering. The corresponding results obtained through theoretical derivation, and then use MATLAB as a programming tool for computer implementation.Implemented in the design process, using the window function method to design FIR digital filters with Butterworth, Chebyshev and bilinear Reform IIR digital filter design and use of MATLAB as a supplementary tool to complete the calculation and graphic design Drawing. Through the simulation of the designed filter and the frequency analysis shows that using Matlab Signal Processing Toolbox can quickly and easily design digital filters FIR and IIR, the process is simple and convenient, the results of the performance indicators to meet the specified requirements.Keywords:digital filter; MATLAB; Chebyshev; Butterworth;Window function method; bilinear transformation目录1.绪论 (1)1.1研究的目的和意义 (2)1.2 国内同行研究现状 (2)1.3本课题的研究内容 (4)2.原始语音信号采集与处理 (5)2.1 Matlab简单介绍 (5)2.2 语音信号的采样理论依据 (6)2.3语音信号的采集 (7)2.4程序流程图 (7)2.5语音信号的时频分析 (8)2.6 语音信号加噪与频谱分析 (9)2.7 本章小结 (11)3.设计数字滤波器 (12)3.1 数字滤波器设计的基本思路 (12)3.2 模拟滤波器概述 (12)3.3 IIR数字滤波器概述 (12)3.4 FIR数字滤波器概述 (13)3.5 FIR数字滤波器和IIR数字滤波器比较 (13)3.6 低通,高通及带通滤波器 (14)3.7 设计FIR滤波器 (14)3.8 设计IIR滤波器 (15)3.9 双线性变换法和窗函数法 (15)3.10 本章小结 (18)4.进行滤波,比较滤波前后语音信号的波形及频谱 (19)4.1验证所设计的滤波器 (19)4.2滤波 (21)4.3本章小结 (23)总结 (24)参考文献 (25)1.绪论数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab课程设计报告题目:基于MATLAB有噪声语音信号处理系(院):计算机与信息工程学院专业:通信工程班级:10623102指导教师:学年学期:2011 ~ 2012 学年第2 学期简介:我们通信工程专业在实践中经常碰到需要对已接收信号进行处理的情况,而滤波器设计在数字信号处理中占有极其重要的地位。

本课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪语音信号进行时域、频域分析和滤波。

通过理论推导得出相应结论,再利用MATLAB作为编程工具进行计算机实现。

在设计实现的过程中,我们使用双线性变换法设计IIR数字滤波器,对模拟加噪语音信号进行低通滤波、高通滤波及带通滤波,并利用MATLAB作为辅助工具完成设计中的计算与图形的绘制。

1 绪论:数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。

数字滤波器, 是数字信号处理中及其重要的一部分。

本课题采用IIR 滤波器对加噪声音信号进行处理。

IIR滤波器采用递归型结构,即结构上带有反馈环路。

IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。

同时,IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。

2.原始语音信号采集与处理2.1语音信号的采集由于MATLAB只识别格式为.wav的声音文件,我们利用PC机上的声卡和WINDOWS操作系统进行数字信号的采集。

启动录音机进行录音,以文件名“Orisound”保存入原程序所属的文件夹中。

可以看到,文件存储器的后缀默认为.wav ,这是WINDOWS操作系统规定的声音文件存的标准。

程序流程图:2.2语音信号的时频分析利用MATLAB中的“wavread”命令来读入(采集)语音信号,将它赋值给某一向量。

再对其进行采样,记住采样频率和采样点数。

对语音信号Orisound.wav进行采样其程序如下:[y,fs,nbits]=wavread (‘OriSound’); %把语音信号加载入MATLAB仿真软件平台中画出语音信号的时域波形,再对语音信号进行频谱分析。

在本次设计中,我们利用fft函数对语音信号进行快速傅里叶变换,就可以得到信号的频谱特性。

程序如下:[y,fs,nbits]=wavread(‘Orisound’); %语音信号的采集sound(y,fs,nbits); %语音信号的播放n=length(y) ;Y=fft(y,n); %快速傅里叶变换figure;subplot(2,1,1);plot(y);title(‘原始信号波形’,’fontweight’,’bold’);axis([ 78000 80000 -1 1]);grid;subplot(2,1,2);plot(abs(Y));title(‘原始信号频谱’,’fontweight’,’bold’);axis([ 0 150000 0 4000]);grid;程序结果如下图:2.3语音信号加噪与频谱分析利用MATLAB中的随机函数Randn(m,n)产生噪声加入到语音信号中,模仿语音信号被污染,并对其频谱分析。

主要程序如下:[y,fs,nbits]=wavread('OriSound');sound(y,fs,nbits);n = length (y) ;Noise=0.2*randn(n,2);s=y+Noise;sound(s);figure;subplot(2,1,1);plot(s);title('加噪语音信号的时域波形','fontweight','bold');axis([ 78000 80000 -1 1]);grid;S=fft(s);subplot(2,1,2);plot(abs(S));title('加噪语音信号的频域波形','fontweight','bold');axis([ 0 150000 0 4000]);grid;程序结果如下图:3设计数字滤波器3.1数字滤波器设计的基本思路数字滤波器的实现有两个关键步骤:一个从数字域到模拟域间的变换,这个变换实现了数字滤波器技术指标到模拟滤波器技术指标的转换,同样也实现了模拟滤波器系统函数到数字滤波器系统函数的转换;另一个是从模拟滤波器技术指标到满足该指标的模拟滤波器的设计。

3.2 模拟滤波器概述用模拟—数字变换法设计IIR数字滤波器,首先必须设计一个模拟滤波器,它有许多不同的类型,主要有以下两种类型:(1)、巴特沃思(Botterworth简写BW)滤波器。

BW滤波器是根据幅频特性在通带内具有最拼图特性而定义的滤波器,对一个N阶低通滤波器来说,所谓最平ω=处都为零。

BW滤波器的另一个坦特性就是模拟函数的前(2N-1)阶导数在0特性是在通带和阻带内的幅频特性始终是频率的单调下降函数,且其模拟函数随阶次N 的增大而更接近于理想低通滤波器。

(2)、切比雪夫(Chbyshev 简写为CB )滤波器。

CB 低通滤波器的模拟函数由切比雪夫多项式定义,且在通带内的幅频响应是波动的,在阻带则单调变化。

3.3设计IIR 滤波器目前IIR 数字滤波器设计的最通用的方法是借助于模拟滤波器的设计方法。

模拟滤波器设计已经有了一套相当成熟的方法,它不但有完整的设计公式,而且还有较为完整的图表供查询,因此,充分利用这些已有的资源将会给数字滤波器的设计带来很大方便。

IIR 数字滤波器的设计步骤是:(1)、按一定规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标;(2)、根据转换后的技术指标设计模拟低通滤波器()G s ;(3)、再按一定规则将G(s)转换成H(z)。

若设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通,带通或带阻滤波器,那么还有步骤(4):(4)、将高通、带通、或带阻数字l 不去的技术指标先转化为低通模拟滤波器的技术指标,然后按照上述步骤(2)设计出低通()G s ,再将()G s 转换为所需的H(z)。

利用模拟滤波器设计IIR 数字低通滤波器的步骤:(1)确定数字低通滤波器的技术指标:通带边界频率、通带最大衰减,阻带截止频率、阻带最小衰减。

(2)将数字低通滤波器的技术指标转换成相应的模拟低通滤波器的技术指标。

(3)按照模拟低通滤波器的技术指标设计及过渡模拟低通滤波器。

(4)用双线性变换法,模拟滤波器系统函数转换成数字低通滤波器系统函数。

程序如下:Ft=8000;Fp=1000;Fs=1200;wp=2*pi*Fp/Ft;ws=2*pi*Fs/Ft;fp=2*Ft*tan(wp/2);fs=2*Fs*tan(wp/2);[n11,wn11]=buttord(wp,ws,1,50,’s’);[b11,a11]=butter(n11,wn11,’s’);[num11,den11]=bilinear(b11,a11,0.5);[h,w]=freqz(num11,den11);figure;plot(w*8000*0.5/pi,abs(h));legend(‘IIR低通滤波器’,’Location’,’NorthWest’);grid;程序结果如下图:3.2验证所设计的滤波器:为了验证滤波器的可使用性,我们用常用的sin函数来进行验证。

其具体程序及运行结果如下:t=[0:1/1023:1];s=sin(2*pi*t);N=length(s);y=s+0.5*rand(1,N);subplot(2,1,1);plot(y);title('加噪语音信号的时域波形','fontweight','bold');S=fft(y);subplot(2,1,2);plot(abs(S));title('加噪语音信号的频域波形','fontweight','bold');Ft=8000;Fp=1000;Fs=1200;wp=2*pi*Fp/Ft;ws=2*pi*Fs/Ft;[n11,wn11]=buttord(wp,ws,1,50,'s'); %求低通滤波器的阶数和截止频率[b11,a11]=butter(n11,wn11,'s'); %求S域的频率响应的参数[num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换z11=filter(num11,den11,s);sound(z11);m11=fft(z11); %求滤波后的信号figure;subplot(2,2,1);plot(abs(S),'g');title('滤波前信号的频谱','fontweight','bold');grid;subplot(2,2,2);plot(abs(m11),'r');title('滤波后信号的频谱','fontweight','bold');grid;subplot(2,2,3);plot(y);title('滤波前信号的波形','fontweight','bold');grid;subplot(2,2,4);plot(z11);title('滤波后的信号波形','fontweight','bold');grid;程序结果如下图:由所得结果可知,所设计的滤波器符合要求。

4 滤波用设计好的IIR低通滤波器对加噪的语音信号进行滤波,程序如下:[y,fs,nbits]=wavread (‘OriSound’); %IIR低通n = length (y) ; %求出语音信号的长度Noise=0.2*randn(n,2); %随机函数产生噪声s=y+Noise; %语音信号加入噪声S=fft(s);Ft=8000;Fp=1000;Fs=1200;wp=2*pi*Fp/Ft;ws=2*pi*Fs/Ft;[n11,wn11]=buttord(wp,ws,1,50,’s’);%求低通滤波器的阶数和截止频率[b11,a11]=butter(n11,wn11,’s’); %求S域的频率响应的参数[num11,den11]=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换z11=filter(num11,den11,s);sound(z11);m11=fft(z11); %求滤波后的信号figure;subplot(2,2,1);plot(abs(S),’g’);title(‘滤波前信号的频谱’,’fontweight’,’bold’);axis([ 0 150000 0 4000]);grid;subplot(2,2,2);plot(abs(m11),’r’);title(‘滤波后信号的频谱’,’fontweight’,’bold’);axis([ 0 150000 0 4000]);grid;subplot(2,2,3);plot(s);title(‘滤波前信号的波形’,’fontweight’,’bold’);axis([95000 100000 -1 1]);grid;subplot(2,2,4);plot(z11);title(‘滤波后的信号波形’,’fontweight’,’bold’);axis([95000 100000 -1 1]);grid;程序结果如下图:经过以上的加噪处理后,可在Matlab中用函数sound对声音进行回放。

相关文档
最新文档