初一数学第一月考
七年级数学上册第一次月考试卷(附答案)
1. ﹣1 的相反数是( )3A.1B.﹣1C.3D.﹣33 32.某地连续四天每天的平均气温分别是1℃, ﹣1℃, 0℃, 2℃, 则平均气温中最低的是( )A.1℃B.﹣1℃C.0℃D.2℃3.将算式﹣5-(﹣3)+ (﹣4)写成省略加号的和的形式,正确的是( )A.5+3-4B.﹣5﹣3-4C.﹣5+3-4D.﹣5-3+44.一个数是11 0000,这个数用科学记数法表示为().A.11×104B.1.1×105C.1.1×104D.0.11×1065.下列式子成立的是( )A.﹣|﹣5|>4B.﹣3<|﹣3|C.﹣|﹣4|=4D. |﹣5.5|<56.下列四个图形中能围成正方体的是( )A. B. C. D.7.用一个平面截长方体,五棱柱,圆柱和圆锥,不能截出三角形的是( )A.长方体B.无棱柱C. 圆柱D. 圆锥8.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. |a |>|b|B.ab<0C.b-a>0D.a+b<0(第8 题图)(第9题图)9.一个几何体的三视图如图所示,这个几何体是( )A.三棱锥B.三棱柱C. 圆柱D.长方体10.用纸片和小棒做成下面的小旗,快速旋转小棒,所形成的图形正确顺序是( )A.①②③④B.③④①②C.①③②④D.④②①③11.如图是小明收支明细,则小明当天的收支情况是( )A.收入128 元B.收入32 元C.支出128 元D.支出32 元(第11 题图)(第12 题图)12.a,b 在数轴上位置如图所示,把a ,﹣a,b ,﹣b 按照从小到大的顺序排列,正确的是( )A.﹣b<﹣a<a<bB.﹣a<﹣b<a<bC.﹣b<a<﹣a<bD.﹣b<b<﹣a<a13.如果水位升高2m 时记作+2m,水位下降2m 记作.14.一个正n 棱柱,它有18 条棱,则该棱柱有个面,个顶点.15.若( )-(﹣2)=3,则括号内的数是.16.小明同学到学到领n 盒粉笔,整齐摞在讲桌上,其三视图如图,则n 的值是.(第16 题图)17.若|a|=3 ,|b|=5,且a-b<0,则a+b 的值是.18.规定一种新运算,对于任意有理数a ,b 有a☆b=2a-b+1,请计算1☆[2☆(﹣3)]的值是.19.(12 分)计算:(1)(﹣11)+7-(﹣14)(2)(﹣5.3)+ (﹣3.2)-(﹣5.3)(3)﹣100÷4×(﹣1)520.(15 分)计算题.(1)(+8)-(﹣15)+ (﹣9)-(﹣12)(2)﹣3×2+ (﹣2)2-5(3)36×(﹣2+1 --5)9 3 1221.(6 分)如图是由6 个相同的小正方体组成的几何体,请在指定的位置画出从正面看,左面看,上面看到的这个几何体的形状图.22.(6 分)如图,数轴上有三个点 A ,B ,C ,完成下列问题.(1)A 点表示的数是 ,B 点表示的数是 ,C 点表示的数是(2)将点 B 向右移动 5 个单位长度到点 D ,D 点表示的数是 . (3)在数轴上找点 E ,使点 E 到 B ,C 两点距离相等, E 点表示的数是 (4)将点 E 移动 2 个单位长度后到 F ,点 F 表示的数是 ,23.(6 分) 一个长方形的长为4cm ,宽为 3cm ,将其绕它的一边所在的直线旋转一周,得到一 个立体图形.(1)得到的几何图形的名称为 ,这个现象用数学知识解释为 . (2)求此几何体的体积.24.(6 分)已知 a 是最大的负整数, b 是﹣2 的相反数, c 和 d 互为倒数,求 a+b -cd 的值.25.(9 分)当你把纸对折一次时,就得到 2 层,对折 2 次时,就得 4 层,照这样折下去. (1)计算当对折 5 次时,层数是 .(2)对折 n 次时,层数 m 和折纸的次数 n 的关系是 . (3)如果纸的厚度是 0.1mm ,对折 8 次时,总厚度是 .26.(9 分)某粮食仓库管理员统计 10 袋面粉的总质量,以 100 千克为标准,超过的记为正, 不足记为负,通过称量记录如下: +3 ,+4.5,﹣0.5,﹣2,﹣5,﹣1 ,+2 ,+1,﹣4 ,+1,请回 答下列问题.,.(1)第几袋面粉最接近100 千克.(2)面粉总计超过或不足多少千克.(3)这10 袋面粉总质量是多少千克.27.(9 分)某冷库一天的冷冻食品进出记录如表(运进用正数表示,运出用负数表示)(1)这天冷库的冷冻食品比原来增加了还是减少了,请说明理由.(2)根据实际情况,有两种方案:方案一:运进每吨冷冻食品费用500 元,运出每吨冷冻食品费用800 元.方案二:不管运进还是运出每吨冷冻食品费用都是600 元,从节约运费的角度考虑,选用哪一种方案比较合适.1. A2.B3.C4.B5.B6.C7.C8.D9.B10.B11.D12.C13.如果水位升高 2m 时记作+2m ,水位下降 2m 记作 ﹣2m .14.一个正 n 棱柱,它有 18 条棱,则该棱柱有 8 个面, 12 个顶点. 15.若( )-(﹣2)=3,则括号内的数是 1 .16.小明同学到学到领 n 盒粉笔,整齐摞在讲桌上,其三视图如图,则 n 的值是 7 .(第 16 题图)17.若|a|=3 ,|b|=5,且 a -b <0,则 a+b 的值是 8 或 2 .18.规定一种新运算, 对于任意有理数 a ,b 有 a ☆b=2a -b+1,请计算 1☆[2☆(﹣3)]的值是 ﹣ 5 . 三.解答题。
初一上册第一次月考试卷数学
初一上册第一次月考试卷数学一、选择题(每题3分,共30分)1. 如果规定向东为正,那么 -30米表示()A. 向东走30米B. 向西走30米C. 向南走30米D. 向北走30米。
2. 在 -1,0,1,2这四个数中,最小的数是()A. -1B. 0C. 1D. 2.3. 一个数的相反数是3,则这个数是()A. -3B. 3C. (1)/(3)D. -(1)/(3)4. 下列计算正确的是()A. 2 + 3 = 5B. - 2 - 2 = 0C. ( - 2)×( - 3)= - 6D. -2^2 = 45. 绝对值等于5的数是()A. 5B. -5C. ±5D. (1)/(5)6. 把( + 5)-( + 3)-(-1)+(-5)写成省略括号的和的形式是()A. 5 - 3 + 1 - 5B. 5 + 3 + 1 - 5C. 5 - 3 - 1 - 5D. 5 + 3 - 1 - 57. 计算( - 1)÷( - 5)×(1)/(5)的结果是()A. -1B. 1C. (1)/(25)D. -(1)/(25)8. 有理数a、b在数轴上的位置如图所示,则下列结论正确的是()(此处可画一个简单数轴,数轴上a在原点左侧,b在原点右侧,且a离原点的距离比b离原点的距离远)A. a + b>0B. a - b>0C. ab>0D. (a)/(b)<09. 若a = 3,b = 2,且a < b,则a + b的值为()A. -1或 - 5B. -1或5C. 1或 - 5D. 1或5。
10. 观察下列算式:2^1 = 2,2^2 = 4,2^3 = 8,2^4 = 16,2^5 = 32,2^6 = 64,2^7 = 128,2^8 = 256,…根据上述算式中的规律,你认为2^2023的末位数字是()A. 2B. 4C. 6D. 8.二、填空题(每题3分,共15分)11. 如果水位升高3m时水位变化记作+3m,那么水位下降5m时水位变化记作___m。
七年级上册数学第一次月考试卷【含答案】
七年级上册数学第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少?A. 3cmB. 10cmC. 23cmD. 17cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5cm,那么它的面积是多少平方厘米?A. 10cm²B. 15cm²C. 20cm²D. 25cm²5. 下列哪个角是锐角?A. 90°B. 100°C. 80°D. 120°二、判断题(每题1分,共5分)1. 2是最大的质数。
()2. 三角形的内角和总是等于180°。
()3. 0是偶数。
()4. 面积相等的两个图形一定是相似的。
()5. 对角线相等的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 100的因数有______个。
2. 一个等边三角形的每个内角是______度。
3. 两个质数相乘得到的一个数是______。
4. 一个长方形的长是8cm,宽是4cm,面积是______平方厘米。
5. 一个圆的半径是3cm,它的直径是______cm。
四、简答题(每题2分,共10分)1. 解释什么是因数和倍数。
2. 简述平行四边形的性质。
3. 什么是等腰三角形?给出一个例子。
4. 解释面积和周长的区别。
5. 简述圆的周长公式。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个三角形的两个内角分别是45°和90°,求第三个内角的度数。
3. 列出6的所有因数。
4. 一个圆的半径是4cm,求它的直径。
5. 如果一个数的因数有1、2、3、4、6,那么这个数是什么?六、分析题(每题5分,共10分)1. 画出一个边长为6cm的正方形,并标出它的对角线。
初一上册数学月考试卷及答案解析
初一上册数学月考试卷及答案解析生命需要奋斗,奋斗与不奋斗,造就的结果截然不同。
下面本文库为您推荐初一上册数学月考试卷及答案解析。
【试卷一】一、选择题(每小题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|考点:相反数.分析:根据相反数的定义求解即可.解答:解:3的相反数为﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上"﹣"号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.20xx年国庆长假无锡共接待游客约6420000万,数据"6420000"用科学记数法表示正确的是()A.642×103B.64.2×103C.6.42×106D.0.642×103考点:科学记数法-表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值|b|B.a>﹣bC.b0考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,|b|>a,b"、".考点:有理数大小比较.专题:计算题.分析:先计算得到|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.解答:解:∵|﹣|==,|﹣|==,∴﹣>﹣.故答案为>.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.﹣|﹣|=﹣.考点:相反数;绝对值.分析:利用相反数及绝对值的定义求解即可.解答:解:﹣|﹣|=﹣.故答案为:﹣.点评:本题主要考查了相反数及绝对值,解题的关键是熟记定义.14.计算(﹣1)20xx﹣(﹣1)20xx的值是2.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)20xx﹣(﹣1)20xx,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.15.﹣3705.123用科学记数法表示是﹣3.705123×103.考点:科学记数法-表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.【试卷二】一.选择题(共10小题,每题2分,共20分,请把正确答案写在答案卷上.)1.(2分)下列各数中,是负数的是()A.﹣(﹣3)B.20xxC.0D.﹣24【分析】利用负数定义判断即可.【解答】解:﹣24=﹣16,是负数,故选D【点评】此题考查了有理数的乘方,正数与负数,以及相反数,熟练掌握各自的性质是解本题的关键.2.(2分)﹣3+5的相反数是()A.2B.﹣2C.﹣8D.8【分析】先计算﹣3+5的值,再求它的相反数.【解答】解:﹣3+5=2,2的相反数是﹣2.故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上"﹣"号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2分)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.【点评】本题主要考查了有理数加减混合运算,解题的关键是注意符号.4.(2分)实数a、b在数轴上的位置如图所示,则a与﹣b的大小关系是()A.a>﹣bB.a=﹣bC.a0,且|a|>|b|,所以,﹣b1时,n是正数;当原数的绝对值y,则x﹣y的值为1或5.【分析】首先根据绝对值的定义确定出x、y的值,再找出x>y的情况,然后计算x﹣y即可.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2,∵x>y,∴①x=3,y=2,x﹣y=1;②x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5;故答案为:1或5.【点评】此题主要考查了绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x、y的值.15.(2分)满足条件大于﹣2而小于π的整数共有5个.【分析】在数轴上标出﹣2与π,根据数轴的特点直接解答即可.【解答】解:如图所示:大于﹣2而小于π的整数有:﹣1,0,1,2,3,共5个.故答案为:5.【点评】本题考查的是数轴的特点,根据数轴的特点利用数形结合求解是解答此题的关键.16.(2分)(1)|﹣18|+|﹣6|=24(2)﹣π0,﹣2,∴﹣20,nm>﹣m>n.考点:有理数大小比较.分析:先确定m、n、﹣m、﹣n的符号,再根据正数大于0,负数小于0即可比较m,n,﹣m,﹣n的大小关系.解答:解:根据正数大于一切负数,只需分别比较m和﹣n,n和﹣m.再根据绝对值的大小,得﹣n>m>﹣m>n,故答案为:﹣n>m>﹣m>n.点评:此题主要考查了实数的大小的比较,解决本题的关键熟记两个负数,绝对值大的反而小.13.写出一个比﹣1小的数是﹣2.考点:有理数大小比较.专题:开放型.分析:本题答案不.根据有理数大小比较方法可得.解答:解:根据两个负数,绝对值大的反而小可得﹣2<﹣1,所以可以填﹣2.答案不.点评:比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.7×(﹣2)的相反数是14.考点:有理数的乘法;相反数.分析:先计算7×(﹣2)=﹣14,再求相反数,即可解答.解答:解:7×(﹣2)=﹣14,﹣14的相反数是14,故答案为:14.点评:本题考查了有理数的乘法和相反数,解决本题的关键是熟记有理数的乘法法则.15.如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为a<b.考点:实数大小比较;实数与数轴.专题:计算题.分析:先根据数轴上各点的位置判断出a,b的符号及|a|与|b|的大小,再进行计算即可判定选择项.解答:解:∵A在原点的左侧,B在原点的右侧,∴A是负数,B是正数;∴a<b.故答案为:a<b.点评:此题主要考查了实数的大小的比较,要求学生能正确根据数在数轴上的位置判断数的符号以及绝对值的大小.16.若|x|=3,y=2,则|x+y|=5或1.考点:绝对值.专题:计算题.分析:利用绝对值的代数意义求出x的值,即可确定出原式的值.解答:解:∵|x|=3,∴x=±3,当x=3,y=2时,原式=5;当x=﹣3,y=2时,原式=1,故答案为:5或1点评:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 17.计算|﹣|﹣的结果是﹣.考点:有理数的减法;绝对值.分析:根据绝对值的性质和有理数的减法运算法则进行计算即可得解.解答:解:|﹣|﹣=﹣.故答案为:﹣.点评:本题考查了有理数的减法运算,绝对值的性质,是基础题,熟记运算法则和性质是解题的关键.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为﹣7℃.考点:有理数的加减混合运算.专题:应用题.分析:把实际问题转化成有理数的加减法,可根据题意列式为:﹣5+5﹣3﹣4.解答:解:根据题意得:﹣5+5﹣3﹣4=﹣7(℃),故答案为:﹣7℃.点评:本题考查了有理数的混合运算,解决本题的关键是正确列出式子.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)×(﹣3)=.考点:有理数的混合运算;相反数.专题:计算题.分析:利用互为相反数两数之和为0得到a+b=0,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,则原式=×3=,故答案为:点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.一组按规律排列的数:,,,,…请你推断第9个数是.考点:规律型:数字的变化类.分析:根据已知数据,找出规律,验证正确后,根据规律计算得到答案.解答:解:=,=,=,第9个数是=,故答案为:.点评:本题考查的是数字的变化规律问题,根据给出的一组数据,正确找出其排列规律是解题的关键.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)÷(﹣)÷(﹣9)(3)﹣2﹣12×(﹣+)(4)﹣﹣(﹣)﹣|﹣|考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式第二项利用乘法分配律计算即可得到结果;(4)原式利用减法法则及绝对值的代数意义变形,计算即可得到结果.解答:解:(1)原式=(3﹣)+(+2)=3+3=6;(2)原式=﹣12××=﹣2;(3)原式=﹣2﹣4+3﹣6=﹣9;(4)原式=﹣+﹣=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,20xx,﹣16正整数集合:10,+66,20xx负整数集合:﹣5,﹣16正分数集合:+2,0.01,15%,负分数集合:﹣4,﹣2.15,﹣整数集合:﹣5,10,0,+66,20xx,﹣16负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16正数集合:10,+2,0.01,+66,15%,,20xx.考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正整数集合:10,66,20xx;负整数集合:﹣5,﹣16;正分数集合:+2,0.01,15%,;负分数集合:﹣4,﹣2.15,﹣;整数集合:﹣5,10,0,+66,20xx,﹣16;负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16;正数集合:10,+2,0.01,+66,15%,,20xx.点评:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)考点:数轴.专题:计算题.分析:各项计算得到结果,表示在数轴上即可.解答:解:﹣(﹣4)=4,+(﹣2.5)=﹣2.5,﹣|﹣3|=﹣3,+2=2,﹣(﹣1.5)=1.5,点评:此题考查了数轴,绝对值,以及有理数的乘方,熟练掌握运算法则是解本题的关键.24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损盈余或亏损多少元考点:正数和负数.分析:把所有收入情况相加,再根据正、负数的意*答.解答:解:(+853.5)+(+237.2)+(﹣325))+(+138.5)+(﹣280)+(﹣520)+(+103),=853.5+237.2+138.5+103﹣325﹣280﹣520,=1332.2﹣1125,=207.2,答:盈余202.7元.点评:此题主要考查了正负数的意义,解题关键是理解"正"和"负"的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元考点:有理数的混合运算.专题:应用题.分析:根据题意的用电规定列出算式,计算即可得到结果.解答:解:根据题意得:120×0.57+(220﹣120)×0.69=68.4+69=137.4(元),则该用户五月份应交电费137.4元.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升考点:正数和负数.分析:(1)把所有行车里程相加,再根据正数和负数的意*答;(2)求出所有行车里程的绝对值的和,再乘以0.56即可.解答:解:(1)15+(﹣3)+14+(﹣11)+10+(﹣12)+4+(﹣15)+16+(﹣18)=15﹣3+14﹣11+10﹣12+4﹣15+16﹣18=0(千米),答:将最后一名乘客送到目的地时,小石距离下午出发地点的距离0千米.(2)|15|+|﹣3|+|14|+|﹣11|+|10|+|﹣12|+|4|+|﹣15|+|16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118118×0.56=66.08(升),答:这天下午汽车共耗油66.08升.点评:此题主要考查了正负数的意义,解题关键是理解"正"和"负"的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11。
新人教版七年级数学上册第一次月考试题及参考答案(SY) 有理数精编测试题及参考答案
七年级数学上册第一次月考测试题(有理数)一、单选题1.﹣|﹣2023|的倒数是()A.2023B.12023C.−12023D.-20232.下列各数:-π,-|-9|,-(-1),-1.010020002…,-37, −19,其中既是负数又是有理数的个数是()A.2B.3C.4D.53.下列各组数中,互为相反数的一组是()A.-(-8)和|-8|B.-8和-8C.(-8)2和-82D.(-8)3和-834.以下结论正确的有()A.两个非0数互为相反数,则它们的商等于1B.几个有理数相乘,若负因数个数为奇数,则乘积为负数C.乘积是1的两个数互为倒数D.绝对值等于它本身的有理数只有15.有理数a,b,c在数轴上对应的点如图所示,则下列结论中正确的有()个①b<a ②|b+c|=b+c ③|a﹣c|=c﹣a ④﹣b<c<﹣A.A.1B.2C.3D.46.如图,数轴上的A,B两点所表示的数分别为a,b,则下列各数中,最大的是()A.abB.a+bC.a+b2D.a﹣b7.已知a2=25,|b|=7,且|a+b|=a+b,则a-b的值为()A.-12B.-2C.-2或-12D.2或128.如图,点O,A,B,C在数轴上的位置,O为原点,A与C相距1个单位长度,A和B到原点的距离相等,若点C所表示的数为a,则点B所表示的数为()A.-a-1B.-a+1C.a+1D.a-19.当2<a<3时,代数式|3﹣a|﹣|2﹣a|的结果是()A.﹣1B.1C.2a﹣5D.5﹣2a10.在数轴上,原点左边有一点M,从M对应着数m,有如下说法:①-m表示的数一定是正数. ②若|m|=8,则m=-8. ③在-m,1m ,m2,m中,最大的数是m2或-m. ④式子|m+1m|的最小值为2.其中正确的个数是()A.1B.2C.3D.411.我们常用的十进制数,如:2358=2×103+3×102+5×101+8,远古时期,人们通过在绳子上打结来记录数量,如图是一位母亲从右到左依次排列的绳子上打结,并采用七进制,如2183=2×73+1×72+8×71+3,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.1326B.510C.336D.8412.如图,在这个数据运算程序中,若开始输入的x的值为4,输出的结果是2,返回进行第二次运算则输出的是1…,则第2020次输出的结果是()A.﹣1B.-2C.-4D.-6二、填空题13.若a,b互为相反数,c,d互为倒数,m的绝对值为3,则m−(−1)+2023(a+b)2024−cd的值为_______.14.当x=_______时,式子(x+2)2+2023有最小值.15.若abc≠0,则a|a|+|b|b+c|c|−|abc|abc=_______.16.已知|a-1|+|b-2|=0,1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2011)(b+2011)=______.三、解答题17.计算(−612)+314+(−12)+2.75 25×34−(−25)×12+25×14482425÷(−48) (−130) ÷(13−110+16−25)(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)已知小明买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果小明在星期六收盘前将全部股票卖出,他的收益情况如何?20.阅读下面材料并完成填空,你能比较两个数20232024和20242023的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n的大小(n≥1的整数),然后,从分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列各组两个数的大小(在横线上填>,=,<号)①12__21; ②23__32; ③34__43; ④45__54; ⑤56__65;…(2)从第(1)小题的结果经过归纳,可以猜想,n n+1和(n+1)n的大小关系是什么?(3)根据上面归纳猜想得到的一般结论,可以猜想得到20232024___20242023(填>,=,<)21.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和2的两点之间的距离是________;表示-3和2两点之间的距离是_______; (2)如果|x+1|=2,那么x=________;(3)若|a-3|=4,|b+2|=3,且数a,b在数轴上表示的点分别是点A,点B,则A,B两点间的最大距离是_____,最小距离是______;(4)求代数式|x+1|+|x-1|的最小值,并写出此时x可取哪些整数值?(5)求代数式|x+2|+|x-3|+|x-5|的最小值.(6)若x表示一个有理数,则代数式8-2|x-3|-2|x-5|有最大值吗?若有,请求出最大值;若没有,请说明理由.22.如图,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向右移动4cm到达B点,然后再向右移动到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点A沿数轴以每秒3cm匀速向右运动,经过多少秒后点A到点C的距离为3cm?(4)若点A以每秒1cm的速度匀速向左移动,同时点B,点C分别以每秒4cm,9cm的速度匀速向右移动7cm.设移动时间为t秒,试探索:BA-CB的值是否会随着t的变化而改变?若变化,请说2明理由,若无变化,请直接写出BA-CB的值.参考答案一、选择题1-5 CBCCC 6-10 DCBDD 11-12 BB二、填空题13.3或-314.-215.2或-216.20122013三、解决问题17.-1,37.5,−1150,-10,32,518.-2b19(1)34.5(2)最高股价为35.5元,最低股价为26元.(3)889.520(1)12<21,23<32,34>43,45>54,56>65(2)由(1)可知,当n=1或2时,n n+1<(n+1)n ,当n≥3时,n n+1>(n+1)n(3)∵2007>3,2008>3∴20072008>2008200721(1)3,5(2)1或-3.(3)12,2(4)|x +1|+|x -1|的最小值为2,此时x 可取的整数值为:-1,0,1.(5)最小值是7.(6)当3≦x ≦5时,最大值为4.22(1)略(2)152(3)32, 72(4)不变,12.。
七年级第一次数学月考试题含答案
七年级第一次数学月考(考试总分:122 分)一、 单选题 (本题共计12小题,总分36分)1.(3分)1.如果把向东走3km 记作+3km ,那么﹣2km 表示的实际意义是( )A .向东走2kmB .向西走2kmC . 向南走2kmD .向北走2km2.(3分)2.在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣43.(3分)3.-32的绝对值是A .﹣32B .32C .23D .-23 4.(3分)4.计算4+(﹣6)的结果等于( )A .﹣2B .2C .10D .﹣105.(3分)5.计算(﹣6)+(﹣2)的结果等于( )A .8B .﹣8C .12D .﹣126.(3分)6.四位同学画数轴如图所示,你认为正确的是( )A .B .C .D . 7.(3分)7.﹣2的相反数是( )A .2B .﹣2C .D .﹣8.(3分)8.一个数的绝对值等于它的本身,这个数一定是( )A .正数B .负数C .0D .正数或09.(3分)9.下列说法正确的是()A.符号相反的两个数互为相反数B.正数的相反数大于它的本身C.0的相反数是0D.一个数的相反数一定是负数10.(3分)10.若|a|=﹣a ,则a 是( )A .零B .负数C .非负数D .负数或零11.(3分)11.A 地的海拔高度是-47米,B 地比A 地高12米,B 地的海拔高度是()A .59米B .35米C .-35米D .-59米12.(3分)12.实数a ,b 在数轴上的对应点的位置如图所示,把﹣a ,﹣b ,0按照从小到大的顺序排列,正确的是( )A.﹣a <0<﹣b B .0<﹣a <﹣b C .﹣b <0<﹣a D .0<﹣b <﹣a二、 填空题 (本题共计4小题,总分16分)13.(4分)13.比较大小:,﹣ , -(填“>”、“=”或“<”).14.(4分)14.在3.5,﹣3,0,﹣8这四个数中,最小的数是 ,最大的数 是 ,绝对值最大的数是 ,互为相反数的两个数是 和 .15.(4分)15.在﹣,﹣0.7,﹣9,25,,0,﹣7.3,300%中,分数有个. 16.(4分)16.(3分)按一定的规律排列的一列数依次为:﹣,,﹣,,﹣,…,按此规律排列下去,这列数中的第9个数是 . 三、 解答题 (本题共计6小题,总分70分)17.(20分)17.(每小题5分,共20分)计算:(1)(+9)+(-10) (2)(-21)+21(3)26+(-17)+24+(-23) (4)(-7)+(-6.5)+(-3)+6.518.(10分)18.(1))(213+-- (2)()[]}6.6{-+-+ 19.(8分)19.(8分)已知4+a 与-2互为相反数,求a 的值。
七年级数学第一次月考试卷及答案
七年级第一学期第一次月考试卷与试题解析一.选择题(共10小题,满分30分)1.(3分)|﹣3|的相反数是(B)A.3B.﹣3 C.D.﹣2.(3分)如果向东走80m记为+80m,那么向西走60m记为(A)A.﹣60m B.|﹣60|m C.﹣(﹣60)m D.m3.(3分)计算2﹣(﹣3)的结果等于(C)A.﹣1 B.1C.5D.64.(3分)数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为(B)A.8B.﹣2 C.﹣5 D.25.(3分)某市某日的气温是﹣2℃~6℃,则该日的温差是(A)A.8℃B.6℃C.4℃D.一2℃6.(3分)计算2﹣|﹣3|结果正确的是(C)A.5B.1C.﹣1 D.﹣57.(3分)若两个数的和为正数,则这两个数(A)A.至少有一个为正数B.只有一个是正数C.有一个必为0 D.都是正数8.(3分)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d 的值为(C)A.1B.3C.1或﹣1 D.2或﹣19.数a,b在数轴上的位置如图所示,则a+b是(C)A.正数B.零C.负数D.都有可能10.(3分)有理数a,b在数轴上的对应点的位置如图所示,则(B)A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b<0二.填空题(共10小题,满分30分,每小题3分)11.(3分)(2014•江西模拟)﹣1+3=2.12.(3分)(2007•遵义)计算:1﹣2=﹣1.13.(3分)(2012•岳阳)计算:|﹣2|=2.14.(3分)(2013•晋江市)化简:﹣(﹣2)=2.15.(3分)写出一个比﹣1大的负有理数是﹣0.4(答案不唯一).16.(3分)(2010•邯郸一模)若a、b互为相反数,则3a+3b+2=2.17.(3分)某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).18.(3分)(2012•德州)﹣1,0,0.2,,3中正数一共有3个.19.(3分)(2007•崇安区一模)一只昆虫从点A处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A点相距8米.20.(3分)(2008•贵阳)符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f(2008)=1.三.解答题(共5小题,满分40分)21.(7分)计算:9+(﹣7)+6+(﹣5)考点:有理数的加法.分析:原式结合后,相加即可得到结果.解答:解:原式=(9+6)+[(﹣7)+(﹣5)]=15﹣12=3.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22.(7分)计算:(﹣2)+5﹣4﹣(﹣3)﹣3.考点:有理数的加减混合运算.分析:原式利用减法法则变形,然后利用加法的交换结合律,计算即可得到结果解答:解:(﹣2)+5﹣4﹣(﹣3)﹣3=(﹣2)+5+(﹣4)+3+(﹣3)=[(﹣2)+(﹣4)]+[3+(﹣3)]+5=(﹣6)+5=﹣1点评:此题考查了有理数的加减混合运算,熟练掌握运算法则,及用运算律是解本题的关键.23.(8分)计算:.考点:有理数的加减混合运算.分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.解答:解:原式=﹣﹣﹣+=﹣1﹣=或.点评:在进行有理数的加减混合运算时,第一步是运用减法法则将减法转化成加法;第二步根据加法法则进行计算.24.(9分)已知|a|=3,|b|=5,且a<b,求a﹣b的值.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.解答:解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.点评:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.25.(9分)小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?考点:有理数的加法;正数和负数.专题:应用题.分析:(1)把记录数据相加,结果为0,说明小虫最后回到出发点A;(2)分别计算出每次爬行后距离A点的距离;(3)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求得到的芝麻粒数.解答:解:(1)+5﹣3+10﹣8﹣6+12﹣10=27﹣27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5﹣3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12﹣8=4(cm),第五次爬行距离原点是|4﹣6|=|﹣2|(cm),第六次爬行距离原点是﹣2+12=10(cm),第七次爬行距离原点是10﹣10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.点评:正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负;距离即绝对值与正负无关.。
七年级上学期第一次月考(数学)试卷含答案
七年级上学期第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计13小题,总分58分)1.(4分)点 P (0,3)在( ).A .x 轴的正半轴上B .x 的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上2.(4分)9的算术平方根是 ( )A .±3B .3C .3±D . 3.(4分)2的立方根是( )A .2B .2±C .32D .32± 4.(4分)下列各式中,错误的是A .416±=B .164±=±C .2(4)4-=D .3273-=-5.(4分)己知正方体表面积为24dm 2,则这个正方体的棱长为( )A . 2dmB .6dmC . 2 dmD . 4 dm6.(4分)已知12n -是正整数,则整数n 的最大值为( )A .12B .11C .8D .37.(4分)如图,直线AB 与CD 相交于点O ,∠COE =2∠BOE . 若∠AOC =120°,则∠BOE 等于( )A .15°B .20°C .25°D .30°8.(4分)点 P 的坐标为(3a-2,8-2a ),若点 P 到两坐标轴的距离相等,则 a 的值是( ).A、32或4 B 、-2或6 C 、32或-4 D 、2或-6 9.(4分)如图,能判定AD ∥BC 的条件是( )A .∠3=∠2B .∠1=∠2C .∠B =∠DD .∠B =∠110.(4分)下列命题是真命题的是( )A .若x >y ,则x 2>y 2B .若|a|=|b|,则a=bC .若a >|b|,则a 2>b 2D .若a <1,则a >1a11.(4分)将长方形纸片ABCD 折叠,使D 与B 重合,点C 落在C '处,折痕为EF ,若∠AEB =70°,则∠EFC '的度数是 ( )A.125°B.120°C.115°D.110°12.(4分)如图,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF ∥BC ,以下四个结论:①AH ⊥EF ,②∠ABF=∠EFB ,③AC ∥BE ,④∠E=∠ABE .正确的是( )A .①②③④B .①②C .①③④D .①②④C /A B C D E F13.(10分)(10分)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.二、 双空题 (本题共计1小题,总分4分)14.(4分)计算:2(3)-=___; 3278-=____. 三、 填空题 (本题共计5小题,总分20分)15.(4分)与50最接近的整数是 .16.(4分)一个正数的两个平方根分别为a+3和2a+3,则a= .17.(4分)如图,DE ∥BC ,点A 在直线DE 上,则∠BAC= 度.18.(4分)如图,AB ∥CD ,ED ∥BC .∠A=20°,∠C=120°,则∠AED 的度数是 .19.(4分)如果两个角的两条边分别平行,其中一个角比另一个角的4倍少30°,则这两个角的度数分别为 .四、 计算题 (本题共计1小题,总分10分)20.(10分)(10分)(1)计算:22)(-+25+364-;⑵求下式中x 的值: 4(x-1)2-81=0五、 解答题 (本题共计6小题,总分58分)21.(10分)(10分)(1)若a+7的算术平方根是3,2b+2的立方根是﹣2,求a b 的值.(2)已知:x ﹣2的平方根是±2,2x+y+7的立方根是3,求)(22y x +的算术平方根. 22.(10分)(10分)完成下列推理过程:如图,已知∠A =∠EDF ,∠C =∠F ,求证:BC ∥EF证明:∵∠A =∠EDF ( )∴________∥________( )∴∠C =________( )又∵∠C =∠F (已知)∴_______=∠F (等量代换)∴________∥________( )23.(10分)(10分)如图,已知∠A=∠AGE, ∠D=∠DGC.(1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数.24.(10分)(10分)如图所示,已知ABC 的三个顶点的坐标分别为(2,3)A -、(5,0)B -、V (1,0)C -((1)将ABC 向右平移6个单位长度,写出111A B C 各顶点的坐标;((2)求出四边形11ABB A 的面积;((3)在x 轴上是否存在一点P ,连接PA 、PB ,使PAB S ∆=1211A ABB S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.25.(10分)(10分)已知AM ∥CN ,点B为平面内一点,AB BC ⊥于点B .(1)如图1,直接写出∠A 和∠C 之间的数量关系是______________;(2)如图2,过点B 作BD AM ⊥于点D ,求证:ABD C ∠=∠.26.(8分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第秒时,边CD 恰好与边MN 平行;在第秒时,直线CD 恰好与直线MN 垂直.y xC B A O答案一、单选题(本题共计13小题,总分58分)1.(4分) C2.(4分)B3.(4分)C4.(4分)A5.(4分)C6.(4分)B7.(4分) B8.(4分)D9.(4分)D10.(4分)C11.(4分)A12.(4分)D13.(10分)解:∵∠1+∠2=180°,∴a∥b,…………(3分)∴∠3+∠5=180°,…………(6分)∵∠3=108°,∴∠5=180°﹣108°=72°,∴∠4=72°,…………(10分) 二、双空题(本题共计1小题,总分4分)14.(4分)3、2 3三、填空题(本题共计5小题,总分20分)15.(4分)716.(4分)-217.(4分)4618.(4分)80°19.(4分) 10°,10°或42°, 138°四、计算题(本题共计1小题,总分10分)20.(10分)(1)解:原式25(4)=++-………(3分)3=………(5分)(2)解:4(x-1)2-81=04(x-1)2=81 (6分)(x-1)2=481(8分) x-1=29或x-1=-29(9分) X=211或x=-27(10分)五、 解答题 (本题共计6小题,总分58分)21.(10分)(1)解:由题意得:a+7=9,2b+2=﹣8,…………(2分)∴a=2,b=-5,∴b a =(﹣5)2=25. …………(5分)(2)解:∵x ﹣2的平方根是±2,∴x ﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 …………(8分)把x 的值代入解得:y=8,∴x 2+y 2=100,100的算术平方根为10. …………(10分)22.(10分)证明:∵∠A =∠EDF (已知)∴___AC _____∥__DF ______( 同位角相等,两直线平行 )∴∠C =__∠CGF ______( 两直线平行,内错角相等 )又∵∠C =∠F (已知)∴∠CGF =∠F (等量代换)∴____CB ____∥___FE _____( 内错角相等,两直线平行 )(有其他合理答案也可)(每空1分,共10分)23.(10分)证明:(1)∵∠A =∠AGE ,∠D =∠DGC又∵∠AGE =∠DGC …………(1分)∴∠A =∠D …………(2分)∴AB ∥CD …………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD =∠1∴CE ∥FB …………(5分)∴∠C =∠BFD ,∠CEB +∠B =180°…………(6分)又∵∠BEC =2∠B +30°∴2∠B +30°+∠B =180°∴∠B =50°…………(8分)又∵AB ∥CD∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(10分)24.(10分)解:(1)A 1(4,3) B 1(1,0) C 1(5,0)(3分)(2)S 四边形ABB1A1=18(6分) (3) P (-11,0)或(1,0)(10分)25.(10分)(1) ------3分(2)如图2,,090D ∴∠=------4分过点B 作,0180D DBG ∴∠+∠=090DBG ∴∠=即, ------7分又,, ,------8分,, ∴BG ∥CN ------9分,.-----10分 26.(8分)【答案】(1)105°;(2)150°;(3)5或17;11或23.【解析】(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F , //CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒, ∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行; 如图2,CD 在OM 的右边时,设CD 与AB 相交于G , CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直. 故答案为:5或17;11或23.。
人教版七年级数学上册第一次月考试卷
人教版七年级数学上册第一次月考试卷一、选择题(每题3分,共24分)1.下列各数中,绝对值最小的是()A. -2B. 1C. 0D. 22.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家。
若收入100元记作+100元,则支出37元记作()A. +137元B. 0元C. -37元D. 无法确定3.下列说法中,不正确的是()A. 0既不是正数,也不是负数B. 1是绝对值最小的数C. 0的相反数是0D. 0的绝对值是04.下列运算中,正确的是()A. 3a + 2b = 5abB. 5a2 = 3C. 7a + a = 7a^2D. 2(a + b) = 2a + 2b5.已知 |x| = 3,|y| = 2,且 xy < 0,则 x + y 的值等于()A. 1 或 -1B. 5 或 -5C. 5 或 1D. -5 或 -16.下列说法正确的是()A. 近似数2.8与2.80表示的意义相同B. 0.010有一个有效数字C. 4.3 × 10^4 精确到千位D. 由四舍五入得近似数43.0,精确到十位7.有理数a,b在数轴上对应的点的位置关系如图,对于下列四个结论:①b - a > 0;②|a| < |b|;③a + b > 0;④ab > 0。
其中正确的是()A. ①②③④B. ①②③C. ①③④D. ②③④(注:此题需配图,但由于文本限制,无法展示图形。
图形应显示a、b两数在数轴上的相对位置。
)8.下列说法中,正确的个数为()①平方等于4的数只有2;②若a,b互为相反数,则(a/b) = -1;③若|-a| = a,则(-a)^3 < 0;④若ab ≠ 0,则(a/b)的取值在0,1,2,-2这4个数中,不能得到的是0。
A. 0个B. 1个C. 2个D. 3个二、填空题(每题4分,共32分)1.-5的绝对值是_____。
2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,将4600000000用科学记数法表示为_____。
24-25七年级数学第一次月考卷(广州专用,人教版七上第1~2章:有理数+有理数的运算)(全解全析)
2024-2025学年七年级数学上学期第一次月考卷(广州专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章:有理数、第二章:有理数的运算。
5.难度系数:0.68。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走100米可记作( )A .40-米B .40米C .100-米D .100米【答案】C【详解】解:若向东走60米记作60+米,则向西走100米可记作100-米,故选:C .2.下列各组数中,值相等的一组是( )A .()3-+和()3++B .()3+-和3+-C .()3--和3--D .()3+-和3--3.当a 比b 小22,c 比b 小18时,下面正确的是( )A .b 比c 小4B .b 最大C .c 比a 小4D .a b c<<【答案】B【详解】解:22a b =-,18c b =-,∴a c b <<,4c a -=,∴b 最大,故选B .4.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ).A .822.9310´B .922.9310´C .82.29310´D .92.29310´A .a b >-B .0a b +>C .0b <D .0ab <6.如果()2a b-+-=,则b a的值为()120A.1B.2C.1-D.2-7.数轴上点A表示的数是1-,数轴上的另一点B与点A距离3个单位长度,则点B表示的数是()A.4-B.2或4-C.4D.2-或48.下列说法正确的个数为( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④两个无理数的和不一定是无理数;⑤无理数分为正无理数、零、负无理数.A.2个B.3个C.4个D.5个9.如图,圆的直径为2个单位长度,该圆上的点A 与数轴上表示1-的点重合,将圆沿数轴向左无滑动地滚动一周,点A 到达点A ¢的位置,则点A ¢表示的数是( )A .21p -B .21p --C .1p -D .1p --A .74B .104C .126D .144【答案】D 【详解】分析前三个正方形中的数据发现其包含两点规律:(1)从左上到左下到右上是三个连续的偶数;(2)右下的数等于左下的数与右上的数的积加上左上数的3倍.由此可知101283144m =´+´=.故选D.第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.比较大小:347-- 347æö--ç÷(填“<”或“>”或“=”).12.在数轴上,把表示1的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是.【答案】4-【详解】解:根据题意,作出数轴如图:则与此位置相对应的数是;4-,故答案为:4-.13.若m 、n 互为相反数,a 、b 互为倒数,则4ab m n -+-= .14.有理数,,a b c 在数轴上的位置如图所示,化简11a b b a c c +------= .故答案为:2-.15.求|2||7|x x -+-的最小值是 .【答案】5【详解】解:当2x <时,原代数式2792x x x -+-=-①;当27x ££时,原代数式275x x -+-=②;当7x >时,原代数式2729x x x -+-=-③;据以上可得>①②,且>③②;所以当27x ££时,原代数式取得最小值为5,故答案为:5.16.有理数a b 、在数轴上的表示如图所示,则下列结论中:①0ab <;②0a b +<;③0a b -<;④0a b a b+=;⑤11b b -=- ,正确的有 (只要填写序号).三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)把下列各数分别填在相应的大括号里.6113,,31,0.21, 3.14,0,21%,,202073----.整数:{ …};正整数:{ …};负分数:{ …};负整数:{ …}.18.(4分)画出数轴,在数轴上表示下列各数,然后用“<”号把这些数连接起来.93,1,3, 2.5,42---. 932.51342-<-<-<<.------------(4分)19.(6分)计算.(1)3571()491236--+¸(2)2211|7|()(4)353-¸--´-20.(6分)出租车司机小李某天下午在东西走向的人民大道上开车.如果规定向东为正,向西为负,这天下午他的行车里程(单位:千米)如下:15+,―2,5+,1-,10+,3-,―2,12+,4+,5-,6+.(1)将最后一名乘客送到目的地时,小李距下午出车时的出发点多远?(2)若汽车耗油量为每千米耗油0.06升,这天下午小李共耗油多少升?21.(8分)小明同学在学习完有理数的运算后,对运算产生了浓厚的兴趣,她借助有理数的运算,定义了一种新运算“⊕”,运算规则为:a b a b a b Å=´--.(1)计算()22-Å的值;(2)填空:()53Å- ()35-Å(填“>”或“=”或“<”);(3)求()1342æö-ÅÅç÷的值.22.(10分)阅读以下材料,完成相关的填空和计算.(1)根据倒数的定义我们知道,若()2a b c +¸=-,则()c a b ¸+=________.(2)计算:5721129336æö-+¸ç÷èø.(3)根据以上信息可知:1572361293æöæö-¸-+=ç÷ç÷________.23.(10分)已知,a b 互为相反数,,c d 互为倒数,2x =,1y =,x y <,计算:()22221a b x cdy x y xy++++-的值【详解】解:由题意可得:0a b +=,1cd =,2x =±,1y =±,------------(2分)x y <Q ,2x \=-,1y =±,------------(4分)当2,1x y =-=时,()22221a b x cdy x y xy ++++-2222x y x y xy =++-()()()2222212121=-++-´--´------------(6分)4142=+++11=,------------(7分)当2,1x y =-=-时,()22221a b x cdy x y xy ++++-2222x y x y xy =++-()()()()()()2222212121=-+-+-´---´------------(9分)4142=+-+3=;------------(10分)24.(12分)a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a |=5,|b |=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数;(3)点P 从A 点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2020次后,求P 点表示的数.25.(12分)【背景知识】数轴上A 、B 两点在对应的数为a ,b ,则A 、B 两点之间的距离定义为:AB b a =-.【问题情境】已知点A 、B 、O 在数轴上表示的数分别为4-、10和0,点M 、N 分别从O 、B 出发,同时向左匀速运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,设运动的时间为t 秒()0t >.(1)填空:①OA =_____,OB =_____;②用含t 的式子表示:AM =_____;AN =_____;(2)当t 为何值时,恰好有2AN AM =;(3)如图,直线l 上有A ,B 两点,18cm AB =,点O 是线段AB 上的一点,2OA OB =.若动点P ,Q 分别从A ,B 同时出发,向右运动,点P 的速度为3cm /s ,点Q 的速度为2cm /s ,当点P 与点Q 重合时,P ,Q 两点停止运动.设运动时间为()s t ,求当t 为何值时,()26cm OP OQ -=?。
七年级上册数学第一次月考试卷及答案
七年级上册数学第一次月考试题一、单选题1.在有理数-(-2),-2-,-5,0,3,-1.5中负数的个数为( ) A .1个 B .2个C .3个D .4个2.12-的倒数和相反数分别是 ( ) A .12,2 B .12,-2C .2,12D .-2,123.如图所示,在数轴上点A 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.6D .2.64.若a 为有理数,则 -|a|表示( ) A . 正数B . 负数C . 正数或0D . 负数或05.下列计算:① 0﹣(﹣5)=0+(﹣5)=﹣5; ② 5﹣3×4=5﹣12=﹣7;③ 4÷3×(﹣13)=4÷(﹣1)=﹣4; ④ ﹣12﹣2×(﹣1)2=1+2=3.其中错误的有( ) A .1个 B .2个C .3个D .4个6.若a+b <0,且ab<0,则( ). A .a 、b 异号且负数的绝对值大; B .a 、b 异号且正数的绝对值大; C .a >0,b >0D .a <0,b <07.我们用有理数的运算研究下面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4cm ,那么3天后的水位变化用算式表示正确的是( ) A .(+4)×(+3)B .(+4)×(﹣3)C .(﹣4)×(+3)D .(﹣4)×(﹣3)8.绝对值大于或等于1,而小于4的所有正整数的和是( ) A .8B .7C .6D .59.若※是新规定的运算符号,设a b ab a b =++※,则在216x =-※中,x 的值 ( ) A .-8B .6C .8D .-610.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A.3 B.6 C.4 D.2二、填空题11.若a与b互为相反数,c与d互为倒数,则3(a+b)﹣4cd=___.12.若|-x|=3,则x=____________.13.- 56与-67的大小关系是: -56____-67.14.数轴上和原点的距离等于3 的点表示的有理数是__________。
初一数学 七年级数学上册第一次月考试卷附答案
初一数学七年级数学上册第一次月考试卷附答案一、选择题(共10题,每题2分,共20分)1. 请计算:3 + 4 × 5 =A. 23B. 35C. 53D. 702. 请计算:(2 + 3) × (4 - 1) =A. 6B. 9C. 12D. 153. 下列哪个是负数?A. 0B. 5C. -2D. 34. 若a = 3, b = 4,c = 5,则a × b ÷ c 等于A. 0.12B. 1.2C. 12D. 1205. 将7.6写成分数的形式是A. 3/5B. 3 1/5C. 7/6D. 7 3/56. 下列哪个数是最大的?A. -4B. -2C. 0D. 27. 请计算:84 ÷ 6 =A. 7B. 12C. 14D. 218. 下列哪个是正数?A. 0B. -5C. -3D. 49. 请计算:2 + 4 × (5 - 3) =A. 6B. 10C. 12D. 1410. 下列哪个分数是最小的?A. 3/4B. 2/3C. 5/8D. 1/2二、填空题(共10题,每题2分,共20分)1. 小华去动物园看了___只大象。
2. 我们有____队篮球队伍。
3. 今天是2022年2月28日,再过____天就是春节了。
4. (-2) × 5 = ______5. 要把一个13升的装满,需要倒入____升的液体。
6. 一个直角三角形的两条直角边长度分别是3cm和4cm,斜边长度为_____.7. 两个相等的数相加的和是64,这个数是____.8. 60 ÷ 15 = ______.9. 计算:21 × 6 ÷ 7 = ______.10. 如果今天是星期五,再过____天就是星期天。
三、简答题(共5题,每题10分,共50分)1. 请解释下列数学术语的含义并举例:- 分数- 分子和分母- 整数2. 请计算下列算式的值:- 15 ÷ 3 + 2 × 4- 12 - 3(4 - 2)3. 请写出下列数的相反数:- 5- 1/3- 04. 请计算下列算式的积:- 3 × (-4)- (-5) × (-2)5. 请计算下列算式的商:- (-21) ÷ 3- 18 ÷ (-6)初一数学七年级数学上册第一次月考试卷答案一、选择题(共10题,每题2分,共20分)1. B2. D3. C4. B5. D6. D7. C8. D9. C10. B二、填空题(共10题,每题2分,共20分)1. 32. 23. 24. -105. 136. 57. 328. 49. 1810. 2三、简答题(共5题,每题10分,共50分)1.- 分数:指由分子和分母组成的数,分子表示被分割的数量,分母表示分割成几份。
初一数学上册第一次月考试卷四套
初一数学上册第一次月考试卷1一、选择题 1、—3的相反数是 ( )A 、13 B 、-3 C 、—13D 、32、 下列式子中,正确的是 ( ) A 、∣-5∣ =5 B 、-∣-5∣ = 5 C 、215.0-=- D 、2121=--3、下列算式正确的是 ( )A 、(—14)—5= —9B 、0 —(—3)=3C 、(—3)—(—3)=—6D 、∣5—3∣= —(5—3) 4、下列说法正确的是 ( ) A .整数包括正整数和负整数; B.零是整数,但不是正数,也不是负数; C.分数包括正分数、负分数和零; D.有理数不是正数就是负数 5、下列各数中互为相反数的是( )A 、12-与0.2B 、13与-0.33C 、-2.25与124D 、5与-(-5)6、在0,-1,∣-2∣,-(-3),5,3.8,215-,16中,正整数的个数是( )A 、1个B 、2个C 、3个D 、4个7、一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔 ( ) A. -60米 B. -80米 C.-40米 D.40米8、下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小 A ①② B ①③ C ①②③ D ①②③④9、一个数的相反数比它的本身大,则这个数是 ( )A.正数B.负数C.0D.负数和010、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则mba cd m ++-2 值为 ( )A 、3- B 、3 C 、5- D 、3或5- 11、比较—2.4,—0.5,—(—2),—3的大小,下列正确的是 ( )A 、—3>—2.4>—(—2)>—0.5B 、—(—2)>—3>—2.4>—0.5C 、—(—2)>—0.5>—2.4>—3D 、—3>—(—2)>—2.4>—0.5二、填空题:12、321-的倒数是321-的相反数是的倒数是___________。
初一数学第一学期第一次月考试卷两份(附答案)
数学月考试题(一)一、选择题(每小题3分,共24分)1.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .-3mB .+3mC .+mD .﹣5m2.下列各数中,不是有理数的是( ) A .3.14 B .C .D .0.10100100013. 下列说法中,正确的是( ) A .0是最小的整数 B .最大的负整数是﹣1C.有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列算式正确的是 ( ) A .(-14)-5=-9 B .0-(-3)=3 C .(-3)-(-3)=-6 D .()5353-=--5.如图,在数轴上点M 表示的数可能是( )A .1.5B .﹣1.5C .﹣2.4D .2.46.若a 的倒数为﹣,则a 是( )A .B .﹣C .2D .﹣27.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( ) A .4个B .3个C .2个D .1个8.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是 ( ) A .点C B .点D C .点A D .点B二、填空题(每小题3分,共30分)9. ―2的相反数是_______;10.比较大小:-0.3 ____11.今年2月份某市一天的最高气温为10℃,最低气温为﹣7℃,那么这一天的最高气温比最低气温高.12.绝对值小于3的所有整数和是.13.如果3-m与2m+1互为相反数,则m=________。
14.若|x+2|+|y﹣3|=0,则x+y的值为.15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是________。
16.若|﹣x|=5,则x=17.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为18.a是不为1的有理数,我们把11-a称为a的差倒数.如:2的差倒数是11-2=-1,-1的差倒数11-(-1)=12.已知a1=-13,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2011=________.三、解答题(共96分)19.(8分)把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.+(﹣4),4,0,﹣|﹣2.5|,﹣(﹣3).20.(8分)若a、b互为相反数,c、d互为倒数,m(m<0)的绝对值为2,求2m﹣cd+的值。
2023—2024学年度第一学期第一次月考试题 初一数学
2023—2024学年度第一学期第一次月考试题初一数学试卷满分:150分 考试时间:120分钟一、选择(每小题3分,计24分.请把正确选项的字母填在答题纸相应的位置)1.43-的倒数是( ) A .43- B .34 C .34- D .43 2. 在,0,1,-2这四个数中,最小的数是( )A.B. 0C. 1D. -2 3.如图,表示的数轴正确的是( )A .B .C .D .4.若|2|2a a -=-,则a 的范围( )A .2a ≤B .2a >C .2a <D .2a ≥5.数a 、b 、c 在数轴上对应的位置如图,化简|a +b |﹣|c ﹣b |+|c +a ﹣b |的结果( )A .﹣bB .c ﹣aC .﹣c ﹣aD .2a +b6.已知有理数a 、b 、c ,其中a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的数,则a +b +c 的值是( )A .0B .﹣2C .﹣2或0D .﹣1或17.设[x ]表示不超过x 的最大整数,如[2.7]=2,[-4.5]=-5,则[3.7]和[-6.5]所表示的点在数轴上的距离是( )A. 4B. 11C. 10D.98.下列说法中,正确的个数是( )①若11a a=,则a ≥0;②若|a |>|b |,则有(a +b )(a ﹣b )是正数; ③A 、B 、C 三点在数轴上对应的数分别是﹣2、6、x ,若相邻两点的距离相等,则x =2;④若代数式2x +|9﹣3x |+|1﹣x |+2011的值与x 无关,则该代数式值为2021;⑤a +b +c =0,abc <0,则||||b c a c a b a b c +++++的值为±1. A .1个 B .2个 C .3个 D .4个二、填空(每小题3分,计30分.请把正确答案填在答题纸相应的位置)9.若海平面以上500米,记作+500米,则海平面以下100米可记作 .10.在数轴上,点A 表示的数是4,点B 与点A 的距离是5,则点B 表示的数是 . 11.若m ,n 为相反数,则m +(﹣2023)+n 为 .12. 绝对值不大于6的非负整数的和为 .13.若y x y x <==,8||,2||,则=+y x .14.数轴上一动点A ,向左移动2个单位长度到B ,再向右移动3个单位长度到C 点,若点 C 表示的数为5,则点A 表示的数为 .15.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),(-3,2),(1,-7),则车上还有__ ______人.16.小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.17.观察下列等式(式子中的“!”是一种数学运算符号)1!1=,2!21=⨯,3!321=⨯⨯,4!4321=⨯⨯⨯,…,那么计算的值是______.18.将正偶数按下表排列5列:根据上面规律,则2000应在______.!!20222023三、解答题(共96分.请写出必要的计算步骤或推演过程)19.计算(每题4分,共16分)(1)10+(-12) (2) (-12)-(-17)+(-10)(3) 18-2+(-2)×3; (4) )36()1279543(-⨯+-- 20.(本题8分)把下列各数填在相应的括号里:-5,13+,0.62,0,-6.4,173-,7 (1)正整数:{ …}; (2)负整数:{ …};(3)分数:{ …}; (4)整数:{ …};21.(本题8分)用数轴上的点表示下列各数: 12-, 3-- , ()3-- ,0, 2.5- ,并用“<”把它们连接起来.22.(本题满分10分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求m 2﹣cd+的值。
七年级数学第一次月考试题(含答案)
七年级数学第一次月考试题一、精心选一选(每小题3分,共24分)1.如图,下列各组角中,是对顶角的一组是【 】A .∠1和∠2B .∠3和∠5C .∠3和∠4D .∠1和∠52.实数2,14,π,38,-227,0.32··中无理数的个数是【 】A .1个B .2个C .3个D .4个3.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=130°,则∠2的度数是【 】A .130°B .60°C .50°D .40°4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为【 】A .(-2,-1)B .(-1,0)C .(-1,-1)D .(-2,0) 5.下列说法不正确的是【 】A .±0.3是0.09的平方根,即±0.09=±0.3B .存在立方根和平方根相等的数C .正数的两个平方根的积为负数D .64的平方根是±86.已知点P(0,m)在y 轴的负半轴上,则点M(-m ,-m +1)在【 】A .第一象限B .第二象限C .第三象限D .第四象限 7.下列命题: ①若点P (x 、y )满足xy <0,则点P 在第二或第四象限;②两条直线被第三条直线所截,同位角相等;③过一点有且只有一条直线与已知直线平行; ④当x=0时,式子6﹣ 有最小值,其最小值是3;其中真命题的有【 】A .①②③B .①③④C .①④D .③④8.北小城同学设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入7,则输出的结果为【 】A .5B .6C .7D .8 二、细心填一填(每小题3分,共24分) 9.2-5的绝对值是 .10.如图,已知直线AB ,CD 相交于点O ,OE ⊥AB ,∠EOC =28°,则∠AOD = .11.命题“同位角相等,两直线平行”中,题设是 ,结论是 . 12.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3= .13.已知a ,b 为两个连续的整数,且a<28<b ,则a +b = .14.同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜,如图是两人玩的一盘棋,若白①的位置是(1,-5),黑②的位置是(2,-4),现轮到黑棋走,你认为黑棋放在 位置就可获胜.15.已知AB 在x 轴上,A 点的坐标为(3,0),并且AB =5,则B 的坐标为 .16.在学习了《实数》这一章后,小明发现:等等.根据小明发现的规律,若代数式的值为不等于1的整数,则整数___________.三、专心解一解(本大题共8小题,共72分) 17.(12分)计算与解方程:(1)(2)(3) (4)-25=018.(6分)在直角坐标系中,△ABC 的三个顶点的位置如图所示,现将△ABC 沿AA′的方向平移,使得点A 移至图中的点A′的位置.(1)在直角坐标系中,画出平移后所得△A′B′C′(其中B′、C 〃分别是B 、C 的对应点).(2)在(1)中所得的点B′,C′的坐标分别是 , . (3)直接写出△ABC 的面积为 .19.(7分)若是的整数部分,是16的平方根,且,求的算术平方根.20.(8分) 阅读理解并在括号内填注理由:已知:如图,AD ⊥BC 于D ,EF ⊥BC 于F ,交AB 于G ,交CA 延长线于E ,∠1=∠2. 求证:AD 平分∠BA C .证明:∵AD ⊥BC ,EF ⊥BC (已知) ∴∠ADC =90°,∠EFC =90°(垂直的定义) ∴ =∥ ( ) ∴∠1= ( ) ∠2= ( ) ∵∠1=∠2(已知)∴ = (等量代换) ∴AD 平分∠BAC (角平分线的定义)21.(8分)如图,若∠DEC+∠ACB=180°,∠1=∠2,CD ⊥AB,试问FG 与AB 垂直吗?说明理由.C321G D FEBA22.(9分) 先观察下列等式,再回答下列问题: ①; ②;③.(1)请你根据上面三个等式提供的信息,猜想的结果,并验证;(2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).23.(10分) 如图,已知直线l 1∥l 2,且l 3和l 1,l 2分别交于A ,B 两点,l 4和l 1,l 2相交于C ,D 两点,点P 在直线AB 上,(1)当点P 在A ,B 两点间运动时,问∠1,∠2,∠3之间有什么关系?并说明理由;(2)如果点P 在A ,B 两点外侧运动时,试探究∠ACP ,∠BDP ,∠CPD 之间的关系,并画出图形,说明理由.24.(12分) 如图1,在平面直角坐标系中, A(a,0),B(b,0), C(-1,2),且2+a +()24-b =0(1)求a,b 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名
七年级上第一次月考数学试卷
一、选择题(每小题2分,共20分)
1. -2的相反数是 . ( )
A 、 -21,
B 、-2,
C 、2
1, D 、2 2.有一种记分方法:以80分为基准,85分记为+5分,某同学得77分,则应记为 . ( )
A 、+3 分
B 、-3分
C 、+7分
D 、-7分
3.已知A 地的海拔高度为-53米,而B 地比A 地高30米,则此时B 地的海拔高度为 . ( )
A 、-83米
B 、-23米
C 、30米
D 、23米
4、在数轴上与表示数-1的点的距离是2的点表示的数是 . ( )
A 、1
B 、3
C 、2
D 、1或-3
5、下列各式中,正确的是. ( )
A 、-32> -4
3 B 、-4>0 C 、-3< -6 D 、-|+3|< -|-3| 6、下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记水位比前一日下降数),那么本周星期几水位最低? ( ) 星期 一 二 三 四 五 六 日 水位变化/米 0.12 -0.02 -0.13 -0.20 -0.08 -0.02 0.32
A 、星期一
B 、星期四
C 、星期六
D 、星期五
7、n 为有理数,则-n 与10n 的大小关系为 . ( )
A 、-n< 10n
B 、-n>10n
C 、-n=10n
D 、以上三结论均有可能
8、21×(-2)+(-2
1)×2等于 . ( ) A 、-2,B 、0,C 、1,D 、2
9、下列式子中,化简结果正确的是 ( )
A 、-|-5| =5
B 、+(-21)=21
C 、|-0.5|=-2
1 D 、|-5|=5 10、某粮店出售的三种品牌的面粉袋上,分别标有质量为(25+0.1)kg ,(25+0.2)kg ,(25+0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )
A 、0.8kg
B 、0.6kg
C 、0.5kg
D 、0.4kg
二.填空题(每小题2分,共20分)
11.化简1-(+3.6)=______________.
12.-5的相反数是________________.
13.设a=-13
2,则-a=________________.
14.__________比-5大3.
15.按规律填数:21,-32,43,-54,6
5,____,_____,_____,----. 16.有下列各数:0.003, 10,-6.6,-3
1,0,-80,-(-3),-|-2|,|-4|,其中非负整数的共有________________个.
17.绝对值等于本身的数有___________个.
18.比较大小:-65______-7
6. 19.一天早晨的气温是-08C,中午气温上升了012C ,午夜气温又下降了010C ,午夜的气温是______________.
20.|a|=5,b=-2,且ab>0,则a+b=________________.
三.计算:(每小题4分,共24分)
21、(1).(+1)+(-3)+(-2)+(+5). (2).|-3|-(-2).
(3).5.7-4.2-8.4-2.3+15
1. (4).(-5)×(-7)-5×(-6).
(5).(-61+43-121)×(-48). (6).(154+52-37)÷30
7
22.画一条数轴,在数轴上标出下列各数,并用“<”号连接起来:+1.5,-3,-2.5,
+2,+32
1,0. (5分)
23.将下列各数填入相应的大括号内.(6分)
-0.01, 221, 0 , -(-4), 80%, -(+2
3)
正数 { ---}
正整数{ ---}
负分数{ ---}
24.根据图中标示的数据,计算图形的周长(单位:mm )(4分)
四.计算(每小题5分,共20分)
25.(1). (-50)×(-376)+(-7)×(-376)-(-12)×(-37
6) (2)-23-(-2)2+(-2)4
(3). (65- | -21|+|31|)×|-6| (4)(-121)×32÷(-1)10-(-2)3÷(-2
3)2
五.应用
26..某冷冻厂的一个冷库现在的室温是-20C ,现有一批食品需要在温度为-280C 的室温下冷藏,如果冷库的室温每小时能降温40C ,那么6小时能否降到所需温度?(4分)
27.长春市居民生活用电基本价格为每度0.55元,若每月用电量超过70度,超出的部分每度电加价20%收费.
(1)若居民小华家八月份用电40度,则她家本月应缴费____________元;
(2)若居民小萍家八月份用电100度,则她家本月应缴费____________元;
(3)由(1)、(2)可得:若平均价格_________(填“<”或”>”号)0.55元,则用电量一定超过70度.(6分)
28.在3×3的方格纸中,试用格点(方格纸中每一个小正方形的顶点)连线将方格纸分割成大小形状都相同的两部分.如图所示就是其中的二个例子.请根据题意另外再给出5种不同的分割方法.(5分)
29.在一次数学测验中,七年(3)班的平均分为87分,把高于平均分的部分记作正数.低于平均分的部分记作负数.下表是该班一个小组10名同学的成绩变化情况:
学生序号 1 2 3 4 5 6 7 8 9 10 成绩变化-2 +10 +8 +5 -15 -1 0 +8 +13 -6 (1).该组10名同学的成绩最低分是多少?最高分是多少?
(2).最高分比最低分高多少?
(3).该组10名同学的成绩总分是多少?
(4).若该组10名同学的成绩平均分不低于87分,将得到奖励,每高一分,每人奖励2个本,否则不奖励,那么该组10名同学是否受到奖励?若受到奖励,共奖励多少个本?(6分)。