高中数学必修二学案

合集下载

高中数学人教版必修二(浙江专版)学案直线的交点坐标与距离公式含答案

高中数学人教版必修二(浙江专版)学案直线的交点坐标与距离公式含答案

∴所求直线方程为 2x+3y+8=0.
题点四:线关于线对称
4.求直线 m:3x-2y-6=0 关于直线 l:2x-3y+1=0 的对称直线 m′的方程.
解:在直线 m 上取一点,如 M(2,0),
则 M(2,0)关于直线 l 的对称点 M′必在直线 m′上.
设对称点为 M′(a,b),则
Error!
4 两点间距离公式
[典例] (1)已知点 A(-3,4),B(2, 3),在 x 轴上找一点 P,使|PA|=|PB|,并求|PA|
的值;
(2)已知 M(x,-4)与点 N(2,3)间的距离为 7 2,求 x 的值.
[解] (1)设点 P 的坐标为(x,0),则有
|PA|= x+32+0-42= x2+6x+25,
A.(-2,1)
B.(-2,5)
C.(2,-5)
D.(4,-3)
解析:选 B 设对称点坐标为(a,b),
Error!解得Error!即 Q(-2,5).
题点三:线关于点对称
3.与直线 2x+3y-6=0 关于点(1,-1)对称的直线方程是( )
-5-
A.3x-2y+2=0
B.2x+3y+7=0
即 x2-4x-45=0,
解得 x1=9 或 x2=-5.
故所求 x 的值为 9 或-5.
若已知两点的坐标 P1(x1,y1),P2(x2,y2),求两点间的距离,可直接应用两点间的距离 公式|P1P2|= x2-x12+y2-y12.若已知两点间的距离,求点的坐标,可设未知数,逆
-3-
用两点间的距离公式列出方程,从而解决问题.
[小试身手] 1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)过 P1(0,a),P2(0,b)的两点间的距离为 a-b( ) (2)不论 m 取何值,x-y+1=0 与 x-2my+3=0 必相交( ) 答案:(1)× (2)× 2.已知点 A(-2,-1),B(a,3),且|AB|=5,则 a 的值为( ) A.1 B.-5 C.1 或-5 D.-1 或 5 解析:选 C ∵|AB|= a+22+3+12=5, ∴a=-5 或 a=1. 3.两直线 2x+3y-k=0 和 x-ky+12=0 的交点在 y 轴上,那么 k 的值为________.

2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析

2020-2021高中数学人教版第二册学案:6.3.1平面向量基本定理含解析

新教材2020-2021学年高中数学人教A版必修第二册学案:6.3.1平面向量基本定理含解析6.3平面向量基本定理及坐标表示6.3.1平面向量基本定理[目标]1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理;2.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理.[难点] 平面向量基本定理的应用.要点整合夯基础知识点平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.如图,设OA、OB、OC为三条共端点的射线,P为OC上一点,能否在OA 、OB 上分别找一点M 、N ,使OP →=错误!+错误!?提示:能。

过点P 作OA 、OB 的平行线,分别与OB 、OA 相交,交点即为N 、M .3.若向量a ,b 不共线,且c =2a -b ,d =3a -2b ,试判断c ,d 能否作为基底.提示:设存在实数λ使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0.由于a ,b 不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c ,d 不共线,故c ,d 能作为基底。

典例讲练破题型类型一 基底的概念[例1] 下面说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量;④对于平面内的任一向量a 和一组基底e 1,e 2,使a =λe 1+μe 2成立的实数对一定是唯一的.A .②④B .②③④C .①③D .①③④[解析] 因为不共线的任意两个向量均可作为平面的一组基底,故②③正确,①不正确;由平面向量基本定理知④正确.综上可得②③④正确.[答案]B根据平面向量基底的定义知,判断能否作为基底问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底。

高中必修二数学全册教案

高中必修二数学全册教案

高中必修二数学全册教案
第一节:直线和平面的方程
教学目标:学生能够理解和应用直线和平面的方程。

教学重点:直线和平面的一般方程、截距式方程、点斜式方程、交点坐标、平面的截距式方程。

教学难点:平面的一般方程的推导。

教学过程:
1.引入直线和平面的方程。

通过实际例子引导学生了解直线和平面的一般方程。

2.介绍直线的方程。

讲解直线的截距式方程和点斜式方程,并通过例题演示如何转换。

3.介绍平面的方程。

学习平面的一般方程和截距式方程,并讲解如何根据平面上的点和法向量来确定平面的方程。

4.练习。

让学生进行练习,巩固直线和平面的方程的知识。

5.总结。

总结本节课的重点内容,并提醒学生注意要点。

教学资源:教材、黑板、彩色粉笔、习题册。

课后作业:完成课后习题,练习直线和平面的方程,并思考如何应用到实际生活中。

扩展阅读:了解不同方程的应用领域,并与实际生活进行联系。

高中数学必修二教案word

高中数学必修二教案word

高中数学必修二教案word
课题:高中数学必修二
主题:函数的性质
教学目标:
1. 了解函数的概念和性质。

2. 掌握函数的单调性和奇偶性的判断方法。

3. 能够应用函数的性质解决相关问题。

教学重点:
1. 函数的概念和性质。

2. 函数的单调性和奇偶性的判断方法。

教学难点:
1. 函数性质的运用。

2. 函数性质的证明。

教具准备:
1. 教材《高中数学必修二》
2. 黑板、彩色粉笔
3. 讲义、作业
教学过程:
1. 导入(5分钟):教师引入函数的概念,让学生通过实例理解函数的性质。

2. 讲解(15分钟):教师讲解函数的单调性和奇偶性的判断方法,引导学生掌握相关概念。

3. 练习(20分钟):教师设计相关练习,让学生在实践中运用函数性质进行推理和分析。

4. 拓展(10分钟):教师引导学生探讨函数性质在实际问题中的应用,拓展学生的思维。

5. 总结(5分钟):教师总结本节课的重点和难点,巩固学生的学习成果。

6. 作业布置(5分钟):教师布置相关作业,帮助学生进一步巩固所学内容。

教学反思:
本节课设计了多种教学方法,让学生在探索中学习函数的性质。

通过引导学生进行实践和讨论,让他们更好地理解并掌握相关知识。

在今后的教学中,要继续注重学生的实践能力培养,激发他们的学习兴趣。

高中数学:第一章(立体几何初步)学案(新人教版B版必修2) 学案

高中数学:第一章(立体几何初步)学案(新人教版B版必修2) 学案

数学:第一章《立体几何初步》学案(新人教版B 版必修2)第一章《立体几何初步》单元小结导航知识链接点击考点(1)了解柱,锥,台,球及简单组合体的结构特征。

(2) 能画出简单空间图形的三视图,能识别三视图所表示的立体模型,并会用斜二测法画出它们的直观图。

(3) 通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式。

(4) 理解柱,锥,台,球的表面积及体积公式。

(5) 理解平面的基本性质及确定平面的条件。

(6) 掌握空间直线与直线,直线与平面,平面与平面平行的判定及性质。

(7) 掌握空间直线与平面,平面与平面垂直的判定及性质。

名师导航1.学习方法指导 (1) 空间几何体①空间图形直观描述了空间形体的特征,我们一般用斜二测画法来画空间图形的直观图。

②空间图形可以看作点的集合,用符号语言表述点,线,面的位置关系时,经常用到集合的有关符号,要注意文字语言,符号语言,图形语言的相互转化。

③柱,锥,台,球是简单的几何体,同学们可用列表的方法对它们的定义,性质,表面积及体积进行归纳整理。

④对于一个正棱台,当上底面扩展为下底面的全等形时,就变为一个直棱柱;当上底面收缩为中心点时,就变为一个正棱锥。

由1()2S c c h ''=+正棱台侧和()3hV s s '=正棱台,就可看出它们的侧面积与体积公式的联系。

(2) 点,线,面之间的位置关系①“确定平面”是将空间图形问题转化为平面图形问题来解决的重要条件,这种转化最基本的就是三个公理。

②空间中平行关系之间的转化:直线与直线平行 直线与平面平行平面与平面平行。

③空间中垂直关系之间的转化:直线与直线垂直 直线与平面垂直平面与平面垂直。

2.思想方法小结在本章中需要用到的数学思想方法有:观察法,数形结合思想,化归与转化思想等。

主要是立体几何问题转化为平面几何问题,平行与垂直的相互转化等。

3.综合例题分析例1:如图,P 是∆ABC 所在平面外一点,A ',B ',C '分别是PBC ∆,PCA ∆,PAB ∆的重心。

高中数学必修2——立体几何平行和垂直(学案)

高中数学必修2——立体几何平行和垂直(学案)

立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。

知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。

直线l 与平面α垂直记作:α⊥l 。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

高中数学必修二 (学案)平面向量的运算

高中数学必修二  (学案)平面向量的运算

平面向量的运算【第一课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a,b,c,求作和向量a+b+c.解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ; (2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC →+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB +BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ→ C .SP→ D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c .过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|,所以|AB →+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a=⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|, 所以AB→=2DC →,DC →=12AB →.(1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN →=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN →=DA →+CB →,所以MN→=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求: ①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A .3B .23C .4D .12 (2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2 =|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |, 所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 答案:(1)π3 (2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量,则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e . 4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. 5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). 四、精炼反馈1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π2解析:选C .由题意,知a·b =|a ||b |cos θ=4cos θ=2,所以cos θ=12.又0≤θ≤π,所以θ=π3. 2.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-3解析:选B .因为c·d =0,所以(2a +3b )·(k a -4b )=0,所以2k a 2-8a ·b +3k a ·b -12b 2=0, 所以2k =12,所以k =6.3.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.解析:设a 与b 的夹角θ,则cos θ=a ·b |a ||b |=-123×5=-45,所以a 在b 上的投影向量为|a |cos θ·e =3×⎝ ⎛⎭⎪⎫-45e=-125e .答案:-125e4.已知|a |=1,|b |=2. (1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |; (3)若a -b 与a 垂直,求a 与b 的夹角. 解:设向量a 与b 的夹角为θ.(1)当a ,b 同向,即θ=0°时,a ·b =2;当a ,b 反向,即θ=180°时,a ·b =-2. (2)|a +b |2=|a |2+2a ·b +|b |2=3+2,|a +b |=3+2.(3)由(a -b )·a =0,得a 2=a ·b ,cos θ=a ·b |a ||b |=22,又θ∈[0,180°],故θ=45°.。

高中数学必修2教案TxT

高中数学必修2教案TxT

高中数学必修2教案TxT
第一课:线性方程组
教学目标:学生能够理解线性方程组的概念、解线性方程组的方法以及应用线性方程组解决实际问题。

教学内容:
1. 线性方程组的定义和性质
2. 解线性方程组的方法:代入法、消元法、矩阵法
3. 实际问题中的线性方程组应用
教学步骤:
1. 引导学生回顾线性方程的基本概念,引入线性方程组的概念。

2. 通过例题讲解代入法、消元法和矩阵法解线性方程组的步骤和技巧。

3. 练习解决一些简单的线性方程组问题,巩固和加深理解。

4. 结合实际问题,让学生运用线性方程组解决实际问题,培养学生的应用能力。

教学时长:2课时
课后作业:
1. 完成课堂练习题目
2. 思考如何将所学知识应用到实际生活中解决问题
评价标准:
1. 能够准确理解线性方程组的概念和解题方法
2. 能够灵活运用代入法、消元法和矩阵法解决线性方程组问题
3. 能够应用线性方程组解决实际问题
教师反思:
本节课教学内容较为简单,学生基本都能够理解和掌握,但在实际问题应用方面还需要进一步加强,下一节课将重点讲解实际问题的应用。

2019-2020学年数学高中人教A版必修2学案:第一章 空间几何体 本章小结 含解析

2019-2020学年数学高中人教A版必修2学案:第一章 空间几何体 本章小结 含解析
布置作业
课本P36A组第7,9题,B组第1,4题.
课堂小结
参考答案
要点分析
一、三视图与直观图
1.B解析:根据选项A,B,C,D中的直观图,画出其三视图,只有B项符合.
2.B解析:根据水平放置平面图形的直观图的画法,可得原图形是一个平行四边形,如图,对角线OB=2 ,OA=1,则AB=3,所以周长为8.
A. B. C. D.
三、截面问题与剪开问题
一个平面与几何体相交所得的几何图形(包括边界及其内部)叫做几何体的截面,截面的边界叫做截线(或交线).
8.轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为1cm,求球的体积.
9.圆柱的轴截面是边长为5cm的正方形ABCD,圆柱侧面上从A到C的最短距离是多少?
要点分析
一、三视图与直观图
三视图是从三个不同的方向看同一个物体而得到的三个视图.从三视图可以看出,俯视图反映物体的长和宽,正视图反映它的长和高,侧示,则这个几何体的直观图可以是( )
2.如图所示,正方形O'A'B'C'的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )
四、与球有关的问题
球内有一个几何体,若该几何体是多面体,则多面体的各个顶点都在球面上;若是旋转体,圆在球面上,这个球称为这个几何体的外接球.若在几何体内的球切于该几何体的各个表面,则称之为内切球.
10.已知一个半径为 的球有一个内接正方体(即正方体的顶点都在球面上),求这个球的表面积与其内接正方体的表面积之比.
11.设正方体的表面积为24cm2,一个球内切于该正方体,求这个球的体积.
12.四棱锥S-ABCD的底面边长和各侧棱长都为 ,点S,A,B,C,D都在同一个球面上,则该球的体积为.

最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案

最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案

新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案]第一章立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。

柱、锥、台、球的表面积和体积的计算公式。

平行、垂直的定义,判定和性质。

难点:柱、锥、台、球的结构特征的概括。

文字语言,图形语言和符号语言的转化。

平行,垂直判定与性质定理证明与应用。

第一课时棱柱、棱锥、棱台【学习导航】知识网络学习要求1.初步理解棱柱、棱锥、棱台的概念。

掌握它们的形成特点。

2.了解棱柱、棱锥、棱台中一些常用名称的含义。

3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价棱柱的定义:表示法:思考:棱柱的特点:.【答】棱锥的定义:表示法:思考:棱锥的特点:.【答】3.棱台的定义:表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:?棱柱的分类?棱锥的分类?棱台的分类【精典范例】例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。

以上各命题中,真命题的个数是 (A)A.0B. 1C. 2D. 3 例2:画一个四棱柱和一个三棱台。

【解】四棱柱的作法:?画上四棱柱的底面----画一个四边形;?画侧棱-----从四边形的每一个顶点画平行且相等的线段;?画下底面------顺次连结这些线段的另一个端点互助参考7页例1?画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:1被遮挡的线要画成虚线2画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:1.准确地理解柱、锥、台的定义2.灵活理解柱、锥、台的特点:例如:棱锥的特点是:?两个底面是全等的多边形;?多边形的对应边互相平行;?棱柱的侧面都是平行四边形。

高中数学教材必修二教案

高中数学教材必修二教案

高中数学教材必修二教案
课时:第一课时
教学内容:函数的概念和性质
教学目标:通过本节课的学习,学生能够掌握函数的基本概念、函数的性质和函数的图像;能够运用函数的性质解决相关问题。

教学重点:函数的概念、函数的性质
教学难点:函数的图像
教学准备:教材、黑板、彩色粉笔、教学课件
教学过程:
1.导入新知识(5分钟)
教师通过例题引入函数的概念,并与学生讨论函数的定义和特点。

2.教学内容讲解(15分钟)
教师讲解函数的性质,包括定义域、值域、奇偶性等,引导学生理解函数的性质对函数图
像的影响。

3.例题演练(20分钟)
教师给学生提供多个例题,让学生运用函数的性质解决问题,引导学生思考函数的应用。

4.课堂练习(10分钟)
让学生在课堂上解答相关练习题,巩固所学知识,加深对函数的理解。

5.课堂总结(5分钟)
教师对本节课的重点内容进行总结,强调函数的概念和性质对数学学习的重要性。

教学反思:
本节课主要围绕函数的概念和性质展开教学,通过例题和课堂练习,提高学生对函数的理
解和运用能力。

教学过程中,要注意引导学生思考,激发学生学习的兴趣,培养学生独立
解决问题的能力。

高中数学必修二 10 1 3 古典概型学案

高中数学必修二  10 1 3 古典概型学案

10.1.3古典概型【学习目标】一.随机事件的概率对随机事件发生的度量(数值)称为事件的概率,事件A的概率用表示.二.古典概型的特点①有限性:试验的样本空间的样本点只有;②等可能性:每个样本点发生的可能性.三.古典概型的概率公式对任何事件A,P(A)==.【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)任何一个事件都是一个样本点.()(2)古典概型中每一个样本点出现的可能性相等.()(3)古典概型中的任何两个样本点都是互斥的.()2.思考:“在区间[0,10]上任取一个数,这个数恰为5的概率是多少?”这个概率模型属于古典概型吗?【经典例题】题型一古典概型的判断点拨:判断试验是不是古典概型,关键看是否符合两大特征:有限性和等可能性.例1 下列试验是古典概型的为________.(填序号)①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为6的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.【跟踪训练】1 下列试验中是古典概型的是()A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球C.向一个圆面内随机地投一个点,观察该点落在圆内的位置D.射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…,命中0环题型二古典概型的概率计算点拨:1.对于古典概型,任何事件A的概率为:P(A)=A包含的基本事件的个数m 基本事件的总数n.2.求古典概型概率的步骤为:(1)判断是否为古典概型;(2)算出基本事件的总数n;(3)算出事件A中包含的基本事件个数m;(4)算出事件A的概率,即P(A)=m n.例2 将一枚质地均匀的正方体骰子先后抛掷两次观察出现点数的情况.(1)一共有多少个不同的样本点?(2)点数之和为5的样本点有多少个?(3)点数之和为5的概率是多少?例3 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回地从某箱中随机抽出2听,求检测出不合格产品的概率.【跟踪训练】2 在一次口试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求:(1)他获得优秀的概率为多少;(2)他获得及格及及格以上的概率为多少.【当堂达标】1.下列试验是古典概型的是()A.口袋中有2个白球和3个黑球,从中任取一球,基本事件为{取中白球}和{取中黑球} B.在区间[-1,5]上任取一个实数x,使x2-3x+2>0C.抛一枚质地均匀的硬币,观察其出现正面或反面D.某人射击中靶或不中靶2.一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为()A.12 B.13 C.14 D.253.《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为()A.13B.14C.15D.164.先后抛掷两颗骰子,所得点数之和为7的概率为()A.13 B.112 C.16 D.5365.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率为.6.某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.【课堂小结】1.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征,即有限性和等可能性,因而并不是所有的试验都是古典概型.2.求某个随机事件包含的样本点个数是求古典概型概率的基础和关键.应做到不重不漏.【参考答案】【自主学习】可能性大小P(A) 有限个相等事件A包含的样本点个数样本空间Ω包含的样本点个数n AnΩ【小试牛刀】1. (1)×(2)√(3)√思考:不属于古典概型.因为在区间[0,10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.【经典例题】例 1 ①②④解析:①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,降雨受多方面因素影响.【跟踪训练】1 B解析:由古典概型的两个特征易知B正确.例2 解:(1)将一枚质地均匀的正方体骰子抛掷一次,得到的点数有1,2,3,4,5,6,共6个样本点,故先后将这枚骰子抛掷两次,一共有6×6=36(个)不同的样本点.(2)点数之和为5的样本点有(1,4),(2,3),(3,2),(4,1),共4个.(3)正方体骰子是质地均匀的,将它先后抛掷两次所得的36个样本点是等可能出现的,其中点数之和为5(记为事件A)的样本点有4个,因此所求概率P(A)=436=19.例3 解:只要检测的2听中有1听不合格,就表示查出了不合格产品.分为两种情况:1听不合格和2听都不合格.设合格饮料为1,2,3,4,不合格饮料为5,6,则6听中选2听试验的样本空间为Ω={ (1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)},共15个样本点.有1听不合格的样本点有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个;有2听不合格的样本点有(5,6),共1个,所以检测出不合格产品的概率为8+115=35.【跟踪训练】2 解:设这5道题的题号分别为1,2,3,4,5,其中,该考生能答对的题的题号为4,5,则从这5道题中任取3道回答,该试验的样本空间Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)},共10个样本点.(1)记“获得优秀”为事件A,则随机事件A中包含的样本点个数为3,故P(A)=3 10.(2)记“获得及格及及格以上”为事件B,则随机事件B中包含的样本点个数为9,故P(B)=9 10.【当堂达标】1.C 解析:根据古典概型的两个特征进行判断.A 项中两个基本事件不是等可能的,B 项中基本事件的个数是无限的,D 项中“中靶”与“不中靶”不是等可能的,C 项符合古典概型的两个特征.2.A 解析:把红球标记为红1、红2,白球标记为白1、白2,本试验的样本点共有16个,其中2个球同色的样本点有8个:(红1,红1),(红1,红2),(红2,红1),(红2,红2),(白1,白1),(白1,白2),(白2,白1),(白2,白2),故所求概率为P =816=12.3.A 解析:设齐王的上、中、下三个等次的马分别为a ,b ,c ,田忌的上、中、下三个等次的马分别记为A ,B ,C ,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,根据题意,其中Ab ,Ac ,Bc 是田忌获胜,则田忌获胜的概率为39=13.故选A .4.C 解析:抛掷两颗骰子,一共有36种结果,其中点数之和为7的共有6种结果,根据古典概型的概率公式,得P =16.5. 15 解析:用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为(A ,B ),(A ,C ),(A ,a ),(A ,b ),(A ,c ),(B ,C ),(B ,a ),(B ,b ),(B ,c ),(C ,a ),(C ,b ),(C ,c ),(a ,b ),(a ,c ),(b ,c ),共15种,2名都是女同学的选法为(a ,b ),(a ,c ),(b ,c ),共3种,故所求的概率为315=15.6.解:(1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的样本点有: {(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)},共15个. 所选两个国家都是亚洲国家的事件所包含的样本点有: {(A 1,A 2),(A 1,A 3),(A 2,A 3)},共3个, 则所求事件的概率为p =315=15. (2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的样本点有:{(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3)},共9个.包括A 1但不包括B 1的事件所包含的样本点有:{(A 1,B 2),(A 1,B 3)},共2个,则所求事件的概率为p =29.。

2020-2021高中数学人教版第二册学案:6.1平面向量的概念含解析

2020-2021高中数学人教版第二册学案:6.1平面向量的概念含解析

新教材2020-2021学年高中数学人教A版必修第二册学案:6.1平面向量的概念含解析第六章平面向量及其应用6.1平面向量的概念[目标] 1。

记住向量、相等向量的概念,会向量的几何表示;2.记住共线向量的概念,并能找共线向量.[重点] 理解并掌握向量、向量的模、零向量、单位向量、平行向量的概念,会表示向量.[难点]向量的概念,平行向量.要点整合夯基础知识点一向量的概念和表示方法[填一填]1.向量:在数学中,我们把既有大小又有方向的量叫做向量.2.向量的表示(1)表示工具—-有向线段.有向线段包含三个要素:起点,方向,长度.(2)表示方法:向量可以用有向线段错误!表示,向量错误!的大小称为向量错误!的长度(或称模),记作|错误!|。

向量可以用字母a,b,c,…表示,也可以用有向线段的起点和终点字母表示,如:错误!,错误!.[答一答]1.有向线段就是向量,向量就是有向线段吗?提示:有向线段只是一个几何图形,是向量的直观表示.因此,有向线段与向量是完全不同的两个概念.2.两个向量可以比较大小吗?提示:不能.因为向量既有大小,又有方向.知识点二向量的长度(或称模)与特殊向量[填一填]1.向量的长度定义:向量的大小.2.向量的长度表示:向量错误!的长度记作:|错误!|;向量a的长度记作:|a|.3.特殊向量长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.[答一答]3.零向量的方向是什么?两个单位向量的方向相同吗?提示:零向量的方向是任意的.两个单位向量的方向不一定相同.知识点三相等向量与共线向量[填一填]1.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b。

2.方向相同或相反的非零向量叫做平行向量,如果向量a,b 平行,记作a∥b.任一组平行向量都可以平移到同一条直线上,因此,平行向量也叫做共线向量.3.规定:零向量与任一向量平行,即对于任意向量a,都有0∥a。

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二1.2.2 空间几何体的三视图学案+课时训练

人教版高中数学必修二第1章空间几何体1.2.2空间几何体的三视图学案【要点梳理夯实基础】知识点1投影的概念阅读教材P11~P12第二行内容,完成下列问题.1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影[思考辨析学练结合]判断(正确的打“√”,错误的打“×”)(1)矩形的平行投影一定是矩形.()(2)平行四边形的平行投影可能是正方形.()(3)两条相交直线的平行投影可能平行.()(4)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()【解析】利用平行投影的概念和性质进行判断.【答案】(1)×(2)√(3)×(4)√知识点2三视图阅读教材P12第三行~P14内容,完成下列问题.1.三视图的有关概念空间几何体的三视图是用正投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.正视图:光线从几何体的前面向后面正投影得到的投影图。

侧视图:光线从几何体的左面向右面正投影得到的投影图。

俯视图:光线从几何体的上面向下面正投影得到的投影图。

规律:一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样。

2.三视图的画法(1)画三视图时,重叠的线只画一条,挡住的线要画成虚线;(2)三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图;(3)观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,特别是它们的交线位置.3.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的主视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的主视图和左视图均为全等的等腰梯形.(4)水平放置的圆柱的主视图和左视图均为全等的矩形.[思考辨析学练结合]1.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台[解析][先观察俯视图,再结合正视图和侧视图还原空间几何体.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.][答案] D2. 判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)球的任何截面都是圆.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()[答案](1)×(2)×(3)×3.下列命题中正确的是()A.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.正方形的直观图是正方形[解析]B[用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;平行四边形的直观图是平行四边形;有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱;正方形的直观图是平行四边形,故选B.][答案]B【合作探究析疑解难】考点1 中心投影与平行投影[典例1]如图,点E,F分别是正方体的面ADD1A1和面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是图中的________.(要求把可能的序号都填上)[点拨]利用点B,F,D1,E在正方体各面上的正投影的位置来判断.[解答]其中(2)可以是四边形BFD1E在正方体的面ABCD或在面A1B1C1D1上的投影.(3)可以是四边形BFD1E在正方体的面BCC1B1上的投影.[答案](2)(3)[解法总结]画投影图的关键及常用方法1.关键:画一个图形在一个投影面上的投影的关键是确定该图形的关键点(如顶点,端点等)及这些关键点的投影,再依次连接就可得到图形在投影面上的投影.2.常用方法:投影问题与垂直关系紧密联系,投影图形的形状与投影线和投射图形有关系,在解决有些投影问题时,常借助于正方体模型寻求解题方法.1.在正方体ABCD-A′B′C′D′中,E、F分别是A′A、C′C的中点,则下列判断正确的是________.图1-2-3①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.[解析]①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的边长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形.但AE=1,D′E =5,故四边形AGD′E不是菱形;对于③,由②知是两个边长分别相等的平行四边形,从而③正确.[答案]①③考点2 画空间几何体的三视图[典例2]画出下列几何体的三视图.(1)(2)(3)[点拨]确定正前方→画正视图→画侧视图→画俯视图[解答]三视图如图(1)(2)(3)所示.画三视图的注意事项1.务必做到长对正,宽相等,高平齐.2.三视图的安排方法是正视图与侧视图在同一水平位置,且正视图在左,侧视图在右,俯视图在正视图的正下方.3.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.2.画出如图所示几何体的三视图.解:图①为正六棱柱,正视图和侧视图都是矩形,正视图中有两条竖线,侧视图中有一条竖线,俯视图是正六边形.图②为一个圆锥与一个圆台的组合体,按圆锥、圆台的三视图画出它们的组合形状.三视图如图所示.考点3 由三视图还原空间几何体探究1如图是一个立体图形的三视图,请观察三视图,由三视图,你能知道该几何体是什么吗?并试着画出图形.[提示]由三视图可知,该几何体为正四棱锥,如图所示.探究2若某空间几何体的正视图和侧视图均为正三角形,请探究该几何体的形状.[提示]若该几何体的正视图和侧视图均为正三角形,则该几何体为轴截面为等边三角形的圆锥,如图所示.[典例3]根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.[点拨]由正视图、侧视图确定几何体为锥体,再结合俯视图确定其是四棱锥,由俯视图可知其底面形状,再结合正视图、侧视图所给信息画直观图.[解答]由俯视图知,该几何体的底面是一直角梯形;再由正视图和侧视图知,该几何体是一四棱锥,且有一侧棱与底面垂直,所以该几何体如图所示.[解法总结]由三视图还原几何体时,一般先由俯视图确定底面,由正视图与侧视图确定几何体的高及位置,同时想象视图中每一部分对应实物部分的形状.3.如图是一个物体的三视图,则此三视图所描述的物体是下列哪个几何体?()[解析]由俯视图可知该几何体为旋转体,由正视图、侧视图、俯视图可知该几何体是由圆锥、圆柱组合而成.[答案] D【学习检测巩固提高】1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点[解析]当直线与平面垂直时,其正投影为点,其他位置时其正投影均为直线,故选D.[答案] D2.已知某物体的三视图如图所示,那么这个物体的形状是()A.长方体B.圆柱C.立方体D.圆锥[解析]俯视图是圆,所以为旋转体,可排除A、C,又正、侧视图为矩形,所以不是圆锥,排除D.故选B.[答案] B3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析][由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.][答案] A4.如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的正投影可能是()A.①②B.①④C.②③D.②④[解析][P点在上下底面投影落在AC或A1C1上,所以△P AC在上底面或下底面的投影为①,在前面、后面以及左面,右面的投影为④,故选B.][答案] B5.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱[解析][由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.][答案] B6.水平放置的下列几何体,正视图是长方形的是______(填序号).①②③④[解析]①③④的正视图为长方形,②的正视图为等腰三角形.[答案]①③④7.一物体及其正视图如图所示:①②③④则它的侧视图与俯视图分别是图形中的________.[解析]侧视图是矩形中间有条实线,应选③;俯视图为矩形中间有两条实线,且为上下方向,应选②.[答案]③②8.如图所示的三视图表示的几何体是什么?画出物体的形状.[解]该三视图表示的是一个四棱台,如图.[解题反思]已知三视图,判断几何体的技巧①一般情况下,根据主视图、俯视图确定是柱体、锥体还是组合体.②根据俯视图确定是否为旋转体,确定柱体、锥体类型、确定几何体摆放位置.③综合三视图特别是在俯视图的基础上想象判断几何体.④一定要熟记常见几何体的三视图!。

高中数学新必修第二册 4.2.2 对数运算法则 学案 (1)

高中数学新必修第二册 4.2.2 对数运算法则 学案 (1)

4.2.2对数运算法则学习目标核心素养1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点)3.会运用运算性质进行一些简单的化简与证明.(易错点、重点)1.通过对数运算法则的学习,培养数学运算核心素养.2.通过对数换底公式的学习,提升逻辑推理素养.1.对数的运算法则如果a>0,且a≠1,M>0,N>0,α∈R那么:(1)l og a(M·N)=log a M+log a N;log a(N1·N2·…·N k)=log a N1+log a N2+…+log a N k(N i>0,i=1,2,…,k).(2)log a Mα=αlog a M.(3)log a MN=log a M-log a N.2.换底公式log a b=log c blog c a(a>0,且a≠1b>0,c>0且c≠1).特别地:log a b·log b a=1(a>0且a≠1,b>0且b≠1).思考:如何准确地应用换底公式?[提示](1)在使用换底公式时,底数的取值不唯一,应根据实际情况选择.(2)换底公式的意义就在于把对数式的底数改变,把不同底问题转化为同底问题.如:在化简求值过程中,出现不同底数的对数不能运用运算法则时,可统一化成以同一个底数的对数,再根据运算法则进行化简与求值.(3)要注意换底公式的两个重要推论的应用.①log a b =1log b a ;=nm log a b ,其中a >0且a ≠1,b >0且b ≠1,m ,n ∈R .1.计算log 84+log 82等于( ) A .log 86 B .8 C .6D .1D [log 84+log 82=log 8(4×2)=log 88=1.] 2.若2a =3b (ab ≠0),则log 32=( ) A.ba B.ab C .abD.a 2b 2A [2a =3b ⇒a lg 2=b lg 3,所以log 32=lg 2lg 3=ba .] 3.下列结论正确的是( ) A .log a (x -y )=log a x -log a y B.log a xlog ay =log a x -log a yC .log a xy =log a x -log a y D .log a x y =log a xlog ayC [由对数的运算性质,知A ,B ,D 错误,C 正确.] 4.若3a =2,则2log 36-log 38=________.2-a [∵3a =2,∴a =log 32,∴2log 36-log 38=2(log 32+log 33)-3log 32=-log 32+2=2-a .]利用对数的运算法则求值【例1】 (1)计算8-3+2lg 2-lg 125的值为________.(2)计算:log 327+lg 4+lg 25+⎝ ⎛⎭⎪⎫-180=________.(3)计算:①lg 5 100;②log2(47×25);③(lg 2)2+lg 20×lg 5.(1)94(2)92[(1)原式=(23)-23+lg 4-(lg 1-lg 25)=14+lg(4×25)=14+2=9 4.(2)原式=32+lg 102+1=32+2+1=92.](3)解:①lg 5100=15lg 102=25lg 10=25.②log2(47×25)=log247+log225=log222×7+log225=2×7+5=19.③(lg 2)2+lg 20×lg 5=(lg 2)2+(1+lg 2)(1-lg 2)=(lg 2)2+1-(lg 2)2=1.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系.2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.提醒:对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.计算下列各式的值:(1)2log23-log2638+log27-.(2)log33+lg 25+lg 4-log2(log216).[解] (1)2log 23-log 2638+log 27-=log 29-log 2638+log 27-2 =log 2⎝ ⎛⎭⎪⎫9×863×7-2=3-2=1.(2)原式=12log 33+lg(25×4)-2=12+2-2=12.对数运算法则的综合应用【例233(2)设a =lg 2,b =lg 3,试用a ,b 表示lg 108. [思路探究] 对数运算⇒对数运算法则的应用. [解] (1)log 312=log 3(3×4)=1+2log 32=a , 所以log 32=a -12,log 324=log 3(8×3) =1+3log 32=1+3×a -12=3a -12.(2)因为108=4×27=22×33,所以 lg 108=12lg 108=12lg(22×33) =12lg 22+12lg 33=lg 2+32lg 3=a +32b .1.(变结论)本例(2)中的条件不变,如何用a ,b 表示lg 95? [解] lg 95=lg 9-lg 5=2lg 3-(1-lg 2) =2b +a -1.2.(变条件)将本例(2)中的条件改为“lg 6=a ,lg 15=b ”,结果如何? [解] 由已知得⎩⎨⎧ lg 2+lg 3=a ,lg 3+lg 5=b ,即⎩⎨⎧lg 2+lg 3=a ,lg 3+1-lg 2=b ,解得⎩⎪⎨⎪⎧lg 2=a -b +12,lg 3=a +b -12,所以lg 108=12lg 108 =12lg(22×33)=12(2lg 2+3lg 3)=lg 2+32lg 3 =a -b +12+32×a +b -12 =2a -2b +2+3a +3b -34=5a +b -14.对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,“lg 2+lg 5=1”在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.对数换底公式的应用[1.假设log 25log 23=x ,则log 25=x log 23,即log 25=log 23x ,从而有3x =5,进一步可以得到什么结论?[提示] 进一步可以得到x =log 35,即log 35=log 25log 23.2.由探究1,你能猜测log c blog ca 与哪个对数相等吗?如何证明你的结论?[提示] log c b log c a =log a b .假设log c blog c a =x ,则log c b =x log c a ,即log c b =log c a x ,所以b =a x ,则x =log a b ,所以log c blog ca =log ab .【例3】 已知3a =4b =c ,且1a +1b =2,求实数c 的值.[思路探究] 先把指数式化为对数式,再利用换底公式转化为同底的对数运算.[解] 由3a =4b =c ,得:a =log 3c ,b =log 4c , 所以1a =1log 3c =log c 3,1b =1log 4c =log c 4.又1a +1b =2,所以logc 3+log c 4=log c 12=2, 即c 2=12,又3a =4b =c >0,所以c =2 3.1.(变条件)将本例中的条件“1a +1b =2”改为“1a -1b =2”,则实数c 又为多少?[解] 由3a =4b =c 得: a =log 3c ,b =log 4c ,所以1a =1log 3c =log c 3,1b =1log 4c =log c 4.又1a -1b =2,所以log c 3-log c 4=log c 34=2,即c 2=34,又3a =4b=c >0,所以c =32.2.(变结论)将本例条件改为“已知正数a ,b ,c 满足3a =4b =6c ”,求证:1c -1a =12b .[证明] 设3a =4b =6c =k (k >1), 则a =log 3k ,b =log 4k ,c =log 6k , 所以1c -1a =1log 6k -1log 3k =log k 6-log k 3=log k 63=log k 2,12b =12log 4k =12log k 4=log k 2,所以1c-1a=12b.应用换底公式应注意的两个方面(1)利用换底公式可以把不同底的对数化成同底的对数,要注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.(教师独具)1.本节课的重点是掌握对数运算性质、对数换底公式,难点是对数运算性质的应用.2.本节课要重点掌握的规律方法(1)掌握对数运算性质的应用技巧.(2)弄清对数换底公式在求值中的应用.3.本节课的易错点是应用对数运算性质、对数换底公式时忽略条件或将公式记忆错误.1.思考辨析(1)积、商的对数可以化为对数的和、差.()(2)log a xy=log a x·log a y.()(3)log a(-2)3=3log a(-2).()(1)√(2)×(3)×[(1)√.根据对数的运算性质可知(1)正确;(2)×.根据对数的运算性质可知log a xy=log a x+log a y;(3)×.公式log a M n=n log a M(n∈R)中的M应为大于0的数.]2.若log545=a,则log53=()A.2a-1B.21+aC.a+12 D.a-12D [因为log 545=log 5(5×9)=1+log 59 =1+2log 53=a , 所以log 53=a -12.]3.计算:log 25-log 252=________. 1 [原式=log 2⎝ ⎛⎭⎪⎫5×25=log 22=1.]4.计算下列各式的值: (1)lg 2+lg 5-lg 8lg 5-lg 4;(2)3log 72-log 79+2log 7⎝⎛⎭⎪⎫322. [解] (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 2lg 5+lg 2-3lg 2=1-3lg 21-3lg 2=1. (2)原式=log 723-log 79+log 7⎝⎛⎭⎪⎫3222 =log 78×989=log 71=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.1 柱、锥、台、球的结构特征一、课前准备(预习教材P2~ P4,找出疑惑之处)引入:小学和初中我们学过平面上的一些几何图形如直线、三角形、长方形、圆等等,现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,比如粉笔盒、足球、易拉罐等.如果只考虑这些物体的形状和大小,那么由这些物体抽象出来的空间图形叫做空间几何体.它们具有千姿百态的形状,有着不同的几何特征,现在就让我们来研究它们吧!二、基础探究1.观察下面的图片,请将这些图片中的物体分成两类,并说明分类的标准是什么?图12.【研读课本】(1)多面体的概念:叫多面体,叫多面体的面,叫多面体的棱,叫多面体的顶点。

①棱柱:两个面,其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱②棱锥:有一个面是,其余各面都是的三角形,这些面围成的几何体叫作棱锥③棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。

(2)旋转体的概念:叫旋转体,叫旋转体的轴。

①圆柱:所围成的几何体叫做圆柱.②圆锥:所围成的几何体叫做圆锥.③圆台:的部分叫圆台.④球的定义三、能力探究例1.(1)如图,观察四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱(2)下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形(3)下列命题中正确的是()A.棱台各侧棱的延长线交于一点B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.连接圆柱上、下底面圆周上两点的线段是圆柱的母线D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径(4)下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有__________个.()A.1B.2C.3D.4(5)下列说法中不正确的是()A 棱与侧棱是同一概念B 三棱锥与四面体是同一概念C四棱柱有4条体对角线 D 存在这样的棱锥,它的各个面都是直角三角形(6)一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为______cm.例2有两个面互相平行,其余各面是平行四边形的几何体是棱柱吗?如果不是,请举例说明。

例3.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?如果不是,请举例说明。

四、课堂练习1 、下列几何体是棱柱的有()A.5个B.4个C.3个D.2个2、下列几个命题中,①两个面平行且相似,其余各面都是梯形的多面体是棱台;②有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;③各侧面都是正方形的四棱柱一定是正方体;④分别以矩形两条不等的边所在直线为旋转轴,将矩形旋转,所得到的两个圆柱是两个不同的圆柱.其中正确的有__________个.()A.1B.2C.3D.43、下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台各侧棱的延长线交于一点4、下列命题中正确的是()A.以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台都有两个底面D.圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径§1.2.1 中心投影与平行投影§1.2.2 空间几何体的三视图一、复习提问1:圆柱、圆锥、圆台、球分别是_______绕着________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的.2:简单组合体构成的方式:________________和_____________________________________.二、基础探究1、如图1所示的五个图片是我国民间艺术皮影戏中的部分片断,请同学们考虑它们是怎样得的?图12、通过观察和自己的认识,你是怎样来理解投影的含义的?3、请同学们观察图2的投影过程,它们的投影过程有什么不同?图24、图2(2)(3)都是平行投影,它们有什么区别?5、阅读课本回答下面问题:(1)、空间几何体的三视图是指、、。

(2)、正视图、侧视图、俯视图分别是从、、观察同一个几何体,画出的空间几何体的图形。

(3)、正视图反映了物体上下、左右的位置关系,即反映了物体的和;侧视图反映了物体上下、前后的位置关系,即反映了物体的和.俯视图反映了物体左右、前后的位置关系,即反映了物体的和;(4)、三视图的排列规则是放在正视图的下方,它们的一样;放在正视图右边,它们的一样;侧视图和俯视图的一样。

三、能力探究例1 画出下列物体的三视图:例2 说出下列三视图表示的几何体:例3作出下图中两个物体的三视图四、课堂练习1. 下列哪种光源的照射是平行投影().A.蜡烛B.正午太阳C.路灯D.电灯泡2. 右边是一个几何体的三视图,则这个几何体是().A.四棱锥B.圆锥C.三棱锥D.三棱台3. 如图是个六棱柱,其三视图为().A. B. C. D.4、根据下面的三视图, 画出相应空间图形的直观图.主视图左视图俯视图,§1.2.3 空间几何体的直观图一、复习提问1、中心投影的投影线____ _____;平行投影的投影线__ ___.平行投影又分_ __投影和_ __投影.2、物体在正投影下的三视图是__ ___、____ __、__ ___;3、画三视图的要点是___ __ 、、__ ____.二、基础探究水平放置的平面图形的直观图画法问题:一个水平放置的正六边形,你看过去视觉效果是什么样子的?每条边还相等吗?该怎样把这种效果表示出来呢?斜二测画法的规则及步骤如下: (1)在已知水平放置的平面图形中取互相垂直的轴和轴,建立直角坐标系,两轴相交于.画直观图时,把它们画成对应的轴与轴,两轴相交于点,且使°(或°).它们确定的平面表示水平面;(2) 已知图形中平行于轴或轴的线段,在直观图中分别画成平行于轴或轴的线段;(3)已知图形中平行于轴的线段,在直观图中保持原长度不变,平行于轴的线段,长度为原来的一半;(4) 图画好后,要擦去轴、轴及为画图添加的辅助线(虚线). 三、能力探究例1.如下说法不正确的有A .长度相等的线段,在直观图中长度仍相等B .若两条线段垂直,则在直观图中对应的线段也互相垂直C .画与直角坐标系xOy 对应的y O x '''时,y O x '''∠必须是45°D .在画直观图时,由于选轴的不同,所得的直观图可能不同 例2.用斜二测画法画出水平放置的正五边形的直观图。

例3.用斜二侧画法画长、宽、高分别是4cm,3cm,2cm 的长方体ABCD A B C D ''''-的直 观图。

四、课堂练习1. 一个长方体的长、宽、高分别是4、8、4,则画其直观图时对应为( ). A. 4、8、4 B. 4、4、4 C. 2、4、4 D.2、4、22. 利用斜二测画法得到的①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形,其中正确的是( ).A.①②B.①C.③④D.①②③④3. 一个三角形的直观图是腰长为的等腰直角三角形,则它的原面积是().A. 8B. 16C.D.324. 下图是一个几何体的三视图请画出它的图形为_____________________.5. 等腰梯形ABCD上底边CD=1,腰AD=CB=,下底AB=3,按平行于上、下底边取x轴,则直观图的面积为________.§1.3.1 柱体、锥体、台体的表面积与体积一、复习提问斜二测画法画的直观图中,轴与轴的夹角为____,在原图中平行于轴或轴的线段画成与___和___保持平行;其中平行于轴的线段长度保持_____,平行于轴的线段长度____________.二、基础探究(一)柱体,锥体和台体的表面积问题1:棱柱,棱锥,棱台也是由多个平面图形围成的多面体,它们的展开图是什么?如何计算它们的表面积?问题2:如何根据圆柱,圆锥的几何特征,求它们的表面积?问题3:联系圆柱和圆锥的展开图,你能想象圆台展开图的形状,并画出它吗?如果圆台的上下底面半径分别为r1,r2,母线长为l,你能计算出它的表面积吗?(二)柱体,锥体,台体的体积提出问题:在初中,我们学过正方体,长方体和圆柱的体积公式,你还记得吗?问题1:你能从它们的体积公式出发,猜想出一般柱体的体积公式吗?问题2:通过多媒体展示,请学生猜测等底,等高的三棱柱与三棱锥的体积之间的关系问题3:推广到一般的棱锥和圆锥,你能猜想出锥体的体积公式吗?问题4:根据棱台和圆台的定义,如何计算台体的体积?问题5:柱,锥,台三者的体积公式之间有什么关系?三、能力探究例1 已知棱长为a,各面均为等边三角形的四面体S—ABC(图6),求它的表面积。

例2 如图,一个圆台形花盆盆口直径为20 cm,盆底直径为15 cm,底部渗水圆孔直径为1.5 cm,盆壁长为15 cm.为了美化花盆的外观,需要涂油漆.已知每平方米用100毫升油漆,涂100个这样的花盆需要多少毫升油漆?(π取3.14,结果精确到1毫升,可用计算器)例3 有一堆规格相同的铁制(铁的密度是7.8 g/cm3)六角螺帽(如图)共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm,问这堆螺帽大约有多少个?(π取3.14)四、课堂练习1.正方体的表面积是96,则正方体的体积是( )A.648B.64C.16D.96 2.)如图所示,圆锥的底面半径为1,高为3,则圆锥的表面积为( ) A.π B.2π C.3π D.4π3.正三棱锥的底面边长为3,侧棱长为32,则这个正三棱锥的体积是( )A.427 B.49C.4327D.4394.若圆柱的高扩大为原来的4倍,底面半径不变,则圆柱的体积扩大为原来的_________倍;§2.1.1 平面一、复习提问平面是构成空间几何体的基本要素.那么什么是平面呢?平面如何表示呢?平面又有哪些性质呢?二、基础探究1.几何里的平面是无限延展的,我们通常把水平的平面画成一个平行四边形。

相关文档
最新文档