新人教版八年级数学下册《十七章 勾股定理 测试》教案_1
人教版八年级数学下册第十七章勾股定理单元教学设计
1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能
人教版八年级数学下册第17章勾股定理(教案)
b.在实际问题中,如何判断一个三角形是否为直角三角形,并运用勾股定理解决问题。
-解决方案:通过动画、实物模型等直观教具帮助学生形象地理解勾股定理的证明过程,采用分组讨论、师生互动等方式引导学生主动探究,突破难点。
四、教学流程
(一)导入新课(用时5分钟)
课堂上,我尝试采用了多种教学方法,如分组讨论、实验操作等,让学生在实践中学习和探索。这种做法在很大程度上提高了学生的参与度和积极性,但我也发现,在小组讨论过程中,部分学生依赖性强,不够主动参与。为此,我将在后续的教学中加强对学生的引导,鼓励他们提出自己的观点和疑问。
此外,我发现学生们在解决勾股定理相关问题时,有时会忽略细节,如单位不统一、计算错误等。针对这一问题,我将在今后的教学中加强对学生细节方面的指导,培养他们严谨的解题态度。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用绳子、直尺等工具制作直角三角形,并验证勾股定理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
理的证明过程,提高学生观察、分析、归纳的数学思维,增强几何直观和空间观念;
3.运用勾股数解决实际问题时,培养学生数学建模和数学应用的素养,激发创新意识;
4.通过勾股定理在生活中的实例探讨,增强学生数学与现实生活联系的意识,提高数学文化素养。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念及其证明过程,这是本节课的核心内容。通过讲解勾股定理的起源、证明方法(如欧几里得的证明、我国古代的证明等),使学生深入理解定理的本质。
新人教版第十七章勾股定理教案
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计
(一)教学重难点
1.理解并掌握勾股定理的表达式及其适用条件。
2.运用勾股定理解决实际问题,特别是计算直角三角形斜边长度。
3.理解并掌握勾股定理的证明过程,提高逻辑思维能力。
4.培养学生运用勾股定理发现和解决实际问题的能力。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中的直角三角形实例,如楼梯、墙壁等,引导学生观察、思考,激发学生的好奇心和求知欲,为新课的学习做好铺垫。
(二)过程与方法
1.通过对勾股定理的探究,培养学生提出问题、分析问题、解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作精神和沟通能力。
3.引导学生运用多种方法证明勾股定理,培养学生的发散思维和创新能力。
4.设计实际情境,让学生在实际问题中运用勾股定理,提高学生的应用能力。
(三)情感态度与价值观
3.教师强调勾股定理在实际问题中的应用价值,鼓励学生在生活中发现数学的美。
4.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们运用勾股定理,计算以下直角三角形的斜边长度:
1.引入勾股定理的概念,引导学生了解勾股定理的背景和意义。
2.通过实例演示,让学生直观地感受勾股定理的应用。
3.采用多种方法证明勾股定理,如几何法、代数法等,培养学生的逻辑思维和创新能力。
4.设计丰富的练习题,巩固学生对勾股定理的理解和应用。
5.结合生活实际,让学生在实际情境中运用勾股定理,提高学生的应用能力。
某建筑工地需要测量一块直角三角形的斜边长度,已知两条直角边的长度分别为10米和24米。由于工地条件有限,无法直接测量斜边长度。请问:如何利用勾股定理计算斜边长度?
第十七章-人教版勾股定理教案
第十七章勾股定理(一)教材所处的地位1、教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。
勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。
在理论和实践上都有广泛的应用。
勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法。
在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用。
2、教材特点:①在呈现方式上,突出实践性与研究性。
(对勾股定理是通过问题引出加以探索认识的。
②突出学数学、用数学的意识与过程,勾股定理的应用尽量和实际问题联系起来。
③对实际问题的选取,注意联系学生的实际生活。
④注意扩大学生的知识面。
(本章安排了两个阅读材料和一个课题学习)⑤注意训练系统的科学性,减少操作性习题,增加探索性问题的比重。
(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。
2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题。
3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。
4、运用勾股定理及其逆宣解决简单的实际问题。
情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。
(四)单元教学策略1、教学步骤:①整个章节的教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。
春八年级数学下册第17章勾股定理17.1勾股定理教案新人教版(最新整理)
17。
1 勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2。
2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A的面积=4;B的面积=9;C的面积=52-4×错误!×(2×3)=13;所以A+B=C。
A′=9;B′=25;C′=82-4×错误!×(5×3)=34;所以A′+B′=C′。
所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图"证明勾股定理.解:朱实=错误!ab;黄实=(a-b)2;正方形的面积=4朱实+黄实=(a-b)2+错误!ab×4=a2+b2-2ab+2ab=a2+b2。
又正方形的面积=c2,所以a2+b2=c2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再作三个边长分别为a、b、c的正方形,将它们像下图所示拼成两个正方形.证明:a2+b2=c2。
人教版初中数学八年级下册第十七章《勾股定理》复习教案
第17章勾股定理全章复习教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:(一)知识结构图:见PPT(二)基础知识:1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2 + b2 = c2几何语言:在Rt △ABC 中, ∠C=90°∴a2+b2=c2练习:1.求出下列直角三角形中未知的边.2.已知:直角三角形的三边长分别是 3,4,X,则X=3. 三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC8A 15B 30° 2C B A 2 45° A CB2 .勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a2 +b2=c2 ,那么这个三角形是直角三角形 几何语言: 在△ABC 中,∵a2+b2=c2∴ △ABC 是直角三角形,∠C=90°互逆定理 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.基础练习二:1.在已知下列三组长度的线段中,不能构成直角三角形的是 ( )A 5,12,13B 2,3,3C 4,7,5D 1, 2 , 52.若△ABC 中 ,AB=5 ,BC=12 ,AC=13 ,求AC 边上的高.三、典例分析:例1、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD 的面积变式 有一块田地的形状和尺寸如图所示,试求它的面积。
121334归纳: 转化思想例2、下图是学校的旗杆,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他D BA C归纳: 方程思想 例3、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八
勾股定理(1)知识与技能:掌握勾股定理和他的简单的应用,理解定理的一般探究方法。
过程与方法:在方格纸上通过计算面积的方法探索勾股定理的活动,让同学们经历观察、归纳、猜想和验证的数学发现过程,发展数与形结合的数学思想。
情感态度与价值观:在数学活动中发现探索意识和合作交流的良好学习习惯。
教学重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边的长。
教学难点:拼图法验证勾股定理,会利用两边求直角形另一边的长。
教具准备:方格纸、4个全等的三角形,小黑板等。
教与学互动设计:一、创设情境导入新课引导学生观察课本第64页的地面图形,说说你发现了什么?提问:①图中有些什么形状?②三个正方形之间有什么关系?③通过②的结论你能有什么猜想?说说看。
二、实验操作探求新知1.数格子(1)要求学生在准备好的方格纸中作一个任意的等腰直角三角形,分别以三角形的边为边向三角形的外部作正方形。
观察三个正方形的面积之间有什么关系。
(2)要求学生在方格纸中作一个任意的直角三角形,分别以三角形的边为边向三角形的外部作正方形。
观察三个正方形的面积之间有什么关系。
(3)要求学生在方格纸中作一个任意的非直角三角形,分别以三角形的边为边向三角形的外部作正方形。
观察三个正方形的面积之间有什么关系。
讨论、得出结论:在一个直角三角形中,两直角边的平方和等于斜边的平方。
2.证明猜想。
10c20cm要求用四个全等到的直角三角形拼成一个以斜边为边长的正方形,推理得出 a 2+b 2=c 23.得出结论定理:经过证明被确认的命题叫做定理。
勾股定理:在一个直角三角形中,两直角边的平方和等于斜边的平方。
三、应用迁移例1.求下图中的字母A ,B 所代表的正方形的面积。
例2.一个文具盒的尺如图,一根长30cm 的细 木棒能否放进这个文具 盒,为什么?练习:填空(1)在Rt ∆ABC 中,∠C=90°,a=5,b=12,则c = (2)在Rt ∆ABC 中,∠B=90°,a=3,b=4,则c =(3)在等腰Rt ∆ABC 中,AC=BC ,∠C=90°,AC :BC :AB= (4)在Rt ∆ABC 中,∠C=90°,∠A=30°,BC :AC :AB= 探究2.如图,一个3 m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 的距离为,如果梯子的顶端A 沿墙下滑,那么梯子的底端B 也外移吗?练习:1.如图,阴影部分是一个正方形,求此正方形的面积。
新人教版八年级下数学精品教案:第十七章 勾股定理
17.1 勾股定理第1课时 勾股定1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC ;(3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2); (3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 的周长.解析:本题应分△ABC 为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,如图①所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2. 方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时 勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】 勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC ,AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米.6秒后,B ′C =13-0.5×6=10米,则AB ′=B ′C 2-AC 2=53(米),则船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】 利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了1003km 到达B 点,然后再沿北偏西30°方向走了100km 到达目的地C 点,求出A 、C 两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD ∥BE ,∴∠ABE =∠DAB =60°.∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =1003km ,BC =100km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km),∴A 、C 两点之间的距离为200km.方法总结:先确定△ABC 是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】 利用勾股定理解决立体图形最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM ,AM =102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM ,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】 运用勾股定理解决折叠中的有关计算如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:连接BM ,MB ′.设AM =x ,在Rt △ABM 中,AB 2+AM 2=BM 2.在Rt △MDB ′中,MD 2+DB ′2.∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x=2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】 勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=a m,AC=b m,AD =x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC=a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.17.2 勾股定理的逆定理第1课时 勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF=14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA=4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2,3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC +S △ACD =12×6×8+12×10×24=144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB=90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB =13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题第 11 页 共 11 页如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分. 答:走私艇C 最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。
人教版八年级数学下册第十七章-勾股定理-教案
17.1 勾股定理(第1课时)【教学任务分析】教学目标知识技能1.了解勾股定理的发现过程,掌握勾股定理的内容,会证明勾股定理.2.能运用勾股定理进行简单的运算.3.培养在实际生活中发现问题,总结规律的意识和能力.过程方法经历观察与发现勾股定理的过程,感受直角三角形三边关系,培养学生善于观察、发现、并学会验证.情感态度1.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,勤奋学习。
2.培养学生严谨的数学学习态度,体会勾股定理在现实中的应用.重点勾股定理的内容及证明.难点勾股定理的证明.【教学环节安排】环节教学问题设计教学活动设计情境引入【问题1】相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.注意观察,你能有什么发现?分析:突出一下,换成下图你有什发现?说出你的观点.学生猜测得出结论:等腰直角三角形斜边的平方等于两直角边的平方和.教师:提出问题、引导学生观察,猜测、发现.学生:观察思考、尝试得出结论自主探究合作交【问题2】其它直角三角形是否也存在这种关系?观察下边两个图并填写下表:【问题3】命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.命题证明:学生阅读课本65页,理解,提示:面积关系是214()2ab b a c⨯+-=.A的面积B的面积C的面积图1-2图1-3教师:变换图形,便于学生观察,得出:由面积和相等到斜边的平方等于两直角边的平方和.学生:观察图形,填表,并简要阐述理由.教师:引导学生得出结论.鼓励学生,敢于猜想、阐述自己观点.教师:引出问题3,怎样证明命题是否正确?流适当穿插我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情.总结:1.勾股定理:如果直角三角形的两直角边长分别为a 、b,斜边长为c ,那么222a b c +=.2.理解:反映了直角三角形三边之间存在的内在联系,可由已知两边求第三边学生:阅读课本理解证明过程. 教师:根据学生实际看能否理解,若不能理解可少作提示分析.也可多列举几种证法.教师:汇总总结,帮助学生理解,激励学生. 尝 试 应 用1.根据图18.1-1你能写出勾股定理的证明过程吗?【分析】总面积等于各面积之和221()42a b ab c +-⨯= 2. 一个门框尺寸如图18.1-2所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?【分析】木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过,对角线AC 是斜着能通过的最大长度,求出AC ,再与木板的宽比较,就能知道木板能否通过.教师:提出问题.学生:思考独立完成后小组内阐述、分析、交流.教师:根据学生完成情况适当讲评.第2题注意过程书写规范,见教材67页成果 展示 引导学生对上面的问题进行展示交流——知识点,做题的方法,技巧,心得及困惑.学习小组互相讨论,交流,补充,展示补 偿 提 高 1. 求出下列各直角三角形中未知边x 的长度.2.已知:如图在Rt △ABC 中,∠C=90°,A B=15,AC=12,求BC 的长3. 已知:如图,等边△ABC 的边长是6cm , AD 为BC 边上的高,求AD 的长2.3.作业 设计必做题:教材69页习题18.1第1、2两题,做在作业本上.选做题:教材69页习题18.1第7题教师布置作业,并提出要求. 学生课下独立完成,延续课堂.17.1 勾股定理 (第2课时)【教学任务分析】图图18.1-2教学目标知识技能1.会用勾股定理进行简单的计算和解决实际问题.2.理解掌握实际问题转化成数学问题的解题思路和方法.过程方法经历探究勾股定理在实际问题中的应用过程,掌握勾股定理的应用方法.情感态度通过学生思维方式、意识的培养,感受数学方法理念,体会勾股定理的应用价值,热爱数学.重点运用勾股定理进行计算的方法难点勾股定理的灵活运用.【教学环节安排】环节教学问题设计教学活动设计情境引入复习什么是勾股定理?勾股定理的作用?教师:勾股定理是直角三角形中特有的三边关系定理,运用它能由已知两边求第三边.学生:回答、理解自主探究合作交流【问题3】如图18.1-7,一个3m长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?【分析】(1)由图根据勾股定理可求BD的长,看看是否是0.5m(2)已经知道那些线段的长?AB和CD是什么关系?(3)由图可知BD=OD-OB,分别求出OB、OD即可.解:(由学生填全教材67页的空后,尝试在练习本上写出过程)教师:出示题目并引导学生分析,学生:理解、写出过程,感受应用勾股定理进行计算的书写.建议:也可有学生独立分析完成教材填空,然后教师书写过程并强调写法及规范.尝试1. 1.教材68页,练习1、2题2.一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
八年级数学下册第十七章勾股定理勾股定理一教案新人教
17.1 勾股定理(一)一、教学目的1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
二、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。
激发学生的民族自豪感,和爱国情怀。
例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
进一步让学生确信勾股定理的正确性。
四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
人教版八年级数学下册17.1 勾股定理(第1课时)优秀教学设计
目标包括知识能力、过程方法、情感态度价值观;准备包括预习要求与教学资源;教学心得不少于60字。
课题 17.1 勾股定理(第一课时)优化方案目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
准备多媒体课件、导学案设境 定向一、课前预习1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: (2)若D 为斜边中点,则斜边中线(3)若∠B=30°,则∠B 的对边和斜边: 2、(1)、同学们画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。
问题:你是否发现23+24与25,25+212和213的关系, 组织探究 展示交流 点拨提升二、自主学习。
思考:(图中每个小方格代表一个单位面积)(2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? (3)你能发现图1-1中三个正方形A ,B ,C 围成的直角三角形三边的关系吗? (4)你能发现课本图1-3中三个正方形A ,B ,C 围成的直角三角形三边的关系吗?(5)如果直角三角形的两直角边分别为1.6个单位长度和2.4个长度单位,上面所猜想的数量关系还成立吗?说明你的理由。
由此我们可以得出什么结论?可猜想:命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_________________。
三、合作探究勾股定理证明:方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。
S 正方形=_______________=____________________方法二;已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
勾股定理的内容是: 。
验收小结课堂小结1、什么勾股定理?如何表示?2、勾股定理只适用于什么三角形? 教学心得1.大部分学生对勾股定理的探索过程很感兴趣,但有部分学生对其探索过程很难理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学第一次月考试卷讲评教学设计
二、教学目标
四、教学方法:以“引导---讨论”教学法为主,附之于练习法
五、学法指导:通过自主纠错、小组合作交流学习,和学生展示及变式训练的教学方式下帮助学生掌握未来发展所需要的基础知识和基本技能,在轻松愉悦的学习氛围中关注学生兴趣的培养,把学习兴趣作为学习的不竭动力,同时,关注学生的个性发展,在教学中体现因材施教。
六、教学准备:多媒体课件,学生准备已考试卷.
八、教学过程设计。