通信原理课程设计报告(基于Matlab)

合集下载

通信原理课程设计 基于MATLAB的数字基带传输系统的研究和分析

通信原理课程设计 基于MATLAB的数字基带传输系统的研究和分析

2.2 数字基带信号
2.2.1 基本的基带信号波形 数字基带信号是数字信息的电波形表示,它可以用不同的电平或脉冲来表示相应的消 息代码。数字基带信号的类型有很多,以下是几种基本的基带信号波形。 (1) 单极性波形 这是一种最简单基带信号波形。它用正电平和零电平分别对应二进制代码“1”和“0” ;或者 说,它在一个码元时间内用脉冲的有或无来表示“1”和“0” 。该波形的特点是电脉冲之间无间隔, 极性单一,易于用 TTL,CMOS 电路产生;缺点是有直流分量,要求传输线路具有直流传输能力,因 而不适应有交流耦合的远距离传输,只适用于计算机内部或极近距离的传输。 (2) 双极性波形 它用正电平和负电平的脉冲分别表示二进制代码的“1”和“0” 。因其正负电平的幅度相等, 极性相反,故当“1”和“0”等概率出现时无支流分量,有利于在信道中传输,并且在接收端恢复
塔里木大学信息工程学院通信原理课程设计
2016 届课程设计
《基于 MATLAB 的数字基带传输系统的研究与分 析》 课程设计说明书
学生姓名 学 号 信息工程学院 通信工程 通信 16-1 蒋霎
所属学院 专 班 业 级
指导教师
塔里木大学教务处制
塔里木大学信息工程学院通信原理课程设计


本论文主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过 程和如何用MATLAB软件仿真设计数字基带传输系统。本文首先介绍了本课题的理论 依据,包括数字通信,数字基带传输系统的组成及数字基带信号的传输过程。接着介 绍了数字基带传输系统的特性包括数字PAM信号功率普密度及常用线路码型,并通过 比较最终选择双极性不归零码。然后介绍了MATLAB仿真软件。之后介绍了数字基带 信号的最佳接收的条件以及如何通过示波器观察基带信号的波形。最后按照仿真过程 基本步骤用MATLAB的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了 分析。 关键字:数字基带传输系统 MATLAB 计算机仿真;

通信原理基于matlab的计算机仿真

通信原理基于matlab的计算机仿真

通信原理基于matlab的计算机仿真通信原理基于matlab的计算机仿真已经成为通信领域中一项重要的研究工具。

此类仿真软件通过模拟现实情形,能够极大地加快通信设备的开发进程,并且可以帮助工程师进行实验,发现并解决通讯中可能存在的问题。

同时,matlab的通信仿真功能也成为了相关教材和教学实验的首选,许多大学,尤其是通信工程专业的学生要通过matlab的仿真来更好地理解通信原理和通信设备的工作原理。

由于matlab的专业性,无论是对于传输介质的模型计算,还是信号的传输过程的计算仿真,都非常适合。

通信原理的matlab仿真可以有效地帮助工程师分析各种信号,包括模拟信号、数字信号及混合信号。

这种仿真可用于计算机网络、通信系统设计以及无线通信和移动通信等领域。

在matlab中,通信原理的仿真重点是信号的传输与接收。

目前,通信设备主要采用数字信号的传输方式,而matlab中也能够实现该方式的仿真。

通过模拟数字信号的传输过程,可以帮助工程师分析此类信号在不同媒介下的传输效果。

所以,在进行数字信号的仿真时,matlab会考虑到以下几个因素:1.噪声在数字通信中,噪声是一个常见的问题。

因此,在matlab 的仿真中也要考虑到噪声的影响因素。

matlab能够对噪声进行建模,模拟各种环境下的噪声对数字信号的影响程度。

2.数据传输速率数据传输速率也会影响数字信号的仿真结果。

matlab可以模拟数字信号传输的速率以及不同速率下的传输效果。

3.差错率差错率也是数字信号传输中的一个显著因素,matlab在通信原理仿真中也会进行模拟。

除数字信号外,模拟信号的仿真也是通信原理仿真领域的一项重要工作。

在matlab的仿真中,通常对模拟信号的传输和接收会更加复杂。

通信原理的matlab仿真的一个重要应用就是误码率和比特误差率测试。

误码率和比特误差率都是评估数字信号传输质量的指标。

通信系统的设计旨在在受到最小干扰时保持误差率的最小化。

通信原理课程设计报告模拟数字通信系统Matlab仿真平台的设计和实现

通信原理课程设计报告模拟数字通信系统Matlab仿真平台的设计和实现

《通信原理I课程设计》任务书目录一、课程设计要紧内容┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4二、课程设计实验要求┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄——┄4三、课程设计原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄—┄┄4四、课程设计思路及进程—┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄——┄┄┄┄┄┄5五、课程设计实验结果┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15六、课程设计分析及心得┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18七、通信原理I课程设计环节参考资料┄┄┄┄┄┄┄┄┄——┄┄┄—————18一.课程设计要紧内容1、完成系统方案的设计;2、完成仿真程序的设计与调试;3、分析仿真结果,得出合理结论。

二.课程设计实验要求1.仿真输入的模拟信号,给出信号波形和功率谱密度;2.实现题目要求的模拟信号的调制与解调,画出调制后的信号波形和功率谱密度,和解调后的输出信号波形;3.实现题目要求的模拟信号的数字化;4.实现题目要求的数字基带码型变换和反变换,画出变换后数字基带信号的波形;5.实现题目要求的数字信号的调制与解调,画出调制后的信号波形和功率谱密度,和解调后的输出信号波形;6.在不同的条件下(基带码型、调制方式,输入信噪比),对系统信噪比(模拟)和误码性能(数字)进行分析,画出系统误码率仿真曲线;7.实现系统仿真平台正常运行;按要求完成设计报告。

三.课程设计原理数字频带通信系统(5号题目):输入:第一输入模拟信号,给出此模拟信号的时域波形。

数字化:将模拟信号进行数字化,取得数字信号,能够选择PCM编码。

调制:能够选择简单的二进制数字调制方式,例如振幅键控(2ASK)、相移监控(2PSK)、频移键控(2FSK),差分相移键控(DPSK)等。

要求每一个题目至少选择两种调制方式。

有能力的同窗也能够选择其它高效的调制方式,例如多进制数字振幅键控等,给出调制后信号的时域波形。

通信原理matlab实验报告

通信原理matlab实验报告

通信原理matlab实验报告《通信原理matlab实验报告》在现代通信系统中,通信原理是至关重要的一部分。

为了更好地理解和应用通信原理,我们进行了一系列的实验,并在本报告中分享我们的实验结果和分析。

首先,我们使用了Matlab软件进行了频谱分析实验。

通过对信号的频谱进行分析,我们能够更好地了解信号的频率分布特性,从而为信号的传输和处理提供了重要的参考。

在实验中,我们使用了不同的信号类型,并通过Matlab的频谱分析工具对其进行了分析。

通过实验结果,我们发现不同类型的信号在频谱上呈现出不同的特征,这为我们在实际通信系统中的信号处理提供了重要的指导。

其次,我们进行了调制解调实验。

调制是将数字信号转换为模拟信号的过程,而解调则是将模拟信号转换为数字信号的过程。

在实验中,我们使用Matlab模拟了调制解调过程,并通过实验结果验证了调制解调的正确性。

通过这一实验,我们深入理解了调制解调的原理和过程,并为实际通信系统中的信号处理提供了重要的参考。

最后,我们进行了信道编码解码实验。

信道编码是为了提高通信系统的可靠性和抗干扰能力而进行的一种技术手段。

在实验中,我们使用Matlab对信道编码进行了模拟,并通过实验结果验证了信道编码的效果。

通过这一实验,我们更加深入地理解了信道编码的原理和作用,为实际通信系统中的信号处理提供了重要的参考。

综上所述,通过本次实验,我们更加深入地理解了通信原理的相关知识,并通过Matlab软件进行了实际操作,加深了对通信原理的理解和应用。

这些实验结果对我们今后在通信系统设计和应用中将起到重要的指导作用。

希望通过这份实验报告的分享,能够对通信原理的学习和应用有所帮助。

基于matlab的通信原理课程设计

基于matlab的通信原理课程设计

基于matlab的通信原理课程设计标题:基于MATLAB的通信原理课程设计引言:在现代信息社会中,通信原理是计算机、通信和电子工程等领域中必不可少的基础学科。

为了更好地理解和应用通信原理的相关知识,本文将介绍一种基于MATLAB的通信原理课程设计,旨在通过实际操作加深对通信原理的理解和应用。

第一部分:通信原理的基础知识在这一部分中,我们将简要介绍通信原理中的基础知识,包括信号与系统、调制与解调、多路复用等内容。

通过对这些知识点的介绍,读者将对通信原理的基本原理有一个清晰的认识。

第二部分:MATLAB在通信原理中的应用在这一部分中,我们将介绍如何使用MATLAB来实现通信原理中的相关内容。

具体包括MATLAB中信号与系统的建模和仿真、调制与解调算法的实现以及多路复用技术的模拟等。

通过这些实例,读者将学会如何使用MATLAB来进行通信原理的实际操作,并将理论与实践相结合。

第三部分:基于MATLAB的通信原理课程设计在这一部分中,我们将详细介绍一个基于MATLAB的通信原理课程设计的步骤和内容。

我们将选择一个特定的通信原理主题,例如调制与解调、信道编码等,并明确课程设计的目标和要求。

接下来,我们将介绍如何利用MATLAB对所选主题进行建模和仿真,以及如何设计实验来验证理论和算法。

我们将提供一些常见问题的解答和示例,以帮助读者更好地完成该课程设计。

第四部分:总结与回顾在这一部分中,我们将对整个文章进行总结和回顾。

我们将重点强调通信原理课程设计的重要性,以及基于MATLAB的实践操作对于加深对通信原理的理解和应用的作用。

我们将强调课程设计过程中遇到的挑战和解决方案,以及对课程设计结果的分析和评估。

观点和理解:基于MATLAB的通信原理课程设计是一种非常有效的教学方法。

它不仅让学生能够在实际操作中加深对通信原理的理解和应用,而且能够培养学生的研究和问题解决能力。

通过该课程设计,学生将学会如何利用MATLAB进行模拟和仿真,并掌握通信原理中的关键算法和技术。

通讯原理课程设计MATLAB

通讯原理课程设计MATLAB

通讯原理课程设计MATLAB一、教学目标本课程的目标是让学生掌握通讯原理的基本知识,学会使用MATLAB进行通讯系统的仿真和分析。

通过本课程的学习,学生应能理解并运用模拟通信和数字通信的基本原理,熟练使用MATLAB进行通信系统的建模和仿真,提高解决实际通信问题的能力。

具体来说,知识目标包括:1.掌握通信系统的基本概念和分类。

2.理解模拟通信和数字通信的基本原理。

3.熟悉MATLAB在通信系统中的应用。

技能目标包括:1.能够使用MATLAB进行通信系统的仿真和分析。

2.能够根据实际问题选择合适的通信方案和算法。

3.能够撰写规范的实验报告,对实验结果进行分析和讨论。

情感态度价值观目标包括:1.培养学生的团队合作意识和沟通能力。

2.培养学生的创新精神和批判性思维。

3.培养学生对通信技术的兴趣和热情,提高其对专业学习的积极性。

二、教学内容本课程的教学内容主要包括通信系统的基本概念、模拟通信和数字通信的原理,以及MATLAB在通信系统中的应用。

具体的教学大纲如下:1.通信系统的基本概念和分类:介绍通信系统的定义、分类和性能指标。

2.模拟通信原理:包括调幅、调频和调相的原理及其应用。

3.数字通信原理:包括数字调制、解调、编码和解码的原理及其应用。

4.MATLAB在通信系统中的应用:介绍MATLAB的基本使用方法,以及如何利用MATLAB进行通信系统的仿真和分析。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解,使学生掌握通信原理的基本知识和MATLAB的基本使用方法。

2.讨论法:引导学生进行思考和讨论,提高学生的创新精神和批判性思维。

3.案例分析法:通过分析实际案例,使学生更好地理解通信原理和MATLAB在通信系统中的应用。

4.实验法:让学生亲自动手进行实验,培养学生的实践能力和团队合作意识。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:《通信原理》和《MATLAB教程》。

Matlab与通信仿真课程设计报告

Matlab与通信仿真课程设计报告

实验一单边带调幅系统的建模仿真一、实验目的1.了解单边带调幅系统的工作原理2.掌握单边带调幅系统的Matlab和Simulink建模过程二、实验内容1、Matlab设计一个单边带发信机、带通信道和相应的接收机,参数要求如下。

(1)输入话音信号为一个话音信号,采样率8000Hz。

话音输入后首先进行预滤波,预滤波器是一个频率范围在[300,3400]Hz的带通滤波器。

其目的是将话音频谱限制在3400Hz以下。

单边带调制的载波频率设计为10KHz,调制输出上边带。

要求观测单边带调制前后的信号功率谱。

(2)信道是一个带限高斯噪声信道,其通带频率范围是[10000,13500]Hz。

要求能够根据信噪比SNR要求加入高斯噪声。

(3)接收机采用相干解调方式。

为了模拟载波频率误差对解调话音音质的影响,设本地载波频率为9.8KHz,与发信机载波频率相差200Hz。

解调滤波器设计为300Hz到3400Hz的带通滤波器。

2、用Simulink方式设计一个单边带传输系统并通过声卡输出接收机解调的结果声音。

系统参数参照实例5.9,系统仿真参数设置为50KH显示结果(1)能观察音频信号、SSB加载后的信号,解调后的信号波形(2)能观察音频信号频谱、SSB加载后的信号频谱,解调后的信号频谱(3)解调结果放到.wav音频文件,改变信道信噪比听解调的结果三、实验要求1.按要求设计仿真参数;2.按计算所得参数建立Matlab和SIMULINK系统模型;3.设置各模块参数及仿真参数后仿真系统;4.分析仿真结果。

实验二数字通信系统的建模仿真一、实验目的1.了解数字通信系统的建模过程2.了解数字通信系统的仿真过程,并掌握对建模的好坏进行分析二、实验内容建立并测试一个直接序列扩频体制的码分多址传输系统,对比以Gold序列、m序列以及随机整数发生器Random Integer Generator 作为直接序列扩频的扩频序列的传输性能,观察两路CDMA码源的收发数据波形,测试误码率,并用频谱仪观察直接序列扩频调制前后和解调前后的信号频谱。

通信原理课程设计报告(基于Matlab)

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真设计原理(1) 2DPSK信号原理1.1 2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。

图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。

如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。

所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义为本码元初相与前一码元初相之差,假设:→数字信息“0”;→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0或:1.2 2DPSK信号的调制原理一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。

2DPSK信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。

选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。

图1.2.2 键控法调制原理图1.3 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。

1.3.1 2DPSK信号解调的极性比较法码变换相乘载波s(t) e o(t)它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。

通信原理课程设计【基于Matlab】

通信原理课程设计【基于Matlab】

西南石油大学通信原理课程设计课程:通信原理题目:新型模拟调制和数字带通调制技术院系:电子信息工程学院专业年级:通信工程2007级姓名:张伟学号: 0707050133指导教师:郑勉2010年6月17日一、课程设计的目的通过自主设计,加深对PCM编码的了解,巩固课堂所学知识。

同时在熟悉MATLAB基础上应用simulink仿真PCM编码器,通过反复调试和理解,基本掌握该仿真软件的使用。

更重要的是,在设计中培养自主创新意识和动手能力,建立起良好的工作习惯和科学素养。

二、程设计的的内容利用MATLAB集成环境下的Simulink仿真平台,设计一个PCM编码器,用示波器观察输入波形和编码波形,最后结合理论对比波形得出结论。

三、课程设计要求1、熟悉matlab环境下的Simulink仿真平台,熟悉PCM编码原理,构建PCM编码电路图。

2、对模拟信号进行采样量化编码,建立仿真模型,分析编码仿真波形。

3、技术要求:模拟信号频率最高限制在4KHz内。

基于MATLAB的模拟调制和数字带通调制技术具体内容: 基于MATLAB的PCM编码器仿真作者:张伟(西南石油大学电信院通信工程2007级)指导教师:郑勉收稿日期:2010 年 6 月22 日【摘要】PCM脉冲编码调制是Pulse Code Modulation的缩写。

PCM编码广泛应用于数字音频信号的处理。

模拟信号数字化必须经过三个过程,即抽样、量化和编码,以实现话音数字化的脉冲编码调制。

在熟悉和掌握PCM编码过程及原理基础上,然后利用MATLAB 进行具体仿真,并观察分各主要波形。

【关键词】MATLAB仿真PCM 编码器的Simulink实现Title :On the basis of matlab and figures with mixed with modulation technology Contents:pcm encoder simulation based on MatlabAuthor :zhang wei(SWPU telecom institute communication engineering 2007)Instructor: zheng mianDate of handed up: 22/6/2010[Abstract]Pcm pulse code modulation, a pulse code modulation the pcm code widely used in the digital audio signal that the analog signals. after three processes must be digitized, sampling, quantizing and coding, to make digital pulse code modulation voice. the encoding process and the pcm and principles, and then using matlab a concrete simulation and observe a major wave.[Key words]Matlab sampling PCM Simulink implementation of the encoder【正文】1MATLAB仿真简介利用MATLAB 提供的可视化工具Simulink 可以建立了扩频通信系统仿真模型。

基于MATLAB的GMSK仿真系统设计(通信原理三级项目)

基于MATLAB的GMSK仿真系统设计(通信原理三级项目)

7、结束语
GMSK是一种先进的调制技术。 具有包络恒定、相位连续、频谱 窄、邻道干扰小及频带利用率高 的优点。本组利用MATLAB软件 对GMSK调制系统进行建模、参 数设置、仿真和分析。仿真结果 表明.这种通过MALAB实现的 GMSK数字通信系统具有邻道干 扰小、误码率较低的优点,在通 信领域中有着广泛的应用前景。
基于MATLAB的GMSK仿真系统设计
11级通信一班(3组)
1、课题简介 2、GMSK基本原理 3、仿真系统设计 4、仿真系统部分参数设置 5、MATLAB仿真 6、结果分析
7、结束语
目录
1、课题简介
GMSK是一种二进制数字调制技术,它是无线通信中最突出 的调制类型。在世界范围内有很多通信标准都采用了GMSK 技术,例如,GSM,DECT等。GMSK信号由于具有恒包络 和带外辐射小的特点获得了广泛的应用。本课题主要介绍 GSMK的基本原理,以及利用MATLAB软件对调制部分进行 仿真分析,对软切换和硬切换的性能进行比较。
2、GMSK基本原理
GMSK基本原理是基带信号先经过调制前高斯滤波器成形, 在进行MSK调制。最小频移键控(MSK)是一种二进制数字调 频,它的调制系数为0.5。MSK具有以下特点:恒定的包络、 相对稳定的窄带、具有相干检测能力。然而它不能严格满足 对于SCPC移动无线电的带外辐射的要求。在1979年日本电 气通信实验室提出了调制前高斯滤波的MSK,也就是GMSK。
在这种基带调制方式下,产生基带调制信号(基带GMSK信 号),再把这个基带调制信号调制到高频载波上,形成频带调制 信号(频带GMSK信号)。为考察频带GMSK系统的抗干扰性 能.本文设置了AWGN Channel(加性高斯白噪声)模块作为系 统传输信道。通过改变AWGN Channel模块的SNR(信噪比)等 参数的设置,可观察系统误码率的变化情况。频带GMSK信号 经过AWGN Channel到达系统接收端.通过GMSK SOFT DEMODULATOR(GMSK软解调器)进行解调,解调后的信号分 别进入软判决部分和硬判决部分,经过判决后的信号进入Time Display,然后通过Scope模块进行显示,同时又从Rx端口进入 Error Rate Calculation(错误率统计)模块;Bernoulli Bi—nary Generator模块产生的原始二进制序列从Tx端口进入Error Rate Calculation模块。这样.就可得到系统的误码率。

通信原理课程设计报告

通信原理课程设计报告

通信原理课程设计设计报告课题名称专业班级:姓名:学号:起止时间: 2014.06.16-2014.06.29重庆交通大学信息科学与工程学院目录一、课题内容二、设计目的三、设计要求四、实验条件五、系统设计1、通信系统的原理2. 所设计子系统的原理六、详细设计与编码1. 设计方案2. 编程工具的选择3. 编码与测试4. 运行结果及分析七、设计心得八、参考文献 (20)一、课题内容本课题是基于MATLAB的通信系统仿真-模拟调制系统仿真二、设计目的1、培养学生系统设计与系统开发的思想;2、培养学生利用软件进行通信仿真的能力;三、设计要求1、对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子系统的原理框图;2、提出仿真方案;3、完成仿真软件的编制;4、仿真软件的演示;5、提交详细的设计报告。

四、实验条件计算机、Matlab软件五、系统设计1、通信系统的原理(阐述整个通信系统原理,最后之处你主要负责哪一部分)通信的目的是传输信息。

通信系统的作用就是将信息从信源发送到一个或多个目的地。

对于电通信来说,首先要把消息转变成电信号,然后经过发送设备,将信号送入信道,在接收端利用接收设备对接受信号作相应的处理后,送给新宿再转换为原来的消息。

通信的一般模型如下:通常,按照信道中传输的是模拟信号还是数字信号,相应地把通信系统分为模拟通信系统和数字通信系统。

模拟通信系统是利用模拟信号来传递信息的通信系统:数字通信系统是利用数字信号来传递信息的通信系统:信源编码与译码目的:完成模/数转换、数据压缩(提高信息传输的有效性)。

加密与解密目的:保证所传信息的安全。

信道编码与译码目的:增强抗干扰能力。

数字调制与解调目的:形成适合在信道中传输的带通(调制)信号 。

我做的是模拟通信系统仿真,就模拟系统典型调制方式AM 、SSB 、FM 进行仿真。

本次设计对AM 调制方式进行了仿真,并对大信噪比、小信噪比条件下对信号进行包络解调。

通信原理课程设计matlab

通信原理课程设计matlab

通信原理课程设计matlab在通信原理课程中,Matlab是一款非常常用的工具。

通信原理课程设计Matlab主要涉及以下内容:1. 数字信号调制:通过Matlab实现常见的数字调制方式,包括ASK、FSK、PSK等。

2. 信道编码:实现信道编码技术,如卷积码、Turbo码等。

3. 信道仿真:通过Matlab编写仿真程序,模拟通信系统中信道的影响,包括加性白噪声、多径衰落等。

4. OFDM系统:实现OFDM系统的设计与仿真,包括生成OFDM信号、设计FFT算法等。

5. MIMO系统:通过Matlab实现多输入多输出(MIMO)技术,包括设计矩阵、SVD分解等。

在实现以上内容时,通信原理课程设计Matlab需要掌握一些基础知识和技巧:1. Matlab基础:掌握Matlab的基本语法、矩阵运算、图形绘制等。

2. 信号处理工具箱:掌握Matlab信号处理工具箱中的函数,如FFT、IFFT、滤波器等。

3. 通信工具箱:掌握Matlab通信工具箱中的函数,如通道模型、误码率分析等。

4. 编程技巧:掌握Matlab编程技巧,如函数、循环、判断语句等,能够高效地编写程序。

通信原理课程设计Matlab的目的在于帮助学生理解课程中的基础概念和技术,同时培养学生的程序设计能力。

在课程设计过程中,需要充分了解课程内容,确定程序设计的目标和方法,通过实现和仿真不同的信号处理和通信技术,提高学生的综合能力和实践能力。

总的来说,通信原理课程设计Matlab是一项有益的教学活动,能够帮助学生更好地掌握通信原理的基础知识和技术,同时提高学生的程序设计和解决问题的能力。

通信原理课程设计:基于Ma ab的 B B编码与译码的设计与仿真

通信原理课程设计:基于Ma ab的 B B编码与译码的设计与仿真

课程设计I(数据通信原理)设计说明书题目:3B4B编码与译码的设计与仿真樊佳佳学生姓名学号班级网络工程1301班成绩指导教师贾伟数学与计算机科学学院2015年 9 月 12 日课程设计任务书2015—2016学年第 1 学期课程设计名称:课程设计I(数据通信原理)课程设计题目:3B4B编码与译码的设计与仿真完成期限:自 2015 年 8 月 11 日至 2015 年 9 月 11 日共 2 周设计内容:设计一种数字基带传输中的一种编译码系统(HDB3、AMI、CMI、2B1Q、3B4B、曼切斯特、差分曼切斯特等选取一种)。

使用Matlab/Simulink仿真软件,设计所选择的基带传输的编码和译码系统。

系统能根据随机信源输入的二进制信息序列给出对应的编码及译码结果,并以图形化的方式显示出波形,能观察各分系统的各级波形。

指导教师:教研室负责人:课程设计评阅摘要设计一个码元信息传递系统,包括编码和译码两部分,这个系统可以高效地传递信息。

该系统是基于matlab/simulik实现的,设计数字电路来实现码元由3bit 一组到4bit一组的转换,提高信息的传输效率。

关键词: 3B4B ; 编码器; 译码器目录目录...............................................................1.课题描述..............................................................2.3B4B码编译码模块设计.................................................2.1 3B4B码编译码原理...............................................2.2 3B4B编码器原理及框图.........................................2.3 3B4B译码器原理及框图..........................................2.4 编译码程序图...................................................3.3B4B编译码程序图的参数设置及其仿真结.................................3.1仿真系统中模块参数设置和仿真实验结果............................4.总结..................................................................5.参考文献..............................................................1.课题描述设计一种数字基带传输中的一种编译码系统(HDB3、AMI、CMI、2B1Q、3B4B、曼切斯特、差分曼切斯特等选取一种)。

基于matlab的通信原理实验课程设计

基于matlab的通信原理实验课程设计

基于matlab的通信原理实验课程设计通信原理实验课程是基于Matlab环境设计的一种实验性课程,旨在帮助学生学习和深刻理解数字信号处理的基本原理和基础技术。

在这门课程中,学生将学习数字信号处理的基本概念,包括系统建模、系统分析、信号采样和数据处理,以及信号特征检测和数据特征提取等,并能够应用这些概念和技术来设计、分析和整理数字信号处理系统。

Matlab是一种高度开发的计算工具,具有强大的数学分析和高可读性的编程语言,有助于提高学生的编程能力。

在通信原理实验课程中,学生可以使用Matlab来建立信号处理的多种模型。

例如,学生可以使用Matlab来模拟PCM编码器/解码器,群技术,OFDM信号,QPSK 调制/解调器,以及非线性系统等等。

此外,学生可以使用Matlab来实时分析、调试和测试各种信号处理算法,包括传输线等,以进一步深入学习和理解信号处理算法。

除了应用Matlab的基础功能外,学习这门课程的学生还可以使用一些特殊的Matlab函数,这些函数能够有效地模拟信号处理中的数学
模型,比如变换、抽样和编码。

此外,学生可以使用Matlab的调试和图形功能来调试和分析信号处理系统,以及根据系统的需求灵活调整系统参数。

通过完成基于Matlab环境的通信原理实验课程,学生将学习到建立信号处理模型的基本方法,以及如何分析模型的性能和行为特性,从而熟练掌握信号处理算法的设计与分析。

学生利用Matlab环境构建功能强大而易用的信号处理系统,学习和掌握如何使用Matlab函数和图形来调试和分析信号处理算法,从而提高其信号处理的实践能力和熟练性。

通过完成这门课程,学生将能够更加胜任地设计出更加有效率的信号处理系统,以满足实际的要求。

基于matlab移动通信原理课程设计

基于matlab移动通信原理课程设计

基于matlab移动通信原理课程设计一、教学目标本课程旨在让学生了解和掌握移动通信原理的基本概念、技术和应用,培养学生运用MATLAB工具进行通信系统仿真和分析的能力。

通过本课程的学习,学生应达到以下目标:1.知识目标:–掌握移动通信的基本原理、技术和应用。

–熟悉MATLAB在移动通信领域的应用。

2.技能目标:–能够运用MATLAB进行通信系统仿真和分析。

–具备解决实际移动通信问题的能力。

3.情感态度价值观目标:–培养对移动通信技术的兴趣和好奇心。

–增强学生对科技创新和通信行业的认识。

二、教学内容本课程的教学内容主要包括以下几个部分:1.移动通信概述:介绍移动通信的基本概念、历史和发展趋势。

2.移动通信系统:讲解移动通信系统的组成、工作原理和关键技术。

3.MATLAB在移动通信中的应用:介绍MATLAB在移动通信领域的应用,包括仿真和分析方法。

4.案例研究:通过实际案例分析,让学生深入了解移动通信技术的应用和挑战。

•第1周:移动通信概述•第2周:移动通信系统•第3周:MATLAB在移动通信中的应用(1)•第4周:MATLAB在移动通信中的应用(2)•第5周:案例研究三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法:1.讲授法:用于讲解基本概念、原理和关键技术。

2.讨论法:鼓励学生积极参与课堂讨论,提出问题和观点。

3.案例分析法:通过实际案例分析,让学生深入了解移动通信技术的应用和挑战。

4.实验法:引导学生运用MATLAB进行通信系统仿真和分析,提高实际操作能力。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选择合适的移动通信原理教材,提供理论知识的学习。

2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作PPT、视频等多媒体资料,增强课堂教学的生动性和趣味性。

4.实验设备:提供MATLAB软件和相关的实验设备,让学生能够进行实际操作和仿真实验。

通信原理实验报告-含MATLAB程序

通信原理实验报告-含MATLAB程序

通信原理实验报告实验一 数字基带传输实验一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。

二、实验原理1. 带限信道的基带系统模型(连续域分析)输入符号序列 ————{al }发送信号 ————10()()L l d t al t lTb δ-==-∑ Tb 是比特周期,二进制码元周期发送滤波器 ————GT(w)或GT (t )发送滤波器输出 ————1100()()*()()*()()L L l b T l T b T l l x t d t t a t lT g t a g t lT g δ--====-=-∑∑ 信道输出信号或接收滤波器输入信号()()()y t x t n t =+接收滤波器 ()R G ω或()R G f接收滤波器输出信号10()()*()()*()*()()*()()()L R T R R l b R l r t y t g t d t g t g t n t g t a g t lT n t -===+=-+∑其中2()()()j ft T R g t G f G f e df π∞-∞=⎰如果位同步理想,则抽样时刻为b l T ⋅ 01l L =-:判决为 '{}l a2. 升余弦滚降滤波器1()||2s sH f T f T α-=≤; ()H f =111[1cos (||)]||2222s s s s sT T f f T T T παααα--++-<≤ ()H f = 10||2s f T α+>式中α 称为滚降系数,取值为0 <α ≤1, T s 是常数。

α = 0时,带宽为1/ 2T s Hz ;α =1时, 带宽为1/T s Hz 。

通信原理matlab课程设计报告

通信原理matlab课程设计报告

通信原理matlab课程设计报告目录一.问题描述-----------------------------------------3 二.实验原理-----------------------------------------4 三.源程序-------------------------------------------6 四.数据测试----------------------------------------16 五.调试分析----------------------------------------22 六.用户使用手册------------------------------------23 七.心得体会----------------------------------------24一、问题描述1 使用编程完成3的编码与解码2 课程设计需要运用编程实现222,2调制解调过程,并且输出其源码,调制后码元以及解1调后码元的波形二、实验原理编码解码原理3码:三阶高密度双极性码 3码与二进制序列的关系:(1)二进制信号序列中的“0”码在3码中仍编为“0”码,二进制信号中“1”码,在3码中应交替地成+1和-1码,但序列中出现四个连“0”码时应按特殊规律编码;2(2)二进制序列中四个连“0”按以下规则编码:信码中出现四个连“0”码时,要将这四个连“0”码用V或B00V取代节来代替(B和V也是“1”码,可正、可负)这两个取代节选取原则是,使任意两个相邻v脉冲间的传号数为奇数时选用V取代节,偶数时则选用B00V取代节 2二进制数字调制技术原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制通常使用键控法来实现数字调制,比如对载波的振幅、频率和相位进行键控(1)2信号的产生方法通常有两种:模拟调制和键控法解调有相干解调和非相干解调P=1时f(t)=;p=0时f(t)=0;其功率谱密度是基带信号功率谱的线性搬移(2) 一个2信号可以看成是两个不同载波的2信号的叠加其解调和解调方法和差不多2信号的频谱可以看成是f1和f2的两个2频谱的组合(3) 2以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0,当基带信号为1时相对于初始相位为° (4) 2调制原理方框图如下图S(t)载波A(t)移相码变换间接法信号调制器原理方框图2信号的解调,主要有两种方法,即相位比较法和相干解调法相干解调法原理方框图如下图:带通滤相乘低通滤波抽样判决逆码变换本地载波提取3相干解调法原理方框图三、源程序a=20; %a数如r=(21a-1); %a-1个rn=r-1; %rn=[1rn]; %表示元素个数,可以修改码元为任意个随机产生离散均匀二值分布,共每个元素减1变为二值随机数列跟书上一致,从1开始随机产生离散均4匀二值分布,共a个=rn; %将原序列保存起来,便于后面解码后比较l=1; k=1:a-3(rn(k))==1m=rn(k); %m记录可能存在的连续4个0前面非零码元的符号rn(k)==0rn(k+1)==0 rn(k+2)==0rn(k+3)==0 %检测是否连续4个码元都是0 rn(k+3)=2*m; %用2表示书上的V rn ; %插入V(2)后l=1; %l=1表示两个V之间有偶数个非零码,0是偶数,所以初始为1,l=-1表示两个V之间有奇数个非零码 s=1:a(rn(s))==2 d=s+1:a (rn(d))==1 %V之间的非零码只有+1,-1遇到一个一使l变一次号,表示偶数或奇数 l=-l;(rn(d))==2 l~=1l=1; %不需要插入B时若检测到V也应把计数器清零%最初版本的升级处1 %检测到下一个V时,若为偶数个,则插入Brn(d-3)=3*(-(rn(d-4))/((rn(d-4)))); %3代表B插入不带符号的Brn(d:a)=-rn(d:a);%V后的符号再交替5rn %到此处完成了插入不带符号的 B % s=1:a% (rn(s))==3 %找到B%rn(s)=rn(s)*(-(rn(s-1))/((rn(s-1)))); %B与前一个位置的带符号的归一值相乘再取反,实现符号B(3)的极性与前一非符号的相反%B后面第三个就是接下来的V从它开始非零码正负号交替变化 % %=rn; %给B(3)添加了符号,并且实现了V 后的符号再交替%以上便实现了3的编码%下面进行解码 k=1:a(rn(k))==2rn(k-3)=0;rn(k)=0; %每个V都变成0,V前面第三个有可能是B(3)有可能是0也恢复为0(rn(k))==1 rn(k)=1;rn %解码后的恢复序列rn- %解码与原码比较全为0则解码正确s=('通信原理''2''2''2''2') s1='2'; n=8;N=;K=4; a=(1n); =[];sl=[];=1e3;fc=1e3;%载频1 t=(01/N); i=1:(a)6a(i)==01=(1N);1=(1N);=[1]; c=(2*pi*t*fc); sl=[sl c];(1);(K11);('')('基带信号') ;([0N*(a)-]);tz=*6*sl;(K12);(tz'');('调制后信号'); ;=(tz80'');(K13);('') ;('信号+噪声')Fs=3e3;[ba]=(440[]*2/Fs);%设计带通滤波器,阶数为4,通带纹波,阻带衰减40DBsf=(ba);%信号通过该滤波器 (2); K1=4;(K111);(sf'') ;('')2=(sf); %乘同频同相(K112);(2'') ;('全波整流器');Fs=3e3;%抽样频率HZ[ba]=(440[50]*2/Fs);%设计低通滤波器 sf1=(ba2);%信号通过该滤波器,输出信号sf (K113);(sf1'') ;('');sf2=[];LL=fc/*N; i=LL/2; =[];(i<=(sf1)) %判决 sf2=[sf2sf1(i)>=];7i=i+LL;i=1:(sf2) sf2(i)==01=(1N);1=(1N);=[1];(1);(K14); ('') ;('解调后信号'); ([0N*(sf2)-]);2='2';l=(0pi50);% 数据初始化 t=(09*pi); b=1:1:9;=1:1:; f=1:1:; g=1:1:;w1=2 %正弦波f1的频率可以根据自己想要的频率在此改写 %正弦波f2的频率可以根据自己想要的频率在此改写 f1=(w1*l); (1);f2=(w1*l+pi); (1);(211)(lf1)([0 pi - ])('t')('f1');%画出f1信号波形(212)(lf2)([0 pi - ])('t')('f2');%画出f2信号波形 a=[0 1 0 0 0 1 1 0 1]i=1:9 %2编码 a(i)==0k=1:50 %如果二进制原码为0则输出f1波形 (k+50*(i-1))=f1(k);j=1:50(j+50*(i-1))=f2(j); %r如果二进制原码为1则输出f2波形8i=1:9 %2解码 n=0;m=0; j=1:50(j+50*(i-1))-f1(j)==0 n=n+1;(j+50*(i-1))-f2(j)==0 m=m+1; n>mb(i)=0; b(i)=1; bi=1:9 %画出解码后的波形包括原码和解码出的码进行对比 j=1+50*(i-1):50*i f(j)=a(i); g(j)=b(i);(2);(311)(tf)([0 9*pi - ])('t')('数字基带调制原码');(312)(t)([0 9*pi - ])('t')('调制好的波形');(313)(tg)([0 9*pi - ])('t')('解码得到的码');[]=(fg)3='2';%==生成随机码元、基带信号、调制================% n=8;%随机码元个数N=;%模拟一个码元的点数 K=4;%1画四个小图 a=(1n)%码元生成=[];%定义空数组,存放基带信号 i=1:(a) a(i)==01=(1N);1=(1N);9=[1];%基带信号(1);(K11);('')('基带信号') ;([0N*(a)-]);=1e3;%每一个码元中采样点的间隔宽度 fc=1e3;%载频1t=(01/N); tz=[];c1=(2*pi*t*fc);%载波c2=(2*pi*t*fc*2);%载波i=1:(a) a(i)==1 tz=[tzc1];tz=[tzc2];(K12);(tz'');('2已调信号'); ;=(tz20'');%加噪(K13);('') ;('信号+噪声')%===========解调============% Fs=5e3;%采样频率[b1a1]=(440[]*2/Fs);%设计带通滤波器,阶数为4,通带纹波,阻带衰减40DB[b2a2]=(440[]*2/Fs); sa=(b1a1);%信号通过该滤波器 sb=(b2a2); (2);K1=3;%2画输出数据出错错误:有时运行程序,在产生随机二进制码时由于程序的不稳定,在产生1的时候却产生了2,进行程序修改之后是之变得稳定输出提示语句未显示错误:提示语与程序中设置显示语言发生冲突使用模块时未能成功连接错误:连接语使用不一致21六、用户使用手册《通信原理》樊昌信曹丽娜编国防工业出版社《程序设计与应用》刘卫国主编高等教育出版社22七、心得体会通过这两周的通信原理课程设计实践,我复习了编程语言的基本概念、语法、语义和数据类型的使用特点,加深了对课堂所学理论知识的理解,掌握了运用结构化程序设计的基本思想和方法,更重要的是培养了自己的自学能力因为这是我们第二次接触编程语言,在编写程序以及调试的过程中遇到了很多困难,但是我通过去图书馆查找资料,请教同学老师,再自己一点点改善程序,最终编写出一个比较完善的程序,实现了所有要求功能,这是最值得我欣慰的一点以下是我的几点切身感受:编写程序需要一个清醒的头脑,明确的思路,同时也要有耐心毅力刚拿到程序设计课题时,我感觉一片茫然,因为在之前的信号处理学习中,只是在一些例题中接触过语言,甚至没有看过一些基础的书籍,更没有上过课,所以初次遇到一个实际问题,感觉无从下手这是由于自己对的模块设计不够理解,同时对的基本语句一无所知,不过通过请教老师懂得了首先要设计目录,再根据用户输入执行语句,在每个后调用一个函数,来实现要求的功能,这样一下子豁然开朗,掌握了基本设计思路之后,后面的编程就顺利多了至此,我真真体会到清晰地思路对成功编写一个程序的重要性当然成功编写一个程序绝非易事,之前,我总以为程序能够正常运行,就代表着编程成功,后来我才发现我大错特错了我用了三天时间,完成了程序的编写、改错,但我立刻发现尽管程序能够正常运行,部分功能却不完善,甚至不能实现经过一次又一次调试、修改又修改,一点一点发现问题并改正,我才真正发现编程远没有想象中的简单它需要的不仅是清晰地编程思路、编程技巧,还需要有耐心有毅力,不要放弃我们在大学需要学习的不仅是基础知识、专业知识,更重要的是一种学习能力正如老师所说学习是终生的,因此学习能力也就能让我们受益终生由于课堂时间有限,课程只能靠我们自学,然而画图功能我们必须用到,因此只能通过自习,实践也证明我们是有自学的潜能的,通过自学课本,不理解的知识,通过查找资料,请教老师,最终掌握知识,因此,这次课程设计时间培养了我们的自学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2DPSK调制与解调系统的仿真设计原理(1) 2DPSK信号原理1.1 2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。

图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。

如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。

所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义为本码元初相与前一码元初相之差,假设:→数字信息“0”;→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0或:1.2 2DPSK 信号的调制原理一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。

2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。

选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。

图1.2.2 键控法调制原理图1.3 2DPSK 信号的解调原理2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。

码变换相乘载波s(t)e o (t)1.3.1 2DPSK信号解调的极性比较法它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。

它的原理框图如图1.3.1所示。

图 1.3.1 极性比较解调原理图1.3.2 2DPSK信号解调的差分相干解调法差分相干解调的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,此后该信号分为两路,一路延时一个码元的时间后与另一路的信号相乘,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决,抽样判决器的输出即为原基带信号。

它的原理框图如图1.3.2所示。

图 1.3.2 差分相干解调原理图四、实现方法(1)、建立模型1.1 差分和逆差分变换模型差分变换模型的功能是将输入的基带信号变为它的差分码。

逆码变换器原理图如下:1.2 带通滤波器和低通滤波器的模型带通滤波器模型的作用是只允许通过(fl ,fh )围的频率分量、但将其他围的频率分量衰减到极低水平。

低通滤波器模型的作用是只允许通过(0,fh )围的频率分量,并且将其他围的频率分量衰减到极低水平。

在Matlab 中带通滤波器和低通滤波器的模型可以用编写程序来模拟。

1.3 抽样判决器模型抽样判决器的功能是根据位同步信号和设置的判决电平来还原基带信号。

在Matlab 中抽样判决器可以用simulink 中的模块来模拟。

它的模型框图如图所示,它的部结构图如图2.3所示。

图 3.3 抽样判决器1.4 系统结构图cab微分整流脉冲展宽逆码变换器 (a )原理方框图图 2.4.1 系统结构图1.4.2 2DPSK调制与解调总原理框图图 2.4.2 2DPSK调制与解调总原理框图(2)、仿真2.1 仿真程序%- 2DPSK 调制与解调%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>初始化部分>>>>>>>>>>>>>>>>>>>>>%---------------------------------------------------function y=dpsk2()fs = 30000;Time_Hold_On = 0.1;Num_Unit = fs * Time_Hold_On;High_Level = ones ( 1, Num_Unit );Low_Level = zeros ( 1, Num_Unit );w = 300;A = 1;%---------------------------------------------------%>>>>>>>>>>>>>>>>>>初始化信号>>>>>>>>>>>>>>>%---------------------------------------------------Sign_Set = [0,1,1,0,1,0,0,1]Lenth_Of_Sign = length ( Sign_Set );st = zeros ( 1, Num_Unit * Lenth_Of_Sign );sign_orign = zeros ( 1, Num_Unit * Lenth_Of_Sign );sign_result = zeros ( 1, Num_Unit * Lenth_Of_Sign );t = 0 : 1/fs : Time_Hold_On * Lenth_Of_Sign - 1/fs;%---------------------------------------------------%>>>>>>>>>>>产生原始信号>>>>>>>>>>>>%---------------------------------------------------for I = 1 : Lenth_Of_Signif Sign_Set(I) == 1sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = High_Level;elsesign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = Low_Level;endend%---------------------------------------------------%>>>>>>>>>>>>>>>>>>调制部分>>>>>>>>>>>>>>>>>>%---------------------------------------------------for I = 1 : Lenth_Of_Signif Sign_Set(I) == 1st( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w * t( (I-1)*Num_Unit + 1 : I*Num_Unit ) + ( pi / 2 ) );elsest( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w * t( (I-1)*Num_Unit + 1 : I*Num_Unit ) );endendfiguresubplot ( 2, 1, 1 )plot(t, sign_orign);axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - (A / 2), A + (A / 2) ] ); title ( '原始信号' );gridsubplot ( 2, 1, 2 );plot ( t, st );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - 3*(A / 2), 3*(A / 2) ] ); title ( '调制后的信号' );grid%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>相乘>>>>>>>>>>>>>>>>>>>>>>>>>>>>>%---------------------------------------------------dt = st .* cos ( 2 * pi * w * t );figuresubplot(2,1,1)plot ( t, dt );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - 3*(A / 2), 3*(A / 2) ] ); title ( '相乘后的波形' );grid%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>>低通滤波部分>>>>>>>>>>>>>>>>>>>>%---------------------------------------------------[N,Wn] = buttord( 2*pi*50, 2*pi*150,3,25,'s'); %临界频率采用角频率表示[b,a]=butter(N,Wn,'s');[bz,az]=impinvar(b,a,fs); %映射为数字的dt = filter(bz,az,dt);subplot(2,1,2)plot ( t, dt );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - 3*(A / 2), 3*(A / 2) ] ); title ( '低通滤波后的波形' );grid%--------------------------------------------------- %>>>>>>>>>>>>>抽样判决 & 逆码变换部分>>>>>>>>>>>>>>>%---------------------------------------------------for I = 1 : Lenth_Of_Signif dt((2*I-1)*Num_Unit/2) < 0.25sign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) = High_Level;elsesign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) = Low_Level;endendfigureplot ( t, sign_result );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 1), - 3*(A / 2), 3*(A / 2) ] ); title ( '逆码变换后的波形' );grid五、总结本次课程设计在刚开始的过程中无从下手,手忙脚乱,时间又紧,最终决定用软件仿真来实现2DPSK调制解调的设计。

相关文档
最新文档