大学物理二总复习
大学物理2考试复习重点(问答题)-图文
大学物理2考试复习重点(问答题)-图文1位移电流的实质是什么?谈谈你对位移电流的理解。
答:位移电流的本质是变化的电场。
Id=SdDdD1dDdD位移电流密度jd===dtdtSdtdt位移电流是电位移通量对时间的变化率。
位移电流只对应于变化的电场,无自由电荷的定向移动,无焦耳热。
在导体、电介质、真空中均存在,只要有变化的电场就有位移电流。
2行波在传播过程中,质元的动能和势能的时间关系式是相同的。
就此谈谈你的理解?答:在介质中任取体积为△V,质量为△m的质元。
当波传播到这个质元时,将具有动能△1△EK=△Ep=A22(V)in2Ek和△Ep。
可以证明2某tu0在波传播的媒质中,任一体积元的动能和势能还有总机械能均随某,t作周期性变化,且变化是同相位的。
体积元在平衡位置时,动能势能和机械能均最大。
体积远的位移最大时,三者均为零。
3什么是波的衍射?举出生活中关于波的衍射的例子。
什么是波的干涉?相干光的获得方法有哪些?答:衍射:当波在传播过程中遇到障碍物时,其传播方向绕过障碍物发生偏折的现象,称为波的衍射。
例如站在高墙后面的人能听到别人说话的声音,隔了山岭或者建筑物能收听无线电广播。
干涉:频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开。
这种现象叫做波的干涉。
产生干涉的一个必要条件是,两列波的频率必须相同并且有固定的相位差。
获得相干光的方法的基本原理是把由光源上同一点发出的光设法一分为二,然后再使这两部分叠加起来。
1分波阵面法(例如杨氏双缝干涉)2分振幅法(例如薄膜干涉)。
4杨氏双缝实验中,屏上的干涉条纹有怎样的特点,明暗条纹的级次和间距由哪些因素决定?答:屏上将出现一系列稳定的明暗相间的条纹。
这些条纹都与狭缝平行,条纹间的距离彼此相等。
如果,P点处为明纹,即各级明纹中心离O 点的距离为某=kDdk=0,1,2,3,相应于k=0的称为零级明纹或中央明纹。
大学物理2(上)总复习--简答题力热振29
大学物理2(上)总复习---思考题力学1~111.下面几个物理量中,哪些与原点的选择有关,哪些与原点的选择无关:(1)位矢;(2)位移;(3)速度;(4)角动量。
答:1.位矢和角动量与原点选取有关,而速度、位移与原点选取无关。
2.两个大小与质量相同的小球,一个是弹性球,另一个是非弹性球。
它们从同一高度自由落下与地面碰撞后,为什么弹性球跳得较高?地面对它们的冲量是否相同?为什么?答(1)弹性球与地面碰撞损耗的动能比非与地面碰撞损失的小,因而弹性球反跳速度 V 1 大于非弹性球反跳速度V 2,故弹性球跳的较高。
(2)地面对它们的冲量也不相同,地面对弹性球的冲量大小为 11mv mv I +=,地面对 非弹性球的冲量大小为22mv mv I +=。
因为21v v >,则有21I I >。
3.弹簧的劲度系数k 是材料常数吗?若把一个弹簧均分为二段,则每段弹簧的劲度系数还是k 吗?将一质量为m 的物体分别挂在分割前、后的弹簧下面,问分割前后两个弹簧振子的振动频率是否一样?其关系如何?答.不是 ; 不是 ; 分割后,弹簧的劲度系数为k 2,所以分割后组成的振子的频率0ν== 。
4.影响刚体转动惯量的因素有哪些?答.转动惯量2J r dm =⎰。
影响因素有:刚体的质量;转轴的位置;质量的分布(即刚体的形状)。
5.A 和B 两物体放在水平面上,它们受到的水平恒力F 一样,位移s 也一样,但一个接触面光滑,另一个粗糙.F 力做的功是否一样?两物体动能增量是否一样? 答.根据功的定义:A F r =⋅∆。
所以当它们受到的水平恒力F 一样,位移s 也一样时,两个功是相等的;但由于光滑的接触面摩擦力不做功,粗糙的接触面摩擦力做功,所以两个物体的总功不同,动能的增量就不相同。
6.已知质点的运动方程为j t y i t x r ˆ)(ˆ)(+= ,有人说其速度和加速度分别为dr v dt = , 22dt r d a = ,其中22y x r +=,你说对吗?答.不对 ; 速率与加速度的表达为: dt r d v = 和 22dt r d a = 。
大学物理2知识点总结
dt D
t
4、全电流定律:
L
B d l 0 ( Ic Id )
( B
2 )
全电流总连续。 Id 与Ic的区别: 5、 长直平行电流间单位长度上的相互作用力:
dF dl
0 I1I2
2 d
同向相吸反向相斥
直 电 流
圆 电 流
电流分布 一段导线
q
0
高斯面内自由 电荷的代数和
4、电容器及其电容 (1)定义: C = Q/U (2)平板电容器: 串联:
1 C
n
C
S
d
(3)电容器的串、并联:
i1
1 C
i
并联:C
1 Q 2 C
2
i1
n
C
i
W (4)电容器的能量 :
1 2
CU
2
2
1 2
UQ
5、电场能量密度: w
1 2
D d
k 加强 2 k 1 ) 减弱 ( 2
(k=0,1,2…)
5、薄膜干涉 的一般公式(⊥入射):
2n2e
2
k , k 1,2 明
(2 k 1)
2
——( )
, k 0 ,1 暗
加不加,看条件
均匀 B 中,起、止点一样的任意导线平动,ε一样。
(2)一段导体转动(转轴∥
1 2
2
均匀 B
)
B L (轴位于端点且⊥导体)
若导体与轴不⊥,可将其等效为在⊥轴方向 的投影的转动。 (3)线圈转动 (转轴⊥均匀
大学物理2-2总复习
√
[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R
0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0
。
(cos 1 cos 2 )
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 1 0 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
Sቤተ መጻሕፍቲ ባይዱ
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到
大学物理2复习1
大学物理2复习1一、选择题1.两个同频率正弦交流电的相位差等于180°时,则它们相位关系是 。
a)同相 b)反相 c)相等 2.图3-1所示波形图,电流的瞬时表达式为 A 。
a))30t sin(2I i m ︒+ω= b))180t sin(I i m ︒+ω= c)t sin I i m ω= 3.图3-2所示波形图中,电压的瞬时表达式为 V 。
a))45-t sin(U u m ︒ω= b))45t sin(U u m ︒+ω= c) )531t sin(U u m ︒+ω=4.图3-1与图3-2两条曲线的相位差=ϕui 。
a) 900 b) -450 c)-13505.正弦交流电的最大值等于有效值的 倍。
a)2 b) 2 c) 1/26.白炽灯的额定工作电压为220V ,它允许承受的最大电压 。
a)220V b)311V c)380V d)V 314sin 2220u(t)=7.根据题图3-3所示电路,选择正确的表达式。
将它的编号填写在括号内( )(多选) a)(t)u (t)u -(t)u (t)u 3ab 21=+b)0U U -U U 3ab 21=++ c)0U U -U U 3ab 21=++ d)(t)-u (t)u -(t)u (t)u 3ab 21=+8.已知2Ω电阻的电流)A 5414t 36sin(i ︒+=,当i u ,为关联方向时,u = V 。
a))3014t 312sin(︒+ b))4514t 3sin(212︒+ c) )4514t 312sin(︒+9.已知2Ω电阻的电压V 6010U︒∠= , 当i u ,为关联方向时,电阻上电流I = A 。
a)︒∠6025b)︒∠605 c) ︒∠60-510.在纯电感电路中,电流应为 。
a)L U/X i = b)U/L I = c) L U/I ω= 11.在纯电感电路中,电压应为 。
a)LLX U = b)I jX U L = c) I L -j U ω= 12.在纯电感电路中,感抗应为 。
大学物理2期末考试复习题
11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
大学物理2期末复习
(2)假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.
解:1.(1)Pm=IS=Ia2
方向垂直线圈平面.
线圈平面保持竖直,即Pm与B垂直.有
Mm=Pm×B
Mm=PmBsin(/2)=Ia2B
=9.4×10-4mN
(2)平衡即磁力矩与重力矩等值反向
在平面②的上方向左,在平面②的下方向右.
(1)两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J
(2)两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0
练习九安培力
三、计算题
1.一边长a=10cm的正方形铜导线线圈(铜导线横截面积S=2.00mm2,铜的密度=8.90g/cm3),放在均匀外磁场中.B竖直向上,且B=9.40103T,线圈中电流为I=10A .线圈在重力场中求:
解:1.取窄条面元dS=bdr,
面元上磁场的大小为
B=0I/(2r),面元法线与磁场方向相反.有
1=
2=
1/2=1
2.半径为R的薄圆盘均匀带电,总电量为Q.令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.
解;2.在圆盘上取细圆环电荷元dQ=2rdr,
解得1=4=(Q1+Q2)/(2S)=2.66108C/m2
2=3=(Q1Q2)/(2S)=0.89108C/m2
两板间的场强E=2/0=(Q1Q2)/(20S)
V=UA-UB
=Ed=(Q1Q2)d/(20S)=1000V
四、证明题
1.如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.
大学物理总复习 ppt课件
x Px 2
[ D]
该式说明,对微观粒子的坐标和动量不可能同时进行 准确的测量。如果坐标测量得越准确,则动量测定的偏 差就越大,反之亦然。
ppt课件
16
14. 波长=5000 Å的光沿x轴正向传播,若光的波长的不确定 量=10-3 Å,则利用不确定关系式 Pxx≥ h 可得光子的x坐 标的不确定量至少为__________.
本题相当于通有变化电流的螺线管,管内无 自由电荷,且沿轴线方向均匀地分布着变化 磁场,当然有任意时刻通过圆筒内假想的任 一球面的电通量和磁通量均为零。
i(t)
答案:( B )
S D d S q
在任何电场中,通过任意闭合曲面的电位移 通量等于闭合面内自由电荷的代数和。
S B d S 0
=____________________,
nˆ
=____________________,
C
=____________________.
P 、 -P、 0
Pn P nˆ
nˆ
B
nˆ
A
P
p
P
A P nˆ P B P nˆ P
C P nˆ 0
B2
0I , 2r
则 B B1 B2.
0r I 0I 0I , 2r 2r 2r
I (r 1)I.
ppt课件
8
8.如图,两个线圈 P 和 Q 并联地接到一电动势恒定的电源 上,线圈 P 的自感和电阻分别是线圈 Q 的两倍。当达到稳 定状态后,线圈 P 的磁场能量与 Q 的磁场能量的比值是:
大学物理A2期末总复习题及答案
大学物理A2期末总复习题及答案一、大学物理期末选择题复习 1.运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确答案D2.对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的 (B) (1) (2)是正确的(C) (1) (3)是正确的 (D) (2) (3)是正确的答案C3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A ) 角速度从小到大,角加速度不变(B ) 角速度从小到大,角加速度从小到大(C ) 角速度从小到大,角加速度从大到小(D ) 角速度不变,角加速度为零答案C4.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B5.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C6. 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( )(A )它的加速度的方向永远指向圆心,其速率保持不变(B )它受到的轨道的作用力的大小不断增加(C )它受到的合外力大小变化,方向永远指向圆心(D )它受到的合外力大小不变,其速率不断增加答案 B7. 图示系统置于以14a g =的加速度上升的升降机内,A 、B 两物体质量相同均为m ,mA 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为( )(A )58mg (B )12mg (C )mg (D )2mg答案 A8. 有两个倾角不同、高度相通、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( )(A )物块到达斜面低端时的动量相等(B )物块到达斜面低端时动能相等(C )物块和斜面(以及地球)组成的系统,机械能不守恒(D )物块和斜面组成的系统水平方向上动量守恒答案 D9. 有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力距一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力距可能是零;(3)当这两个力的合力为零时,它们对轴的合力距也一定是零;(4)当这两个力对轴的合力距为零时,它们的合力也一定为零。
大学物理总复习2
[
B
]
B 0 r nI
12
14. 在感应电场中电磁感应定律可写成
d L E k dl , dt
L E静 dl 0
式中 Ek 为感应电场的电场强度,此式表明:
1.42 10 - 9 S
2m T qB
B H
27
10. 如图,在一固定的无限长载流直导线的旁边放置 一个可以自由移动和转动的圆型的刚性线圈,线圈中 通有电流,若线圈与直导线在同一平面,见图(a), 则圆线圈将 ,若线圈平面与直导线 垂直,见图(b),则圆线圈将 。 发生平移,靠 近直导线,
L 2L 2M
I I
dI dI dI 1 ( L M ) ( L M ) dt dt dt dI dI dI 2 ( L M ) ( L M ) dt dt dt
L’< L / 2
dI 1 2 ( 2 L 2 M ) dt
26
9. 电子在磁场强度 H =2 10 4 A· - 1 匀强磁场中沿着 m 圆周运动,它的回转周期 T = ,(真空中磁导率 - 7 N · - 2 ,电子质量 m =9.11 10-31kg, 0 = 4 10 A e -19 基本电荷 e = 1.60 10 C )。
0, r I1 I2 R 扩大
21
6. 半径分别为为 R1,R2 的两个半圆弧与直径的两小 段构成的通电线圈 abcd (如图所示),放在磁感应 强度为 B 的均匀磁场中,B 平行线圈所在平面,则线 圈的磁矩为 ,线圈所受的磁力矩为 。
最新大学物理2(上)总复习1--选择题70题
大学物理2(上)总复习---选择题选择题(1) 1.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( b )。
A .恒为零;B .不为零,但保持不变;C . 随F 成正比地增大;D .开始随F 增大,达到某一最大值后,就保持不变。
2.如图所示,两个同频率、同振幅的简谐振动曲线和 ,它们的相位关系是(a )。
A .a 比b 滞后 2 ; B .a 比b 超前2 ; C .b比a 超前4 ; D .b 比a 滞后4 。
3.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度0 转动,此时有一质量为m 的人站住转台中心, 随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为( a )。
A .02 mR J J ;B . 02 R m J J ;C .0 ;D .02mR J 。
4.一台工作于温度为327C 0和27 C 0的高温和低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功为 ( b )。
A .2000J ;B .1000J ;C .800J ;D .500J 。
5.在同一媒质中两列相干的平面简谐波强度之比是12:4:1I I ,则两列波的振幅之比21:A A 为 ( b )。
A .4;B .2;C .16;D .1/4。
6.一运动质点在某瞬时位于位矢),(y x r的端点处,对其速度的大小有四种意见,即(1)dt dr ; (2)dt r d ; (3)dt ds ; (4)22 dt dy dt dx 。
下述判断正确的是 ( d )。
A . 只有(1)(2)正确;B .只有(2)正确;C .只有(2)(3)正确;D . 只有(3)(4)正确。
7.一质点沿y 方向振动,振幅为A ,周期为T ,0t s 时,位于平衡位置 0y 处,向y 轴正方向运动。
由该质点引起的平面简谐波的波长为 ,沿Ox 轴正向传播。
大学物理2(上)总复习2--填空题60题 (1)
大学物理2(上)总复习---填空题填空题(1)1.当气体的温度为300K 时,分子的平均平动动能为 。
(已知K J k /1038.123-⨯=)2.一质点作简谐振动,振幅为10cm ,频率为40Hz ,初相为2π,则其振动方程为 ,在t=0 s 时刻,质点的速度为 ,加速度为 。
3.产生机械波的必要条件是 和 。
4.一质点沿半径为m 2.0的圆周运动, 其角位置随时间的变化规律是256t +=θ(SI 制)。
在s t 2=时,它的法向加速度n a =___________;切向加速度t a =___________。
5.2mol 理想氦气的内能的理论值为 。
6.一质量为0.01 kg 的物体作简谐运动,其振幅为 0.08 m , 周期为4 s ,起始时刻物体在 x= 0.04 m 处,向Ox 轴负方向运动,则简谐运动方程为 。
填空题(1)参考答案1. 6.21J 2110-⨯ ;2. x 0.10cos 80t m 2ππ⎛⎫=+ ⎪⎝⎭, 18m s π--, -20m s ; 3. 波源, 弹性介质 ; 4. 280/m s , 210/m s ;5. 3RT ;6. ⎪⎭⎫ ⎝⎛+=32c o s 08.0ππt x ;填空题(2) 1.驻波中两个相邻的波节间各质点的振动振幅 ,相位 。
2.一质点沿半径为m 2.0的圆周运动, 其角位置随时间的变化规律是256t +=θ(SI 制)。
在s t 2=时,它的法向加速度n a =___________;切向加速度t a =___________。
3.2mol 理想氦气的内能的理论值为 。
4.已知平面简谐波方程为()cos y A bt cx ϕ=-+,式中A 、b 、c 、ϕ均为常量,则平面简谐波的振幅为 ,频率为 ,波速为 ,波长为 。
5. 质量为m 的小球,在合外力kx F -=作用下运动,已知t A x ωcos =,其中k 、ω、A均为正常量,在0=t 到ωπ2时间内小球动量的增量为___________。
大学物理(2)期末复习试题库
大学物理(2)期末复习试题库第四篇 电磁学一、判断题1.关系H B μ=对所有各向同性线性介质都成立。
( )2.静电场中任何两条电力线不相交,说明静电场中每一点的场强是唯一的。
( )3.导体内部处处没有未被抵消的静电荷,静电荷只分布在导体的表面上。
( )4.电源电动势的方向是自正极经电源内部到负极的方向。
( )5.自感系数只依赖线圈本身的形状、大小及介质的磁导率而与电流无关。
( )6.恒定磁场中定理∑⎰=⋅I l d H 成立。
( )7.关系E D ε=对所有各向同性电介质都成立。
( )8. 0ε∑⎰⎰=⋅q s d E 对任意电场均成立。
( ) 9.可以把电子的自旋运动和宏观物体的自转运动相类比。
( )10.无论是在稳恒磁场还是非稳恒磁场中安培环路定理∑⎰=⋅i LI l d H 都成立。
( )11.导体静电平衡的条件是导体内部场强处处为零。
( )12.有人把⎰⎰=⋅0S B d 称为磁场高斯定理,它只对恒定磁场成立,在变化磁场中⎰⎰≠⋅0S B d 。
( )13.由电容计算公式ab U q C =,理解为当0=q 时电容0=C 。
( )14.洛伦兹力不能改变运动电荷速度的大小,只能改变速度的方向。
( )15.任何导体内部场强都处处为零。
( )16.由安培环路定理∑⎰=⋅I l d H 可知,H 仅与传导电流有关。
( )17. 自感系数为L 的载流线圈磁场能量的公式221LI W =只适用于无限长密绕螺线管。
( )18.当一个带电导体达到静电平衡时, 表面上电荷密度较大处电势较高。
( )19.高斯定理⎰⎰=⋅VS dV d ρS D ,只对静电场成立,对变化的电场不成立。
( ) 20.在电场中,电场强度为零的点,电势不一定为零。
( )21.稳恒电流磁场的磁场强度H 仅与传导电流有关 。
( )22.当一个带电导体达到静电平衡时, 导体内任一点与其表面上任一点的电势差等于零。
( )23.有人把0=⋅⎰Sd S B 称为磁高斯定理,它只对恒定磁场成立,在变化的磁场中该式不成立。
大学物理B2复习资料
大学物理A2复习资料电磁感应1. 如图所示,一矩形金属线框,以恒定速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流.(B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. 5. 半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.BI O(D)I O(C)O (B)I6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同.8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度.(B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos ω t |. (B) ω abB (C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |.b c d b c d bc d v v ⅠⅢⅡ I12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α.(C) Bl v cos α. (D) 0.14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω.(B) =0,U a – U c =221l B ω-.(C) =2l B ω,U a – U c =221l B ω.(D) =2l B ω,U a – U c =221l B ω-.15.圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动. (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(F)B L 221ω.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使Bab clωB(A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(C) 两线圈中电流方向相反. 18. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈.19. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ(C) ∞. (D)221LI 020ln 2r dI π+μ20. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为 (A)200)2(21aI πμμ (B)200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ1C 2B 3B 4B 5A 6D 7B 8C 9C 10B11D 12 A 13D 14 B 15 D 16 E 17C 18D 19A 20B振动与波1. 一轻弹簧,上端固定,下端挂有质量为m 的重物,其自由振动的周期为T .今已知振子离开平衡位置为x 时,其振动速度为v ,加速度为a .则下列计算该振子劲度系数的公式中,错误的是:(A) 2max 2max /x m k v =. (B) x mg k /=.(C) 22/4T m k π=. (D) x ma k /=.C2. 一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 (A) g l π2. (B) gl 22π. (C) g l 322π. (D) gl 3π.3. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2. (C) 0 . (D) θ.4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21c o s (2-+=αωt A x .(C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x .5. 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122∆π= . (B) gm xm T 212∆π=. (C) g m xm T 2121∆π=. (D) gm m x m T )(2212+π=∆.6. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A) π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3.v 217. 一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π⨯=-t x (SI).从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81(B) s 61 (C) s 41(D) s 31(E)s 218. 一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D)2321ωA .9. 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A .10. 两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位(A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.11. 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是12. 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为13. 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8. (C) T /6. (D) T /4.14. 一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 .15. 当质点以频率ν 作简谐振动时,它的动能的变化频率为 (A) 4 ν. (B) 2 ν . (C) ν. (D)ν21.16. 一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的 (A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3.17. 一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1. (D) 2:1. (E) 4:1.18.机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.19.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则 (A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21.(D) 波速为9 m/s .. -20. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则 (A) 波的频率为a . (B) 波的传播速度为 b/a . (C) 波长为 π / b . (D) 波的周期为2π / a .21. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻(A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D)D 点振动速度小于零.22. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则 (A) 波速为C . (B) 周期为1/B . (C) 波长为 2π /C . (D) 角频率为2π /B .23. 在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.24. 一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则 (A) 其波长为0.5 m . (B) 波速为5 m/s . (C) 波速为25 m/s . (D) 频率为2 Hz .25.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m . (C) 0.5 m . (D) 0.25 m .26. 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([c o s {0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y .27. 图示一简谐波在t = 0时刻的波形图,波速 u = 200m/s ,则P 处质点的振动速度表达式为(A) )2cos(2.0π-ππ-=t v (SI). (B) )cos(2.0π-ππ-=t v (SI). (C) )2/2cos(2.0π-ππ=t v (SI). (D) )2/3cos(2.0π-ππ=t v (SI).28. 一平面简谐波的表达式为 )/(2c o s λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B)31. (C) 1. (D) 3C29.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.B30. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零. (C) 动能最大,势能最大. (D) 动能最大,势能为零.D31. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.32. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.D33. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.35. 在波长为λ 的驻波中两个相邻波节之间的距离为 (A) λ . (B) 3λ /4. (C) λ /2. (D) λ /4.1B 2C 3C 4B 5B 6C 7E 8B 9B 10B11B 12B 13C 14D 15B 16D 17D 18B 19C 20D21D 22C 23A 24A 25C 26A 27A 28A 29C 30B31D 32B 33D 34B 35C波动光学1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.C2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1).(C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小. (C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时(A) P 点处仍为明条纹. (B) P 点处为暗条纹. (C) 不能确定P 点处是明条纹还是暗条纹. (D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为 (A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .38. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.D9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为(A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.10.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).C11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4.(B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩. (C) 向外扩张. (D) 静止不动. (E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,图中数字为各处的折射对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.16. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .D17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.(C) 2λ. (D) 3 λ .19. 在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小. (B) 对应的衍射角变大.(B) 对应的衍射角也不变. (D) 光强也不变.20.在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D )宽度不变,但中心强度变小. C21. 在如图所示的单缝夫琅禾费衍射实验装置中,S为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝S 垂直于透镜光轴稍微向上平移时,屏幕上的衍射图样(A)向上平移. (B)向下平移.(C)不动. (D)消失.22. 测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射.23. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光.24. 对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(C)将光栅向远离屏幕的方向移动.25.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为(A) 1 / 2.(B) 1 / 3.(C) 1 / 4.(D) 1 / 5.B26.一束光强为I0的自然光,相继通过三个偏振片P1、P2、P3后,出射光的光强为I=I0 / 8.已知P1和P2的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是(A) 30°.(B) 45°.(C) 60°.(D) 90°.27.一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.28.三个偏振片P1,P2与P3堆叠在一起,P1与P3的偏振化方向相互垂直,P2与P1的偏振化方向间的夹角为30°.强度为I0的自然光垂直入射于偏振片P1,并依次透过偏振片P1、P2与P3,则通过三个偏振片后的光强为(A) I0 / 4.(B) 3 I0 / 8.(C) 3I0 / 32.(D) I0 / 16.29.两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动180°时透射光强度发生的变化为:(A) 光强单调增加.(B)光强先增加,后又减小至零.(C) 光强先增加,后减小,再增加.(D)光强先增加,然后减小,再增加,再减小至零.30.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.斯特角i0,则在界面2的反射光(A) 是自然光.(B) 是线偏振光且光矢量的振动方向垂直于入射面.(C) 是线偏振光且光矢量的振动方向平行于入射面.(E)是部分偏振光.32.自然光以60°的入射角照射到某两介质交界面时,反射光为完全线偏振光,则知折射光为(A) 完全线偏振光且折射角是30°.(B) 部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30°.(C) 部分偏振光,但须知两种介质的折射率才能确定折射角.(D) 部分偏振光且折射角是30°.33.自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.1A 2 C 3 C 4B 5B 6B 7B 8B 9D 10B 11C 12C 13B 14A 15B 16B 17D 18C 19B 20B 21C 22D 23D 24B 25A 26B 27B 28C 29B 30A 31B 32D 33C。
大学物理2(上)总复习1--选择题70题
大学物理2(上)总复习---选择题选择题(1) 1.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F 逐渐增大时,物体所受的静摩擦力f ( b )。
A .恒为零;B .不为零,但保持不变;C . 随F 成正比地增大;D .开始随F 增大,达到某一最大值后,就保持不变。
2.如图所示,两个同频率、同振幅的简谐振动曲线和,它们的相位关系是(a )。
A .a 比b 滞后 2π;B .a 比b 超前2π; C .b 比a 超前4π; D .b 比a 滞后4π。
3.有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J, 开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心, 随后人沿半径向外跑去,当人到达转台边缘时, 转台的角速度为( a )。
A .02ωmR J J +;B .()02ωR m J J +;C .0ω;D .02ωmR J 。
4.一台工作于温度为327C 0和27 C 0的高温和低温热源之间的卡诺热机,每经历一个循环吸热2000J ,则对外做功为 ( b )。
A .2000J ;B .1000J ;C .800J ;D .500J 。
5.在同一媒质中两列相干的平面简谐波强度之比是12:4:1I I =,则两列波的振幅之比21:A A 为 ( b )。
A .4;B .2;C .16;D .1/4。
6.一运动质点在某瞬时位于位矢),(y x r的端点处,对其速度的大小有四种意见,即(1)dt dr ; (2)dt r d ; (3)dt ds ; (4)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx 。
下述判断正确的是 ( d )。
A . 只有(1)(2)正确;B .只有(2)正确;C .只有(2)(3)正确;D . 只有(3)(4)正确。
7.一质点沿y 方向振动,振幅为A ,周期为T ,0t s =时,位于平衡位置 0y =处,向y 轴正方向运动。
大学物理2复习
∴ =- 0 E=-8.9×10-10 C/m3
E (2)
4.如图所示,三个“无限长”的同轴导体圆柱面A、B和C, 半径分别为Ra、Rb、Rc.圆柱面B上带电荷,A和C都接 地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2 之比值
C
E2
B
E1
A
-1
+2 +1
-2
设B上带正电荷,内表面上电荷线密度为l1, 外表面上电荷线密度为l2,而A、C上相应地感 应等量负电荷,如图所示.B、A间电势差
I
I
A
B
13. 半径为R的圆柱体上载有电流I,电流在其横截面上
均匀分布,一回路L通过圆柱内部将圆柱体横截面分为
两部分,其面积大小分别为S1、S2如图所示,则
H d l ____________________I.
L
L
S1
S2
14. 如图所示,将一无限大均匀载流平面放入均匀磁 场中,(设均匀磁场方向沿Ox轴正方向)且其电流方 向的与总磁磁场感方强向度垂分直别指为向B1纸, 内B2.己知放入后平面两侧
大学物理2复习
1. 图示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静 电场是由下列哪种带电体产生的.
(A) 半径为R的均匀带电球面. (B) 半径为R的均匀带电球体. (C) 半径为R的、电荷体密度为r=Ar (A为常数)的非均匀带电球体. (D) 半径为R的、电荷体密度为r=A/r (A为常数)的非均匀带电球体.
(A) 0
h
(C)
0
(B)
2 0
(D) 2h 0
7. 一空心导体球壳,其内、外半径分别为R1和R2,带电荷q, 如图所示.当球壳中心处再放一电荷为q的点电荷时,则导体
河南大学普通物理(二)复习卷1
极板间的电场强度不变( E )。………………………………(1 分) 0
2、答:两线圈的磁矩是否相等( p I S );………………………(3 分)
所受的最大磁力矩是否相等( M p B );………………………(2 分)
2 (D) 2 I0
[]
7、线圈 1、2 的互感系数分别为 M12、M21,若它们分别流过 I1 、 I2 的
变化电流。并且
dI1 dt
dI2 dt
,I2 变化在线圈 1 中产生的电动势为 12 ,由 I1
变化在线圈 2 中产生的电动势为 21,判断下列哪个论断正确:
(A) M12 M21 12 21 (B) M12 M21 12 21
D.
2n
4、一个宇航员声称,他恰好能分辨在他下面 160 km 地面上两个发射波长为 550nm
的点光源。假定宇航员的瞳孔直径为 5.0mm.如此两点光源的间距以 m 为单位,则
为
A. 21.5
[
]
B. 10.5
C. 31
D. 42
5、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法
是:
(填:相等或不相等);其电容
(填:相等或不相等)。
3、麦克斯韦方程组的积分形式是:
; ; 4、由普通光源获得相干光的方法有两种:分波振面法和
三、简答题(每题 5 分,共 10 分)
;
。 。
1、有一平板电容器,保持板上电荷量不变(充电后切断电源),现在使两极板间的 距离增大。试问:电容是增大还是减小?两极板的电势差有何变化?极板间的电场
大学物理II期末复习
大学物理II 期末复习1、图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势.解法1: 由高斯定理可知空腔内E =0,故带电球层的空腔是等势区,各点电势均 为U . 在球层内取半径为r r dr →+的薄球层.其电荷为24dq r dr ρπ=该薄层电荷在球心处产生的电势为()00/d 4/d d ερεr r r q U =π= 整个带电球层在球心处产生的电势为()21220002d d 21R R r r U U R R -===⎰⎰ερερ 因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ 解法2:由高斯定理可知1r R <,10E =, 2分12R r R <<,331220()r R E r ρε-=, 2r R >,3321320()R R E rρε-= 若根据电势定义⎰⋅=l E Ud空腔内任一点电势为:12121230R R R R U E dr E dr E dr ∞=++⎰⎰⎰()222102R R ρε=- 2、如图所示,两个共面的平面带电圆环,其内外半径分别为1R 、2R 和2R 、3R ,外面的圆环以每秒钟2n 转的转速顺时针转动,里面的圆环以每秒钟1n 转的转速反时针转动.若电荷面密度都是σ,求1n 和2n 的比值多大时,圆心处的磁感强度为零.解:(1) 在内圆环上取半径为r 宽度为dr 的细圆环,其电荷为σr r q d 2d π= 由于转动而形成的电流 r rn q n i d 2d d 11σπ==di 在O 点产生的磁感强度为r n r i B d )2/(d d 1001σμμπ==其方向垂直纸面向外.(2) 整个内圆环在O 点产生的磁感强度为==⎰11d B B ⎰π21d 10R R r n σμ)(121R R n -π=0σμ其方向垂直纸面向外.(3) 同理得外圆环在O 点产生的磁感强度)(23203R R n B -π=σμ 其方向垂直纸面向里. (4) 为使O 点的磁感应强度为零,B 1和B 2的量值必须相等, 即 )(121R R n -π0σμ)(232R R n -π=0σμ于是求得n 1和n 2之比122312R R R R n n --=3、一电子以0.99v c =(c 为真空中光速)的速率运动.试求: (1) 电子的总能量是多少焦耳?(2) 电子的相对论动能是多少焦耳?(电子静止质量319.1110kg e m -=⨯)解:(1) 222)/(1/c c m mc E e v -===5.8×10-13 J(2) 22k e E mc m c =-= 4.99×10-13 J4、两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率0dI dt a =>.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势ε,并指出线圈中的感应电流是顺时针还是逆时针方向.解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:300123d ln222ddIIdd r rμμφ=⋅=⎰ππ与线圈相距较近的导线对线圈的磁通量为:2002d ln 222ddIIdd r r μμφ=-⋅=-ππ⎰总磁通量 0124ln 23Id μφφφ=+=-π 2分感应电动势为: 00d 4d 4(ln )ln d 23d 23d d I a t t μμφε=-==ππ (2) 线圈中的感应电流是顺时针方向.5、用波长00.1nm λ=的光子做康普顿散射实验.(1) 散射角o 90ϕ=的康普顿散射波长是多少? (2) 反冲电子获得的动能是多少焦耳? (普朗克常量346.6310h -=⨯J ·s ,电子静止质量319.1110kg e m -=⨯)解:(1) 康普顿散射光子波长改变: ()(1cos )e hm cλϕ∆=-=0.024×10-10 m =+=∆λλλ0 1.024×10-10 m(2)根据能量守恒: 220e h m c h mc νν+=+即 220k e E mc m c h h νν=-=-0//k E hc hc λλ=-故k E =4.66×10-17 J =291 eV6、电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0 )的点电荷,求带电细棒对该点电荷的静电力.解:沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a xx a q E -π=-π=ελε ()⎰--π=2/2/204d L L x a xE ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ 方向沿x 轴正向. 点电荷受力:==qE F ()2204πL a qQ-ε方向沿x 轴正方向.7、图所示为两条穿过y 轴且垂直于x -y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1) 推导出x 轴上P 点处的磁感强度)(x B 的表达式.(2) 求P 点在x 轴上何处时,该点的B 取得最大值.解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:r I B π=201μ2/1220)(12x a I +⋅π=μ 2导线在P 点产生的磁感强度的大小为: r I B π=202μ2/1220)(12x a I +⋅π=μ 1B 、2B 的方向如图所示. P 点总场 θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B )()(220x a Iax B +π=μ,i x a Iax B)()(220+π=μ(2) 当 0d )(d =x x B ,0d )(d 22=<xx B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.8、如图所示,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感).解:长直带电线运动相当于电流λ⋅=)(t I v . 正方形线圈内的磁通量可如下求出d d 2Ia x a x μφ=⋅π+000d ln 222ax Ia Ia a x μμφ==⋅π+π⎰0d d ln 2d 2d i a It tμφε=-=π2ln d )(d 20t t a v λμπ=d ()()ln 22d it i t aRRtεμλ==πv9、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少?(2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为=-=20)/(1c L L v 54 m则 ∆t 1 = L /v =2.25×10-7 s(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7s10、已知粒子在无限深势阱中运动,其波函数为)/sin(/2)(a x a x π=ψ (0 ≤x ≤a )求发现粒子的概率为最大的位置.解:先求粒子的位置概率密度)/(sin )/2()(22a x a x π=ψ)]/2cos(1)[2/2(a x a π-=当 1)/2c o s(-=πa x 时, 2)(x ψ有最大值.在0≤x ≤a 范围内可得 π=πa x /2 ∴ a x 21=.a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ D]
x Px 2
该式说明,对微观粒子的坐标和动量不可能同时进 行准确的测量。如果坐标测量得越准确,则动量测定的 偏差就越大,反之亦然。
16
14. 波长=5000 Å的光沿x轴正向传播,若光的波长的不确定 量=10-3 Å,则利用不确定关系式 Pxx≥ h 可得光子的x坐 标的不确定量至少为__________.
(A) (3,2,1,-1/2) (B) (2,0,0,1/2) (C) (2,1,-1,-1/2)(D) (1,0,0,1/2)
2 P n 2, 1
s, p, d , f 0,1,2,3
m 0,1,2,
1 mS 2
[ C ]
19
二. 填空题
B1
0 I
2R
, B2 2
0 I
2r
.
R 2r
B2 R 2 4 B1 r
Pm R 2 I , Pm 2r 2 I .
Pm r2 1 2 2 Pm R 2
[ B ]
7
7. 圆柱形无限长载流直导线置于均匀无限大磁介质之中,若导 线中流过的稳恒电流为I,磁介质的相对磁导率为r (r >1),则 与导线接触的磁介质表面上的磁化电流为 (A) (1 – r )I. (B) ( r – 1 )I. (C) r I. (D) I / r
S q 电 介 质
S D d S q0
S内
D 0 r E E
[ B
]
3
3.一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均 匀电介质,另一半为空气,如图,当两极板带上恒定的等量异号的电荷 时,有一个质量为m ,带电量 +q 的质点,平衡在极板间的空气区域中, 此后,若把电介质抽去,则该质点 -Q (A)保持不动,(B)向上运动, (C)向下运动,(D)是否运动不能确定。 m +q
11
S B d S 0
10. 如图所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方 向均匀地流着一层随时间变化的面电流 i(t),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零. (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零. (D) 沿圆筒内任意闭合环路上电场强度的环流为零.
h Ek A
2h Ek A
Ek 2h A
2h (h Ek )
h Ek
[ D
]
15
13.不确定关系式表示在x方向上 (A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定. (C) 粒子位置和动量都不能准确确定. (D) 粒子位置和动量不能同时准确确定.
(A) Fa > Fb > Fc. (B) Fa < Fb < Fc. (C) Fb > Fc > Fa. (D) Fa > Fc > Fb.
a I c I
b B
d F I dl B
d F I d lB sin
[
C
]
5
5. 长直电流 I2与圆形电流 I1共面,并与其一直径相重合如 图(但两者间绝缘),设长直电流不动,则圆形电流将 (A) 绕 I2 旋转. (C) 向右运动. (E) 不动. (B) 向左运动. (D) 向上运动.
《大学物理 2 》复习
教师: 郑采星
期末考试(60%)+ 期中考试(20%)+ 平时成绩(20%) 考试题型:选择(30%)、填空(30%)、计算(40%) 平时成绩:作业和到课率(20%)
1
一、选择题:
1. 图中所示为轴对称性静电场的E~r曲线,请指出该电场是由下 列哪一种带电体产生的(E表示电场强度的大小,r表示离对称轴的 E 距离). E 1/ r (A) ―无限长”均匀带电圆柱面; (B) ―无限长”均匀带电圆柱体; (C) ―无限长”均匀带电直线; (D) ―有限长”均匀带电直线. O r 根据高斯定理,求“无限长”均匀带电 直线电场中的场强分布: 电场分布有轴对称性,方向沿径向,如 图所示取闭合曲面S,设均匀带电直线 电荷线密度为
对于选择(A) 无限长金属薄壁圆筒,在表面上沿圆周方向均 匀地流着一层随时间变化的面电流i(t),则在筒 内形成沿轴线方向均匀分布的变化磁场。
i(t)
据麦克斯韦涡旋电场假设:变化的磁场 要在其周围空间激发一种电场—涡旋电 场Er, r dB B Er , R). (r L Er d l S t d S 2 dt 显然圆筒内变化的电场Er与r有关,非均匀.
有介质时的安培环路定理 L H d l I 0
答案:( B )
说明;磁场强度沿任一闭合路径的环流等于该闭合路径所包围的传 导电流的代数和。 I B 0 r H B 0 r . B由稳恒电流I与磁化电流I'共同决定。 2r 0 I 稳恒电流 I 在空间产生的磁场 B1 , 2r I 磁化电流 I' 在空间产生的磁场 B2 0 , 2r 0 r I 0 I 0 I 则 B B1 B2 . , I ( r 1) I . 2r 2r 2r
1 2 Wm LI 2
L p 2 LQ , R p 2 RQ .
1 2 WQ LQ I Q 2
9
Wp
2 Lp I p
I Q 2I p
9. 在圆柱形空间内有一磁感强度为B的均匀磁场,如图所示,B的大 小以速率dB/dt变化.有一长度为l0的金属棒先后放在磁场的两个不同 位置1(ab)和2(a'b'),则金属棒在这两个位置时棒内的感应电动势 的大小关系为 B (A) E2=E1≠0. (B) E2< E1. (C) E2>E1. (D) E2=E1=0.
( A) 2a ) 1 /(
2
( B ) a 1/
(C ) 2a 1/
5 x a 6
( D ) a 1/
1 2 3x Ψ ( x ) cos a 2a
5 1 Ψ ( a) 6 2a
2
[ A ]
18
16. 氢原子中处于2P态的电子,描述其量子态的四个量子 数(n,,m ,ms)可能取的值为:
px h
h 6.63 10 34 x 2.5(m) p 0.2652 10 33
17
15.已知粒子在一维矩形无限深势阱中运动,其波函数为:
1 3x Ψ ( x) cos ( a x a ) 2a a 那么粒子在 x = 5/6a 处出现粒子的几率密度为:
平衡时有
并联
mq qE空气
U 介质 U空气
+Q
U Ed E介质 E空气 介质 空气 E 介质 空气 r 0 0
抽去介质后, 空气将增大,E空气也将增大。 [ B ]
4
4.如图所示,在磁感强度为B 的均匀磁场中,有一圆形载流导 线,a、b、c是其上三个长度相等的电流元,则它们所受安培力 大小的关系为
I2 I1
[C ]
6
6.有一个半径为 R 的单匝圆线圈,通以电流 I ,若将该导线 弯成 匝数 N = 2 的平面圆线圈,导线长度不变,并通以同样 的电流,则线圈中心的磁感应强度和线圈的磁矩分别是原来 的 (A) 4倍和 1 / 8 , (B) 4倍和 1 / 2 , 0 I B Pm IS (C) 2倍和 1 / 4 , 2R (D) 2倍和 1 / 2 。
1.一半径为R的球面均匀带电,所带电量为q,则电场的 能量为We= 。 解法一:
1 1 2 R 0 E 2 4r 2 d r We V 0 E dV 2 2 q 1 R 0 ( ) 2 4r 2 d r 2 40 r 2 1 q2 e 0 r E 2 2 80 R
Ψ e S E d S 上面 E d S 下面 E d S 侧面 E d S 侧面 E d S 2rlE 1
0
l ,
E
1 . 20 r r
[
C
]
2
2. 在一点电荷q产生的静电场中,一块电介质如图放置,以点电荷 所在处为球心作一球形闭合面S,则对此球形闭合面: (A) (B) (C) (D) 高斯定理成立,且可用它求出闭合面上各点的场强. 高斯定理成立,但不能用它求出闭合面上各点的场强. 由于电介质不对称分布,高斯定理不成立. 即使电介质对称分布,高斯定理也不成立.
O a a' l0 b b'
B L Er d l t d S S
B/t 一致,且
Sab Sab
A
B
[ C
]
10
10. 如图所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方 向均匀地流着一层随时间变化的面电流 i(t),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零. (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零. (D) 沿圆筒内任意闭合环路上电场强度的环流为零.
8
8.如图,两个线圈 P 和 Q 并联地接到一电动势恒定的电源 上,线圈 P 的自感和电阻分别是线圈 Q 的两倍。当达到稳 定状态后,线圈 P 的磁场能量与 Q 的磁场能量的比值是: (A)4 , (B)2 , (C) 1 , (D) 1 / 2 。
P
Q
[ D
]
并联: I p R p I Q RQ
本题相当于通有变化电流的螺线管,管内无 自由电荷,且沿轴线方向均匀地分布着变化 磁场,当然有任意时刻通过圆筒内假想的任 一球面的电通量和磁通量均为零。
i(t)