最新人教版六年级数学下册知识点(附对应题型)

合集下载

(完整版)人教版小学数学六年级下册知识点整理和复习(最新整理)

(完整版)人教版小学数学六年级下册知识点整理和复习(最新整理)

8、改写整数与省略尾数的区别
改写整数
省略尾数
在万位或亿位数字的右下角点上小数 用四舍五入法省略指定
方法
点,去掉小数末尾的 0,并写上受益人 数位后面的尾数,再在后
计数单位“万”或“亿”
面加上相应的计数单位
“万”或“亿”
结果 得到准确数
得到近似数
与原数关 与原数相等用“=”
与原数近似,用“≈”

二、小数
5、约分和通分 (1)约分:把一个分数化成同它相等,但分子、分母都比较小的分数叫约分,通常用分子、分母的公因数(1 除外)去除分子和分母,要除到得出最简分数为止。 分子、分母是互质数的分数叫作最简分数。 (2)通分:把异分母的分数分别化成与原来分数相等的同分母分数,先求出原来几个分母的最公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
2、分数单位 把单位“1”平均分成若干份,表示这样的一份的数,叫作这个分数的分数单位。
3、分数的分类 真分数:分子小于分母的分数,真分数小于 1。
分数 假分数:分子大于分母的分数,假分数大于或等于 1。假分数可以改写成带分数或整数。
4、分数的基本性质 分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0 除外),分数的大小不变。
小 成

百分数

一个最简分数能不能化成有限小数,关键看它的分母:如果分母只含质因数 2 和 5,就能化成有限小数;如果分母中含有 2 和 5 以外的质因数,它就不能化成有限小数。
4、成数与折扣 工农业生产中经常用“成数”来表示生产的增长情况,几成就是十分之几,也就是百分之几十。(六成五= 6.5 =65%)
6、分解质因数 把一个合数用几个质因数相乘的形式表示出来,叫作分解质因数。通常用短除法分解质因数。

人教版六年级数学下册(全册)知识点汇总

人教版六年级数学下册(全册)知识点汇总

人教版六年级数学下册(全册)知识点汇总第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

六年级下册数学(人教版)知识点归纳总结整理

六年级下册数学(人教版)知识点归纳总结整理

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

六年级下册数学(人教版)知识点归纳总结复习资料

六年级下册数学(人教版)知识点归纳总结复习资料

人教版六年级数学下册知识点总结一、用字母表示运算定律或性质加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)乘法交换律: ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:a(b+c)=ab+ac二、几何图形计算公式(1)周长:物体或封闭图形一周的长度。

①长方形周长=(长+宽)×2 C=(a+b)×2②正方形周长=边长×4 C=4a③圆的周长=圆周率×直径 =圆周率×半径×2 C=πd C =2πr(2)面积:即物体的表面或封闭图形的大小。

①长方形的面积=长×宽 S=ab②正方形的面积=边长×边长 S=a•a=a2③平行四边形的面积=底×高 S=ah④三角形的面积=底×高÷2 S=ah÷2⑤梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2⑥圆的面积=圆周率×半径S=πr2⑦直径d=2r 半径=直径÷2 r= d÷2⑧环形面积=外圆面积-内圆面积S环=S外-S内【相互联系】平面图形的面积公式是以长方形面积计算公式为基础的。

如两个完全相同的三角形、梯形可拼成一个平行四边形。

圆拼成长方形的长时1/2C,宽是R.(3)表面积:立体图形的所有面的面积之和叫做它的表面积。

①长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)②正方体的表面积=棱长×棱长×6 S=a×a×6 =6a2③圆柱体的侧面积=底面周长×高 S=Ch =2πrh④圆柱体的表面积=侧面积+底面积×2 S= Ch+2πr2 = 2πrh+2πr2 注意:圆柱的底面周长与高相等时侧面展开是正方形,C=h 2πr=h(4)体积:物体所占空间的大小叫体积。

最新人教版小学六年级数学下册知识点和题型总结

最新人教版小学六年级数学下册知识点和题型总结

最新人教版小学六年级数学下册知识点和题型总结六年级下册数学知识点第一单元:负数1.负数是指在正数前加上负号得到的数。

在数轴上,负数位于左侧,所有负数都比自然数小。

负数用负号“-”标记,例如-2,-5.33,-45,-0.6等。

2.正数是指大于零的数(不包括零),数轴上右侧的数叫做正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中包括正整数、正分数和正小数。

3.零既不是正数,也不是负数,它是正数和负数的分界数。

正数都大于零,负数都小于零,正数大于一切负数。

应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃。

如果2000表示存入2000元,那么-500表示支出了500元。

向东走3m记作+3,向西4m记作-4.4.在直线上表示数:(1)正数和负数可以用直线上的点表示出来。

直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。

(2)用有正数和负数的直线可以表示距离和相反的方向。

题型:1.将以下数字按要求分类:511,1.25,-7,3,3.011,-5,2,-0.03,327.分类为正数、负数、自然数和非正数。

2.写出下列数的相对负数形式:317,0.33,+7,2,+3,5319.3.如果“+20%”表示增加20%,那么“-20%”表示减少20%。

4.某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是-5摄氏度。

5.在数轴上表示下列数:13,1,1.75,-3,-445,0,-3.2.6.写出下列各点表示的数:A(-8),B(-6),C(-4),D(-2),E(0),F(2),G(4),H(6),I(8),J(10)。

第二单元:百分数(二)1.折扣指的是几折就是十分之几,也就是百分之几十。

例如,八五折表示现价是原价的85%。

原价×折扣=现价,现价÷折扣=原价,现价÷原价=折扣。

2.成数表示一个数是另一个数的十分之几或百分之几十,通常称为“几成”。

人教版六年级数学下册知识点归纳及题型

人教版六年级数学下册知识点归纳及题型

人教版六年级数学下册知识点归纳及题型一、基本概念(一)、分数1 .分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2 .分数的分类真分数:分子比分母小的分数叫做真分数。

真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。

假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3.约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(二)百分数1.表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用"%"来表示。

百分号是表示百分数的符号。

二、分数百分数读写法1. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

2. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

3. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(三)、大小比较1. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。

分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(四)、数的互化2. 分数化成小数:用分子除以分母。

能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

4. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

5. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

人教版六年级数学下册常见题型及其解法总结

人教版六年级数学下册常见题型及其解法总结

人教版六年级数学下册常见题型及其解法总结一、分数应用题类1、谁的几分之几等于谁的几分之几,用倒数比(反比也是倒数比)2、用方程解分数应用题(题目出现多个常见的等量关系:等于、共多少、谁比谁多,谁相当于谁的几分之几,剩下的相等)3、同一个单位一的分阶段分数应用题(第一天,第二天),画线段图来解4、多个单位一(单位一的描述:全部,余下,再余下,剩下),知道开头求末尾,顺推用乘法,知道末尾求开头,倒推用除法5、相似单位一,(常见描述:一个人是另外三个人的几分之几)统一单位1来解,以整体作为单位16、分数转变比问题,找不变量,内部交换和不变,同增同减差不变,单一量不变7、分数转比的部分题,转完之后,没办法统一份数,直接用代数法二、工程问题类1、普通的工程,就是分阶段的分数应用题,画线段图解,画图求解时只能有一个未知数,如果有多个,重新画图(利用合作分想,分做合想)或者直接用方程解答,利用工作总量相加等于1列方程2、有休息的工程问题,设工作时间为 x,用工作总量相加等于1列方程解答3、周期工程问题,用分组法,先估算有几组,然后剩下的逐个分析。

题型二、多种分组方式,工作时间多半天,结尾分类分析,最后小尾巴相等,找出工效的比例关系4、三人合作两库问题,先求出合作时间,然后分仓库分析,或者告诉合作时间,先求每个仓库工作量,然后分仓库分析5、变速工程,注意:变速前后要看做是两个人6、分配工资问题,正常情况下是按工作量分配,思路大方向是分数应用题的逐步分析三、浓度问题类1、求浓度是多少?先求单个质量,然后概念求解,单个÷整体×100%如盐水浓度:盐÷盐水×100%2、蒸发水问题,只加盐问题,只加水问题,都是单一量不变问题,用变比来解。

3、加盐水的混合问题,十字交叉法(一大一小混中间),上面的比等于下面的比4、互换之后浓度相等问题,数量比和互换比成反比,或者利用你倒出来的和我剩下的混合列十字交叉法求解。

新人教版六年级数学下册折扣(百分数)知识点梳理

新人教版六年级数学下册折扣(百分数)知识点梳理

新人教版六年级数学下册折扣(百分数)知识点梳理1. 什么是折扣?折扣是指商品在原价基础上的降价优惠。

通常用百分数表示折扣幅度。

2. 折扣的计算方法折扣计算可以使用以下公式:折扣金额 = 原价 ×折扣比例实际售价 = 原价 - 折扣金额3. 折扣的表示方式折扣可以用百分数、小数和分数表示。

3.1 百分数表示折扣:折扣比例 × 100%例如:- 0.8 表示八折优惠(80%的折扣)- 0.5 表示五折优惠(50%的折扣)3.2 小数表示折扣:折扣比例的小数形式例如:- 0.8 表示八折优惠(80%的折扣)- 0.5 表示五折优惠(50%的折扣)3.3 分数表示折扣:折扣比例的分数形式例如:- 4/5 表示八折优惠(80%的折扣)- 1/2 表示五折优惠(50%的折扣)4. 折扣的运算规则计算折扣时需要注意以下几个规则:4.1 多个折扣的运算规则:当有多个折扣依次作用时,可以使用以下公式计算最终折扣率:最终折扣率 = 1 - (1 - 折扣1) × (1 - 折扣2) × (1 - 折扣3) × ...4.2 计算原价的运算规则:已知实际售价和折扣率,可以使用以下公式计算原价:原价 = 实际售价 ÷ (1 - 折扣率)5. 折扣的应用折扣在购物和商业活动中广泛应用。

了解折扣的知识可以帮助我们更好地理解优惠信息和进行购物决策。

以上是新人教版六年级数学下册折扣(百分数)的知识点梳理。

参考资料:- 《新人教版数学六年级下册》。

人教版六年级下册数学知识点总结

人教版六年级下册数学知识点总结

第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的013.42/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6-1/3<-1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

人教版六年级数学下册数与代数知识点归纳及经典练习题

人教版六年级数学下册数与代数知识点归纳及经典练习题

人教版六年级数学下册数与代数知识点归纳及经典练习题知识点一整数一、知识整理。

1、整数的定义:像-3,-2,-1,0,1,2……这样的数称为整数。

在整数中大于零的数称为正整数,小于零的数称为负整数。

正整数、零与负整数统称为整数。

2、整数的范围:除自然数外,整数还包括负整数。

但在小学阶段里,整数通常指的是自然数。

3、读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。

4、写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

知识点二自然数1、自然数的定义:我们在数物体的时候,用来表示物体个数的0,1,2,3,……叫作自然数。

2、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。

3、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。

知识点三比较整数大小的方法1、数位不同的正整数的比较方法:如果位数不同,那么位数多的数就大。

2、数位相同的正整数的比较方法:如果位数相同,左起第一位上数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数。

依次类推直到比较出数的大小。

知识点四整数的改写把大数改写成用“万”或“亿”作单位的数:一个比较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

改写有两种情况:一种是把较大的多位数直接改写成用“万”或“亿”作单位的数,不满万、亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。

知识点五倍数和因数1、倍数和因数的定义:自然数a(a≠0)乘自然数b(b≠0),所得的积c就是a和b的倍数,a和b就是c的因数。

2、倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

人教版六年级下册数学知识点汇总

人教版六年级下册数学知识点汇总
以上几种常见题型的解题方法,通常是求岀圆柱的底而半径和髙,再根据圆柱的相关计算公式进行计算
无盖水桶的表面积=侧面积■一个底面积油桶的表面积=侧面积+两个底面积
烟囱通风管的表面积=侧面积
只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装
侧面积+—个底面积:玻璃杯、水桶、笔筒、帽子、游泳池
商品现在打八折:现在的售价是原价的80%
商品现在打六折五:现在的售价是原价的65%
2、 成数:几成就是十分之几,也就是百分之几十。
例如:一成= — =10%八成五=8.5* 10=85*100=80%
10
解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之 几)的数的解题方法进行解答。
侧面积+两个底面积:油桶、米桶、罐桶类
温馨提示:1)把一个圆柱截成n段后,其表而积增加了2(n-D个底面积。
2)容积的汁算方法和体积的计算方法相同,只是计算容积的数据要从里而测量。
3)圆柱的高不变,底面半径、直径或周长扩大到原来的n倍,则体积扩大到原来的於倍,若底而半径、宜 径或周长缩小到原来的n,则体积缩小到原来的右。
1沿着高展开,展开图形是长方形,如果2血,则展开图形为正方形
2不沿着高展开,展开图形是平行四边形或不规则图形
3无论怎么展开都得不到梯形
6、 圆柱的相关计算公式:
底面积:S庇=打 底面周长:Cn=2nr侧3;Sw=2nr2+2nrh体积:Vft=nr2h
考试常见题型:
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、 比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

人教版六年级下册数学知识点

 人教版六年级下册数学知识点

人教版六年级下册数学知识点1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的013.42/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/5正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6-1/3<-1/6(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

新人教版六年级数学下册百分数(折扣)知识点梳理

新人教版六年级数学下册百分数(折扣)知识点梳理

第二单元百分数(二)1.折扣:商店降价出售商品叫打折扣销售,俗称“打折”。

2.几折就是十分之几,也就是百分之几十。

表示现价是原价的百分之几十。

几几折换成百分数后,在计算时换成小数更简便。

例:八八折=88% 35×88%=35×0.88=30.83.折扣题的单位“1”都是原价。

常用关系式:原价×折扣=现价,原价×(1-折扣)=便宜的,其中折扣都化成百分数。

4.打几折就是便宜了(10-几)折。

例:打七折就是便宜了三折,即便宜的占原价的30%。

5.最后若求的是几折,几一定要大写。

例:八折不能写成8折。

6.解决问题:先将折扣换成百分数(或分数),再列关系式。

①已知原价和折扣,求现价。

关系式:原价×折扣=现价例:一件商品原价100元,打九折销售,现价是多少?九折=90% (或九折就是现价是原价的90%)原价×90%=现价100 ?100×90%=90(元)答:现价是90元。

②已知原价和折扣,求便宜的。

关系式:原价×(1-折扣)=便宜的例:一件商品原价100元,打七五折销售,比原价便宜了多少?七五折=75% (或七五折就是现价是原价的75%)法一:原价×75%=现价原价-现价=便宜的100 ? 100 75 ?100×75%=75(元)100-75=25(元)答:比原价便宜了25元。

法二:七五折就是现价是原价的75%,即便宜的是原价的(1-75%)。

原价×(1-75%)=便宜的100 ?100×(1-75%)=100×25%=25(元)答:比原价便宜了25元。

③已知原价和现价,求几折。

关系式:原价×折扣=现价列式:现价÷原价例:一套《医院三线小书》50元,现书店搞活动按25元出售,这套书打了几折?原价×折扣=现价50 ?2525÷50=50% 50%=五折答:这套书打了五折。

新人教版六年级下册数学知识点(最新最全)

新人教版六年级下册数学知识点(最新最全)

一 负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.425……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负 2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面 加负号“-”号, 不可以省略 例如:-2,-5.33,-45,-253、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,254、 0 既不是正数,也不是负数,它是正、负数的分界限负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:二 百分数(二)(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如八折=810 =80﹪,六折五=6.510 =65100=65﹪ 解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答商品现在打八折:现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如一成=110=10﹪,八成五=8.510=85100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

新人教版六年级数学下册折扣(小数)知识点梳理

新人教版六年级数学下册折扣(小数)知识点梳理

新人教版六年级数学下册折扣(小数)知识
点梳理
本文档旨在梳理新人教版六年级数学下册中涉及的折扣(小数)知识点,为学生提供简洁易懂的指导。

1. 什么是折扣?
折扣是商家为了促销而给予的商品价格优惠,在购买商品时可
以享受到折扣。

通常折扣会以小数形式表示。

2. 折扣的计算方法
折扣的计算方法可以通过以下公式得到:
折扣金额 = 商品原价 ×折扣比例
实际购买价格 = 商品原价 - 折扣金额
3. 示例
以下是一些折扣计算的示例:
示例1
商品原价为200元,折扣比例为0.2。

折扣金额 = 200 × 0.2 = 40元
实际购买价格 = 200 - 40 = 160元
示例2
商品原价为300元,折扣比例为0.15。

折扣金额 = 300 × 0.15 = 45元
实际购买价格 = 300 - 45 = 255元
4. 折扣的应用
折扣在日常生活中经常会被用到。

例如,商场举办促销活动时常会给予商品折扣。

学会计算折扣,可以帮助我们在购物的时候更好地理解商品的实际价格,做出更合理的购买决策。

5. 总结
折扣是一种常见的商业促销手段,使用折扣可以使商品价格更具吸引力。

掌握折扣的计算方法和应用场景,对学生在购物时起到积极的指导作用。

以上是新人教版六年级数学下册折扣(小数)知识点的梳理,希望对学生们有所帮助。

人教版六年级数学下册必考知识点+小升初经典必考题50道,给孩子收藏一份!

人教版六年级数学下册必考知识点+小升初经典必考题50道,给孩子收藏一份!

2020—2021学年度第二学期人教版六年级数学必考知识点第一部分【常用的数量关系】1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、速度×时间=路程;路程÷速度=时间;路程÷时间=速度3、单价×数量=总价;总价÷单价=数量;总价÷数量=单价4、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;5、加数+加数=和;和-一个加数=另一个加数6、被减数-减数=差;被减数-差=减数;差+减数=被减数7、因数×因数=积;积÷一个因数=另一个因数8、被除数÷除数=商;被除数÷商=除数;商×除数=被除数第二部分【小学数学图形计算公式】1、正方形(C:周长,S:面积,a:边长)周长=边长×4;C=4a面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)表面积=棱长×棱长×6;S表=a×a×6体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)周长=(长+宽)×2;C=2(a+b)面积=长×宽;S=a×b4、长方体(V:体积,S:面积,a:长,b:宽,h:高)(1)表面积=(长×宽+长×高+宽×高)×2;S=2(ab+ah+bh)(2)体积=长×宽×高;V=abh5、三角形(S:面积,a:底,h:高)面积=底×高÷2 ;S=ah÷2三角形的高=面积×2÷底三角形的底=面积×2÷高6、平行四边形(S:面积,a:底,h:高)面积=底×高;S=ah7、梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2;S=(a+b)×h÷28、圆形(S:面积,C:周长,π:圆周率,d:直径,r:半径)(1)周长=π×直径π=2×π×半径;C=πd=2πr(2)面积=π×半径×半径;S= πr²9、圆柱体(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)(1)侧面积=底面周长×高=Ch=πdh=2πrh(2)表面积=侧面积+底面积×2(3)体积=底面积×高10、圆锥体(V:体积,S:底面积,h:高,r:底面半径)体积=底面积×高÷311、总数÷总份数=平均数12、相遇问题:相遇路程=速度和×相遇时间;相遇时间=相遇路程速度和;速度和=相遇路程÷相遇时间13、利润与折扣问题:利润=售出价-成本;利润率=利润÷成本×100%;利息=本金×利率×时间;涨跌金额=本金×涨跌百分比;税后利息=本金×利率×时间×(1-利息税)第三部分【常用单位换算】(一)长度单位换算1千米=1000米;1米=10分米;1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算:1平方千米=100公顷;1公顷=10000平方米;1平方米=100平方分米;1平方分米=100平方厘米;1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米;1立方分米=1000立方厘米;1立方分米=1升;1立方厘米=1毫升;1立方米=1000升(四)重量单位换算:1吨=1000千克;1千克=1000克;1千克=1公斤(五)人民币单位换算:1元=10角;1角=10分;1元=100分(六)时间单位换算:1世纪=100年;1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】1日=24小时;1时=60分=3600秒;1分=60秒;小升初经典必考题型50道1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

人教版6年级数学下册知识点1-4单元

人教版6年级数学下册知识点1-4单元

第一单元负数1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的 0 1 3.4 2/5……是远远不够的。

所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于 0 的数叫负数(不包括 0),数轴上 0 左边的数叫做负数。

若一个数小于 0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号,不可以省略例如:-2,-5.33,-45,-2/53、正数:大于 0 的数叫正数(不包括 0),数轴上 0 右边的数叫做正数若一个数大于 0,则称它是一个正数。

正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/54、0 既不是正数,也不是负数,它是正、负数的分界限负数都小于 0,正数都大于 0,负数都比正数小,正数都比负数大5、数轴:6、比较两数的大小:①利用数轴:负数<0<正数或左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。

负数之间比较大小,数字大的反而小,数字小的反而大1/3>1/6 -1/3<-1/6第二单元百分数二(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。

例如:八折=8/10=80﹪,六折五=6.5/10=65/100=65﹪解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的 80﹪商品现在打六折五:现在的售价是原价的 65﹪2、成数:几成就是十分之几,也就是百分之几十。

例如:一成=1/10=10﹪八成五=8.5/10=85/100=80﹪解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元 负数1.负数:任何正数前加上负号就是一个负数。

在数轴线上,负数都在0的左侧,所有的负数都比自然数小。

负数用负号“-”标记,如-2,-5.33,-45,-0.6等。

2.正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于零(>0),则称它是一个正数。

正数的前面可以加上正号“+”来表示。

正数有无数个,其中有正整数,正分数和正小数。

3. (0)既不是正数,也不是负数,它是正、负数的分界数。

正数都大于0,负数都小于0,正数大于一切负数。

应用举例:16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃. 如果2000表示存入2000元,那么-500表示支出了500元。

向东走3m 记作+3,向西4m 记作-4。

4、在直线上表示数:(1)正数、0和负数可以用直线上的点表示出来。

直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。

(2)用有正数和负数的直线可以表示距离和相反的方向。

题型:1、将以下数字按要求分类1.25、5、-7、3、3.011……、-51、0、12、-0.03正数 负数 自然数 非正数2、写数下列数相对的负数形式0.33……、1973132753、、、、++ 3、如果﹢20%表示增加20%,那么﹣20%表示什么?4、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 _ 摄氏度。

5、在数轴上表示下列个数 1.75 -31 -4 431 5 0 -3.26、写出下列各点表示的数A B C D E F G-8 -6 -4 -2 0 2 4 6 8 10第二单元 百分数(二)1、折扣:几折就是十分之几,也就是百分之几十例如:八五折表示现价是原价的85%原价×折扣=现价现价÷折扣=原价现价÷原价=折扣2、成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”例如:二成就是(十分之二),改写成百分数是20%。

3、税率:应纳税额=各种收入×税率各种收入=应纳税额÷税率4、利率:存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息和本金的比值叫做利率。

利息=本金×利率×时间题型:1、王叔叔看中一套运动装,标价200元,经过还价,打八五折买到,王叔叔实际付了()元买了这套运动装。

2、一本书定价75元,售出后可获利50%,如果按定价的七折出售,可获利()元。

3、王叔叔买了一辆价值16000元的摩托车。

按规定,买摩托车要缴纳10%的车辆购置税。

王叔叔买这辆摩托车一共要花多少钱?4、小强的妈妈在银行存了5000元,定期两年,年利率是4.50%,到期时,她应得利息()元。

5、张叔叔把5000元钱存入银行,定期三年,年利率是4.25%,到期后从银行取回()元A、5000×4.25%×3B、5000×4.25%C、5000×4.25%×3+5000第三单元圆柱和圆锥(一)圆柱1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相同的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征:圆柱有无数条高。

2、圆柱的高:两个底面之间的距离叫做高。

3、圆柱的侧面展开图:当沿高展开时展开图是长方形;当底面周长和高相等时,沿高展开图是正方形;4、圆柱的侧面积:圆柱的侧面积=底面的周长×高,用字母表示为:圆柱的侧面积 = 底面周长×高即S侧=Ch 或×h5、圆柱的表面积:圆柱的表面积=侧面积+2个底面面积。

即S表=S侧+S底×2或×h + 2×6、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。

V=Sh即或×h(二)圆锥1、圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的旋转体叫做圆锥。

该直角边叫圆锥的轴。

2、圆锥的高:从圆锥的顶点到底面圆心的距离是圆锥的高。

3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、把圆锥的侧面展开得到一个扇形。

5、圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。

一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式V=Sh(V= h),得出圆锥体积公式:V=1/3Sh6、圆柱与圆锥的关系:(1)与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

(2)体积和高相等的圆锥与圆柱(等底等高)之间,圆锥的底面积是圆柱的三倍。

(3)体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。

7、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面的路程(求几个底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

题型:1、一个圆柱的底面半径是5cm,高是10cm,它的底面积是()cm2,侧面积是()cm2,体积是()cm3。

2、用一张长4.5分米,宽1.2分米的长方形铁皮制成一个圆柱,这个圆柱的侧面积最多是()平方分米。

(接口处不计)3、一个圆锥和一个圆柱等底等高,圆锥的体积是76cm3,圆柱的体积是()cm3。

4、一个圆锥的底面直径和高都是6cm,它的体积是( )cm3。

5、求下面图形的体积。

(单位:厘米)6、如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:厘米)第四单元比例(一)比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。

如:2:1=6:3组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。

3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。

4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。

例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。

(二)正比例和反比例1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

④、y=5x,y和x成正比例,因为:y÷x=5(一定)。

⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

2、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

④、40÷x=y,x和y成反比例,因为:x×y=40(一定)。

⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

3、判断两种量成正比例还是成反比例的方法:关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

(三)比例的应用1、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、比例尺的分类(1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺3、图上距离:实际距离=比例尺例如:图上距离2cm ,实际距离4km ,则比例尺为2cm :4km ,最后求得比例尺是1:200000。

实际距离×比例尺=图上距离例如:已知实际距离4km 和比例尺1:200000,则图上距离为:400000×1/200000=2(cm )图上距离÷比例尺=实际距离例如:已知图上距离2cm 和比例尺,则实际距离为:2÷1/200000=400000cm=4km 。

4、图形的放大与缩小:形状相同,大小不同。

5、用比例解决问题:根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

题型:1、在一个比例中,两个内项正好互为倒数,已知一个外项是52,则另一个外项是( )。

2、北京到天津的实际距离是120千米,在比例尺是50000001的地图上,两地的图上距离是( )厘米。

3、如果2a=3b ,那么a:b=( ):( )。

4、在一副平面图上,用图上距离2cm 表示实际距离200m,这幅图的比例尺是( )A 、1:100B 、 1:1000C 1:100005、按1:5将长方形缩小,就是将长方形的面积缩小到原来的( )A 、51B 、 101 C 、251 6、算一算,解比例 x:10=41:31 0.4:x=1.2:2 4.212=x3 7、一根木料,锯3段需要4分钟,如果钜5段,需要多少分钟?第五单元 数学广角-鸽巢问题1、抽屉原理(一): 把多于n 个的物体放到n 个抽屉里,则至少有一个抽屉里的东西不少于两件。

2、抽屉原理(二): 把多于mn(m 乘以n)个的物体放到n 个抽屉里,则至少有一个抽屉里有不少于m+1的物体。

3、抽屉原理解题的关键是正确地判断什么抽屉,什么是物体?4、物体数÷抽屉数=商……余数 至少数=商+1题型: 1.一个小组13个人,其中至少有( )人是同一个月出生的。

2.6只鸽子飞回5个鸽舍,至少有( )只鸽子要飞进同一个鸽舍里。

3.7只兔子要装进6个笼子,至少有( )只兔子要装进同一个笼子里。

A .3B .2C .4D .54.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有( )孩子。

相关文档
最新文档