用代数式探究图形规律1
备考2022年中考数学一轮复习-数与式_代数式_探索图形规律-单选题专训及答案
备考2022年中考数学一轮复习-数与式_代数式_探索图形规律-单选题专训及答案探索图形规律单选题专训1、(2019抚顺.中考模拟) 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A . (6052,0)B . (6054,2)C . (6058,0)D . (6060,2)2、(2018苏州.中考模拟) 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结,,,…得到螺旋折线(如图),已知点(0,1),(,0),(0,),则该折线上的点的坐标为()A . (,24)B . (,25)C . (,24)D . (,25)3、(2019新昌.中考模拟) 我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正六边形数”.设第n个“平行四边形数”和“正六边形数”分别为a和b,若a+b=103,则的值是()A .B .C .D .4、(2019义乌.中考模拟) 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A . 22张B . 23张C . 24张D . 25张5、(2019.中考模拟) 如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2015的坐标为()A . (21008, 0)B . (21007,﹣21007)C . (21009, 21009)D . (﹣21007,21007)6、(2018浙江.中考模拟) 如图a是某公司的商标图,由外至里,第一层阴影部分是由边长为1的正ΔABC和其外接圆形成的(如图b),第二层阴影部分是由正ΔABC的内切圆和这个内切圆的内接正三角形形成的(如图c),依次类推,则第8层阴影部分的面积为()A .B .C .D .7、(2017台州.中考模拟) 农夫将苹果树种在正方形的果园内.为了保护苹果树不怕风吹,他在苹果树的周围种针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n为()A . 6B . 8C . 12D . 168、(2017庆云.中考模拟) 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A . 64B . 77C . 80D . 859、(2017浙江.中考模拟) 小用火柴棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴棍,第3个图形用了18根火柴棍.依照此规律,若第n个图形用了70根火柴棍,则n的值为()A . 6B . 7C . 8D . 910、(2012丽水.中考真卷) 小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是()A . 2010B . 2012C . 2014D . 201611、(2017莱西.中考模拟) 如图图案是用四种基本图形按照一定规律拼成的,第10个图案中的最下面一行从左至右的第2个基本图形应是()A .B .C .D .12、(2017微山.中考模拟) 如图是用大小相同的正方形摆放成的一组有规律的图案,图案一需要2个正方形;图案二需要5个正方形;图案三需要10个正方形;图案四需要17个正方形;…按此规律摆下去,图案三十需要正方形个数是()A . 902B . 901C . 900D . 89913、(2017阳谷.中考模拟) 如图,在平面内直角坐标系中,直线l:y= x+1交x轴于点A,交y轴于点B,点A1, A2, A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则OAn的长是()A . 2nB . (2n+1)C . (2n﹣1﹣1)D . (2n﹣1)14、(2017郑州.中考模拟) 在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每秒1个单位长度,点P在弧线上运动的速度为每秒个单位长度,则2017秒时,点P的坐标是()A . (,)B . (,﹣)C . (2017,)D . (2017,﹣)15、(2017宛城.中考模拟) 如图,半径为2的正六边形ABCDEF的中心在坐标原点O,点P从点B出发,沿正六边形的边按顺时针方向以每秒2个单位长度的速度运动,则第2017秒时,点P的坐标是()A . (1,)B . (﹣1,﹣)C . (1,﹣)D . (﹣1,)16、(2017新野.中考模拟) 如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0),B(0,4),则点B2016的横坐标为()A . 5B . 12C . 10070D . 1008017、(2017黄冈.中考模拟) 如图:直线l:y=﹣x,点A1的坐标为(﹣1,0),过点A 1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3…按此作法进行去,点A2016的坐标为()A . (﹣22016, 0)B . (﹣22017, 0)C . (﹣21008, 0)D . (﹣21007,0)18、(2021河南.中考模拟) 在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A . 84株B . 88株C . 92株D . 121株19、(2017渝中.中考模拟) 如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()和黑子.A . 37B . 42C . 73D . 12120、(2011百色.中考真卷) 相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,h(1)=1;n=2时,小盘→2柱,大盘→3柱,小盘从2柱→3柱,完成.即h(2)=3;n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱.[即用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成;我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h (6)=()A . 11B . 31C . 63D . 12721、(2013百色.中考真卷) 如图,在平面直角坐标系中,直线l:y= x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A . 24B . 48C . 96D . 19222、(2020岑溪.中考模拟) 下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A . 11B . 13C . 15D . 1723、(2017重庆.中考真卷) 下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A . 116B . 144C . 145D . 15024、(2019广州.中考模拟) 如图,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究在第n个图中,黑、白瓷砖分别各有多少块( )A . ,B . ,C . ,D . ,25、(2020温州.中考模拟) 有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图①,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了图②,如果继续“生长”下去,它将变得“枝繁叶茂”,则“生长”了2 014次后形成的图形中所有正方形的面积和是( )A . 2 012B . 2 013C . 2 014D . 2 01526、(2020台州.中考模拟) 正方形ABCD的边长为1,其面积记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S2,…按此规律继续下去,则S2019的值为()A .B .C .D .27、(2020周口.中考模拟) 如图,已知菱形 A,B,C,D 的顶点 A(0,﹣1),∠D A C =60°.若点 P从点 A出发,沿A→B→C→D→A…的方向,在菱形的边上以每秒 1 个单位长度的速度移动,则第 2020 秒时,点 P的坐标为()A . (2,0)B . (,0)C . (﹣,0)D . (0,1 )28、(2020琼海.中考模拟) 如图,在△OAB中,顶点O(0,0),A(﹣2,3),B(2,3),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第2020次旋转结束时,点D的坐标为()A . (﹣2,7)B . (7,2)C . (2,﹣7)D . (﹣7,﹣2)29、(2020砚山.中考模拟) 如图所示,在平面直角坐标系中,,,是等腰直角三角形且,把绕点B顺时针旋转,得到,把绕点C顺时针旋转,得到,依此类推,的坐标为()得到的等腰直角三角形的直角顶点P2020A . (4039,-1)B . (4039,1)C . (2020,-1)D . (2020,1)30、(2020十堰.中考真卷) 根据图中数字的规律,若第n个图中出现数字396,则(。
专题02 代数式(解析版)
2022-2023学年七年级数学上册章节同步实验班培优题型变式训练(北师大版)专题02 代数式【题型1】代数式表示数、图形的规律1.(2022·河北廊坊·七年级期末)如图.用棋子按规律摆出下列一组图形,据此规律,第2022个,图形棋子的枚数为( )A.6065B.6068C.6069D.6071【答案】B【分析】由所给的图形不难看出第n个图形所棋子枚数是:3n+2,从而可求解.【详解】解:∵第1个图形棋子枚数为:5=3×1+2,第2个图形棋子枚数为:5+3=3×2+2,第3个图形棋子枚数为:5+3+3=3×3+2,∴第n 个图形棋子枚数为:3n +2,∴第2022个图形棋子枚数为:3×2022+2=6068,故B 正确.故选:B .【点睛】此题考查图形的变化规律,找出图形之间的联系,得出规律是解题的关键.【变式1-1】2.(2022·黑龙江大庆·期中)观察下面一系列等式:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,并用含有a 的字母表示这个规律__________.【答案】()()2221218a a a+--=【分析】根据题意观察式子,发现等式的左边为连续的两个奇数的平方差,右边为8与从1开始的自然数的乘积,据此用代数式表示即可求解.【详解】解:23181-=´,22531682-==´,22752483-==´,22973284,-==´…分析其规律,可得()()2221218a a a +--=.故答案为:()()2221218a a a +--=.【点睛】本题考查了用代数式表示式子的规律,发现规律是解题的关键.【题型2】代数式的书写方法1.(2021·福建·晋江市磁灶中学七年级期中)下列代数式书写规范的是( )A .2m n ´B .526abC .a b ¸D .3xD、该选项正确.故选D.【点睛】本题考查了代数式的书写要求,解决本题的关键是掌握代数式的书写要求.要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式.【变式2-1】2.(2022·全国·七年级课时练习)将下列各式按照列代数式的规范要求重新书写:(1)a×5,应写成_______ ;(2)S÷t应写成_________;(3)123a a b´´-´,应写成______;(4)413x, 应写成______.【题型3】代数式表示的实际意义1.(2022·内蒙古通辽·七年级期末)下列赋予4m实际意义的叙述中不正确的是()A.若一个两位数中的十位数字和个位数字分别为4和m,则4m表示这个两位数B.若正方形的边长为m厘米,则4m表示这个正方形的周长(单位:厘米)C.若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额(单位:元)D.若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程(单位:千米)【答案】A【分析】根据两位数的表示=十位数字×10+个位数字;正方形周长=边长×4;金额=单价×重量;路程=速度×时间进行分析即可.【详解】解:A、若一个两位数中的十位数字和个位数字分别为4和m,则(4×10+m)表示这个两位数,原说法不正确,故此选项符合题意;B、若正方形的边长为m厘米,则4m表示这个正方形的周长,原说法正确,故此选项不符合题意;C、若葡萄的价格是4元/千克,则4m表示买m千克葡萄的金额,原说法正确,故此选项不符合题意;D、若一辆汽车行驶的速度是m千米/小时,则4m表示该汽车4小时行驶的路程,原说法正确,故此选项不符合题意;故选:A.【点睛】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.【变式3-1】2.(2022·江苏·七年级)某超市的苹果价格如图,试说明代数式100﹣9.8x的实际意义__.【答案】用100元买每斤9.8元的苹果x斤余下的钱【分析】根据题意结合图片得出代数式100﹣9.8x的实际意义.【详解】解:代数式100﹣9.8x 的实际意义为:用100元买每斤9.8元的苹果x 斤余下的钱.故答案为:用100元买每斤9.8元的苹果x 斤余下的钱.【点睛】此题主要考查了代数式,结合题意利用图片得出是解题关键.【题型4】求代数式的值1.(2021·湖北·公安县教学研究中心七年级阶段练习)已知|2|a =-,则a -5=( )A .3-B .3C .7-D .7【答案】A【分析】由绝对值的意义求出a 的值,再代入a -5中计算即可.【详解】∵|2|a =-,∴2a =,∴a -5=2-5=-3.故选A .【点睛】本题考查求一个数的绝对值,代数式求值.掌握正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题关键.【变式4-1】2.(2021·江西·宜春九中七年级阶段练习)已知150y x -++--=,则x y +=__________.一.选择题1.(2022·全国·七年级专题练习)某商店促销的方法是将原价x 元的衣服以(0.8x ﹣10)元出售,意思是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【答案】B【分析】根据先算乘法可知先打折,再减价.【详解】解:将原价x 元的衣服以(0.8x ﹣10)元出售,意思是原价打8折后再减去10元,故选:B .【点睛】本题考查代数式的实际意义.理解运算中乘为打折,减是减价是解题关键.2.(2021·湖南·宁远县教研室七年级期中)下列式子中不是代数式的是( )A .32a b +B .52+C .1a b +=D .1b a +【答案】C【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项.【详解】解:A 、是代数式,故不符合题意;B 、是代数式,故不符合题意;C 、中含有“=”,不是代数式,故符合题意;D 、是代数式,故不符合题意;故选C .【点睛】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键.3.(2022·全国·七年级专题练习)下列各式中,符合整式书写规则的是( )A .5x ´B .72xyC .124xyD .1x y-¸【答案】B【分析】利用代数式的书写要求分别判断得出答案.【详解】解:A 、5x ´不符合代数式的书写要求,应为5x ,故此选项不符合题意;4.(2022.湖北.利川市思源实验学校七年级阶段练习)小王利用计算机设计了一个程序,输入和输出的数据如下表:输入 (1)2345…输出…1225310417526…那么,当输入数据8时,输出的数据是( )A .861B .863C .865D .8675.(2021·全国·七年级单元测试)已知3257x y -+=,那么多项式15102x y -+的值为( )A .8B .10C .12D .35【答案】C【分析】由多项式3257x y -+=,可求出322x y -=,从而求得1510x y -的值,继而可求得答案.【详解】解:∵3257x y -+=∴322x y -=∴151010x y -=∴1510+2x y -10+212==故选C .【点睛】本题考查了求多项式的值,关键在于利用“整体代入法”求代数式的值.6.(2019·海南·中考真题)当m =-1时,代数式2m+3的值是( )A .-1B .0C .1D .2【答案】C【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=´-+=;故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.二、填空题7.(2018·上海·中考真题)某商品原价为a 元,如果按原价的八折销售,那么售价是_____元.(用含字母a 的代数式表示).【点睛】本题考查了销售问题、列代数式,弄清题意,列出符合题意的代数式是解题的关键.8.(2020·河北·模拟预测)若4x y +=,a ,b 互为倒数,则1()52x y ab ++的值是_________9.(2019·广东·中考真题)已知23x y =+,则代数式489x y -+的值是_____.【答案】21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.10.(2022·全国·七年级课时练习)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q =______;(2)若共购进3510´本甲种书及3310´本乙种书,Q =______(用科学记数法表示).【答案】 4m +5n 43.510´【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q =4m +5n ;(2)Q =4×3510´+5×3310´=20×310+15×310=35×310=43.510´.故答案为:4m +5n ,43.510´.【点睛】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.三、解答题11.(2021·全国·七年级单元测试)如图所示,有长为l 的篱笆,利用它和一面墙围城长方形园子,在园子的长边上开了1米的门,园子的宽为t .(1)用关于l ,t 的代数式表示园子的面积.(2)当l =100m ,t =30m 时,求园子的面积.【答案】(1)()12S l t t =+-;(2)21230m 【分析】(1)表示出长,利用长方形的面积列出算式即可;(2)把l =100m ,t =30m 代入(1)求得答案即可;【详解】解:(1)宽为t,长为:l +1-2t 面积为:()12S l t t =+-(2)当l =100m ,t =30m 时S=()()12100123030l t t +-=+-´´=1230故园子的面积为21230m 【点睛】本题考查根据实际,列出代数式,再代入求值,关键在于找到等量关系.12.(2022·全国·七年级专题练习)(1)观察下面的点阵图与等式的关系,并填空:第1个点阵2213112++=+第2个点阵13531++++=______+______第3个点阵++++++=______+______.1357531(2)通过猜想,写出第n个点阵相对应的等式.【答案】(1)22,32,32,42(2)1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2【分析】(1)根据点阵图即可求解;(2)根据(1)中的3个等式得出规律,进而写出第n个点阵相对应的等式.【详解】(1)第1个点阵1+3+1=12+22,第2个点阵1+3+5+3+1=22+32,第3个点阵1+3+5+7+5+3+1=32+42.故答案为22,32,32,42;(2)根据(1)中的3个等式,可以发现,第n个点阵的对角点最多有2n+1个,而且等号右侧是22++,n n(1)∴第n个点阵相对应的等式为:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=n2+(n+1)2.【点睛】本题考查了规律型:图形的变化类,要求学生通过观察,分析、归纳发现其中的规律.13.(2022·全国·七年级专题练习)用同样大小的两种不同颜色(白色.灰色)的正方形纸片,按如图方式拼成长方形.[观察思考]第(1)个图形中有212=´张正方形纸片;´+==´张正方形纸片;第(2)个图形中有2(12)623´++==´张正方形纸片;第(3)个图形中有2(123)1234第(4)个图形中有2(1234)2045´+++==´张正方形纸片;……以此类推(1)[规律总结]第(5)个图形中有__________张正方形纸片(直接写出结果).(2)根据上面的发现我们可以猜想:123n ++++=L __________.(用含n 的代数式表示)(3)[问题解决]根据你的发现计算:101102103200++++L .14.(2022·全国·七年级专题练习)特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则:①取0x =时,直接可以得到00a =;②取1x =时,可以得到432106a a a a a ++++=;③取1x =-时,可以得到432106a a a a a -+-+=-;④把②,③的结论相加,就可以得到4222a a +020+=a ,结合①00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=.求:(1)0a 的值;(2)6543210++++++a a a a a a a 的值;(3)642a a a ++的值.【答案】(1)4(2)8(3)0【分析】(1)观察等式可发现只要令x =1即可求出a 0;(2)观察等式可发现只要令x =2即可求出a 6+a 5+a 4+a 3+a 2+a 1+a 0的值;(3)令x =2即可求出等式①,令x =0即可求出等式②,两个式子相加即可求出来.(1)解:当1x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴0414a =´=;(2)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432108a a a a a a a +++++=+①;当0x =时,∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x -+-+-+-+-+-+=,∴65432100+-++=--a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=-=.【点睛】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.15.(2019·贵州贵阳·中考真题)如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.【答案】(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)S =ab ﹣a ﹣b +1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;【点睛】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键.。
3.3探索与表达规律(教案)北师大版(2024)数学七年级上册
3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
中考一轮复习--专题五 规律探索题
(3)通过对简单、特殊情况的观察,再推广到一般情况.
2.规律探究的基本原则:
(1)遵循类推原则,项找项的规律,和找和的规律,差找差的规律,积
找积的规律.
(2)遵循有序原则,从特殊开始,从简单开始,先找3个,发现规律,再
验证运用规律.
类型一
类型二
类型三
类型一 数式的变化规律
例1(2019·安徽)观察以下等式:
∴S5= =-1-a,
4
∴S6=-S5-1=a.
1
1
∴S7= = =S1,
6
故此规律为 6 个一循环,
∵2 018÷6=336 余 2,
1+
∴S2 018=- .
1
2
3
4
5
6
7
4.(2018·黑龙江龙东区)如图,已知等边△ABC的边长是2,以BC边上
的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边
(2)∵2 020÷3=673…1,∴需要小正方形674个,大正方形673个.
1
2
3
4
5
6
7
7.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上
面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.
将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有
n(n + 1)
圆圈的个数为1+2+3+…+n= 2 .如果图3和图4中的圆圈各有13
为
.
类型一
类型二
类型三
分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一
次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进
北师大版数学七年级上册课件第三章 3.3 探索与表达规律(第1课时)
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = _9_a__ 规律:方框中九个数之和=9×正中间的数.
探究新知
思考 (1)在右图的日历图中,能否使框 中9个数的和为 144?180 呢?为什么? (2)在某个月的日历中,恰好有五个星 期日位于同一列且日期数的和为80, 这个月的第一个星期日是几号?
基础巩固题
3. 如图是在正方形网格中按规律填成的阴影,根据此规律, 第n个图中的阴影部分小正方形的个数是__n_(__n_+_1_)__+_2__.
课堂检测
基础巩固题
4.如图,图①有2个相同的小长方形,图②有6个相同的小长方
形,图③有12个相同的小长方形,图有20个相同的小长方形 ……按此规律,那么图n有__n__(_n_+_1_)__个相同的小长方形.
课堂检测
基础巩固题
5.假设有足够多的黑白围棋子,它们按照一定的规律排成一行,
如图:
○○●●○●○○●●○●○○●●○●○○●●○●……
那么请问第2 017个棋子是黑的还是白的? 白的.
课堂检测 能力提升题
观察下列一组图形,其中图形①中共有2颗星,图形②中共 有6颗星,图形③中共有11颗星,图形④中共有17颗星,…… 按此规律,图形⑧中星星的颗数是( C )
所以圈出的三个数字的和不可能是64.
课堂小结 观察
探
探索规律的
猜想
索 一般方法 数
归纳
探索图形规律的方法总结
探索图形规律的方法总结一、规律探索型问题的分类1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。
猜想归纳是解决这类问题的有效方法,通过对已给出的材料和信息对研究的对象进行观察、实验、比较、归纳和分析综合,作出符合一定规律与事实的推测性想象,从而发现一般规律。
它是发现和认识规律的重要手段。
平时的教学不能局限于课本,可以设计一些猜想性、类比性的活动,让学生经历一个观察、试验等活动过程,在活动中通过对大量特殊情形的观察猜想出一般情形的结论,从而探索事物的内在规律。
2、图形规律根据一组相关图形的变化规律,从中总结图形变化所反映的规律。
解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。
图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查学生数形结合的数学思想。
二、规律探索型问题常用解法1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号。
如:一组按规律排列的式子:,,,,…(),其中第7个式子是,第个式子是(为正整数)。
分子和分母的底数没变,变化的是符号及它们的指数,再把变量和序列号放在一起加以比较,就很容易发现其中的奥秘。
2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多。
对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了。
华师版七年级上册数学第3章 整式的加减 专题技能训练(三) 训练 应用代数式探索规律(1)
【点拨】这一列数可分组写为:11,12,21,13,22,31, 14,23,32,41,….根据规律可知57所在的组为第 11 组:(111,120, 39,48,57,66,75,84,93,120,111),
【答案】B
2.【2020·西藏】观察下列两行数: 1,3,5,7,9,11,13,15,17,…; 1,4,7,10,13,16,19,22,25,…. 探究发现:第1个相同的数是1,第2个相同的数是7,…,
【答案】A
3.如第果n一个些数数是按__一__定(_-_规_1_)律n_+_排1_·2_列n_2+_为n_1_:_.23,(n-为45,正87整,数-)196,…,那么
4.一列数按规n律2 排列:,…,第12,n个43数,为94_,__1_5_6_,__.265(n为正整数) n+1
5.【2020·青海】观察下列各式的规律: ①1×3-22=3-4=-1; ②2×4-32=8-9=-1; ③3×5-42=15-16=-1. 请按以上规律写出第4个算式:______________________. 用含有字母的式子表示第n个算式:___________________.
8.【2020·日照】用大小相同的圆点摆成如图所示的图案,按照这样的规律摆放, 则第10个图案中圆点的个数是( )
A.59B.65C.70D.71
【点拨】由题图可知,当n=1时,圆点个数为5+2;当n=2时,圆点个数为5 +2+3;当n=3时,圆点个数为5+2+3+4;当n=4时,圆点个数为5+2+3 +4+5,…,所以当n=10时,圆点个数为5+2+3+4+5+6+7+8+9+10 +11=70.故选C.
(2)归纳算式中的规律,直接写出第n个等式;
2024年秋新北师大版七年级上册数学教学课件 3.3 探索与表达规律课时1
新知探究 知识点 日历中的数学规律
思考2:在某个月的日历中,恰好有五个星期日位于同
一列且日期数的和为80,这个月的第一个星期日是几号?
解:假设这个月的第一个星期日是m号,
则m+(m+7)+(m+7+7)+(m+7+7+7)+ (m+7+7+7+7)=80,
此时中间数为405,其余四个数分别为
......
395 ,403 ,407 ,415.
d=__a_+__5_.(用含a的式子填空)
随堂练习
(2)用一个长方形框框出日历中的三个数(图3中的阴影),如果 这三个数的和等于51,那么这三个数各是多少?
解:设中间的数为x,则上面的数为
x-7,下面的数为x+7.
根据题意,得(x-7)+x+(x+7)=51,
所以x=17.
图3
所以这三个数分别是10,17,24.
纵列相邻两数相差7
所以m=2,
所以这个月的第一个星期日是2号.
新知探究 知识点 日历中的数学规律 思考3:如果将方框改为十字形框,你能发现哪些规律?
7+13+14+15+21=70 =14×5.
十字形框中5个数的和等于正中间的数的5倍.
新知探究 知识点 日历中的数学规律 思考4:如果将方框改为H形框,你能发现哪些规律?
随堂练习
3.将连续的奇数1,3,5,7,9,…排成如图所示的数表.
(1)十字形框中的五个数之和与中间数
15有什么关系?
1 3 57 9
北师大版-数学-七年级上册-北京101中学 第三章《探索规律(一)》教案 (北师大版七上)
第三章《探索规律(一)》教案一、学生起点分析本节课是北师大版数学教材七年级上册第三章《字母表示数》的第6节——“探索规律”的第1课时。
从学习内容上说,本节内容是在学生学习了“用字母表示数”、“列代数式”、“去括号”、“合并同类项”等知识的基础上进行的,它既是对前面所学知识的综合应用,也是对这些知识的拓展与延伸,对学生体会数学建模具有重要的作用。
学生通过对本章前几节知识的学习,已经具备了初步的语言表达能力及符号表示能力。
从学生学情来讲,由于基础教育课程改革的不断深入发展,教师教育理念得到了更新,现代教学手段不论是在城市中学还是在农村中学都进入了课堂,学生的学习方式得到了根本性的转变,主要表现在学生应用电脑水平有所提高,课堂上活跃大胆,具有较强的参与意识。
学生的学习习惯和认知水平与以往相比也均有明显提高,在此基础上研究探索规律问题,无论是思想上还是方法上都具备了良好的契机。
二、教学任务分析根据以上学习内容和学情分析,可确定本节课的教学目标如下:1、知识与技能(1)会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
(2)培养学生的观察能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。
(2)在解决问题的过程中体验类比、转化等思维方法,培养学生良好的思维品质。
3、情感、态度与价值观认识知识来源于生活,体会数学就在身边,激发学生的探究热情,体验数学活动的探索性及创造性,培养学生实事求是的科学态度。
教学重点:探索实际问题中蕴涵的关系和规律。
教学难点:用字母、运算符号表示一般规律。
根据本课时的教学内容和教学目标可安排如下的教学过程:首先特意为学生提供一个游戏活动的时间和空间,为学生经历“探索规律”的活动过程提供一个有趣的背景,以此来激发学生的学习兴趣;再通过对生活中日历的观察与分析,从不同角度进行思考,用本章学习过的字母表示数、代数式、代数式的值等知识去探索日历中数与数之间的变化规律,并用去括号、合并同类项等知识去验证规律;最后在巩固练习和评价小结的基础上结束本课的学习。
备考2023年中考数学一轮复习-数与式_代数式_探索图形规律-填空题专训及答案
备考2023年中考数学一轮复习-数与式_代数式_探索图形规律-填空题专训及答案探索图形规律填空题专训1、(2015铁岭.中考真卷) 如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n次操作结束时,被取走的所有线段长度之和为________.2、(2019大庆.中考真卷) 归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为________.3、(2011徐州.中考真卷) 如图,每个图案都由若干个棋子摆成,依照此规律,第n 个图案中棋子的总个数可以用含n的代数式表示为________.4、(2019河北.中考模拟) 如图,在函数y=(x>0)的图象上有点P1、P2、P3..……Pn、P n+1点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3..…Sn,则S 1=________,Sn=________.(用含n的代数式表示)5、(2017徐州.中考模拟) 在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为________.6、(2019.中考模拟) 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为________.7、(2017青岛.中考模拟) 用火柴棒按如图两种方式搭图形,若搭(x+1)个等边三角形与搭y个正六边形所用的火柴棒根数相同,则的值为________.8、(2017胶州.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,在Rt△ABC内部作正方形D1E1F1G1,其中点D1, E1分别在AC,BC边上,边F1G1在BC上,它的面积记作S1;按同样的方法在△CD1E1内部作正方形D2E2F2G2,它的面积记作S2, S2=________,…,照此规律作下去,正方形DnEnFnGn的面积Sn=________.9、(2017东营.中考真卷) 如图,在平面直角坐标系中,直线l:y= x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是________.10、(2020南宁.中考模拟) 如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A 2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是________.11、(2015随州.中考真卷) 观察下列图形规律:当n=________ 时,图形“●”的个数和“△”的个数相等.12、(2019南宁.中考模拟) 正方形A1B1C1O,A2B2C2C1, A3B3C3C2,…按如图所示的方式放置,点A1, A2, A3和点C1, C2, C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B2014的坐标是________.13、(2018毕节.中考模拟) 如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B 1 C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△An BnCn的顶点Bn、Cn在圆上.如图1,当n=1时,正三角形的边长a1=________;如图2,当n=2时,正三角形的边长a2=________;如图3,正三角形的边长an=________(用含n的代数式表示).14、(2018毕节.中考模拟) 如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的________倍.15、(2019银川.中考模拟) 如图所示,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列各图:则第n个图形中需要用黑色瓷砖________块.(用含n 的代数式表示)16、(2018宁夏回族自治区.中考真卷) 如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁________张A8的纸.17、(2020金昌.中考模拟) (2018九上·椒江月考) 如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④,…,则三角形⑩的直角顶点的坐标为________.18、(2020滨州.中考模拟) 蜜蜂采蜜时,如果蜜源很远它就会跳起“8字舞”,告诉同伴蜜源的方向。
中考复习《代数式》中图形变化规律训练(一)(有答案)
中考复习《代数式》中图形变化规律训练(一)一、选择题1.观察下列图形:它们是按一定规律排列的,依照此规律,第n个图形中共有()个五角星(n为正整数).A. 4+3(n−1)B. 4nC. 4n+1D. 3n+42.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配()把椅子.A. 14B. 18C. 20D. 243.下列图形是用长度相等的火柴棒按一定规律排列的图形,第(1)个图形中有8根火柴棒,第(2)个图形中有14根火柴棒,第(3)个图形中有20根火柴棒,…,按此规律排列下去,第(6)个图形中,火柴棒的根数是A. 34B. 36C. 38D. 404.下图是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,则组成第4个图案的基础图形的个数为()A. 11B. 12C. 13D. 145.用若干大小相同的黑白两种颜色的正方形瓷砖,按下列规律铺成一列图案,其中,第①幅图中黑、白色瓷砖共5块;第②幅图中黑、白色瓷砖共12块;第③幅图中黑、白色瓷砖共21块.则第6幅图案中黑、白色瓷砖共()块A. 45B. 49C. 60D. 646.用围棋子按下面的规律摆图形,则摆第5个图形需要围棋子的枚数是()A. 17B. 18C. 19D. 207.如图由火柴棒拼出的一系列图形中,第n个图形是由n个正方形组成的,通过观察可以发现,第20个图形中火柴棒的根数是()A. 60B. 61C. 62D. 638.将一些半径相同的小圆按如图所示的规律摆放,第一个图形有3个小圆,第二个图形有6个小圆,第三个图形有9个小圆,…依此规律,第十个图形的小圆个数是()……A. 66B. 55C. 30D. 28二、填空题9.用火柴棍象如图这样搭三角形:你能找出规律猜想出下列问题吗?搭n个三角形需要______ 根火柴棍.10.用同样规格的黑白两种颜色的正方形瓷砖按如图方式铺地板,则第n个图形中需要黑色瓷砖________________块(用含n的代数式表示).11.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有______个★.12.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火材棒,图案②需15根火柴棒,……,按此规律,图案★需________________根火材棒.13.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为__________.14.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”的个数为_________.15.如图是三种化合物的结构式及分子式,按其规律第4个化合物的分子式为____.三、解答题16.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有________根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是第几个图案;如果没有,请说明理由.17.如图:下列图形是由边长为1的正方形按照某种规律排列而组成的.(1)观察图形,填写下表:(2)依上推测第n个图形中,正方形的个数为_____;图形的周长为_____.(都用含n的代数式表示)(3)当n=2009时,计算图形的周长.18.用同样规格的黑白两种颜色的正方形,按如图的方式拼图,请根据图中的信息完成下列的问题.(1)在图②中用了______ 块黑色正方形,在图③中用了______ 块黑色正方形;(2)按如图的规律继续铺下去,那么第n个图形要用______ 块黑色正方形;(3)如果有足够多的白色正方形,能不能恰好用完90块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.19.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有颗黑色棋子,第n个图形有颗黑色棋子。
【精选】2020年中考数学典例精做专题06 探索规律(1) (教师版)
※知识精要探索规律是根据已知的几个数据或几个图形中发现数据的变化规律,用代数式表示出来,它是数学中常见的类型之一,.探索规律体现了从特殊到一般,再从一般到特殊的数学思想.探索规律问题,要从给出的几个有限的数据着手,认真观察其中的变化规律,尝试猜想、归纳其规律,并取特殊值代入验证.※要点突破1、探索规律的一般方法是:(1)观察:从具体问题出发,观察各个数量的特点及变化规律;(2)猜想:由此及彼,合理猜想;(3)归纳:善于类比,从不同的事物中发现其相似或相同点;(4)验证:总结规律,得出结论,并取特殊值验证结论的正确性.2、需要掌握几种常见的规律题的解题方法和技巧:(1)等差规律(2)循环规律(3)平方规律(4)等比规律等。
※典例精讲例.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案.可以看作是第1个图案经过平移而得,那么(1)第4个图案中柯白色六边形地面砖____块,第n个图案中有白色地面砖____块【答案】18 4n+2故答案为:18,4n+2.※课堂精练一、数与式型1.根据下表中的规律,从左到右的空格中应依次填写的数字是()A.100,011 B.011,100 C.011,101 D.101,110【答案】B2.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.38 B.52 C.66 D.74【答案】D【解析】根据前四个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的偶数,据此解答.观察每个正方形里的数字,发现前四个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的偶数,所以第四个正方形中左下角是8,右上角是10,则m为74.故选D.3.按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【答案】C【解析】观察字母a的系数、次数的规律即可写出第n个单项式.解:观察可知次数序号是一样的,奇数位置时系数为1,偶数位置时系数为-1,则有a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选C.4.观察下列算式: , , , ,, , , …,则…的未位数字是( )A.8 B.6 C.4 D.0【答案】B5.计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【答案】x2﹣1;x3﹣1;x4﹣1;(1)x7﹣1;(2)x n﹣1;(3)236﹣1.【解析】(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.6.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b=_____.【答案】1097.阅读下列材料,并解答问题:①;②;③;④;……(1)直接写出第⑤个等式___________________________________;(2)用含n(n为正整数)的等式表示你探索的规律;(3)利用你探索的规律,求+++…+的值.【答案】(1);(2)=;(3).【解析】(1)根据前4个式子的规律即可写第⑤个等式;(2)观察可知第n个等式左边是,右边是,据此即可得;(3)根据上面的规律进行计算即可得.解:(1)观察前4个等式,可知第⑤个等式是,故答案为:;(2)观察可知等式左边是,右边是,所以用含n的等式表示为:=;(3)+++…+=+++…+==.二、循环型1.将正整数按如图所示的位置顺序排列,根据排列规律,则2018应在()A.A处B.B处C.C处D.D处【答案】A2.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是,-1的差倒数为=,现已知x1=,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依次类推,则x2018= .【答案】=3. 如图,圆上有五个点,这五个点将圆分成五等份(每一份称为一段弧长),把这五个点按顺时针方向依次编号为1,2,3,4,5.若从某一点开始,沿圆周顺时针方向行走,点的编号是数字几,就走几段弧长,我们把这种走法称为一次“移位”.如:小明在编号为3的点,那么他应走3段弧长,即从3→4→5→1为第1次“移位”,这时他到达编号为1的点,那么他应走1段弧长,即从1→2为第2次“移位”.(1)若小明从编号为4的点开始,第1次“移位”后,他到达编号为的点?(2)2018次“移位”后,他到达编号为的点?【答案】(1)若小明从编号为4的点开始,第1次“移位”后,他到达编号为3号的的点。
中考数学 专题一 规律探索与猜想复习1
专题一 规律探索与猜想
规律探索与猜想问题是指由几个具体结论通过类比、猜想、推理等一 系列的数学思维过程,来探求一般性结论的问题.在中考中主要包括 “数字规律探索”、“代数式规律探索”和“图形规律探索”及“坐 标规律探索”四种类型. 解决规律探索问题的策略是:通过对所给的一组(或一串)式子及结论进 行全面细致的观察、分析、比较,从中发现其变化规律,并由此猜想 出一般性的结论,然后再给出合理的证明或加以应用.
分析:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5 +1=11根小棒,第3个图案中有3×5+1=16根小棒,…由此得出第n个 图案中有(5n+1)根小棒.
坐标规律
【例3】(2015·成都)已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对 角线A1C1,B1D1相交于点O,以点O为坐标原点,分别以OA1,OB1所在 直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形 B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形 B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按 此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,An,则 点An的坐标为___(_3_n-__1,__0_)__. 分析:由题意,点A1的坐标为(1,0),点A2的坐标为(3,0),即(32-1, 0), 点A3的坐标为(9,0),即(33-1,0),A4的坐标为(27,0),即(34-1,0) ,…,∴点An的坐标为(3n-1,0).
1000a+100b+10c+d 11
=
1000a+100b+10b+a 11
=
1001a+110b 11=Leabharlann 91a+10b
专题一 规律探究问题
第2个图Y2=3
第3个图Y3=7
第4个图Y4=15
A.15×24
C.33×24
B.31×24
D.63×24
B )
2.(2022 临淄一模)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第
1 幅图形中“•”的个数为 a1,第 2 幅图形中“•”的个数为 a2,第 3 幅图形中“•”的个数为 a 3,…,以此
2.(2021十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位
于第32行第13列的数是( B )
A.2 025
B.2 023
C.2 021
D.2 019
3.(2022 淄川一模)观察下列等式:4-2=4÷2, -3= ÷3,- - =- ÷ .请你找出一个满足以上特征的两个
类推,则 + + +…+
A.
C.
B.
D.
的值为(
C )
3.(2022芝罘一模)如图所示,某果农将苹果树种在正方形的果园,为了保护苹果树不被风吹,他在苹
果树的周围种植针叶树,根据图中规律,该果农计划种植100棵苹果树,需要种植针叶树的棵数
A.18
B.19
C.20
D.21
A)
(1)等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,这个常数叫做
等差数列的公差,公差常用字母d表示,例如:等差数列1,3,5,7,9,…,2n-1中,通项公式为a n =
代数式之规律性问题
规律探索型问题1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.解题方法规律探索问题的解题方法一般是通过观察、类比特殊情况(特殊点、特殊数量、特殊线段、特殊位置等)中数据特点,将数据进行分解重组、猜想、归纳得出规律,并用数学语言来表达这种规律,同时要用结论去检验特殊情况,以肯定结论的正确.考点1数字猜想型问题【例1】(2013·常德)小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;……根据以上规律可知第100行左起第一个数是___.考点2数式规律型问题【例3】(2013·遂宁)为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第n图,需用火柴棒的根数为.探索数量规律题常用的方法试题(1)(2012·桂林) 下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是________.(2)(2012·黔东南) 如图,第①个图有2个相同的小正方形,第②个图有6个相同的小正方形,第③个图有12个相同的小正方形,第④个图有20个相同的小正方形…按此规律,那么第○n 个图有________个相同的小正方形.(3)如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,…,按照这样的规律排列下去,第9个图形由________个圆组成.规范答题解析(1)根据每一个图形都是一个正方形和右边的一个矩形构成,得到左边的正方形中小正方形的个数和右边的矩形中的正方形的个数的和即可.仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第1个图有:1+3个;第2个图有:4+4个;第3个图有:9+5个;……故第n个图有:n2+(n+2)个.(2)观察不难发现,每一个图形中正方形的个数等于图形序号乘以比序号大1的数,根据此规律解答即可.第①个图有2个相同的小正方形,2=1×2;第②个图有6个相同的小正方形,6=2×3;第③个图有12个相同的小正方形,12=3×4;第④个图有20个相同的小正方形,20=4×5;……按此规律,第○n 个图有n(n+1)个相同的小正方形.(3)首先分析题意,找到规律,并进行推导得出答案.观察分析可得:第1个图有1个圆;第2个图由7个圆组成,7=1+6;第3个图由19个圆组成,19=1+6+2×6;……故第9个图由1+6+2×6+3×6+…+8×6=1+(1+2+3+…+8)×6=217个圆组成.2)观察不难发现,每一个图形中正方形的个数等于图形序号乘以比序号大1的数,根据此规律解答即可.第①个图有2个相同的小正方形,2=1×2;第②个图有6个相同的小正方形,6=2×3;第③个图有12个相同的小正方形,12=3×4;第④个图有20个相同的小正方形,20=4×5;……按此规律,第○n 个图有n(n+1)个相同的小正方形.(3)首先分析题意,找到规律,并进行推导得出答案.观察分析可得:第1个图有1个圆;第2个图由7个圆组成,7=1+6;第3个图由19个圆组成,19=1+6+2×6;……。
冀教版数学七年级上册《通过观察探索规律并列代数式》教学设计1
冀教版数学七年级上册《通过观察探索规律并列代数式》教学设计1一. 教材分析冀教版数学七年级上册《通过观察探索规律并列代数式》这一章节主要让学生通过观察实际问题,探索其中的规律,并能够用代数式进行表达。
本章内容是学生从具体形象思维向抽象逻辑思维过渡的重要环节,对于培养学生分析问题、解决问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些基本的代数知识有一定的了解。
但他们在面对复杂的实际问题时,可能会感到困惑,不知道如何运用所学的知识去解决问题。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高他们分析问题和解决问题的能力。
三. 教学目标1.让学生通过观察实际问题,探索其中的规律,并能够用代数式进行表达。
2.培养学生分析问题、解决问题的能力。
3.提高学生运用数学知识解决实际问题的意识。
四. 教学重难点1.教学重点:让学生能够从实际问题中抽象出规律,并用代数式进行表达。
2.教学难点:如何引导学生将实际问题与数学知识相结合,提高他们分析问题和解决问题的能力。
五. 教学方法1.情境教学法:通过设置实际问题情境,引导学生观察、分析、解决问题。
2.启发式教学法:教师引导学生思考,激发学生的学习兴趣和求知欲。
3.合作学习法:学生分组讨论,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关的实际问题,用于引导学生观察和探索。
2.准备多媒体教学设备,用于展示问题和结果。
3.准备相关的学习资料,供学生课后巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过设置一个实际问题情境,引导学生观察和思考,激发学生的学习兴趣。
例如:某商店举行打折活动,原价100元的商品打8折后售价是多少?2.呈现(10分钟)教师展示多个类似的问题,让学生观察和分析其中的规律。
例如:原价200元的商品打8折后售价是多少?原价500元的商品打8折后售价是多少?3.操练(10分钟)教师引导学生分组讨论,共同解决问题。
初中数学找规律题讲解与总结[1].
1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系;②用代数式表示规律③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题 1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题 2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题 3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。
2021年九年级中考数学一轮复习提分专练—图形变化类:找规律(一)
2021年九年级中考数学一轮复习提分专练—图形变化类:找规律(一)1.如图是某同学在沙滩上用石子摆成的小房子,请根据图中的信息完成下列的问题:(1)填写下表:图形编号①②③④…图中石子的总数 5 12 …(2)第20个图形需要颗石子;(3)如果继续摆放下去,那么第N个图案要用颗石子;(4)该同学准备用200颗石子来摆放第n个图案,摆放成完整的图案后,第n个图案能否刚好用完这200颗石子?如果可以,说出n的值?如果不行,说出n的最大值以及至少还剩余几颗石子?2.如图所示,有一个形如六边形的点阵,它的中心是一个点,第二层每边有两个点,第三层每边有三个点,依此类推(1)填写下表:层次 1 2 3 4 5 6该层对应的点数所有层的总点数(2)写出第n层(n≥2)所对应的点数;(3)写出六边形的点阵共有n层(n≥2)时的总点数;(4)如果六边形的点阵共有n层(n≥2)时的总点数为397,你知道共有多少层吗?3.用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6 图形中的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数;(用含n的代数式表示)(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?4.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图3中的圆圈共有13层.(1)我们自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,﹣20,…,求最底层最右边圆圈内的数是;(3)求图4中所有圆圈中各数值之和.(写出计算过程)5.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(﹣1)×2=﹣2(﹣3)×(﹣4)×(﹣5)=﹣60三个角上三个数的和1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣12积与和的商(﹣2)÷2=﹣1(2)请用你发现的规律求出图④中的数x和图⑤中的数y.6.如图所示:图①是一个正方形,分别连接这个正方形各边的中点得到图②,再分别连接图②中间小正方形各边的中点,得到图③.(1)填写下表:图形标号①②③正方形个数三角形个数(2)按上面的方法继续分下去,第n个图形中有多少个正方形?有多少个三角形?(3)当三角形个数为100时,是第几个图形?7.如图,搭第一个图形需要3根火柴棒.(1)搭一搭,填一填:1 2 3 4 5 …三角形个数…火柴棒根数(2)搭10个这样的三角形需要根火柴棒.(3)搭40个这样的三角形需要根火柴棒.(3)搭n个这样的三角形需要根火柴棒.8.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线.(2)探索归纳:如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画条直线.(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握次手.9.如图,搭第一个图形需要4根火柴棒,搭第二个图形需要10根火柴棒.(1)搭一搭,填一填:第几个图形 1 2 3 4 …火柴棒根数…(2)搭15个图形需要根火柴棒.(3)搭30个图形需要根火柴棒.(4)搭n个图形需要根火柴棒.10.(1)按题图方式,围4个正六边形,需要根小棒.(2)围20个正六边形,需要根小棒.(3)如用m来表示正六边形的个数,那么围m个正六边形需要根小棒.参考答案1.解:(1)第三个是3×(3+4)=21,第四个是4×(4+4)=32,(2)第20个图形是20×(20+4)=480个;(3)第n个图形是n(n+4);故答案为:21,32;480;n(n+4);(4)当n=12时,有12×(12+4)=192,当n=13时,有13×(13+4)=221>200,故不能刚好用完这200颗石子,n最大值为12,至少还剩8颗石子.2.解:第一层上的点数为1;第二层上的点数为6=1×6;第三层上的点数为6+6=2×6;第四层上的点数为6+6+6=3×6;…第n层上的点数为(n﹣1)×6.所以n层六边形点阵的总点数为1+1×6+2×6+3×6+…+(n﹣1)×6=1+6[1+2+3+4+…+(n﹣1)]=1+6[(1+2+3+…+n﹣1)+(n﹣1+n﹣2+…+3+2+1)]÷2=1+6×=1+3n(n﹣1)(1)填表如下:层次 1 2 3 4 5 6该层对应的点数 1 6 12 18 24 30所有层的总点数 1 7 19 37 61 91(2)根据分析可得第n层的点数之和为6(n﹣1)(n≥2)3)根据分析可得共有n层时的点数之和为1+3n(n﹣1);(4)根据题意得:1+3n(n﹣1)=397.n(n﹣1)=132;(n﹣12)(n+11)=0n=12或﹣11.故n=12,答:共有12层.3.解:(1)如图所示:图形编号 1 2 3 4 5 6 图形中的棋6 9 12 15 18 21子(2)依题意可得当摆到第n个图形时棋子的枚数应为:6+3(n﹣1)=6+3n﹣3=3n+3;(3)由上题可知此时3n+3=99,∴n=32.答:第32个图形共有99枚棋子.4.解:(1)当有13层时,图3中到第12层共有:1+2+3+…+11+12=78个圆圈,最底层最左边这个圆圈中的数是:78+1=79;(2)图4中所有圆圈中共有1+2+3+…+13==91个数,最底层最右边圆圈内的数是﹣23+91﹣1=67;(3)图4中共有91个数,其中23个负数,1个0,67个正数,所以图4中所有圆圈中各数的和为:﹣23﹣22﹣…﹣1+0+1+2+…+67=﹣(1+2+3+...+23)+(1+2+3+ (67)=﹣276+2278=2002.故答案为:(1)79;(2)67.5.解:(1)图②:(﹣60)÷(﹣12)=5,图③:(﹣2)×(﹣5)×17=170,(﹣2)+(﹣5)+17=10,170÷10=17.图①图②图③三个角上三个数的积 1×(﹣1)×2=﹣2 (﹣3)×(﹣4)×(﹣5)=﹣60(﹣2)×(﹣5)×17=170三个角上三个数的和1+(﹣1)+2=2 (﹣3)+(﹣4)+(﹣5)=﹣12 (﹣2)+(﹣5)+17=10积与和的商﹣2÷2=﹣1,(﹣60)÷(﹣12)=5,170÷10=17 (2)图④:5×(﹣8)×(﹣9)=360,5+(﹣8)+(﹣9)=﹣12,x=360÷(﹣12)×2=﹣60,图⑤:1×3×(﹣6)=﹣18,1+3+(﹣6)=﹣2,y=﹣18÷(﹣2)×2=18.6.解:填写下表:图形标号①②③正方形个数 1 2 3三角形个数0 4 8 (2)第n个图形中有n个正方形,有三角形4(n﹣1)=4n﹣4个;(3)4n﹣4=100,解得:n=267.解:第1个图形有3根火柴,第2个图形有5根火柴,第3个图形有7根火柴,第4个图形有9根火柴,…,依此类推,第n个图形有2n+1根火柴;(1)搭一搭,填一填:三角形1 2 3 4 5 …个数3 5 7 9 11 …火柴棒根数(2)搭10个这样的三角形需要3+2×9=21根火柴棒.(3)搭40个这样的三角形需要3+2×39=81根火柴棒.(3)搭n个这样的三角形需要3+2(n﹣1)=2n+1根火柴棒.故答案为:3,5,7,9,11;21;81;2n+1.8.解:(1)根据图形得:如图:(1)试验观察如果每过两点可以画一条直线,那么:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.(2)探索归纳:如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n﹣1=条直线.(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握990次手.9.解:(1)搭一搭,填一填:第几个图形 1 2 3 4 …火柴棒根数 4 10 18 28 …(2)搭15个图形需要4+6+8+10+…+30+32=2(2+3+4+…+16)=16(16﹣1)﹣2=238根火柴棒.(3)搭30个图形需要4+6+8+10+…+60+62=2(2+3+4+…+31)=31(31﹣1)﹣2=928根火柴棒.(4)搭n个图形需要2(2+3+4+…+n+1)=n(n+1)﹣2=n2+n﹣2根火柴棒.10.解:根据题意分析可得:搭第1个图形需6根火柴;此后,每个图形都比前一个图形多用5根;(1)按题图方式,围4个正六边形,需要6+3×5=21根小棒.(2)围20个正六边形,需要6+19×5=101根小棒.(3)如用m来表示正六边形的个数,那么围m个正六边形需要6+5(m﹣1)=5m+1根小棒.故答案为:21,101,5m+1.11/ 11。
冀教版数学七年级上册《通过观察探索规律并列代数式》教学设计1
冀教版数学七年级上册《通过观察探索规律并列代数式》教学设计1一. 教材分析冀教版数学七年级上册《通过观察探索规律并列代数式》这一章节,主要让学生通过观察实际问题,探索其中的数量关系和变化规律,学会用代数式表示这些规律。
内容主要包括:用字母表示数,字母的加减乘除运算,以及含有未知数的方程。
这一章节的内容是学生从具体到抽象思维过渡的一个重要环节,对于培养学生的逻辑思维能力和解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的抽象思维能力,对于用字母表示数和简单的字母运算有一定的认识。
但还有一部分学生在理解上还存在困难,特别是对于含有未知数的方程,难以理解其本质。
因此,在教学过程中,需要针对这部分学生进行重点辅导,帮助他们建立正确的数学思维方式。
三. 教学目标1.让学生掌握用字母表示数的方法,以及字母的加减乘除运算规则。
2.培养学生通过观察探索实际问题,找出数量关系和变化规律的能力。
3.使学生能够理解含有未知数的方程的意义,并学会解决简单的实际问题。
四. 教学重难点1.重点:用字母表示数,字母的加减乘除运算。
2.难点:含有未知数的方程的理解和应用。
五. 教学方法1.情境教学法:通过设置实际问题情境,让学生在解决问题的过程中探索规律,提高学生的学习兴趣和积极性。
2.引导发现法:教师引导学生观察、分析实际问题,发现数量关系和变化规律,培养学生自主学习的能力。
3.实践操作法:让学生通过动手操作,加深对字母运算和方程的理解。
六. 教学准备1.教学PPT:制作包含实际问题情境的PPT,用于引导学生观察和探索。
2.练习题:准备一些相关的练习题,用于巩固所学知识。
3.教学素材:准备一些含有未知数的实际问题,用于让学生解决。
七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题情境,如购物问题:一件商品的原价是x元,打8折后的价格是多少?让学生思考如何用字母表示这个问题。
2.呈现(10分钟)引导学生观察这个实际问题,让学生发现其中的数量关系和变化规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n=1 n=2 ……
用代数式探究图形规律
探究图形的变化规律,得借助于代数式这个非常有力的工具。
现举几例,介绍图形规律的探究方法,供大家参考:
一、适当分块
例1(泰州市)如图1,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律 . 解析:把点阵中的点分上、下两块来看,
斜线上方点的个数分别为: 1,1+2,1+2+3,…,
而斜线下方点的个数分别为:1+2,1+2+3,1+2+3+4,…,于是,可知,第n 个点阵中点的个数为:[1+2+3+4+…+(n -1)]+
(1+2+3+4+…+n )=n 2,即22
)1(2)1(n n n n n =++- 评注:有明显分界线时,把点阵分块考察,探究每块图形的变化规律,再从中发现整个点阵的变化规律是一种非常有效的探究方法。
二、巧妙分组
例2、如图,是用火柴棒摆出的一系列三角形图案,按这种方案摆下去,当每边上摆n 根火柴棒时,共需要摆________根火柴棒
.
解析:以每三个为一组,构成一个三角形。
而第2个图中,有2层,共1+2=3个三角形;第3个图中,有3层,共1+2+3=6个三角形;……,第n 个图中,有n 层,共1+2+3+…+n =2)1(+n n 个三角形,则共需2
)1(3+n n 根火柴棒。
评注: 巧妙地把构成图形的线段进行分组,则可准确计算得各个图形中线段的条数。
三、拼接图形
例3(2006年荆州市)用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n 个图案中正方形的个数是 。
解析:从所给的图形看,每个图形可以看作是,依次在前面的一个图形的基础上拼接而得:n =1时,有3个;n =2时,有3+4=7个;n =3时,有3+4×2=11个;…,由此可知,第n 个图形中正方形的个数是:3+4(n -1)=4n -1。
图
1
…… …… 211= 2363+= 26104+= 2132+=
评注:当图形遵循一定的规则往后延续时,可以把它看成是一个固定的“单元”依次拼接,而这个“单元”就是探求规律的突破口。
四、分层考察
例4(青岛市)如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面
...涂色的
小立方体共有个.
解析:根据图形特征,分层考察:图①中,下层有4个;图②中,下面二层有4×2个,而最上面一层中,两个面的交界处有4个,共(4×2+4×1)个;图③中,下面三层各有4个,最上面一层中,两个面交界处有4×2个,共有(4×3+4×2)个,依次类推,第n个图形中的个数有:4n+4(n-1)=8n-4(个)
评注:对于方块问题,进行分层考察,行之有效,其中蕴含着分类讨论的数学思想。