人教版高中数学必修2全册学案(完整版)
人教版高中数学必修二全册教案
人教版高中数学必修二全册教案
第一单元相似与全等
教学目标
- 了解相似与全等的基本概念
- 掌握相似三角形的判定方法和相似比的计算
- 掌握全等三角形的判定方法和全等条件
- 能够应用相似与全等的知识解决实际问题
教学内容
1. 相似三角形的判定方法
2. 相似比的计算
3. 全等三角形的判定方法
4. 全等条件
5. 实际问题的解决
教学步骤
1. 导入:通过展示两个相似或全等的图形,引发学生对相似与全等的疑惑,并带入本单元的教学内容。
2. 概念讲解:介绍相似与全等的定义和基本性质,并结合具体例子进行说明。
3. 相似三角形的判定方法:讲解相似三角形的三种判定方法,并通过练巩固学生的理解。
4. 相似比的计算:教授相似比的计算方法,以及在计算过程中常见的注意事项。
5. 全等三角形的判定方法:讲解全等三角形的判定方法,并通过实例演示。
6. 全等条件:介绍全等三角形的各种条件,并进行相关例题讲解。
7. 实际问题的解决:通过一些实际问题,引导学生将相似与全等的知识应用于解决实际情况。
8. 小结:总结本单元的重点内容,强化学生对相似与全等的理解和应用能力。
9. 练:布置相应的练题,巩固学生对本单元知识的掌握。
教学评价与反思
1. 通过学生的课堂参与情况,观察他们对相似与全等概念的理解程度。
2. 检查学生在相似比计算和全等条件判定方面的掌握情况。
3. 分析学生在解决实际问题时的思考能力和应用能力。
扩展阅读
- 人教版高中数学必修二全册教材
- 相似与全等的相关练习册和习题集。
人教版高中数学必修2全册导学案及答案
高一数学必修2导学案主备人: 备课时间: 备课组长:1.1.1棱柱、棱锥、棱台的结构特征一、学习目标:1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。
(2)会用语言概述棱柱、棱锥、棱台的结构特征。
(3)会表示有关几何体以及柱、锥、台的分类。
2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。
(2)观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象概括能力。
二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。
学习难点:柱、锥、台的结构特征的概括。
三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。
3、A类是自主探究,B类是合作交流。
四、知识链接:平行四边形:矩形:正方体:五、学习过程:A问题1:什么是多面体、多面体的面、棱、顶点?A问题2:什么是旋转体、旋转体的轴?B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C问题4;探究一下各种四棱柱之间有何关系?C问题5:质疑答辩,排难解惑1.有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)2.棱柱的任何两个平面都可以作为棱柱的底面吗?A 例1:如图,截面BCEF 把长方体分割成两部分,这两部分是否是棱柱?B 例2:一个三棱柱可以分成几个三棱锥?六、达标测试A1、下面没有对角线的一种几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B .正四棱锥C .长方体D .直平行六面体B3、棱长都是1的三棱锥的表面积为()A .3B.23C.33D.43B4、正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为()A .279cm2B .79cm2C .323cm2D .32cm2B5、若长方体的三个不同的面的面积分别为2,4,8,则它的体积为()A .2B .4C .8D .12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A .必须都是直角三角形B.至多只能有一个直角三角形C .至多只能有两个直角三角形D.可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.七、小结与反思:【励志良言】不为失败找理由,只为成功找方法。
人教版高中数学必修2全册导学案及答案
高一数学必修2导学案主备人: 备课时间: 备课组长:1.1.1棱柱、棱锥、棱台的结构特征一、学习目标:1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。
(2)会用语言概述棱柱、棱锥、棱台的结构特征。
(3)会表示有关几何体以及柱、锥、台的分类。
2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。
(2)观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象概括能力。
二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。
学习难点:柱、锥、台的结构特征的概括。
三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。
3、A类是自主探究,B类是合作交流。
四、知识链接:平行四边形:矩形:正方体:五、学习过程:A问题1:什么是多面体、多面体的面、棱、顶点?A问题2:什么是旋转体、旋转体的轴?B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C问题4;探究一下各种四棱柱之间有何关系?C问题5:质疑答辩,排难解惑1.有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)2.棱柱的任何两个平面都可以作为棱柱的底面吗?A 例1:如图,截面BCEF 把长方体分割成两部分,这两部分是否是棱柱?B 例2:一个三棱柱可以分成几个三棱锥?六、达标测试A1、下面没有对角线的一种几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B .正四棱锥C .长方体D .直平行六面体B3、棱长都是1的三棱锥的表面积为()A .3B.23C.33D.43B4、正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为()A .279cm2B .79cm2C .323cm2D .32cm2B5、若长方体的三个不同的面的面积分别为2,4,8,则它的体积为()A .2B .4C .8D .12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A .必须都是直角三角形B.至多只能有一个直角三角形C .至多只能有两个直角三角形D.可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.七、小结与反思:【励志良言】不为失败找理由,只为成功找方法。
高中必修二数学全册教案
高中必修二数学全册教案
第一节:直线和平面的方程
教学目标:学生能够理解和应用直线和平面的方程。
教学重点:直线和平面的一般方程、截距式方程、点斜式方程、交点坐标、平面的截距式方程。
教学难点:平面的一般方程的推导。
教学过程:
1.引入直线和平面的方程。
通过实际例子引导学生了解直线和平面的一般方程。
2.介绍直线的方程。
讲解直线的截距式方程和点斜式方程,并通过例题演示如何转换。
3.介绍平面的方程。
学习平面的一般方程和截距式方程,并讲解如何根据平面上的点和法向量来确定平面的方程。
4.练习。
让学生进行练习,巩固直线和平面的方程的知识。
5.总结。
总结本节课的重点内容,并提醒学生注意要点。
教学资源:教材、黑板、彩色粉笔、习题册。
课后作业:完成课后习题,练习直线和平面的方程,并思考如何应用到实际生活中。
扩展阅读:了解不同方程的应用领域,并与实际生活进行联系。
人教版高中数学必修二全套教案
人教版高中数学必修二全套教案
本文档包含了人教版高中数学必修二全套教案,以下是各个章节的概要:
第一章矩阵与行列式
- 第一节二阶与三阶行列式
- 第二节行列式的性质与应用
- 第三节矩阵的概念与运算
- 第四节线性方程组的解与解集
第二章二次函数与一元二次方程
- 第一节二次函数及其图像
- 第二节二次函数的性质与图像的应用
- 第三节一元二次方程的解法
- 第四节一元二次方程的应用
第三章三角函数与解三角形
- 第一节各象限角的三角函数
- 第二节倍角、半角与合角公式
- 第三节解三角形
第四章概率与统计
- 第一节事件与概率
- 第二节条件概率与分组统计
- 第三节随机事件的数量表达与独立性- 第四节随机事件的相互关系
第五章推理与证明
- 第一节数学归纳法
- 第二节常见数学问题的证明方法
- 第三节直角三角形的判定定理
第六章平面向量
- 第一节平面向量的概念与运算
- 第二节向量的线性运算与共线问题- 第三节三角形与平面向量
第七章立体几何
- 第一节立体几何的基本概念
- 第二节球面与球台
- 第三节圆锥曲线与锥体
第八章三角恒等变换与解三角恒等式
- 第一节三角恒等变换及其证明
- 第二节三角方程的解法与平面解的应用
以上是人教版高中数学必修二全套教案的章节概要,具体内容请参考教材。
人教A版高中数学必修第二册全册学案
人教A版高中数学必修第二册全册学案人教A版高中数学必修第二册全册学案一、学案概述本学案是以人教A版高中数学必修第二册全册教材为基础,为学生提供全面的学习指导。
旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
二、知识梳理本学案按照教材章节顺序,对各章节知识点进行了梳理。
对于每个知识点,学案提供了相关例题和解析,以便学生加深对知识点的理解和掌握。
第一章集合与函数1.1 集合及其表示方法 1.2 集合之间的关系 1.3 函数及其表示方法 1.4 函数的性质第二章三角函数2.1 正弦、余弦、正切函数的定义与性质 2.2 三角函数的图像及变换方法 2.3 三角函数的应用第三章数列3.1 数列的概念与分类 3.2 等差数列和等比数列的通项公式 3.3 数列的前n项和公式 3.4 数列的应用第四章平面几何4.1 点、线、面的基本概念和性质 4.2 三角形、四边形的性质和判定方法 4.3 多边形、圆、扇形、弓形的性质和面积计算方法 4.4 几何图形的作图方法第五章概率与统计5.1 概率的基本概念和计算方法 5.2 统计的基本概念和方法 5.3 中心极限定理的应用三、学习建议1、学生应根据个人学习情况,制定合理的学习计划,逐步掌握各章节知识点。
2、对于每个知识点,学生应通过多种方式进行练习,例如课堂练习、课后作业、自主解题等,加深对知识点的理解和掌握。
3、学生应注意知识点的归纳和总结,形成自己的知识体系。
4、学生应积极参加课堂讨论和提问,与老师和同学交流学习心得,提高学习效果。
四、总结归纳本学案对人教A版高中数学必修第二册全册教材进行了全面的知识梳理和学习指导,旨在帮助学生更好地掌握教材中的知识点,提高学习效率和学习成绩。
学生应根据个人学习情况,制定合理的学习计划,通过多种方式进行练习,注意知识点的归纳和总结,积极参加课堂讨论和提问,提高学习效果。
外研版高中英语必修3全册学案版本外研版高中英语必修3全册学案版本外语教学与研究出版社出版的《高中英语必修3》是一本针对高中英语教学的教材,旨在帮助学生掌握英语语言知识,提高英语应用能力。
新人教版高中数学必修二教案(全册)
新人教版高中数学必修二教案(全册)第一章:二次函数与一元二次方程1.1 二次函数的基本性质与图像- 教学目标:了解二次函数的定义和基本性质,掌握画出二次函数的图像的方法。
- 教学内容:二次函数的定义、顶点、对称轴等基本性质,画出二次函数的图像。
- 教学步骤:1. 引入二次函数的概念,阐述其基本性质。
2. 对比一次函数和二次函数的特点,引导学生理解二次函数的图像形态。
3. 指导学生根据给定的二次函数方程画出对应的图像。
- 教学反思:本节课通过引入二次函数的基本概念和性质,帮助学生理解二次函数的图像形态,并通过实例让学生练画出二次函数的图像,加深对二次函数的理解。
1.2 一元二次方程- 教学目标:掌握一元二次方程的概念、解法和应用。
- 教学内容:一元二次方程的定义、解法和应用。
- 教学步骤:1. 介绍一元二次方程的定义和基本概念。
2. 分析一元二次方程的解的情况,讲解解一元二次方程的方法。
3. 引入一元二次方程的应用,如求解实际问题等。
- 教学反思:通过讲解一元二次方程的定义、解法和应用,帮助学生掌握解一元二次方程的方法,并引导学生将所学知识应用于实际问题的求解中,提高数学应用能力。
第二章:不等式2.1 不等式的概念与性质- 教学目标:了解不等式的概念和性质,掌握解不等式的方法。
- 教学内容:不等式的定义、性质、解法。
- 教学步骤:1. 引入不等式的概念和基本性质。
2. 分析不等式的解的情况,介绍解不等式的方法。
3. 给出具体的不等式问题,引导学生解决实际问题。
- 教学反思:通过引入不等式的概念和性质,帮助学生掌握解不等式的方法,并通过实际问题的解决,提高学生的数学应用能力。
2.2 一元一次不等式组- 教学目标:了解一元一次不等式组的概念和解法。
- 教学内容:一元一次不等式组的定义、解法。
- 教学步骤:1. 引入一元一次不等式组的概念和基本性质。
2. 讲解解一元一次不等式组的方法。
3. 给出具体的一元一次不等式组问题,引导学生解决实际问题。
人教版高中数学必修二-全册教案
第一章:空间几何体1.1。
1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行.概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
最新人教版高中数学必修二教案(全册)
最新人教版高中数学必修二教案(全册)第一章:二次函数与一元二次方程授课内容本章主要介绍二次函数及其性质以及一元二次方程的解法。
授课目标1. 理解二次函数的定义,并掌握其图像的性质;2. 掌握一元二次方程的解法,包括因式分解、公式法和配方法等;3. 能够在实际问题中应用二次函数和一元二次方程。
教学步骤1. 引入二次函数的概念,让学生了解二次函数的定义和一般式;2. 通过图像展示二次函数的性质,如顶点、对称轴、最值点等;3. 教授一元二次方程的解法,首先介绍因式分解法,然后讲解公式法和配方法;4. 给学生提供一些练题,让他们运用所学知识解决实际问题;5. 总结本章内容,强调重点和难点。
教学资源- 人教版高中数学必修二教材- 教案PPT- 二次函数和一元二次方程的练题教学评估- 学生课堂表现- 练题的完成情况- 小组合作讨论的质量第二章:数列与数学归纳法授课内容本章主要介绍数列的概念、性质以及数学归纳法的应用。
授课目标1. 理解数列和数列的通项公式的概念;2. 掌握常见数列的求和公式;3. 掌握数学归纳法的基本思想和应用方法;4. 能够在实际问题中应用数列和数学归纳法。
教学步骤1. 引入数列的概念,让学生了解等差数列和等比数列的定义;2. 通过例题演示如何求解数列的通项公式和求和公式;3. 引入数学归纳法的基本思想,并讲解其应用方法;4. 提供一些实际问题让学生运用数列和数学归纳法求解;5. 总结本章内容,强调重点和难点。
教学资源- 人教版高中数学必修二教材- 教案PPT- 数列和数学归纳法的练题教学评估- 学生课堂表现- 练题的完成情况- 小组合作讨论的质量...(继续编写剩余章节的教案)。
人教版高一数学必修2全册导学案及答案
人教版高一数学必修2全册导学案及答案第一章:集合及其运算1. 集合的概念及表示方法a) 集合的定义:集合是由一些确定的、互不相同的对象构成的整体。
b) 集合的表示方法:i) 列举法:把集合中的元素逐个列举出来,用大括号括起来表示,如A={1, 2, 3}。
ii) 描述法:用条件描述集合中的元素,如A={x|x是自然数,且x<4}。
2. 集合的运算a) 交集:设A和B为两个集合,A∩B表示同时属于A和B的元素组成的集合。
b) 并集:设A和B为两个集合,A∪B表示属于A或者属于B的元素组成的集合。
c) 差集:设A和B为两个集合,A-B表示属于A但不属于B的元素组成的集合。
d) 互斥与互补:若A∩B=∅,则A和B互斥;若A∪B=U(全集),则称A和B互为互补集。
练习题:1. 设A={1, 2, 3, 4},B={3, 4, 5},求A∩B和A∪B。
2. 若A={1, 2, 3, 4},B={2, 3, 4, 5},求A-B和B-A。
3. 设全集U={1, 2, 3, 4, 5},A={1, 2, 3},B={3, 4},求A的补集和B的补集。
答案:1. A∩B={3, 4},A∪B={1, 2, 3, 4, 5}。
2. A-B={1},B-A={5}。
3. A的补集U-A={4, 5},B的补集U-B={1, 2, 5}。
第二章:不等式与不等式组1. 不等式的概念a) 不等式的定义:设a和b是两个实数,用符号"<"表示a小于b,用符号">"表示a大于b,用符号"≤"表示a小于等于b,用符号"≥"表示a大于等于b。
b) 不等式的解集:使不等式不等号成立的实数的集合,称为不等式的解集。
2. 一元一次不等式a) 不等式的性质:两边加上(或减去)同一个实数,不等式的大小方向不变;两边乘以正实数(或除以正实数),不等式的大小方向不变;两边乘以负实数(或除以负实数),不等式的大小方向相反。
新课标人教版高中数学必修2全册教案学案同步练习课堂巩固【附答案]
第一章 立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。
柱、锥、台、球的表面积和体积的计算公式。
平行、垂直的定义,判定和性质。
难点:柱、锥、台、球的结构特征的概括。
文字语言,图形语言和符号语言的转化。
平行,垂直判定与性质定理证明与应用。
第一课时 棱柱、棱锥、棱台【学习导航】知识网络学习要求 1.初步理解棱柱、棱锥、棱台的概念。
掌握它们的形成特点。
2.了解棱柱、棱锥、棱台中一些常用名称的含义。
3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价1.棱柱的定义:表示法:思考:棱柱的特点:.【答】2.棱锥的定义:表示法:思考:棱锥的特点:.【答】3.棱台的定义:表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:⑴棱柱的分类⑵棱锥的分类⑶棱台的分类【精典范例】例1:设有三个命题:甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3例2:画一个四棱柱和一个三棱台。
【解】四棱柱的作法:⑴画上四棱柱的底面----画一个四边形;⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;⑶画下底面------顺次连结这些线段的另一个端点互助参考7页例1⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:(1)被遮挡的线要画成虚线(2)画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点:例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。
反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗? 答:不能.点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。
人教版高中数学必修二全册完整教案
人教版高中数学必修二全册完整教案第一章直线与函数1.1 直线的方程1.1.1 直线的斜率- 定义直线的斜率- 计算直线的斜率的公式- 利用斜率求直线上两点的坐标1.1.2 斜率的性质- 平行线的斜率相等- 垂直线的斜率的乘积为-11.2 一次函数1.2.1 一次函数的概念- 定义一次函数- 一次函数的图像特征1.2.2 一次函数的性质- 一次函数的图像是一条直线- 一次函数的零点和函数值1.3 函数的概念与性质1.3.1 函数的定义- 定义函数的概念- 函数的自变量和因变量1.3.2 函数的性质- 函数的奇偶性- 函数的单调性- 函数的周期性第二章二次函数2.1 二次函数的概念2.1.1 二次函数的定义- 定义二次函数- 二次函数的特征2.1.2 二次函数的图像- 二次函数的开口方向- 二次函数的对称轴2.2 二次函数的图像与性质2.2.1 二次函数图像的平移- 二次函数图像的平移规律- 利用平移法画出二次函数的图像2.2.2 二次函数的最值- 二次函数的最值与对称轴的关系- 求解二次函数的最值2.3 一元二次方程2.3.1 一元二次方程的概念- 定义一元二次方程- 一元二次方程的解的概念2.3.2 二次方程的解法- 利用因式分解法求解一元二次方程- 利用配方法求解一元二次方程第三章数据统计与概率3.1 统计的基本概念3.1.1 总体与样本- 定义总体和样本的概念- 总体与样本的区别和联系3.1.2 统计量- 定义统计量- 常用的统计量3.2 统计图3.2.1 条形图与折线图- 绘制条形图和折线图的步骤- 根据统计图分析数据3.2.2 饼图与频数分布直方图- 绘制饼图和频数分布直方图的步骤- 利用饼图和频数分布直方图分析数据3.3 概率与概率统计3.3.1 概率的定义和性质- 定义概率的概念- 概率的性质和运算法则3.3.2 随机变量和概率分布- 定义随机变量- 描述随机变量的概率分布这份文档包含了《人教版高中数学必修二》全册的完整教案。
人教版高中数学必修二全册教案
人教版高中数学必修二全册教案人教版高中数学必修二全册教案分为六个单元,分别是函数与方程、平面几何、立体几何、概率与统计、数列与数学归纳法以及不等式。
第一单元《函数与方程》主要介绍了函数的概念与性质,以及一次函数、二次函数等各种函数的图像、性质和应用。
通过学习这个单元,学生可以了解函数的图像与性质之间的关系,掌握函数的变化规律和应用能力。
第二单元《平面几何》主要介绍了平面直角坐标系、直线方程、圆和椭圆等平面几何的基本概念和性质。
通过学习这个单元,学生可以了解平面直角坐标系的建立方法,熟练掌握直线方程的求解方法,以及圆和椭圆的性质和方程。
第三单元《立体几何》主要介绍了空间几何的基本概念和性质,包括空间向量、直线与平面的位置关系、立体图形的判定和计算等。
通过学习这个单元,学生可以了解空间几何的基本概念和性质,掌握立体图形的判定和计算方法。
第四单元《概率与统计》主要介绍了概率与统计的基本概念和方法,包括事件与概率、频率与概率的比较、统计图表与数据分析等。
通过学习这个单元,学生可以了解概率与统计的基本概念和方法,熟练掌握事件与概率的计算和统计图表的分析。
第五单元《数列与数学归纳法》主要介绍了等差数列、等比数列、斐波那契数列等常见数列的性质和求解方法,以及数学归纳法的基本思想和应用。
通过学习这个单元,学生可以了解数列的性质和求解方法,掌握数学归纳法的基本思想和应用。
第六单元《不等式》主要介绍了一元一次不等式、一元二次不等式等常见不等式的性质和求解方法,以及不等式组的性质和求解方法。
通过学习这个单元,学生可以了解不等式的性质和求解方法,掌握不等式组的性质和求解方法。
以上是人教版高中数学必修二全册教案的主要内容。
这些教案通过系统化、有针对性的教学设计,帮助学生系统掌握数学知识,培养学生的数学思维能力和解决实际问题的能力。
教师可以按照这些教案的步骤和方法进行教学,同时根据学生的实际情况进行差异化教学,提高学生的学习效果。
人教版高中数学必修二全册教案【可下载打印】
人教版高中数学必修二全册教案【可打印】一、教学内容第二章:平面向量的概念与运算第二节:向量的线性运算第三节:平面向量的坐标表示与坐标运算二、教学目标1. 理解平面向量的概念,掌握向量的线性运算及其性质。
2. 学会使用平面向量的坐标表示进行向量运算。
3. 能够运用向量知识解决实际问题,培养学生的空间想象能力和逻辑推理能力。
三、教学难点与重点教学难点:1. 向量线性运算的理解与运用。
2. 平面向量的坐标表示与运算。
教学重点:1. 向量的线性运算及其性质。
2. 向量的坐标运算。
四、教具与学具准备1. 教具:多媒体教学设备,向量模型,坐标纸。
2. 学具:直尺,圆规,计算器。
五、教学过程1. 实践情景引入通过展示飞机飞行的向量模型,引出向量概念,激发学生的兴趣。
2. 例题讲解(1)向量线性运算:以实际例题解释向量的加、减、数乘运算。
(2)平面向量的坐标表示与运算:以坐标纸为载体,讲解平面向量的坐标表示方法。
通过例题讲解向量坐标运算的步骤。
3. 随堂练习分组讨论,完成教材课后练习题。
4. 知识巩固5. 课堂小结强调向量线性运算和坐标运算的要点。
六、板书设计1. 向量的线性运算:向量的加、减、数乘运算。
2. 平面向量的坐标表示与运算:坐标表示方法。
坐标运算步骤。
七、作业设计1. 作业题目:(1)计算向量 \( \vec{a} = (3, 4) \) 和 \( \vec{b} = (1, 2) \) 的和、差、数乘。
(2)已知向量 \( \vec{a} = (2, 3) \) 和 \( \vec{b} = (4, 5) \),求 \( 3\vec{a} 2\vec{b} \)。
2. 答案:(1)和:\( \vec{a} + \vec{b} = (4, 2) \);差:\( \vec{a} \vec{b} = (2, 6) \);数乘:\( k\vec{a} = (3k, 4k) \),\( k\vec{b} = (k, 2k) \)。
人教版高中数学必修二全册教案【可下载打印】
人教版高中数学必修二全册教案【可打印】一、教学内容第一章:空间几何1.1 平面几何基本概念1.2 平面几何图形的度量关系1.3 空间几何基本概念1.4 空间几何图形的度量关系二、教学目标1. 掌握空间几何的基本概念和性质,能够识别并运用相关的几何图形。
2. 理解并掌握平面几何与空间几何之间的联系与区别,提高空间想象能力。
3. 学会运用几何图形的度量关系解决实际问题,培养解决问题的能力。
三、教学难点与重点教学难点:空间几何图形的认识与度量关系的运用。
教学重点:平面几何与空间几何的联系与区别,几何图形在实际问题中的应用。
四、教具与学具准备教具:几何模型、多媒体课件、黑板、粉笔。
学具:直尺、圆规、三角板、量角器。
五、教学过程1. 实践情景引入利用多媒体展示生活中的空间几何图形,让学生观察并描述。
提问:如何计算这些几何图形的面积和体积?2. 例题讲解讲解例1:求一个长方体的表面积和体积。
讲解例2:求一个正四面体的表面积和体积。
3. 随堂练习学生独立完成练习1:求一个圆柱的表面积和体积。
学生独立完成练习2:求一个圆锥的表面积和体积。
学生分享学习心得,互相交流。
5. 应用拓展学生分组讨论:如何将所学的空间几何知识应用于实际问题?教师点评,给予鼓励和建议。
六、板书设计1. 空间几何基本概念及图形2. 平面几何与空间几何的联系与区别3. 几何图形的度量关系及计算公式4. 例题解答步骤5. 练习题解答七、作业设计1. 作业题目计算一个长方体的表面积和体积。
计算一个正四面体的表面积和体积。
计算一个圆柱的表面积和体积。
计算一个圆锥的表面积和体积。
2. 答案长方体表面积:2ab + 2bc + 2ac,体积:abc正四面体表面积:√3a²,体积:(a³/12)√2圆柱表面积:2πrh + 2πr²,体积:πr²h圆锥表面积:πrl + πr²,体积:(1/3)πr²h八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生的掌握情况调整教学方法。
高中数学必修二全套教案
高中数学必修二全套教案第一节:函数的概念1.1 函数的定义教学目标:了解函数的概念,能够正确地定义函数。
教学内容:1. 了解自变量和因变量的概念。
2. 明白函数的定义:对于每一个自变量,都有唯一确定的因变量与之对应。
教学过程:1. 介绍自变量和因变量的概念。
2. 引导学生探讨函数的定义,并给出正式的定义。
3. 通过例题让学生巩固对函数的理解。
1.2 函数的表示教学目标:学习函数的表示方法,包括函数图像、函数表达式等。
教学内容:1. 学习函数的图像表示方法。
2. 掌握函数的表达式表示方法。
教学过程:1. 讲解函数的图像表示方法,包括坐标系的概念和绘制函数图像的方法。
2. 教授函数的表达式表示方法,包括用字母和符号表示函数。
3. 练习绘制函数图像和写函数表达式。
第二节:一元二次函数2.1 一元二次函数的概念教学目标:了解一元二次函数的基本概念,包括顶点、对称轴等。
教学内容:1. 学习一元二次函数的标准形式。
2. 了解一元二次函数的顶点、对称轴等性质。
教学过程:1. 讲解一元二次函数的标准形式和代数意义。
2. 讲解一元二次函数的顶点和对称轴的概念。
3. 练习计算一元二次函数的顶点和对称轴。
2.2 一元二次函数的图像教学目标:掌握一元二次函数的图像特征,包括开口方向、顶点位置等。
教学内容:1. 掌握一元二次函数的图像特征。
2. 熟练绘制一元二次函数的图像。
教学过程:1. 讲解一元二次函数的图像特征,包括开口方向、顶点位置等。
2. 练习绘制一元二次函数的图像。
3. 总结一元二次函数的图像特征。
以上是高中数学必修二全套教案的部分内容,更多内容可根据教学实际情况进行补充和调整。
人教高中数学必修二全册教案
人教高中数学必修二全册教案教案一教学目标:1.知识目标:熟练掌握直线与圆的性质及相互关系,能够解决与直线与圆的相交关系相关的问题。
2.能力目标:培养学生分析和解决问题的能力,培养学生的逻辑思维和数学推理能力。
3.情感目标:培养学生的学习兴趣,培养学生的团队合作和交流合作能力。
教学内容:本节课主要讲解直线与圆的基本性质、相交关系以及相关的解题方法。
教学重点:直线与圆的相交关系以及相交关系对应的解题方法。
教学难点:直线与圆相交问题的解题方法。
教学过程:【Step 1】导入(5分钟)通过引导学生回顾直线与圆的基本性质,自主思考直线与圆的相交定理。
【Step 2】讲解(25分钟)1.讲解直线与圆的相交关系及对应的解题方法。
2.通过示例演示解题方法的具体步骤。
【Step 3】练习(30分钟)1.分组进行练习,每个小组选择一道直线与圆相交问题进行解答。
2.每个小组派一位代表上台讲解解题过程和答案。
3.教师给予评价和指导。
【Step 4】总结(10分钟)1.总结直线与圆的基本性质、相交关系以及解题方法。
2.鼓励学生积极思考,提出问题和疑惑。
教学方法:1.教师讲授与学生小组合作解题相结合的方法。
2.示范教学与学生独立思考相结合的方法。
教学工具:教学课件、黑板、书籍、小组讨论。
教学反思:通过本节课的学习,学生对直线与圆的相交关系及解题方法有了初步的了解和掌握,并且通过小组练习,培养了学生的团队协作和交流合作能力。
但在教学过程中,有些学生的思考和表达能力还不够充分,需要进一步培养。
下次教学中,我将更加注重学生的思维训练,引导学生提出问题和疑惑,进一步加深学生的理解和运用能力。
人教版高中数学必修二全册导学案
必修2 第一章§2-1 柱、锥、台体性质及表面积、体积计算【课前预习】阅读教材P1-7,23-28完成下面填空1.棱柱、棱锥、棱台的本质特征⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都).⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 .⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。
2.圆柱、圆锥、圆台、球的本质特征⑴圆柱:.⑵圆锥:.⑶圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点.(4)球: .3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式(1)直棱柱、正棱锥、正棱台的侧面展开图分别是①若干个小矩形拼成的一个,②若干个,③若干个 .(2)表面积及体积公式:4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.下列命题正确的是()(A).有两个面平行,其余各面都是四边形的几何体叫棱柱。
(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。
(C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
(D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
2.根据下列对于几何体结构特征的描述,说出几何体的名称:(1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。
(2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。
3.五棱台的上下底面均是正五边形,边长分别是6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。
4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍?强调(笔记):【课中35分钟】边听边练边落实5.如图:右边长方体由左边的平面图形围成的是()(图在教材P8 T1 (3))6.已知圆台的上下底面半径分别是r,R,且侧面面积等于两底面面积之和,求圆台的母线长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。
柱、锥、台、球的表面积和体积的计算公式。
平行、垂直的定义,判定和性质。
难点:柱、锥、台、球的结构特征的概括。
文字语言,图形语言和符号语言的转化。
平行,垂直判定与性质定理证明与应用。
第一课时 棱柱、棱锥、棱台【学习导航】学习要求1.初步理解棱柱、棱锥、棱台的概念。
掌握它们的形成特点。
2.了解棱柱、棱锥、棱台中一些常用名称的含义。
3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价1. 棱柱的定义: 表示法:思考:棱柱的特点:.【答】 2. 棱锥的定义: 表示法:思考:棱锥的特点:.【答】 3.棱台的定义: 表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:⑴棱柱的分类⑵棱锥的分类⑶棱台的分类【精典范例】例1:设有三个命题:甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是(A)A.0 B. 1 C. 2 D. 3例2:画一个四棱柱和一个三棱台。
【解】四棱柱的作法:⑴画上四棱柱的底面----画一个四边形;⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;⑶画下底面------顺次连结这些线段的另一个端点互助参考7页例1⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:(1)被遮挡的线要画成虚线(2)画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点:例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。
反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗?答:不能.点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。
自主训练一1. 如图,四棱柱的六个面都是平行四边形。
这个四棱柱可以由哪个平面图形按怎样的方向平移得到?答由四边形ABCD沿AA1方向平移得到.2.右图中的几何体是不是棱台?为什么?答:不是,因为四条侧棱延长不交于一点.3.多面体至少有几个面?这个多面体是怎样的几何体。
答:4个面,四面体.第二课时圆柱、圆锥、圆台、球【学习导航】知识网络ACBDA1C1B1D1学习要求1.初步理解圆柱、圆锥、圆台和球的概念。
掌握它们的生成规律。
2.了解圆柱、圆锥、圆台和球中一些常用名称的含义。
3.了解一些复杂几何体的组成情况,学会分析并掌握它们由哪些简单几何体组合而成。
4.结合日常生活中的一些具体实例,体会客观世界中事物与事物之间内在联系的辨证唯物主义观点,初步学会用类比的思想分析问题和解决问题.【课堂互动】自学评价1.圆柱的定义:母线底面轴2.圆锥的定义:3.圆台的定义:4.球的定义:5.旋转面的定义:6.旋转体的定义:7.圆柱、圆锥、圆台和球的画法。
【精典范例】例1:给出下列命题:甲:圆柱两底面圆周上任意两点的连线是圆柱的母线乙:圆台的任意两条母线必相交丙:球面作为旋转面,只有一条旋转轴,没有母线。
其中正确的命题的有(A)A.0 B. 1 C. 2 D. 3例2:如图,将直角梯形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?。
【解】互助参考9页例1例3:指出图中的几何体是由哪些简单几何体构成的?。
甲乙【解】互助参考9页例2思维点拨:如何解答一个复杂几何体的组成情况,主要是将原几何体分割成柱、锥、台和球后再解答。
如:以正六边行的一边所在直线为轴旋转一周,所得几何体由哪些简单几何体组成的?解:是由一个圆柱,两个圆台挖去两个圆锥所得几何体。
A BCD自主训练1. 指出下列几何体分别由哪些简单几何体构成?答:略2. 如图,将平行四边形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?D C答:圆锥和圆柱3.充满气的车轮内胎可以通过什么图形旋转生成?答:圆【师生互动】第三课时中心投影和平行投影【学习导航】知识网络学习要求1.初步理解投影的概念。
掌握中心投影和平行投影的区别和联系。
2.了解并掌握利用正投影鉴别简单组合体的三视图。
3.初步理解由三视图还原成实物图的思维方法.【课堂互动】自学评价1.投影的定义:.2.中心投影的定义:平行投影的定义:平行投影的分类:3.主视图(或正视图)的定义:俯视图的定义:左视图的定义:【精典范例】一、如何画一个实物的三视图?中心投影和平行投影空间几何体的三视图柱、锥、台、球的三视图简单组合体的三视图例1:画出下列几何体的三视图。
解答:互助参考12页例1点评:1.画三视图的方法和步骤(1)选择确定正前方,确定投影面,正前方应垂直于投影面,然后画出这时的正投影面------主视图(2)自左到右的方向垂直于投影面,画出这时的正投影------左视图⑶自上而下的方向是固定不变的。
在物体下方确定一个水平面作为投影-----俯视图2.作图规律:长对正,宽相等,高平齐例2:设所给的方向为物体的正前方,试画出它的三视图。
解答:互助参考13页例2二、如何由三视图还原成实物图。
例 3.根据下面的三视图, 画出相应空间图形的直观图.主视图左视图俯视图解略.点评:解决这类问题,需要充分发挥空间想象能力。
一般的从主视图出发,然后是左视图、俯视图,画图后检验。
自主训练一根据下列的主视图和俯视图,找出对应的物体,填在下列横线上。
(1) B (2) D(3) A (4) C主视图俯视图(1)第四课时 直观图画法【学习导航】 知识网络学习要求1.初步了解中心投影和平行投影的区别。
2.初步掌握水平放置的平面图形的直观图的画法和空间几何体的直观图的画法3.初步了解斜二测画法【课堂互动】自学评价1.消点的定义: . 2.斜二测画法步骤⑴ ⑵ ⑶ ⑷ 【精典范例】一、怎样画水平放置的正三角形的直观图例1:画水平放置的正三角形的直观图。
解答:互助参考14页例1点评:在条件“平行于x 轴的线段,在直观图中保持长度不变;平行于y 轴的线段,长度为原来的一半”之下,正三角形的直观图为斜三角形。
自主训练一画水平放置的正五边形的直观图。
解答:略例2.画棱长为2cm 的正方体的直观图. 解答:互助参考15页例2(2)(3)(4) A BC D点评:空间图形的直观图的画法。
规则是:已知图形中平行于x 轴,y 轴和z 轴的线段,在直观图中保持平行性不变;平行于x 轴,z 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段长度为原来的一半。
自主训练二用斜二测画法画长、宽、高分别是4cm,3cm,2cm 的长方体ABCD —A ′B ′C ′D ′的直观图 仿照例2作图第五课时 平面的基本性质【学习导航】知识网络学习要求1.初步了解平面的概念.2.了解平面的基本性质(公理1-3)3.能正确使用集合符号表示有关点 、线、面的位置关系.4.能运用平面的基本性质解决一些简单的问题【课堂互动】 自学评价1.平面的概念: . 2.平面的表示法 3.公里1:符号表示 4. 公里2:符号表示 5.公里3:符号表示 问题:举出日常生活中不共线的三点确定一个平面的例子.【精典范例】例1:已知E 、F 、G 、H 分别为空间四边形(四个顶点不共面的四边形)ABCD 各边AB 、AD 、BC 、CD 上的点, 且直线EF 和GH 交于点P, 求证: B 、D 、P 在同一条直线上.证明:∵P ∈EF,而E ∈AB,F ∈AD ∴EF 平面ABD ∴P ∈平面ABD 同理,P ∈平面BDC∴P ∈平面ABD ∩平面BDC ∴B 、D 、P 在同一条直线上思维点拔:证明多点共线,通常利用公里2,即两相交平面交线的唯一性;证明点在相交平面的交线上,必须证明这些点分别在两个平面内。
自主训练如图, 在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为AB,AA 1中点,求证CE,D 1F,DA 三条直线交于一点。
A E FDB GHC PA F证略.例2.如图, 在长方体ABCD-A1B1C1D1中, 下列命题是否正确? 并说明理由.①AC1在平面CC1B1B内;②若O、O1分别为面ABCD、A1B1C1D1的中心, 则平面AA1C1C与平面B1BDD1的交线为OO1 .③由点A、O、C可以确定平面;④由点A、C1、B1确定的平面与由点A、C1、D确定的平面是同一个平面.解(1)不正确(2)正确(3)不正确(4)正确.自主训练1.为什么许多自行车后轮旁装一只撑脚?2.用符号表示“点A在直线l上,l在平面α外”正确的是(B)A.Al,lαB .Al,lαC .Al,lαD .Al,lα3.下列叙述中,正确的是(D)A.因为Pα,Qα,所以PQαB.因为Pα,Qβ,所以αβ=PQC.因为ABα,CAB,DAB,所以CDαD.因为ABα,ABβ,所以Aαβ,且Bαβ第六课时平面的基本性质【学习导航】知识网络学习要求A11.了解平面基本性质的3个推论, 了解它们各自的作用.2.能运用平面的基本性质解决一些简单的问题.【课堂互动】自学评价1.推论1: .已知:求证:解答:互助参考22页推论12.推论2:已知:求证:3.推论3:符号表示:仿推论1、推论2的证明方法进行证明。
【精典范例】一、如何证明共面问题.例1:已知: 如图A∈l , B∈l, C∈l, D l, 求证: 直线AD、BD、CD共面.解答:互助参考22页例1思维点拔:简单的点线共面的问题,一般是先由部分点或线确定一个平面,然后证明其他的点线也在这个平面内,这种证明点线共面的方法称为"落入法"例2.如图: 在长方体ABCD-A1B1C1D1中, P为棱BB1的中点, 画出由A1 , C1 , P三点所确定的平面α与长方体表面的交线.解答:互助参考23页例2自主训练一证明空间不共点且两两相交的四条直线在同一平面内.已知:求证:证明:(1)如图,设直线a,b,c相交于点O,直线d和a,b,c分别交于M,N,P直线d和点O确定平面α,证法如例1ABDClαCAMNoPdα(2)设直线a,b ,c, d 两两相交,且任意三条不共线,交点分别为M,N,P,Q,R,G ∵直线a 和b 确定平面α ∴a ∩c=N,b ∩c=Q ∵N,Q 都在平面α内∴直线c 平面α,同理直线d 平面α ∴直线a,b ,c, d 共面于α【学习延伸】如图, 已知正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为D 1C 1、B 1C 1的中点, AC ∩BD=P , A 1C 1∩EF=Q , 求证:(1) D 、B 、F 、E 四点共面’(2)若A 1C 交平面DBFE 于R 点, 则P 、Q 、R 三点共线 .证明略自主训练二1.空间四点中, 如果任意三点都不共线, 那么由这四点可确定___1或4____个平面?2.已知四条不相同的直线, 过其中每两条作平面, 至多可确定____6____个平面.3.已知l 与三条平行线a,b,c 都相交,求证:l 与a,b,c 共面.证明略第7课时 空间两条直线的位置关系学习要求1.了解空间两条直线的位置关系2.掌握平行公理及其应用3.【课堂互动】 自学评价1. 空间两直线的位置关系2. 公里4:符号表示: 思考:经过直线外一点,有几条直线和这条直线CA ac b NG Pαd c M a bR平行答:3.等角定理【精典范例】例1:.如图, 在长方体ABCD-A1B1C1D1中, 已知E、F分别是AB、BC的中点, 求证: EF//A1C1解答:互助参考25页例1思维点拔:证两直线平行的方法:(1)利用初中所学的知识(2)利用平行公理.自主训练已知:棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为CD,AD的中点,求证:四边形MNAC 是梯形.M证明略点评:要证梯形,必须证明有两边平行且相等,平行的证明要善于联想平面几何知识.例2:如图. 已知E、E1分别为正方体ABCD-A1B1C1D1的棱AD、A1D1的中点, 求证: ∠C1E1B1=∠CEB .分析:设法证明E1C1//EC,E1B1//EB证明:解答:互助参考26页例2等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。