高中数学必修二全册导学案

合集下载

高中数学必修二导学案:第一章第一节柱锥台球的结构特征第二课时

高中数学必修二导学案:第一章第一节柱锥台球的结构特征第二课时

第一章第一节柱锥台球的结构特征第二课时三维目标1.了解圆柱、圆锥、圆台、球的定义,认识圆柱、圆锥、圆台、球的结构特征;2. 会用柱、锥、台、球的结构特征描述简单组合体的结构特征;3. 了解柱、锥、台体的关系.________________________________________________________________________________ 目标三导学做思1问题1. (1)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)图②中的几何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.(3)图③中的几何体叫做________,SB为叫它的________.(4)图④中的几何体叫做________,AA′叫它的________,⊙O′及其内部叫它的________,⊙O及其内部叫它的________,它还可以看作直角梯形OAA′O′绕它的________________旋转一周后,其他各边所形成的面所围成的旋转体.(5).什么是简单组合体?简单几何体有哪几种基本形式?指出下图中的组合形式.【学做思2】1.如图,AB为圆弧»BC所在圆的直径,45BAC∠=o.将这个平面图形绕直线AB旋转一周,得到一个组合体,试说明这个组合体的结构特征.2.已知圆台的两底半径分别为2和3,母线长为5,求展开后的弧所对的圆心角度数.3.圆锥底面半径为1cm,高为2cm,其中有一个内接正方体,求这个内接正方体的棱长. 【变式】已知球的内接正方体棱长为2,求球的半径.达标检测1.如图所示的四个几何体中,是圆柱的为________;是圆锥的为________.2.说出如图所示几何体的主要结构特征.3.如图所示,下列几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.4.如图,长方体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表面到C l的最短距离为______.5.一个圆台的母线长为12cm,两底面面积分别为4πcm2和25πcm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.。

新课标高中数学必修二导学案

新课标高中数学必修二导学案

目录第一章空间几何体1.1 空间几何体的构造1.1.1 多面体的构造特征 (1)1.1.2旋转体与简单组合体的构造特征 (6)1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图 (10)1.2.3 空间几何体的直观图. (15)§1.3空间几何体的外表积与体积第1课时柱体、锥体、台体的外表积 (19)第2课时柱体、锥体、台体、球的体积与球的外表积 (23)习题课空间几何体 (27)第二章点直线平面之间的位置关系2.1.1 平面 (29)2.1.2 空间中直线与直线之间的位置关系 (33)2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系 (37)2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定 (40)2.2.3 直线与平面平行的性质 (44)2.2.4 平面与平面平行的性质 (47)2.3.1 直线与平面垂直的判定 (50)2.3.2 平面与平面垂直的判定 (53)2. 3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质 (57)第二章复习课 (60)第三章直线与方程3.1.1 倾斜角与斜率 (64)3.1.2 两条直线平行与垂直的判定 (67)3.2.1 直线的点斜式方程 (70)3.2.2 直线的两点式方程 (73)3.2.3 直线的一般式方程 (76)3.3.1 两条直线的交点坐标3.3.2 两点间的距离 (79)3.3.3 点到直线的距离3.3.4 两条平行直线间的距离 (82)第四章圆与方程4.1.1 圆的标准方程 (85)4.1.2 圆的一般方程 (88)4.2.1 直线与圆的位置关系 (91)4.2.2 圆与圆的位置关系 (94)4.2.3 直线与圆的方程的应用 (97)4.3.1 空间直角坐标系 (100)4.3.2 空间两点间的距离公式 (103)章末复习 (106)-.第一章空间几何体§1.1空间几何体的构造第1课时多面体的构造特征【学习目标】1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何构造特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.【知识梳理】1.空间几何体(1)概念:如果只考虑物体的__和__,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)特殊的几何体①多面体:一般地,由假设干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的叫做旋转体,这条定直线叫做旋转体的2.多面体的构造特征(1)棱柱的构造特征:一般地,有两个面,其余各面都是,并且每相邻两个四边形的公共边都,由这些面所围成的多面体叫做棱柱.(2)棱锥的构造特征:一般地,有一个面是,其余各面都是,由这些面所围成的多面体叫做棱锥.(3)棱台的构造特征:用一个于棱锥底面的平面去截棱锥,之间的局部,这样的多面体叫做棱台.思考探究[情境导学] 在我们周围存在着各种各样的物体,它们都占据着空间的一局部.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节课我们主要从构造特征方面认识最根本的空间几何体.探究点一空间几何体的类型思考1观察以下图片,你知道这图片在几何中分别叫什么名称吗?-.答:思考2 如果将这些几何体进展适当分类,你认为可以分成哪几种类型?答:思考3观察图(2)(5)(7)(9)(13)(14)(15)(16)中组成几何体的每个面的特点,以及面与面之间的关系,你能归纳出它们有何共同特点吗?答:[小结] 我们把由假设干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.思考4观察图(1)(3)(4)(6)(8)(10)(11)(12)中组成几何体的每个面有何共同特点?答:[小结] 由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.探究点二棱柱的构造特征思考1我们把下面的多面体取名为棱柱,据此你能给棱柱下一个定义吗?图1 图2答:思考2为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱-.柱的底面、侧面、侧棱、顶点吗?答:思考3棱柱上、下两个底面的形状大小如何?各侧面的形状如何?答:思考4一个棱柱至少有几个侧面?一个N棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?答:[小结] 在棱柱中,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……;思考1图1中的六棱柱用各顶点字母可表示为棱柱ABCDEF—A′B′C′D′E′F′.例1试判断以下说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.答:[反思与感悟] 概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进展判断.跟踪训练1 根据以下关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.答:探究点三棱锥的构造特征思考1我们把下面的多面体取名为棱锥,据此你能给棱锥下一个定义吗?-.答:思考2参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗?答:思考3类比棱柱的分类,棱锥如何根据底面多边形的边数进展分类?如何用棱锥各顶点的字母表示思考1中的三个棱锥?答:思考4一个棱锥至少有几个面?一个N棱锥分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5 用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?答:思考6棱柱、棱锥分别具有一些什么几何性质?答:例2如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?假设是棱柱,指出是几棱柱.假设不是棱柱,请你试用一个平面截去一局部,使剩余局部是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.答:[反思与感悟] 认识一个几何体,要看它的构造特征,并且要结合它各面的具体形状,棱与棱之间的-.关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2 假设三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.(过顶点向底面作垂线,顶点与垂足的距离)答:探究点四棱台的构造特征思考1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的局部形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些构造特征?答:思考2仿照棱锥中关于底面、侧面、侧棱、顶点的定义,如何定义棱台的底面、侧面、侧棱、顶点呢?答:思考3根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱台、四棱台、五棱台……?如何用字母表示棱台?答:思考4既然棱柱、棱锥、棱台都是多面体,它们在构造上有哪些一样点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?答:例3有以下三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有( )A.0个B.1个C.2个D.3个[反思与感悟] 一个棱台的根本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.答:-.【随堂练习】1.以下说法中正确的选项是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.以下说法中,正确的选项是( )A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.用一个平面去截棱锥,棱锥底面与截面之间的局部是棱台C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面都是全等的平行四边形3.以下说法错误的选项是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形4.对棱柱而言,以下说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全一样.④相邻两个面的交线叫做侧棱.【课堂小结】1.在理解的根底上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的构造特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.第2课时旋转体与简单组合体的构造特征【学习目标】 1.认识组成我们生活的世界的各种各样的旋转体;2.认识和把握圆柱、圆锥、圆台、球体的几何构造特征.【知识梳理】-.1.圆柱及其有关的概念以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做.叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的.2.圆锥的概念以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做_3.圆台的概念用平行于圆锥底面的平面去截圆锥,底面与截面之间的局部叫做.与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.4.球及其有关的概念以半圆的直径所在直线为,半圆面旋转一周形成的旋转体叫做,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的.球常用表示球心的字母O 表示.5.简单组合体(1)概念:由组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何构造特征的物体组成的.(2)根本形式:一种是由简单几何体而成,另一种是由简单几何体或一局部而成.思考探究[情境导学] 举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物和它一样,也都是由一些简单几何体组合而成的组合体.本节我们就来学习旋转体与简单组合体的构造特征.探究点一圆柱的构造特征思考1 如下图的空间几何体叫做圆柱,那么圆柱是怎样形成的呢?与圆柱有关的几个概念是如何定义的?答:思考2 如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?答:探究点二圆锥的构造特征-.思考1 类比圆柱的定义,结合以下图你能给圆锥下个定义吗?答:思考2 类比圆柱的轴、底面、侧面、母线的定义,如何定义圆锥的轴、底面、侧面、母线?答:思考3 经过圆锥的任意两条母线的截面是什么图形?圆锥如何用字母表示?答:探究点三圆台的构造特征思考1 用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的局部叫做圆台.圆台可以由什么平面图形旋转而形成?答:思考2 与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如何?圆台如何用字母表示?答:思考3 圆柱、圆锥、圆台都是旋转体,它们在构造上有哪些一样点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:例1 用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.答:[反思与感悟] 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程组而解得.跟踪训练1 将例1中“截去的圆锥的母线长是3 cm〞改为“圆锥SO的母线长为16 cm〞其余条件不变,那么结果如何?答:探究点四球的构造特征-.思考类比圆柱、圆锥、圆台的定义,球是如何定义的?球心及球半径是指什么?如何用字母表示球?答:例2 判断以下各命题是否正确:(1)三棱柱有6个顶点,三棱锥有4个顶点;(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(5)到定点的距离等于定长的点的集合是球.答:跟踪训练2 以下表达中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3探究点五简单组合体的构造特征思考1 现实生活中的物体多数是由柱体、锥体、台体、球体等简单几何体组合而成的,这些几何体叫做简单组合体.那么这些组合体是怎样构成的?答:思考2 观察教材图1.1-11中(1)、(3)两物体所示的几何体,你能说出它们各由哪些简单几何体组合而成吗?答:例3 描述以下几何体的构造特征.答:跟踪训练3 数学奥林匹克竞赛中,假设你获得第一名,被授予如下图的奖杯,那么,请你介绍一-.下你所得的奖杯是由哪些简单几何体组成的?答:【随堂练习】1.以下图是由哪个平面图形旋转得到的( )2.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心3.下面几何体的截面一定是圆面的是( )A.圆台B.球C.圆柱D.棱柱4.以下说法中:①圆台上底面的面积与下底面的面积之比一定小于1.②矩形绕任意一条直线旋转都可以围成圆柱.③过圆台侧面上每一点的母线都相等.正确的序号为________.5.如下图的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?-.【课堂小结】(1)圆台、棱台可以看作是用一平行于底面的平面去截圆锥、棱锥得到的底面与截面之间的局部;圆台的母线、棱台的侧棱延长后必交于同一点,假设不满足该条件,那么一定不是圆台或棱台.(2)球面与球是两个不同的概念,球面是半圆以它的直径所在直线为轴旋转一周形成的曲面,也可以看作与定点(球心)的距离等于定长(半径)的所有点的集合.而球体不仅包括球的外表,同时还包括球面所包围的空间.§1.2空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图【学习目标】 1.了解投影、中心投影和平行投影的概念;2.能画出简单几何体的三视图,能识别三视图所表示的立体模型.【知识梳理】投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的,这种现象叫做投影.其中,我们把光线叫做,把留下物体影子的屏幕叫做.(2)投影的分类①中心投影:光由向外散射形成的投影,叫做中心投影.中心投影的投影线交于.②平行投影:在一束光线照射下形成的投影,叫做平行投影.平行投影的是平行的.在平行投影中,投影线正对着投影面时,叫做,否那么叫做.2.三视图(1)三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的(2)三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的、、看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规那么是:俯视图放在正视图的,长度与的长度一样,侧-.视图放在正视图的右边,高度与的高度一样,宽度与的宽度一样.③在绘制三视图的时候,分界限和可见轮廓线都用实线画出,被遮挡局部用虚线画出.思考探究[情境导学] 从不同角度看庐山,有古诗:“横看成岭侧成峰,远近上下各不同;不识庐山真面目,只缘身在此山中.〞对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的根底知识,请先阅读教材第11页,然后思考以下问题.思考1 什么是投影、投影线、投影面吗?答:思考2 不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答:[小结] 我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3 用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答:思考4 用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答:思考5 用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答:思考6 一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答:例1 如下图,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,那么四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)-.[反思与感悟] 画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,防止出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1 如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,那么四边形BFD′E在该正方体的各个面上的投影可能是图(2)中的________.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进展投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1 如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答:思考2 三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?答:[小结] 一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3 圆柱、圆锥、圆台的三视图分别是什么?答:思考4 球的三视图是什么?以下三视图表示一个什么几何体?-.答:探究点三简单组合体的三视图思考1 在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?思考2 如下图,将一个长方体截去一局部,这个几何体的三视图如何画出?(标出字母)答:例2 如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)答:[反思与感悟] (1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2 某几何体的正视图和侧视图均如下图,那么该几何体的俯视图不可能是( )-.探究点四将三视图复原成几何体思考以下图是简单组合体的三视图,想象它们表示的组合体的构造特征,并画出其示意图.答:例3 说出下面的三视图表示的几何体的构造特征.答:[反思与感悟] 通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何构造特征,最终确定是简单几何体还是简单组合体.跟踪训练3 以下图是一个物体的三视图,试说出物体的形状.答:【随堂练习】1.如下图,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,那么图中阴影局部在平面ADD1A1上的正投影是( )2.某几何体的三视图如下图,那么这个几何体是( )-.A.三棱锥B.四棱锥C.四棱台D.三棱台3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,那么该几何体的侧视图为( )4.一个几何体的三视图如下图,那么该几何体可以是( )5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.【课堂小结】1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等〞的根本特征.2.几何体的三视图的画法为:先画出两条互相垂直的辅助-.坐标轴,在第二象限画出正视图;根据“正、俯两图长对正〞的原那么,在第三象限画出俯视图;根据“正、侧两图高平齐〞的原那么,在第一象限画出侧视图.3.看得见局部的轮廓线画实线,看不见局部的轮廓线画虚线.1.2.3 空间几何体的直观图目标 1.掌握斜二测画法的作图规那么;2.会用斜二测画法画出简单几何体的直观图.【知识梳理】1.画平面图形直观图的步骤(1)在图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度为原来的.2.立体图形的直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′.且平行于O′z的线段长度.其他同平面图形的画法.思考探究[情境导学] 空间几何体除了用三视图表示外,更多的是用直观图来表示.空间图形能否在平面中画出来,使得既富有立感,又能表达出图形各主要局部的位置关系和度量关系呢?这就是空间几何体的直观图.本节我们就来研究这个问题.探究点一水平放置的平面图形的画法导引用来表示空间图形的平面图叫空间图形的直观图,要画空间几何体的直观图,先要学会水平放置的平面图形的画法.思考1 把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比拟两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考2 把一个直角梯形水平放置得其直观图如下,比拟两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考3 阅读教材16页中的例1,然后自主作出水平放置的正六边形的直观图.。

数学必修二导学案

数学必修二导学案

1.1.1柱、锥、台、球的结构特征导学案【问题导学】1.空间几何体(1)多面体:由若干个围成的几何体叫做多面体.围成多面体的各个叫做多面体的面;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.(2)旋转体:由一个平面图形绕它所在平面内的一条旋转所形成的封闭几何体叫做旋转体,这条叫做旋转体的轴.2多面体结构特征图形表示法棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.棱柱中, 的面叫做棱柱的底面,简称底;叫做棱柱的侧面;相邻的侧面的叫做棱柱的侧棱;侧面与底面的叫做棱柱的顶点如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱柱,可记为棱柱ABCD-A′B′C′D′棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥.这个面叫做棱锥的底面或底;有公共顶点的各个叫做棱锥的侧面;各侧面的叫做棱锥的顶点;相邻侧面的叫做棱锥的侧棱如图所示,该棱锥可表示为棱锥S -ABCD棱台用一个的平面去截棱锥,底面和截面之间的部分叫做棱台.原棱锥的和分别叫做棱台的下底面和上底面如上、下底面分别是四边形A′B′C′D′、四边形ABCD的四棱台,可记为棱台ABCD-A′B′C′D′试一试:如图所示,是由两个相同形状的三棱柱叠放在一起形成的几何体,请问这个几何体是棱柱吗?旋转体结构特征图形表示法圆柱以所在直线为旋转轴,其余三边旋转形成的面所围成的叫做圆柱,叫做圆柱的轴;的边旋转而成的叫做圆柱的底面;的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,的边都叫做圆柱侧面圆柱用表示它的轴的字母表示,左图中圆柱表示为圆柱OO′3.旋转体圆台用平行于圆锥底面的平面去截圆锥,底面与之间的部分叫做.与圆柱和圆锥一样,圆台也有、、、.圆台用表示轴的字母表示,左图中圆台表示为圆台OO′1.下列几何体中是柱体的有( ).A.1个 B.2个 C.3个 D.4个2.给出下列命题:①直线绕直线旋转形成柱面;②直角梯形绕一边旋转形成圆台;③半圆绕直径旋转一周形成球;其中正确的个数为( ).A.1 B.2 C.3 D.03.侧棱垂直于底面的棱柱叫做直棱柱,侧棱不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的直棱柱叫做正棱柱,底面是平行四边形的四棱柱叫做平行六面体,侧棱与底面垂直的平行六面体叫做直平行六面体,底面是矩形的直平行六面体叫做长方体,棱长都相等的长方体叫做正方体.请根据上述定义,回答下面问题:①直四棱柱________是长方体;②正四棱柱________是正方体 .(填“一定”、“不一定”、“一定不”)4.根据下列关于几何体的描述,说出几何体的名称:(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;(2)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;(3)由五个面围成,其中上、下两个面是相似三角形,其余各面都是梯形,并且这些梯形的腰延长后能相交于一点.【深化提高】1.如图所示,在三棱台A′B′C′-ABC,截去三棱锥A′-ABC,则剩余部分是( ).A.三棱锥 B.四棱锥C.三棱柱 D.三棱台2.长方体ABCD-A1B1C1D1的棱长AA1=4,AB=3,AD=5,则从A点沿长方体表面到达C1点的最短距离为( ).A.4 5 B.310 C.74 D.8的母线圆锥以直角三角形的所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥圆锥用表示它的轴的字母表示,左图中圆锥表示为圆锥SO3.给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是________.4.如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是________(注:把你认为正确的命题序号都填上).1.2.1^2中心投影与平行投影空间几何体的三视图导学案【问题导学】1.投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫做投影面.(2)投影的分类①中心投影:光由散射形成的投影.②平行投影:在一束照射下形成的投影.当投影线时,叫做正投影,否则叫做斜投影.(3)投影的性质①中心投影的性质:中心投影的交于一点;当光源距离物体越近,投影形成的影子越大.②平行投影的性质:平行投影的投影线.想一想:平行投影和中心投影有什么区别?2.三视图(1)分类①正视图:光线从几何体的向正投影,得到的投影图;②侧视图:光线从几何体的向正投影,得到的投影图;③俯视图:光线从几何体的向正投影,得到的投影图.(2)三视图的画法规则:①视图都反映物体的长度——“长对正”;②视图都反映物体的高度——“高平齐”;③视图都反映物体的宽度——“宽相等”.(3)三视图的排列顺序:先画正视图,侧视图在正视图的右边,俯视图在正视图的下面.想一想:甲、乙两位同学分别站在一个几何体的左右两侧,他们画出的三视图一样吗?【合作探究】1.一条直线在平面上的正投影是( ). A .直线 B .点 C .线段 D .直线或点 2.如图所示图形中,是四棱锥的三视图的是( ).3.针对柱、锥、台、球,给出下列命题①如果一个几何体的三视图是完全相同的,则这个几何体是正方体; ②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体; ③如果一个几何体的三视图都是矩形,则这个几何体是长方体; ④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台 其中正确的是( ).A .①②B .③C .③④D .①③4.一个图形的投影是一条线段,这个图形不可能是下列图形中的________(填序号). ①线段;②直线;③圆;④梯形;⑤长方体.5.如图所示为一个简单组合体的三视图,它的上部是一个________,下部是一个________. 【深化提高】1.若某几何体的三视图如图所示,则这个几何体可以是( ).2.在棱长为1的正方体ABCD-A 1B 1C 1D 1中,对角线AC 1在六个面上的投影长度总和是________. 3.设某几何体的三视图如下(尺寸的长度单位为m).则该几何体的高为________m ,底面面积为________m 2. 【当堂检测】1.画出下列几何体的三视图:1)(2)2.根据下列描述,说出几何体的结构特征,并画出他们的三视图:(1)由六个面围成,其中一个面是正五边形,其余五个面是全等的等腰三角形的几何体;(2)如图,由一个平面图形旋转一周形成的几何体.第2(2)题1.2.3空间几何体直观图导学案【问题导学】1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们分别画成对应的x′轴与y′轴,其交点为O′,且使∠x′O′y′=(或),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于或的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中,平行于y轴的线段,长度为原来的.试一试:用斜二测画法画直观图时,应如何在已知图形中建立直角坐标系?2.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,使∠x′O′z′=,且平行于O′z′的线段长度不变.想一想:空间几何体的直观图一定唯一吗?【合作探究】1.在原来的图形中,两条线段平行且相等,则在斜二测直观图中对应的两条线段().A.平行且相等B.平行不相等C.相等不平行D.既不平行也不相等2.用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,且∠A=90°,则在直观图中∠A′=().A.45°B.135°C.45°或135°D.90°3.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在原△ABC的三边及中线AD中,最长的线段是().A.AB B.AD C.BC D.A4.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.5. 用斜二测画法画水平放置的正六边形的直观图. 【深化提高】1.如图,一个正方形在直角坐标系中点B 的坐标为(2,2),则在用斜二测画法得到的图形中,顶点B ′到x ′轴的距离为( ).A.12B.22 C .1D. 22.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为( ). A.32a 2 B.34a 2 C.62a 2 D.6a 23.如图所示,四边形ABCD 是一个梯形,CD ∥AB ,CD =AO =1,△AOD 为等腰直角三角形,O 为AB 的中点,试求梯形ABCD 水平放置的直观图的面积.4. 用斜二测画法画长、宽、高分别是4 cm 、3 cm 、2 cm 的长方体ABCD-A ′B ′C ′D ′的直观图【当堂检测】1.利用斜二测画法得到的 ①三角形的直观图是三角形. ②平行四边形的直观图是平行四边形. ③正方形的直观图是正方形. ④菱形的直观图是菱形. 以上结论,正确的是( )(A )①② (B)① (C)③④ (D)①②③④2. 用斜二测画法画出水平放置的一角为60°,边长为4 cm 的菱形的直观图.1.3.1柱体、锥体、台体的表面积与体积导学案【问题导学】1.柱体、锥体、台体的表面积几何体表面积公式圆柱S=(其中r为底面半径,l为母线长)圆锥S=(其中r为底面半径,l为母线长)S=(其中r′,r分别为上、圆台下底面半径,l为母线长)球S=(其中R为球的半径)试一试:斜棱柱的侧面展开图是怎样的图形,它的侧面积怎样求.2.柱体、锥体、台体与球的体积几何体体积公式柱体V=(S为底面面积,h为柱体的高)锥体V=(S为底面面积,H为锥体的高)台体V=(S,S′分别为上、下底面积,h为台体的高)试一试:比较柱体、锥体、台体的体积公式,你能发现三者之间的关系吗?柱体、锥体是否可看作特殊的台体?其体积公式是否可以看作台体公式的特殊形式?【合作探究】1、已知棱长为a,各面均为等边三角形的四面体S—ABC,求它的表面积。

高中必修二数学全册教案

高中必修二数学全册教案

高中必修二数学全册教案
第一节:直线和平面的方程
教学目标:学生能够理解和应用直线和平面的方程。

教学重点:直线和平面的一般方程、截距式方程、点斜式方程、交点坐标、平面的截距式方程。

教学难点:平面的一般方程的推导。

教学过程:
1.引入直线和平面的方程。

通过实际例子引导学生了解直线和平面的一般方程。

2.介绍直线的方程。

讲解直线的截距式方程和点斜式方程,并通过例题演示如何转换。

3.介绍平面的方程。

学习平面的一般方程和截距式方程,并讲解如何根据平面上的点和法向量来确定平面的方程。

4.练习。

让学生进行练习,巩固直线和平面的方程的知识。

5.总结。

总结本节课的重点内容,并提醒学生注意要点。

教学资源:教材、黑板、彩色粉笔、习题册。

课后作业:完成课后习题,练习直线和平面的方程,并思考如何应用到实际生活中。

扩展阅读:了解不同方程的应用领域,并与实际生活进行联系。

高中数学必修二导学案新授课导学案.doc

高中数学必修二导学案新授课导学案.doc

高中数学必修二导学案新授课导学案任丘一中数学新授课导学案班级:小组:姓名:使用时间:§2.3.2直线与平面所成的角编者:史亚军学习且标组长评价:教师评价:1.熟记直线与平面所成角的范围,会求直线与平面所成的角。

2.通过自主学习、合作探究,掌握空间直线与平面所成角的求法。

3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。

学习重点:空间线面所成角的求法。

学习难点:空间线面所成角的求法。

—学习过程使用说明:(1)预习教材P2 ~ P8,用红色笔画出疑惑之处,并尝试完成下列问题, 总结规律方法;(2)用严谨认真的态度完成导学案中要求的内容;(3)不做标记的为C级,标记★为B级,标记★ ★为A级。

预习案(20分钟)%1.知识链接平面的垂线:垂直于平面的直线。

平面的斜线:与平面相交但不垂直的直线。

射影:过垂足和斜足的直线叫做斜线在平面上的射影。

%1.新知导学问题1:直线和平面垂直的定义和判定定理分别是什么?问题2:当直线与平面相交时,它们可能垂直,也可能不垂直,如果一条直线和一个平面相交但不垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.那么过一点作一个平面的斜线有多少条?问题3:过斜线上斜足外一点向平面引垂线,连结垂足和斜足的直线叫做这条斜线在这个平面上的射影,那么斜线PA在平面内的射影有几条?-1 -丰碑无语,行胜于言问题4:两条平行直线、相交直线、异面直线在同一个平面内的射影可能是哪些图形?问题5:平面的一条斜线与这个平面总存在一个相对倾斜度,我们设想用一个平面角来反映这个倾斜度,并且这个角的大小由斜线与平面的相对位置关系所确定,那么角的顶点宜选在何处?问题6:如图,AB为平面的一条斜线,A为斜足,AC为平面内的任意一条直线,能否用BAC 反映斜线AB与平面的相对倾斜度?为什么?有没有比AC更合适的位置呢?请做出来?说说它的优点?C B问题7:(★)我们把,叫做这条斜线和这个平面所成的角。

新课标高中数学必修二导学案

新课标高中数学必修二导学案

目录第一章空间几何体1.1空间几何体的结构1.1.1多面体的结构特征 (1)1.1.2旋转体与简单组合体的结构特征 (6)1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图 (10)1.2.3空间几何体的直观图 (15)§1.3空间几何体的表面积与体积第1课时柱体、锥体、台体的表面积 (19)第2课时柱体、锥体、台体、球的体积与球的表面积 (23)习题课空间几何体 (27)第二章点直线平面之间的位置关系2.1.1平面 (29)2.1.2空间中直线与直线之间的位置关系 (33)2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系 (37)2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定 (40)2.2.3直线与平面平行的性质 (44)2.2.4平面与平面平行的性质 (47)2.3.1直线与平面垂直的判定 (50)2.3.2平面与平面垂直的判定 (53)2. 3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质 (57)第二章复习课 (60)第三章直线与方程3.1.1 倾斜角与斜率 (64)3.1.2两条直线平行与垂直的判定 (67)3.2.1直线的点斜式方程 (70)3.2.2直线的两点式方程 (73)3.2.3直线的一般式方程 (76)3.3.1两条直线的交点坐标3.3.2两点间的距离 (79)3.3.3点到直线的距离3.3.4两条平行直线间的距离 (82)第四章圆与方程4.1.1圆的标准方程 (85)4.1.2圆的一般方程 (88)4.2.1直线与圆的位置关系 (91)4.2.2圆与圆的位置关系 (94)4.2.3直线与圆的方程的应用 (97)4.3.1空间直角坐标系 (100)4.3.2 空间两点间的距离公式 (103)章末复习 (106)第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征【学习目标】1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.【知识梳理】1.空间几何体(1)概念:如果只考虑物体的__和__,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)特殊的几何体①多面体:一般地,由若干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面的一条定直线旋转所形成的叫做旋转体,这条定直线叫做旋转体的2.多面体的结构特征(1)棱柱的结构特征:一般地,有两个面,其余各面都是,并且每相邻两个四边形的公共边都,由这些面所围成的多面体叫做棱柱.(2)棱锥的结构特征:一般地,有一个面是,其余各面都是,由这些面所围成的多面体叫做棱锥.(3)棱台的结构特征:用一个于棱锥底面的平面去截棱锥,之间的部分,这样的多面体叫做棱台.思考探究[情境导学]在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节课我们主要从结构特征方面认识最基本的空间几何体.探究点一空间几何体的类型思考1观察下列图片,你知道这图片在几何中分别叫什么名称吗?答:思考2如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考3观察图(2)(5)(7)(9)(13)(14)(15)(16)中组成几何体的每个面的特点,以及面与面之间的关系,你能归纳出它们有何共同特点吗?答:[小结]我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.思考4观察图(1)(3)(4)(6)(8)(10)(11)(12)中组成几何体的每个面有何共同特点?答:[小结]由一个平面图形绕它所在平面的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.探究点二棱柱的结构特征思考1我们把下面的多面体取名为棱柱,据此你能给棱柱下一个定义吗?图1图2答:思考2为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱柱的底面、侧面、侧棱、顶点吗?答:思考3棱柱上、下两个底面的形状大小如何?各侧面的形状如何?答:思考4一个棱柱至少有几个侧面?一个N棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?答:[小结]在棱柱中,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……;思考1图1中的六棱柱用各顶点字母可表示为棱柱ABCDEF—A′B′C′D′E′F′.例1试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.答:[反思与感悟]概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.答:探究点三棱锥的结构特征答:思考2参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗?答:思考3类比棱柱的分类,棱锥如何根据底面多边形的边数进行分类?如何用棱锥各顶点的字母表示思考1中的三个棱锥?答:思考4一个棱锥至少有几个面?一个N棱锥分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?答:思考6棱柱、棱锥分别具有一些什么几何性质?答:例2如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.答:[反思与感悟]认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.(过顶点向底面作垂线,顶点与垂足的距离)答:探究点四棱台的结构特征思考1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些结构特征?答:思考2仿照棱锥中关于底面、侧面、侧棱、顶点的定义,如何定义棱台的底面、侧面、侧棱、顶点呢?答:思考3根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱台、四棱台、五棱台……?如何用字母表示棱台?答:思考4既然棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?答:例3有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个[反思与感悟]一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.答:【随堂练习】1.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.下列说法中,正确的是()A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面都是全等的平行四边形3.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形4.对棱柱而言,下列说确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱.【课堂小结】1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.第2课时旋转体与简单组合体的结构特征【学习目标】 1.认识组成我们生活的世界的各种各样的旋转体;2.认识和把握圆柱、圆锥、圆台、球体的几何结构特征.【知识梳理】1.圆柱及其有关的概念以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做.叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的.2.圆锥的概念以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做_3.圆台的概念用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做.与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.4.球及其有关的概念以半圆的直径所在直线为,半圆面旋转一周形成的旋转体叫做,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的.球常用表示球心的字母O 表示.5.简单组合体(1)概念:由组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体而成,另一种是由简单几何体或一部分而成.思考探究[情境导学]举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物和它一样,也都是由一些简单几何体组合而成的组合体.本节我们就来学习旋转体与简单组合体的结构特征.探究点一圆柱的结构特征思考1如图所示的空间几何体叫做圆柱,那么圆柱是怎样形成的呢?与圆柱有关的几个概念是如何定义的?答:思考2如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?答:探究点二圆锥的结构特征思考1类比圆柱的定义,结合下图你能给圆锥下个定义吗?答:思考2类比圆柱的轴、底面、侧面、母线的定义,如何定义圆锥的轴、底面、侧面、母线?答:思考3经过圆锥的任意两条母线的截面是什么图形?圆锥如何用字母表示?答:探究点三圆台的结构特征思考1用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做圆台.圆台可以由什么平面图形旋转而形成?答:思考2与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如何?圆台如何用字母表示?答:思考3圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:例1用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.答:[反思与感悟]用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程组而解得.跟踪训练1将例1中“截去的圆锥的母线长是3 cm”改为“圆锥SO的母线长为16 cm”其余条件不变,则结果如何?答:探究点四球的结构特征思考类比圆柱、圆锥、圆台的定义,球是如何定义的?球心及球半径是指什么?如何用字母表示球?答:例2判断下列各命题是否正确:(1)三棱柱有6个顶点,三棱锥有4个顶点;(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(5)到定点的距离等于定长的点的集合是球.答:跟踪训练2 下列叙述中正确的个数是()①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3探究点五简单组合体的结构特征思考1现实生活中的物体多数是由柱体、锥体、台体、球体等简单几何体组合而成的,这些几何体叫做简单组合体.那么这些组合体是怎样构成的?答:思考2观察教材图1.1-11中(1)、(3)两物体所示的几何体,你能说出它们各由哪些简单几何体组合而成吗?答:例3描述下列几何体的结构特征.答:跟踪训练3数学奥林匹克竞赛中,若你获得第一名,被授予如图所示的奖杯,那么,请你介绍一下你所得的奖杯是由哪些简单几何体组成的?答:【随堂练习】1.下图是由哪个平面图形旋转得到的()2.下列说确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心3.下面几何体的截面一定是圆面的是()A.圆台B.球C.圆柱D.棱柱4.以下说法中:①圆台上底面的面积与下底面的面积之比一定小于1.②矩形绕任意一条直线旋转都可以围成圆柱.③过圆台侧面上每一点的母线都相等.正确的序号为________.5.如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【课堂小结】(1)圆台、棱台可以看作是用一平行于底面的平面去截圆锥、棱锥得到的底面与截面之间的部分;圆台的母线、棱台的侧棱延长后必交于同一点,若不满足该条件,则一定不是圆台或棱台.(2)球面与球是两个不同的概念,球面是半圆以它的直径所在直线为轴旋转一周形成的曲面,也可以看作与定点(球心)的距离等于定长(半径)的所有点的集合.而球体不仅包括球的表面,同时还包括球面所包围的空间.§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图【学习目标】 1.了解投影、中心投影和平行投影的概念;2.能画出简单几何体的三视图,能识别三视图所表示的立体模型.【知识梳理】投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的,这种现象叫做投影.其中,我们把光线叫做,把留下物体影子的屏幕叫做.(2)投影的分类①中心投影:光由向外散射形成的投影,叫做中心投影.中心投影的投影线交于.②平行投影:在一束光线照射下形成的投影,叫做平行投影.平行投影的是平行的.在平行投影中,投影线正对着投影面时,叫做,否则叫做.2.三视图(1)三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的(2)三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的、、看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规则是:俯视图放在正视图的,长度与的长度一样,侧视图放在正视图的右边,高度与的高度一样,宽度与的宽度一样.③在绘制三视图的时候,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线画出.思考探究[情境导学]从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.”对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11页,然后思考下列问题.思考1什么是投影、投影线、投影面吗?答:思考2不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答:[小结]我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答:思考4用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答:思考5用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答:思考6一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答:例 1 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)[反思与感悟]画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BFD′E 在该正方体的各个面上的投影可能是图(2)中的________.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答:思考2三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?答:[小结]一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3圆柱、圆锥、圆台的三视图分别是什么?答:思考4球的三视图是什么?下列三视图表示一个什么几何体?答:探究点三简单组合体的三视图思考1在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?思考2如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出?(标出字母)答:例 2 如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)答:[反思与感悟](1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()探究点四将三视图还原成几何体思考下图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.答:例3说出下面的三视图表示的几何体的结构特征.答:[反思与感悟]通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.跟踪训练3下图是一个物体的三视图,试说出物体的形状.答:【随堂练习】1.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()2.某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为() 4.一个几何体的三视图如图所示,则该几何体可以是()5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.【课堂小结】1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.1.2.3空间几何体的直观图目标 1.掌握斜二测画法的作图规则;2.会用斜二测画法画出简单几何体的直观图.【知识梳理】1.画平面图形直观图的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度为原来的.2.立体图形的直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′.且平行于O′z的线段长度.其他同平面图形的画法.思考探究[情境导学]空间几何体除了用三视图表示外,更多的是用直观图来表示.空间图形能否在平面中画出来,使得既富有立感,又能表达出图形各主要部分的位置关系和度量关系呢?这就是空间几何体的直观图.本节我们就来研究这个问题.探究点一水平放置的平面图形的画法导引用来表示空间图形的平面图叫空间图形的直观图,要画空间几何体的直观图,先要学会水平放置的平面图形的画法.思考1把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?。

人教A版高中数学必修二全册全册导学案

人教A版高中数学必修二全册全册导学案

人教A版高中数学必修二全册精品导学案高中数学必修导学案§1.1 空间几何体的结构【使用说明及学法指导】1.结合问题导学自已复习课本必修2的P2页至P4页,用红色笔勾画出疑惑点;独立完成探究题,并总结规律方法。

2.针对问题导学及小试牛刀找出的疑惑点,课上讨论交流,答疑解惑。

3. 感受空间实物及模型,增强学生直观感知;能根据几何结构特征对空间物体进行分类;4.理解多面体的有关概念;会用语言概述棱柱、棱锥、棱台的结构特征.5. 在科学上没有平坦的道路,只有不畏劳苦,敢于沿着陡峭山路攀登的人才有希望达到光辉的顶点。

【重点难点】重点是棱柱、棱锥、棱台结构特征.难点是棱柱、棱锥、棱台的结构特征一【问题导学】探索新知探究1:几何体的相关概念(1)预习课本第2页的观察部分,试着将所给出的16幅图片进行分类,并说明分类依据。

(2)空间几何体的概念:(3探究2新知1:(1)多面体:(2)多面体的面:(3)多面体的棱:(4 指出右侧几何体的面、棱、顶点探究2:旋转体的相关概念新知2:旋转体旋转体的轴 探究31、 棱柱:2、棱柱的分类:(1)按侧棱及底面垂直及否,分为:(2)按底面多边形的边数,分为:注:底面是正多边形的直棱柱叫做正棱柱。

3、棱柱的表示:4、补充:平行六面体——底面是平行四边形的四棱柱探究41、棱锥:2、棱锥的分类:注:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.3、棱锥的表示:探究5:(三)棱台1、棱台:2、棱台的分类:3、棱台的表示:二【小试牛刀】1. 一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成().A.棱锥 B.棱柱 C.平面 D.长方体2. 棱台不具有的性质是().A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点三【合作、探究、展示】例1、根据右边模型,回答下列问题:(1)观察长方体模型,有多少对平行平面?能作为棱柱底面的有多少对?(2) 如右图,长方体''''中被截去一部ABCD A B C D分,其中''EH A D。

新人教版新高考高中数学必修第二册全套导学案课后练习题

新人教版新高考高中数学必修第二册全套导学案课后练习题

平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。

高中数学必修二导学案12.直线的倾斜角与斜率

高中数学必修二导学案12.直线的倾斜角与斜率

.直线的倾斜角与斜率周峻民学习目标.掌握直线的倾斜角的定义..掌握斜率公式,理解倾斜角和斜率的关系..能根据斜率判定两条直线平行与垂直.一、夯实基础基础梳理.直线的倾斜角()定义:当直线与轴相交时,我们取轴作为基准,轴与直线方向之后所成的角叫做直线的倾斜角.当直线与轴平行或重合时,规定它的倾斜角为.()倾斜角的范围为..直线的斜率()定义:一条直线的倾斜角的叫做这条直线的斜率,斜率常用小写字母表示,即,倾斜角是的直线斜率不存在.()过两点的直线的斜率公式:经过两点的直线的斜率公式为..两条直线平行的判定:对于两条不重合的直线,,其斜率分别是,,有.特别地,当时,、都垂直于轴,.当两直线斜率都不存在且不重合时,它们都垂直于轴,与的倾斜角都是,故..两条直线垂直的判定:两条直线,都有斜率,其斜率分别是,,有.注意:().()两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线垂直.这样,两条直线垂直的判定的条件就可叙述为:或一条斜率不存在,同时另一条斜率等于零.基础达标.若过点和的直线的斜率为,则的值为()...或.或.若,,三点共线,则的值为().....在下列叙述中:①一条直线的倾斜角为,则它的斜率为;②若直线斜率,则它的倾斜角为;③若(,)、(,),则直线的倾斜角为;④若直线过点,且它的倾斜角为,则这直线必过(,)点;⑤若直线斜率为,则这条直线必过(,)与(,)两点.所有正确命题的序号是..已知直线斜率的绝对值等于,则直线的倾斜角为..()已知△中,两顶点、的坐标为、,、分别是、的中点,求直线的斜率.()已知,求证:四边形为矩形.二、学习指引自主探究.什么是直线的倾斜角与斜率,倾斜角的取值范围是什么?.关于直线的倾斜角和斜率,下列说法哪些是正确的?()任一条直线都有倾斜角,也都有斜率()直线的倾斜角越大,它的斜率就越大()平行于轴的直线的倾斜角是()两直线的倾斜角相等,它们的斜率也相等()两直线的斜率相等,它们的倾斜角也相等()直线斜率的范围是.倾斜角与斜率的变化规律打开《几何画板》,过定点作一条平行于轴的直线,度量其斜率,并将该直线绕定点按逆时针旋转,倾斜角从增大到.当时,随着增大,斜率(填“增大”“减小”),其范围是.当时,随着增大,斜率(填“增大”“减小”),其范围是..对于“”,要从左边推出右边即“”,前提是两直线要从右边推出左边即“”,前提是两直线.案例分析.下列三点能构成三角形的三个顶点的为().....【解析】、、选项中三点均共线,不能组成三角形.选项中三点不共线,故可以组成三角形的三个顶点.选.。

新人教版高中数学必修第二册《平面向量的运算》导学案

新人教版高中数学必修第二册《平面向量的运算》导学案

平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则和三角形法则掌握向量加法的平行四边形法则和三角形法则,会用它们解决实际问题数学抽象、直观想象平面向量加法的运算律掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a,b,c,求作和向量a+b+c.解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA → =a ,接着作向量AB →=c ,则得向量OB → =a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA → =a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD →=c ;(4)作平行四边形CODE ,则OE → =OC → +c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算例2:化简:(1)BC → +AB →;(2)DB → +CD → +BC →;(3)AB → +DF → +CD → +BC → +FA →.解:(1)BC → +AB → =AB → +BC → =AC →.(2)DB → +CD → +BC→ =BC → +CD → +DB→ =(BC → +CD → )+DB→ =BD → +DB →=0.(3)AB → +DF → +CD → +BC → +FA→ =AB → +BC → +CD → +DF → +FA → =AC → +CD → +DF → +FA→=AD → +DF → +FA → =AF → +FA →=0.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB → ,水流的速度为OA → ,以OA → ,OB →为邻边作▱OACB ,则此人的实际速度为OA → +OB → =OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.三、学习小结1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法前提已知非零向量a ,b作法在平面内任取一点A ,作AB → =a ,BC → =b ,再作向量AC→结论向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC → =AC→法则三角形法则图形前提已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB 结论对角线OC →就是a 与b 的和法则平行四边形法则图形规定对于零向量与任一向量a ,我们规定a +0=0+a =a2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立.3.向量加法的运算律交换律a +b =b +a结合律(a +b )+c =a +(b +c )四、精炼反馈1.化简OP → +PQ → +PS → +SP →的结果等于( )A .QP →B .OQ→ C .SP → D .SQ→解析:选B .OP → +PQ → +PS → +SP → =OQ → +0=OQ →.2.在四边形ABCD 中,AC → =AB → +AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC → =AB → +AD → 得AD → =BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO → +AC →;(2)DE → +BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.【第二课时】向量的减法运算【学习重难点】【学习目标】【核心素养】相反向量理解相反向量的概念数学抽象向量的减法掌握向量减法的运算法则及其几何意义数学抽象、直观想象【学习过程】一、问题导入预习教材内容,思考以下问题:1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1:向量的减法运算例1:化简下列各式:(1)(AB → +MB → )+(-OB → -MO →);(2)AB → -AD → -DC →.解:(1)法一:原式=AB → +MB → +BO → +OM → =(AB → +BO → )+(OM → +MB → )=AO → +OB →=AB →.法二:原式=AB → +MB → +BO → +OM→=AB → +(MB → +BO → )+OM → =AB → +MO → +OM → =AB → +0=AB →.(2)法一:原式=DB → -DC → =CB →.法二:原式=AB → -(AD → +DC → )=AB → -AC → =CB →.探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA → =a ,OB → =b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD ,则AD →=b -c ,所以OD → =OA → +AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O ,作OA → =a ,AB →=b ,连接OB ,则OB → =a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC → =b ,AE → =c ,试用向量a ,b ,c 表示向量CD → ,BC → ,BD →.解:因为四边形ACDE 是平行四边形,所以CD → =AE → =c ,BC → =AC → -AB →=b -a ,故BD → =BC → +CD →=b -a +c .三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA → =a ,OB → =b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD → -AC →等于( )A .CB → B .BC→ C .CD → D .DC→解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD→-AC → =CD →.2.化简:AB → -AC → +BD → -CD → +AD →=________.解析:原式=CB → +BD → +DC → +AD → =CD → +DC → +AD → =0+AD → =AD →.答案:AD→3.已知Error!=10,|AC → |=7,则|CB →|的取值范围为______.解析:因为CB → =AB → -AC →,所以|CB → |=|AB → -AC →|.又Error!≤|AB → -AC → |≤|AB → |+|AC →|,3≤|AB → -AC →|≤17,所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB → -OC → |=|OB → -OA → +OC → -OA →|,试判断△ABC 的形状.解:因为OB → -OA → +OC → -OA → =AB → +AC → ,OB → -OC → =CB → =AB → -AC →.又|OB → -OC → |=|OB → -OA → +OC → -OA → |,所以|AB → +AC → |=|AB → -AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】向量的数乘运算【学习重难点】【学习目标】【核心素养】向量数乘运算的定义及运算律理解向量数乘的定义及几何意义,掌握向量数乘的运算律数学抽象、直观想象向量共线定理掌握向量共线定理,会判断或证明两个向量共线逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究1:向量的线性运算例1:(1)计算:①4(a+b)-3(a-b)-8a;②(5a-4b+c)-2(3a-2b+c);③23[(4a-3b)+13b-14(6a-7b)].(2)设向量a=3i+2j,b=2i-j,求(13a-b)-(a-23b)+(2b-a).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23(4a -3b +13b -32a +74b)=23(52a -1112b)=53a -1118b .(2)原式=13a -b -a +23b +2b -a=(13-1-1)a +(-1+23+2)b =-53a +53b =-53(3i +2j )+53(2i -j )=(-5+103)i +(-103-53)j=-53i -5j .探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB → =e 1+e 2,BC → =2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB → =e 1+e 2,BD → =BC → +CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB → ,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有{k -λ=0,λk -1=0,所以k =±1.探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB → ∥CD → 且|AB → |=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB → =e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.解析:因为AB → ∥CD → ,|AB → |=2|CD →|,所以AB → =2DC → ,DC → =12AB →.(1)AC → =AD → +DC →=e 2+12e 1.(2)MN → =MD → +DA → +AN→ =-12DC → -AD → +12AB→=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2互动探究变条件:在本例中,若条件改为BC → =e 1,AD → =e 2,试用e 1,e 2表示向量MN →.解:因为MN → =MD → +DA → +AN →,MN → =MC → +CB → +BN →,所以2MN → =(MD → +MC → )+DA → +CB → +(AN → +BN → ).又因为M ,N 分别是DC ,AB 的中点,所以MD → +MC → =0,AN → +BN →=0.所以2MN → =DA → +CB →,所以MN → =12(-AD → -BC →)=-12e 2-12e 1.三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .四、精炼反馈1.13[12(2a +8b )-(4a -2b )]等于( )A .2a -b B .2b -a C .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b .2.若点O 为平行四边形ABCD 的中心,AB → =2e 1,BC →=3e 2,则32e 2-e 1=( )A .BO →B .AO→ C .CO → D .DO→解析:选A .BD → =AD → -AB → =BC → -AB → =3e 2-2e 1,BO → =12BD → =32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB → =2e 1-8e 2,CB → =e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB → =e 1+3e 2,CD →=2e 1-e 2,所以BD → =CD → -CB →=e 1-4e 2.又AB → =2e 1-8e 2=2(e 1-4e 2),所以AB → =2BD → ,所以AB → 与BD →共线.因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】向量的数量积【学习重难点】【学习目标】【核心素养】向量的夹角理解平面向量夹角的定义,并会求已知两个非零向量的夹角直观想象、数学运算向量数量积的含义理解平面向量数量积的含义并会计算数学抽象、数学运算投影向量理解a 在b 上的投影向量的概念数学抽象向量数量积的性质和运算律掌握平面向量数量积的性质及其运算律,并会应用数学运算、逻辑推理【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是向量的夹角?2.数量积的定义是什么?3.投影向量的定义是什么?4.向量数量积有哪些性质?5.向量数量积的运算有哪些运算律?二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB → |=4,|AD →|=3,∠DAB =60°,求:①AD → ·BC → ;②AB → ·DA →.解:(1)(a +2b )·(a +3b )=a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD → ∥BC →,且方向相同,所以AD → 与BC →的夹角是0°,所以AD → ·BC → =|AD → ||BC →|·cos 0°=3×3×1=9.②因为AB → 与AD →的夹角为60°,所以AB → 与DA →的夹角为120°,所以AB → ·DA → =|AB → ||DA →|·cos 120°=4×3×(-12)=-6.互动探究:变问法:若本例(2)的条件不变,求AC → ·BD →.解:因为AC → =AB → +AD → ,BD → =AD → -AB →,所以AC → ·BD → =(AB → +AD → )·(AD → -AB → )=AD → 2-AB →2=9-16=-7.探究点2:向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A .3B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12.答案:(1)B (2)B 探究点3:向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72,所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[0,π],所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +(-a·b |b |2)·|b |2=a·b -a·b =0.所以b ⊥(a +t b ).命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32B .32C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直,所以(3a +2b )·(k a -b )=0,所以3k a 2+(2k -3)a·b -2b 2=0.因为a ⊥b ,所以a ·b =0,又|a |=2,|b |=3,所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.答案:(1)B (2)-8或5三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA → =a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0.3.投影向量如图(1),设a ,b 是两个非零向量,AB → =a ,CD → =b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD → 所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM → =a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a .(4)|a·b |≤|a ||b |.5.向量数量积的运算律(1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律).(3)(a +b )·c =a·c +b·c (分配律).四、精炼反馈1.已知向量a ,b 满足|a |=1,|b |=4,且a·b =2,则a 与b 的夹角θ为( )A .π6B .π4C .π3D .π2解析:选C .由题意,知a·b =|a ||b |cos θ=4cos θ=2,所以cos θ=12.又0≤θ≤π,所以θ=π3.2.已知|a |=|b |=1,a 与b 的夹角是90°,c =2a +3b ,d =k a -4b ,c 与d 垂直,则k 的值为( )A .-6B .6C .3D .-3解析:选B .因为c·d =0,所以(2a +3b )·(k a -4b )=0,所以2k a 2-8a ·b +3k a ·b -12b 2=0,所以2k =12,所以k =6.3.已知|a |=3,|b |=5,a ·b =-12,且e 是与b 方向相同的单位向量,则a 在b 上的投影向量为______.解析:设a 与b 的夹角θ,则cos θ=a ·b |a ||b |=-123×5=-45,所以a 在b 上的投影向量为|a |cos θ·e =3×(-45)e=-125e .答案:-125e4.已知|a |=1,|b |=2.(1)若a ∥b ,求a ·b ;(2)若a ,b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.解:设向量a 与b 的夹角为θ.(1)当a ,b 同向,即θ=0°时,a ·b =2;当a ,b 反向,即θ=180°时,a ·b =-2.(2)|a +b |2=|a |2+2a ·b +|b |2=3+2,|a +b |=3+2.(3)由(a -b )·a =0,得a 2=a ·b ,cos θ=a ·b |a ||b |=22,又θ∈[0,180°],故θ=45°.。

【人教版】2019学年高中数学必修二全套精品导学案全集

【人教版】2019学年高中数学必修二全套精品导学案全集

【⼈教版】2019学年⾼中数学必修⼆全套精品导学案全集【⼈教版】2019学年⾼中数学必修⼆全套精品导学案全集第⼀章第⼀节柱锥台球的结构特征第⼀课时三维⽬标1.能根据⼏何结构特征对空间物体进⾏分类;2. 了解多⾯体的有关概念;3. 了解棱柱、棱锥、棱台的定义.认识棱柱、棱锥、棱台的结构特征及其关系;4. 会⽤语⾔概述棱柱、棱锥、棱台的结构特征.________________________________________________________________________________ ⽬标三导学做思1问题1.空间⼏何体是指什么?请举例说明.问题2. 什么是多⾯体、多⾯体的⾯、棱、顶点?什么是旋转体、旋转体的轴?问题3. (1)图(1)中的⼏何体叫做? AA1、BB1等叫它的? A、B、C1等叫它的?(2)图(2)中的⼏何体叫做? PA、PB叫它的? 平⾯PBC、PCD叫做它的? 平⾯ABCD叫它的?(3)图(3)中的⼏何体叫做? 它是由棱锥________被平⾏于底⾯ABCD的平⾯________截得的.AA′,BB′叫它的? 平⾯BCC′B′、平⾯DAA′D′叫它的?【学做思2】1.如图,过BC的截⾯截去长⽅形的⼀⾓,所得的⼏何体是不是棱柱?变式:有两个⾯互相平⾏,其余各⾯都是平⾏四边形的多⾯体⼀定是棱柱吗?2.判断下列⼏何体是不是棱台,并说明为什么.*3. 观察下列图⽚,你知道这图⽚在⼏何中分别叫什么名称吗?它们还有其它特征吗?达标检测1.图1是由图2中的哪个平⾯图旋转⽽得到的()2.如图,在透明塑料制成的长⽅体ABCD-A1B1C1D1容器中灌进⼀些⽔,将容器底⾯⼀边BC置于地⾯上,再将容器倾斜,随着倾斜程度的不同,以下命题:①⽔的形状成棱柱形;②⽔⾯EFGH 的⾯积不变;③⽔的EFGH始终为矩形.其中正确的命题序号是________.3.已知正⽅体ABCD-A1B1C1D1,图(1)中截去的是什么⼏何体?图(2)中截去⼀部分,其中HG∥AD∥EF,剩下的⼏何体是什么?第⼀章第⼀节柱锥台球的结构特征第⼆课时三维⽬标1.了解圆柱、圆锥、圆台、球的定义,认识圆柱、圆锥、圆台、球的结构特征;2. 会⽤柱、锥、台、球的结构特征描述简单组合体的结构特征;3. 了解柱、锥、台体的关系.________________________________________________________________________________ ⽬标三导学做思1问题1. (1)图①中的⼏何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(2)图②中的⼏何体叫________,AB、CD都是它的________,⊙O和⊙O′及其内部是它的________.(3)图③中的⼏何体叫做________,SB为叫它的________.(4)图④中的⼏何体叫做________,AA′叫它的________,⊙O′及其内部叫它的________,⊙O及其内部叫它的________,它还可以看作直⾓梯形OAA′O′绕它的________________旋转⼀周后,其他各边所形成的⾯所围成的旋转体.(5).什么是简单组合体?简单⼏何体有哪⼏种基本形式?指出下图中的组合形式.【学做思2】1.如图,AB为圆弧?BC所在圆的直径,45BAC∠=o.将这个平⾯图形绕直线AB旋转⼀周,得到⼀个组合体,试说明这个组合体的结构特征.2.已知圆台的两底半径分别为2和3,母线长为5,求展开后的弧所对的圆⼼⾓度数.3.圆锥底⾯半径为1cm,⾼为2cm,其中有⼀个内接正⽅体,求这个内接正⽅体的棱长.【变式】已知球的内接正⽅体棱长为2,求球的半径.达标检测1.如图所⽰的四个⼏何体中,是圆柱的为________;是圆锥的为________.2.说出如图所⽰⼏何体的主要结构特征.3.如图所⽰,下列⼏何体可看作由什么图形旋转360°得到?画出平⾯图形和旋转轴.4.如图,长⽅体ABCD—A1B l C l D1中,AD=3,AA l=4,AB=5,则从A点沿表⾯到C l的最短距离为______.5.⼀个圆台的母线长为12cm,两底⾯⾯积分别为4πcm2和25πcm2.求:(1)圆台的⾼;(2)截得此圆台的圆锥的母线长.第⼀章第⼆节空间⼏何体的三视图和直观图第⼀课时三维⽬标1.了解中⼼投影和平⾏投影;2. 能画出简单空间图形的三视图;3. 能识别三视图所表⽰的⽴体模型.________________________________________________________________________________ ⽬标三导学做思1问题1.阅读教材第11~13页,完成下列表格:投影定义特征举例中⼼投影平⾏投影问题2. 画出⼏种常见的⼏何体的三视图是什么图形⼏何体直观图形正视图侧视图俯视图正⽅体长⽅体圆柱圆锥圆台球问题3.说出作三视图、侧视图、俯视图的⽅法. 【学做思2】1.如图甲所⽰,在正⽅体1111D C B A ABCD 中,E 、F 分别是1AA 、11D C 的中点,G 是正⽅形11B BCC 的中⼼,则四边形AGFE 在该正⽅体的各个⾯上的投影可能是图⼄中的 .2. 作出下⾯⼏何体的三视图.3.根据右图中所给出的⼀个物体的三视图,试画出它的形状.达标检测1. ⽤若⼲块相同的⼩正⽅体搭成⼀个⼏何体,该⼏何体的三视图如图所⽰,则搭成该⼏何体需要的⼩正⽅体的块数是()A.8 B.7 C.6 D.5*2.如图,下列四个⼏何体中,它们各⾃的三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.①② B.①③ C.②③ D.①④第⼀章第⼆节空间⼏何体的三视图和直观图第⼆课时三维⽬标1.会⽤斜⼆测画法画出⼀些简单平⾯图形和⽴体图形的直观图;2. 通过观察三视图和直观图,了解空间图形的不同表⽰形式及不同形式之间的关系.________________________________________________________________________________ ⽬标三导学做思1问题1. 如图是美术作品中的⼀种绘画⽅法,叫透视画法.这种画法就是表现画⾯中各种物体的相互之间的空间关系或者位置关系,在平⾯上构建空间感、⽴体感的⽅法.在⽴体⼏何中也常⽤斜投影来画空间图形的直观图,这种画法叫叫什么?有什么特点?.*问题2. ⽤斜⼆测画法画⼀个⽔平放置的正六边形的直观图.【思考】⽤斜⼆测画法画平⾯图形直观图的步骤有哪些?问题3. ⽤斜⼆测画法作长宽⾼分别为4、3、2的长⽅体的直观图.作法:【思考】⽤斜⼆测画法画⽴体图形直观图的步骤有哪些?斜⼆侧画法中如何找⼀般位置下的点?【学做思2】1. ⽤斜⼆测画法画出下图中⽔平放置的四边形的直观图.*2.已知⼏何体的三视图,⽤斜⼆测画法画出它的直观图.正视图侧视图俯视图达标检测1.如图所⽰,四边形ABCD是⼀个梯形,CD∥AB,CD=AO=1,三⾓形AOD为等腰直⾓三⾓形,O为AB的中点,试求梯形ABCD⽔平放置的直观图的⾯积.2.如上右图所⽰,△A′B′C′是⽔平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.AD C.BC D.AC第⼀章第三节柱体锥体台体的体积三维⽬标1.了解⼏何体体积的含义,以及柱体、锥体与台体的体积公式;(不要求记忆公式) 2. 熟悉台体与柱体和锥体之间体积的转换关系.________________________________________________________________________________ ⽬标三导学做思1问题 1. 如图是⼀个根据连通器原理制成的牲畜⾃动喂⽔器,左右两边容器近似地看成长⽅体,容器(1)为底⾯边长为11a b 、的长⽅形,⾼为1c 的长⽅体;容器(2)为底⾯边长为22a b 、的长⽅形,⾼为2c 的长⽅体.求两个容器所装⽔的体积之⽐.问题2. 柱体、锥体、台体的体积公式是什么?(2)(1)浮⼦相当于⼀个开关【学做思2】1. 如图所⽰,三棱锥的顶点为P ,,,PA PB PC 是它的三条侧棱,且,,PA PB PC 分别是⾯,,PBC PAC PAB 的垂线,⼜2PA =,3,4PB PC ==,求三棱锥P ABC -的体积V .CAP【变式】如图(2),在边长为4的正⽅体中,求三棱锥B A BC '''-的体积V 及三棱锥B A BC '''-的⾼h.2.⼀个底⾯直径为20cm 的装有⼀部分⽔的圆柱形玻璃杯,⽔中放着⼀个底⾯直径为6cm ,⾼为20cm 的⼀个圆锥形铅锤,当铅锤从中取出后,杯⾥的⽔将下降⼏厘⽶?(π=3.14)3.已知圆台的上、下底⾯半径分别是2、6,且侧⾯⾯积等于两底⾯⾯积之和.(1)求该圆台的母线长;(2)求该圆台的体积;(3)求截得此圆台的圆锥的体积.达标检测1.圆锥的过⾼的中点且与底⾯平⾏的截⾯把圆锥分成两部分的体积之⽐是( )A.1:1 B.1:6 C.1: 7 D.1:82.已知四棱锥V-ABCD,底⾯是边长分别为6和8的矩形,侧棱相等且长为41.V在底⾯ABCD的投影为ABCD对⾓线交点O.(1)求该四棱锥的体积V;(2)求该四棱锥的侧⾯积S.3.若某⼏何体的三视图(单位:cm)如图所⽰,求此⼏何体的体积.第⼀章第三节柱体锥体台体的表⾯积三维⽬标1.了解柱体、锥体、台体的表⾯积的推导⽅法;2. 会求柱体、锥体、台体的表⾯积.________________________________________________________________________________ ⽬标三导学做思1问题1. 这是长征5号⽕箭模型,主体⾼47cm,底部为直径9cm的圆.主体可以近似地看成由哪些⼏何体组合构成?如果主体表⾯(加虚线部分,圆柱⾼40cm,圆锥⾼7cm)要涂上⽩⾊颜料,估计需要涂多少平⽅厘⽶的颜料?怎样计算?问题2. 阅读教材第23~25页,思考填出下列表格:⼏何体图形侧⾯展开图表⾯积公式元素意义圆柱rlO'O底⾯积:=侧⾯积:=表⾯积:=——CBAD E 圆锥lrOS底⾯积:=侧⾯积:=表⾯积: =— —圆台O 'Or lr '上底⾯积:=下底⾯积:=侧⾯积:=表⾯积: =——问题3. 棱柱、棱锥、棱台都是由多个平⾯图形围成的⼏何体,它们的侧⾯展开图是什么?如何计算它们的表⾯积?举例说明.【学做思2】*1.已知棱长为a ,各⾯均为等边三⾓形的四⾯体S –ABC ,求它的表⾯积.*【变式】已知棱长为a ,各⾯均为等边三⾓形的四⾯体S -ABC ,过SA 的中点作⼀个平⾏于底⾯的平⾯,求所得棱台的表⾯积。

人教版高中数学必修二全册导学案

人教版高中数学必修二全册导学案

必修2 第一章§2-1 柱、锥、台体性质及表面积、体积计算【课前预习】阅读教材P1-7,23-28完成下面填空1.棱柱、棱锥、棱台的本质特征⑴棱柱:①有两个互相平行的面(即底面),②其余各面(即侧面)每相邻两个面的公共边都互相平行(即侧棱都).⑵棱锥:①有一个面(即底面)是,②其余各面(即侧面)是 .⑶棱台:①每条侧棱延长后交于同一点,②两底面是平行且相似的多边形。

2.圆柱、圆锥、圆台、球的本质特征⑴圆柱:.⑵圆锥:.⑶圆台:①平行于底面的截面都是圆,②过轴的截面都是全等的等腰梯形,③母线长都相等,每条母线延长后都与轴交于同一点.(4)球: .3.棱柱、棱锥、棱台的展开图与表面积和体积的计算公式(1)直棱柱、正棱锥、正棱台的侧面展开图分别是①若干个小矩形拼成的一个,②若干个,③若干个 .(2)表面积及体积公式:4.圆柱、圆锥、圆台的展开图、表面积和体积的计算公式5.球的表面积和体积的计算公式【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1.下列命题正确的是()(A).有两个面平行,其余各面都是四边形的几何体叫棱柱。

(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱。

(C) 有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。

(D)用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。

2.根据下列对于几何体结构特征的描述,说出几何体的名称:(1)由8个面围成,其中两个面是互相平行且全等的六边形,其他面都是全等的矩形。

(2)一个等腰三角形绕着底边上的高所在的直线旋转180°形成的封闭曲面所围成的图形。

3.五棱台的上下底面均是正五边形,边长分别是6cm和16cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积。

4.一个气球的半径扩大a倍,它的体积扩大到原来的几倍?强调(笔记):【课中35分钟】边听边练边落实5.如图:右边长方体由左边的平面图形围成的是()(图在教材P8 T1 (3))6.已知圆台的上下底面半径分别是r,R,且侧面面积等于两底面面积之和,求圆台的母线长。

北师大版高中数学必修二导学案全册(81页)

北师大版高中数学必修二导学案全册(81页)
2. 如图 2-5,在三棱锥 P ABC 中, PA BC , E 、 F 分别是 PC 和 AB 上的点,且 PE AF 3 ,设 EF 与 PA 、 BC 所成的角分别为, ,
EC FB 2 求证: 90 °.
图 2-5
年级高一
泗县三中教案、学案用纸
学科数学 课题 平行关系 1
12 / 80
A.棱锥 B.棱柱 C.平面 D.长方体
2. 棱台不具有的性质是( ).
A.两底面相似
B.侧面都是梯形
C.侧棱都相等
D.侧棱延长后都交于一点
3. 已知集合 A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},
F={直平行六面体},则( ).
A. A B C D F E
审核人
识别三视图所表示的空间几何体及直观图
2012-3-4
1. 了解中心投影与平行投影的区别; 2. 能画出简单空间图形的三视图与直观图; 学 3. 能识别三视图所表示的空间几何体及空间几何体的直观图;



教 学过 程
一 自主学习
1. 中心投影和平行投影的有关概念 2.三视图与直观图有关概念及三视图的画法规则 3.看右面的图理解三视图概念
1. 下面说法正确的是( ).
①平面 ABCD 的面积为10cm2 ②100 个平面重合比 50 个平面重合厚③空间图形中虚线都
是辅助线④平面不一定用平行四边形表示.
A.① B.② C.③ D.④
2. 下列结论正确的是( ).
①经过一条直线和这条直线外一点可以确定一个平面②经过两条相交直线,可以确定一
请正画视出图它俯的视图图形为侧_视__图__________________. 7. 一个三角形的直观图是腰长为 4 的等腰直角三角形,则它的原面积是( ).

新课标高中数学必修二导学案

新课标高中数学必修二导学案

目录第一章空间几何体1.1空间几何体的结构1.1.1多面体的结构特征 (1)1.1.2旋转体与简单组合体的结构特征 (6)1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图 (10)1.2.3空间几何体的直观图. (15)§1.3空间几何体的表面积与体积第1课时柱体、锥体、台体的表面积 (19)第2课时柱体、锥体、台体、球的体积与球的表面积 (23)习题课空间几何体 (27)第二章点直线平面之间的位置关系2.1.1平面 (29)2.1.2空间中直线与直线之间的位置关系 (33)2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系 (37)2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定 (40)2.2.3直线与平面平行的性质 (44)2.2.4平面与平面平行的性质 (47)2.3.1直线与平面垂直的判定 (50)2.3.2平面与平面垂直的判定 (53)2. 3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质 (57)第二章复习课 (60)第三章直线与方程3.1.1倾斜角与斜率 (64)3.1.2两条直线平行与垂直的判定 (67)3.2.1直线的点斜式方程 (70)3.2.2直线的两点式方程 (73)3.2.3直线的一般式方程 (76)3.3.1两条直线的交点坐标3.3.2两点间的距离 (79)3.3.3点到直线的距离3.3.4两条平行直线间的距离 (82)第四章圆与方程4.1.1圆的标准方程 (85)4.1.2圆的一般方程 (88)4.2.1直线与圆的位置关系 (91)4.2.2圆与圆的位置关系 (94)4.2.3直线与圆的方程的应用 (97)4.3.1空间直角坐标系 (100)4.3.2空间两点间的距离公式 (103)章末复习 (106)第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征【学习目标】1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.【知识梳理】1.空间几何体(1)概念:如果只考虑物体的__和__,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)特殊的几何体①多面体:一般地,由若干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面的一条定直线旋转所形成的叫做旋转体,这条定直线叫做旋转体的2.多面体的结构特征(1)棱柱的结构特征:一般地,有两个面,其余各面都是,并且每相邻两个四边形的公共边都,由这些面所围成的多面体叫做棱柱.(2)棱锥的结构特征:一般地,有一个面是,其余各面都是,由这些面所围成的多面体叫做棱锥.(3)棱台的结构特征:用一个于棱锥底面的平面去截棱锥,之间的部分,这样的多面体叫做棱台.思考探究[情境导学]在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节课我们主要从结构特征方面认识最基本的空间几何体.探究点一空间几何体的类型思考1观察下列图片,你知道这图片在几何中分别叫什么名称吗?思考2如果将这些几何体进行适当分类,你认为可以分成哪几种类型?答:思考3观察图(2)(5)(7)(9)(13)(14)(15)(16)中组成几何体的每个面的特点,以及面与面之间的关系,你能归纳出它们有何共同特点吗?答:[小结]我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.思考4观察图(1)(3)(4)(6)(8)(10)(11)(12)中组成几何体的每个面有何共同特点?答:[小结]由一个平面图形绕它所在平面的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.探究点二棱柱的结构特征思考1我们把下面的多面体取名为棱柱,据此你能给棱柱下一个定义吗?图1图2答:思考2为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱柱的底面、侧面、侧棱、顶点吗?答:思考3棱柱上、下两个底面的形状大小如何?各侧面的形状如何?答:思考4一个棱柱至少有几个侧面?一个N棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?答:[小结]在棱柱中,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……;思考1图1中的六棱柱用各顶点字母可表示为棱柱ABCDEF—A′B′C′D′E′F′.例1试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.答:[反思与感悟]概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.答:探究点三棱锥的结构特征思考1我们把下面的多面体取名为棱锥,据此你能给棱锥下一个定义吗?答:思考2参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗?答:思考3类比棱柱的分类,棱锥如何根据底面多边形的边数进行分类?如何用棱锥各顶点的字母表示思考1中的三个棱锥?答:思考4一个棱锥至少有几个面?一个N棱锥分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?思考5用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?答:思考6棱柱、棱锥分别具有一些什么几何性质?答:例2如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.答:[反思与感悟]认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.(过顶点向底面作垂线,顶点与垂足的距离)答:探究点四棱台的结构特征思考1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些结构特征?答:思考2仿照棱锥中关于底面、侧面、侧棱、顶点的定义,如何定义棱台的底面、侧面、侧棱、顶点呢?答:思考3根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱台、四棱台、五棱台……?如何用字母表示棱台?答:思考4既然棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?答:例3有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A.0个B.1个C.2个D.3个[反思与感悟]一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.答:【随堂练习】1.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.下列说法中,正确的是()A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面都是全等的平行四边形3.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形4.对棱柱而言,下列说确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱.【课堂小结】1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.第2课时旋转体与简单组合体的结构特征【学习目标】 1.认识组成我们生活的世界的各种各样的旋转体;2.认识和把握圆柱、圆锥、圆台、球体的几何结构特征.【知识梳理】1.圆柱及其有关的概念以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做.叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的.2.圆锥的概念以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做_3.圆台的概念用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做.与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.4.球及其有关的概念以半圆的直径所在直线为,半圆面旋转一周形成的旋转体叫做,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的.球常用表示球心的字母O表示.5.简单组合体(1)概念:由组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体而成,另一种是由简单几何体或一部分而成.思考探究[情境导学]举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物和它一样,也都是由一些简单几何体组合而成的组合体.本节我们就来学习旋转体与简单组合体的结构特征.探究点一圆柱的结构特征思考1如图所示的空间几何体叫做圆柱,那么圆柱是怎样形成的呢?与圆柱有关的几个概念是如何定义的?答:思考2如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?答:思考1类比圆柱的定义,结合下图你能给圆锥下个定义吗?答:思考2类比圆柱的轴、底面、侧面、母线的定义,如何定义圆锥的轴、底面、侧面、母线?答:思考3经过圆锥的任意两条母线的截面是什么图形?圆锥如何用字母表示?答:探究点三圆台的结构特征思考1用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做圆台.圆台可以由什么平面图形旋转而形成?答:思考2与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如何?圆台如何用字母表示?答:思考3圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:例1用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.答:[反思与感悟]用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程组而解得.跟踪训练1将例1中“截去的圆锥的母线长是3 cm”改为“圆锥SO的母线长为16 cm”其余条件不变,则结果如何?答:探究点四球的结构特征思考类比圆柱、圆锥、圆台的定义,球是如何定义的?球心及球半径是指什么?如何用字母表示球?答:(1)三棱柱有6个顶点,三棱锥有4个顶点;(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(5)到定点的距离等于定长的点的集合是球.答:跟踪训练2 下列叙述中正确的个数是()①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D.3探究点五简单组合体的结构特征思考1现实生活中的物体多数是由柱体、锥体、台体、球体等简单几何体组合而成的,这些几何体叫做简单组合体.那么这些组合体是怎样构成的?答:思考2观察教材图1.1-11中(1)、(3)两物体所示的几何体,你能说出它们各由哪些简单几何体组合而成吗?答:例3描述下列几何体的结构特征.答:跟踪训练3数学奥林匹克竞赛中,若你获得第一名,被授予如图所示的奖杯,那么,请你介绍一下你所得的奖杯是由哪些简单几何体组成的?答:1.下图是由哪个平面图形旋转得到的()2.下列说确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心3.下面几何体的截面一定是圆面的是()A.圆台B.球C.圆柱D.棱柱4.以下说法中:①圆台上底面的面积与下底面的面积之比一定小于1.②矩形绕任意一条直线旋转都可以围成圆柱.③过圆台侧面上每一点的母线都相等.正确的序号为________.5.如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【课堂小结】(1)圆台、棱台可以看作是用一平行于底面的平面去截圆锥、棱锥得到的底面与截面之间的部分;圆台的母线、棱台的侧棱延长后必交于同一点,若不满足该条件,则一定不是圆台或棱台.(2)球面与球是两个不同的概念,球面是半圆以它的直径所在直线为轴旋转一周形成的曲面,也可以看作与定点(球心)的距离等于定长(半径)的所有点的集合.而球体不仅包括球的表面,同时还包括球面所包围的空间.§1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图【学习目标】 1.了解投影、中心投影和平行投影的概念;2.能画出简单几何体的三视图,能识别三视图所表示的立体模型.【知识梳理】投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的,这种现象叫做投影.其中,我们把光线叫做,把留下物体影子的屏幕叫做.(2)投影的分类①中心投影:光由向外散射形成的投影,叫做中心投影.中心投影的投影线交于.②平行投影:在一束光线照射下形成的投影,叫做平行投影.平行投影的是平行的.在平行投影中,投影线正对着投影面时,叫做,否则叫做.2.三视图(1)三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的(2)三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的、、看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规则是:俯视图放在正视图的,长度与的长度一样,侧视图放在正视图的右边,高度与的高度一样,宽度与的宽度一样.③在绘制三视图的时候,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线画出.思考探究[情境导学]从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.”对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11页,然后思考下列问题.思考1什么是投影、投影线、投影面吗?答:思考2不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答:[小结]我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?思考4用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答:思考5用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答:思考6一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答:例1 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)[反思与感悟]画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BFD′E在该正方体的各个面上的投影可能是图(2)中的________.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答:思考2三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?[小结]一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3圆柱、圆锥、圆台的三视图分别是什么?答:思考4球的三视图是什么?下列三视图表示一个什么几何体?答:探究点三简单组合体的三视图思考1在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?思考2如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出?(标出字母)答:例2 如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)答:[反思与感悟](1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()探究点四将三视图还原成几何体思考下图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.答:例3说出下面的三视图表示的几何体的结构特征.答:[反思与感悟]通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.跟踪训练3下图是一个物体的三视图,试说出物体的形状.答:【随堂练习】1.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()2.某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()4.一个几何体的三视图如图所示,则该几何体可以是()5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.【课堂小结】1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.1.2.3空间几何体的直观图目标 1.掌握斜二测画法的作图规则;2.会用斜二测画法画出简单几何体的直观图.【知识梳理】1.画平面图形直观图的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度为原来的.2.立体图形的直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′.且平行于O′z的线段长度.其他同平面图形的画法.思考探究[情境导学]空间几何体除了用三视图表示外,更多的是用直观图来表示.空间图形能否在平面中画出来,使得既富有立感,又能表达出图形各主要部分的位置关系和度量关系呢?这就是空间几何体的直观图.本节我们就来研究这个问题.探究点一水平放置的平面图形的画法导引用来表示空间图形的平面图叫空间图形的直观图,要画空间几何体的直观图,先要学会水平放置的平面图形的画法.思考1把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考2把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考3阅读教材16页中的例1,然后自主作出水平放置的正六边形的直观图.答:[小结]上述画水平放置的平面图形的直观图的方法叫做斜二测画法,斜二测画法的基本步骤和规则:(1)建坐标系,定水平面;(2)与坐标轴平行的线段保持平行;(3)水平线段等长,竖直线段减半.。

新课标高中数学必修二导学案

新课标高中数学必修二导学案

目录第一章空间几何体1.1空间几何体的结构1.1.1多面体的结构特征 (1)1.1.2旋转体与简单组合体的结构特征 (6)1.2空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2空间几何体的三视图 (10)1.2.3 空间几何体的直观图.……………………………………………15 §1.3 空间几何体的表面积与体积第1课时柱体、锥体、台体的表面积 (19)第2课时柱体、锥体、台体、球的体积与球的表面积…………………23习题课空间几何体 (27)第二章点直线平面之间的位置关系2.1.1平面……………………………………………………292.1.2空间中直线与直线之间的位置关系 (33)2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系…………………………………………372.2.1直线与平面平行的判定2.2.2平面与平面平行的判定 (40)2.2.3直线与平面平行的性质………………………………………………442.2.4平面与平面平行的性质………………………………………………472.3.1直线与平面垂直的判定 (50)2.3.2平面与平面垂直的判定………………………………………………532. 3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质 (57)第二章复习课………………………………………………60第三章直线与方程3.1.1 倾斜角与斜率…………………………………………………643.1.2两条直线平行与垂直的判定................................................673.2.1 直线的点斜式方程 (70)3.2.2直线的两点式方程 (73)3.2.3 直线的一般式方程……………………………………………………763.3.1 两条直线的交点坐标3.3.2两点间的距离……………………………………………………793.3.3 点到直线的距离3.3.4两条平行直线间的距离………………………………………………82 第四章圆与方程4.1.1圆的标准方程 (85)4.1.2 圆的一般方程 (88)4.2.1直线与圆的位置关系 (91)4.2.2圆与圆的位置关系 (94)4.2.3直线与圆的方程的应用 (97)4.3.1空间直角坐标系 (100)4.3.2 空间两点间的距离公式…………………………………………103章末复习 (106)第一章空间几何体§1.1空间几何体的结构ﻩ第1课时多面体的结构特征【学习目标】1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.【知识梳理】1.空间几何体(1)概念:如果只考虑物体的_ _和__,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)特殊的几何体①多面体:一般地,由若干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的叫做旋转体,这条定直线叫做旋转体的2.多面体的结构特征(1)棱柱的结构特征:一般地,有两个面,其余各面都是,并且每相邻两个四边形的公共边都,由这些面所围成的多面体叫做棱柱.(2)棱锥的结构特征:一般地,有一个面是,其余各面都是,由这些面所围成的多面体叫做棱锥.(3)棱台的结构特征:用一个于棱锥底面的平面去截棱锥,之间的部分,这样的多面体叫做棱台.思考探究[情境导学] 在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.本节课我们主要从结构特征方面认识最基本的空间几何体.探究点一空间几何体的类型思考1观察下列图片,你知道这图片在几何中分别叫什么名称吗?答:思考2如果将这些几何体进行适当分类,你认为可以分成哪几种类型?答:思考3观察图(2)(5)(7)(9)(13)(14)(15)(16)中组成几何体的每个面的特点,以及面与面之间的关系,你能归纳出它们有何共同特点吗?答:[小结] 我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.思考4观察图(1)(3)(4)(6)(8)(10)(11)(12)中组成几何体的每个面有何共同特点?答:[小结]由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.探究点二棱柱的结构特征思考1我们把下面的多面体取名为棱柱,据此你能给棱柱下一个定义吗?图1图2答:思考2为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱柱的底面、侧面、侧棱、顶点吗?答:思考3棱柱上、下两个底面的形状大小如何?各侧面的形状如何?答:思考4一个棱柱至少有几个侧面?一个N棱柱分别有多少个底面和侧面?有多少条侧棱?有多少个顶点?答:思考5有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?答:[小结] 在棱柱中,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……;思考1图1中的六棱柱用各顶点字母可表示为棱柱ABCDEF—A′B′C′D′E′F′.例1试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.答:[反思与感悟]概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1 根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.答:探究点三棱锥的结构特征思考1我们把下面的多面体取名为棱锥,据此你能给棱锥下一个定义吗?答:思考2参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗?答:思考3类比棱柱的分类,棱锥如何根据底面多边形的边数进行分类?如何用棱锥各顶点的字母表示思考1中的三个棱锥?答:思考4一个棱锥至少有几个面?一个N棱锥分别有多少个底面和侧面?有多少条侧棱?有多少个顶点? 答:思考5用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?答:思考6棱柱、棱锥分别具有一些什么几何性质?答:例2如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.答:[反思与感悟] 认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.(过顶点向底面作垂线,顶点与垂足的距离)答:探究点四棱台的结构特征思考1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些结构特征?答:思考2仿照棱锥中关于底面、侧面、侧棱、顶点的定义,如何定义棱台的底面、侧面、侧棱、顶点呢?答:思考3根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱台、四棱台、五棱台……?如何用字母表示棱台?答:思考4既然棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?答:例3有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有( )A.0个 B.1个C.2个 D.3个[反思与感悟]一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.答:【随堂练习】1.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2.下列说法中,正确的是()A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面都是全等的平行四边形3.下列说法错误的是()A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形4.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱.【课堂小结】1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.第2课时旋转体与简单组合体的结构特征【学习目标】1.认识组成我们生活的世界的各种各样的旋转体;2.认识和把握圆柱、圆锥、圆台、球体的几何结构特征.【知识梳理】1.圆柱及其有关的概念以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做. 叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的.2.圆锥的概念以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做_3.圆台的概念用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做.与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.4.球及其有关的概念以半圆的直径所在直线为,半圆面旋转一周形成的旋转体叫做,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的.球常用表示球心的字母O表示.5.简单组合体(1)概念:由组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2)基本形式:一种是由简单几何体而成,另一种是由简单几何体或一部分而成.思考探究[情境导学] 举世闻名的比萨斜塔是意大利的一个著名景点.它的构造从外形上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物和它一样,也都是由一些简单几何体组合而成的组合体.本节我们就来学习旋转体与简单组合体的结构特征.探究点一圆柱的结构特征思考1如图所示的空间几何体叫做圆柱,那么圆柱是怎样形成的呢?与圆柱有关的几个概念是如何定义的?答:思考2 如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?答:探究点二圆锥的结构特征思考1 类比圆柱的定义,结合下图你能给圆锥下个定义吗?答:思考2 类比圆柱的轴、底面、侧面、母线的定义,如何定义圆锥的轴、底面、侧面、母线?答:思考3经过圆锥的任意两条母线的截面是什么图形?圆锥如何用字母表示?答:探究点三圆台的结构特征思考1 用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做圆台.圆台可以由什么平面图形旋转而形成?答:思考2与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如何?圆台如何用字母表示?答:思考 3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:例1 用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.答:[反思与感悟] 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程组而解得.跟踪训练1 将例1中“截去的圆锥的母线长是3cm”改为“圆锥SO的母线长为16 cm”其余条件不变,则结果如何?答:探究点四球的结构特征思考类比圆柱、圆锥、圆台的定义,球是如何定义的?球心及球半径是指什么?如何用字母表示球? 答:例2判断下列各命题是否正确:(1)三棱柱有6个顶点,三棱锥有4个顶点;(2)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(3)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(4)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(5)到定点的距离等于定长的点的集合是球.答:跟踪训练2 下列叙述中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0B.1 C.2 D.3探究点五简单组合体的结构特征思考1现实生活中的物体多数是由柱体、锥体、台体、球体等简单几何体组合而成的,这些几何体叫做简单组合体.那么这些组合体是怎样构成的?答:思考2 观察教材图1.1-11中(1)、(3)两物体所示的几何体,你能说出它们各由哪些简单几何体组合而成吗?答:例3描述下列几何体的结构特征.答:跟踪训练3数学奥林匹克竞赛中,若你获得第一名,被授予如图所示的奖杯,那么,请你介绍一下你所得的奖杯是由哪些简单几何体组成的?答:【随堂练习】1.下图是由哪个平面图形旋转得到的()2.下列说法正确的是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心3.下面几何体的截面一定是圆面的是( )A.圆台B.球C.圆柱ﻩD.棱柱4.以下说法中:①圆台上底面的面积与下底面的面积之比一定小于1.②矩形绕任意一条直线旋转都可以围成圆柱.③过圆台侧面上每一点的母线都相等.正确的序号为________.5.如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【课堂小结】(1)圆台、棱台可以看作是用一平行于底面的平面去截圆锥、棱锥得到的底面与截面之间的部分;圆台的母线、棱台的侧棱延长后必交于同一点,若不满足该条件,则一定不是圆台或棱台.(2)球面与球是两个不同的概念,球面是半圆以它的直径所在直线为轴旋转一周形成的曲面,也可以看作与定点(球心)的距离等于定长(半径)的所有点的集合.而球体不仅包括球的表面,同时还包括球面所包围的空间.§1.2空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2空间几何体的三视图【学习目标】1.了解投影、中心投影和平行投影的概念;2.能画出简单几何体的三视图,能识别三视图所表示的立体模型.【知识梳理】投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的,这种现象叫做投影.其中,我们把光线叫做,把留下物体影子的屏幕叫做.(2)投影的分类①中心投影:光由向外散射形成的投影,叫做中心投影.中心投影的投影线交于 .②平行投影:在一束光线照射下形成的投影,叫做平行投影.平行投影的是平行的.在平行投影中,投影线正对着投影面时,叫做,否则叫做.2.三视图(1)三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的(2)三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的、、看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规则是:俯视图放在正视图的,长度与的长度一样,侧视图放在正视图的右边,高度与的高度一样,宽度与的宽度一样.③在绘制三视图的时候,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线画出.思考探究[情境导学]从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.”对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11页,然后思考下列问题.思考1什么是投影、投影线、投影面吗?答:思考2不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答:[小结] 我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3 用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答:思考4用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答:思考5 用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答:思考6一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答:例 1 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形B CC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)[反思与感悟]画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BF D′E在该正方体的各个面上的投影可能是图(2)中的________.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1 如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答:思考2三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?答:[小结] 一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3圆柱、圆锥、圆台的三视图分别是什么?答:思考4球的三视图是什么?下列三视图表示一个什么几何体?答:探究点三简单组合体的三视图思考1 在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?思考2 如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出?(标出字母)答:例2如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)答:[反思与感悟] (1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()探究点四将三视图还原成几何体思考下图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.答:例3说出下面的三视图表示的几何体的结构特征.答:[反思与感悟]通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.跟踪训练3 下图是一个物体的三视图,试说出物体的形状.答:【随堂练习】1.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影是( )2.某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为( )4.一个几何体的三视图如图所示,则该几何体可以是( )5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.【课堂小结】1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.1.2.3空间几何体的直观图目标1.掌握斜二测画法的作图规则;2.会用斜二测画法画出简单几何体的直观图.【知识梳理】1.画平面图形直观图的步骤(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面. (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度为原来的.2.立体图形的直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′.且平行于O′z的线段长度.其他同平面图形的画法.思考探究[情境导学]空间几何体除了用三视图表示外,更多的是用直观图来表示.空间图形能否在平面中画出来,使得既富有立感,又能表达出图形各主要部分的位置关系和度量关系呢?这就是空间几何体的直观图.本节我们就来研究这个问题.探究点一水平放置的平面图形的画法导引用来表示空间图形的平面图叫空间图形的直观图,要画空间几何体的直观图,先要学会水平放置的平面图形的画法.思考 1 把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考2把一个直角梯形水平放置得其直观图如下,比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?答:思考3阅读教材16页中的例1,然后自主作出水平放置的正六边形的直观图.答:[小结]上述画水平放置的平面图形的直观图的方法叫做斜二测画法,斜二测画法的基本步骤和规则:(1)建坐标系,定水平面;(2)与坐标轴平行的线段保持平行;(3)水平线段等长,竖直线段减半.思考4斜二测画法可以画任意多边形水平放置的直观图,如果把一个圆水平放置,看起来像什么。

高中数学必修2导学案2.2.doc

高中数学必修2导学案2.2.doc

执笔: 审核: 授课人: 授课时间:班级:姓名:小组:一、 学习目标:知识与技能:理解直线与平面、平面与平面平行的性质定理的含义过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平 面的性质定理二、 学习重、难点学习重点:直线与平面、平面与平面平行的性质及其应用 学习难点:将空间问题转化为平面问题的方法, 三、 学法指导及要求:1、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解 题本,多复习记忆。

3、A:自主学习;B:合作探究; 四、 知识链接:1. 空间直线与直线的位置关系2. 直线与平面的位置关系3. 平面与平面的位置关系4. 直线与平面平行的判定定理的符号表示5. 平面与平面平行的判定定理的符号表示五、 学习过程:A 问题1:1 )如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系? (观察长方体)2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行? (可观察教室内灯管和地面)(A )问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可 能? (A )问题3:如果一条直线a 与平面a 平行,在什么条件下直线a 与平面a 内的直线平 行呢?由于直线a 与平面a 内的任何直线无公共点,所以过直线a 的某一平面,若与平面a 相 交,则直线a 就平行于这条交线备注:(B )自主探究1:已知:a 〃a, aup, a n e =b…求证:Ia //boVZ4 7y 直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一 平面的交线与该直线平行 符号语言:线面平行性质定理作用:证明两直线平行 思想:线面平行=>线线平行例1:有一块木料如图,已知棱%平行于面A'C'⑴要经 过木料表面AW D 内的一点P 和棱BC 将木料锯开, 应怎样画线?(2)所画的线和面AC 有什么关系?.P平面-?Sj iltAB例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。

新课标高中数学必修二导学案

新课标高中数学必修二导学案

目录第一章空间几何体1.1 空间几何体的结构1.1.1 多面体的结构特征 (1)1.1.2旋转体与简单组合体的结构特征 (6)1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图 (10)1.2.3 空间几何体的直观图. ................................................................... (15)§1.3 空间几何体的表面积与体积第1课时柱体、锥体、台体的表面积 (19)第2课时柱体、锥体、台体、球的体积与球的表面积............... (23)习题课空间几何体 (27)第二章点直线平面之间的位置关系2.1.1 平面 (29)2.1.2 空间中直线与直线之间的位置关系 (33)2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系 (37)2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定 (40)2.2.3 直线与平面平行的性质 (44)2.2.4 平面与平面平行的性质 (47)2.3.1 直线与平面垂直的判定 (50)2.3.2 平面与平面垂直的判定 (53)2. 3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质 (57)第二章复习课 (60)第三章直线与方程3.1.1 倾斜角与斜率 (64)3.1.2 两条直线平行与垂直的判定 (67)3.2.1 直线的点斜式方程 (70)3.2.2 直线的两点式方程 (73)3.2.3 直线的一般式方程 (76)3.3.1 两条直线的交点坐标332两点间的距离 (79)3.3.3 点到直线的距离3.3.4 两条平行直线间的距离 (82)第四章圆与方程4.1.1 圆的标准方程 (85)4.1.2 圆的一般方程 (88)4.2.1 直线与圆的位置关系 (91)4.2.2 圆与圆的位置关系 (94)4.2.3直线与圆的方程的应用 (97)4.3.1 空间直角坐标系 (100)4.3.2 空间两点间的距离公式 (103)章末复习 (106)第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征【学习目标】1•认识组成我们的生活世界的各种各样的多面体;2. 认识和把握棱柱、棱锥、棱台的几何结构特征;3. 了解多面体可按哪些不同的标准分类,可以分成哪些类别.【知识梳理】1 .空间几何体(1) 概念:如果只考虑物体的—_ 和,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.⑵特殊的几何体①多面体:一般地,由若干个__________________ 围成的几何体叫做多面体•围成多面体的各个多边形叫做多面体的 _;相邻两个面的 ____________ 叫做多面体的棱;棱与棱的____________ 叫做多面体的顶点.②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的__________________________ 叫做旋转体,这条定直线叫做旋转体的 _2•多面体的结构特征⑴棱柱的结构特征:一般地,有两个面 _________________ ,其余各面都是_________ ,并且每相邻两个四边形的公共边都 ________ ,由这些面所围成的多面体叫做棱柱.(2) 棱锥的结构特征:一般地,有一个面是____________ ,其余各面都是_______________________________ ,由这些面所围成的多面体叫做棱锥.(3) 棱台的结构特征:用一个________ 于棱锥底面的平面去截棱锥,____________________ 之间的部分,这样的多面体叫做棱台.思考探究[情境导学]在我们周围存在着各种各样的物体,它们都占据着空间的一部分. 如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体. 本节课我们主要从结构特征方面认识最基本的空间几何体.探究点一空间几何体的类型思考1观察下列图片,你知道这图片在几何中分别叫什么名称吗?答:思考2 如果将这些几何体进行适当分类,你认为可以分成哪几种类型?答:思考3 观察图(2)(5)(7)(9)(13)(14)(15)(16) 中组成几何体的每个面的特点,以及面与面之间的关系,你能归纳出它们有何共同特点吗?答:[小结] 我们把由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.思考4 观察图(1)(3)(4)(6)(8)(10)(11)(12) 中组成几何体的每个面有何共同特点?答:[小结] 由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.探究点二棱柱的结构特征思考1 我们把下面的多面体取名为棱柱,据此你能给棱柱下一个定义吗?图1 图2答:思考2 为了研究方便,我们把棱柱中两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.你能指出上面棱柱的底面、侧面、侧棱、顶点吗?答:思考3 棱柱上、下两个底面的形状大小如何?各侧面的形状如何?答:一个棱柱至少有几个侧面?一个N 棱柱分别有多少个底面和侧面?有多少条侧棱?有多少思考4 个顶点?答:有两个面互相平行,其余各面都是平行四边形的多面体一定是棱柱吗?思考5答:[小结]在棱柱中,底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱思考1图1中的六棱柱用各顶点字母可表示为棱柱ABCDEF —A' B ' C ' D' E' F '.例1 试判断下列说法是否正确:(1) 棱柱中互相平行的两个面叫做棱柱的底面;(2) 棱柱的侧棱都相等,侧面是平行四边形.答:[反思与感悟]概念辨析题常用方法:(1 )利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1 根据下列关于空间几何体的描述,说出几何体名称:(1) 由6 个平行四边形围成的几何体.(2) 由8 个面围成,其中两个面是平行且全等的六边形,其余 6 个面都是平行四边形.答:探究点三棱锥的结构特征思考1 我们把下面的多面体取名为棱锥,据此你能给棱锥下一个定义吗?思考2答:参照棱柱的说法,棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗?思考3 示思考答:类比棱柱的分类,棱锥如何根据底面多边形的边数进行分类?如何用棱锥各顶点的字母表1中的三个棱锥?思考4顶点?答:一个棱锥至少有几个面?一个N棱锥分别有多少个底面和侧面?有多少条侧棱?有多少个思考5答:用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状关系如何?思考6答:棱柱、棱锥分别具有一些什么几何性质?例2如图,几何体中,四边形AA I B I B为边长为3的正方形,CC i = 2, ------ Z ------ 良CC i// AA I , CC i II BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出... 卄……是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一汇一3 疝个侧棱长为2的三棱柱,并指出截去的几何体的特征•在立体图中画出截面.答:[反思与感悟]认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高.(过顶点向底面作垂线,顶点与垂足的距离)答:探究点四棱台的结构特征思考1用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成另一个多面体,这样的多面体叫做棱台.那么棱台有哪些结构特征?答:思考2仿照棱锥中关于底面、侧面、侧棱、顶点的定义,如何定义棱台的底面、侧面、侧棱、顶点呢?答:思考3根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱台、四棱台、五棱台……?如何用字母表示棱台?答:思考4既然棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否相互转化?答:例3有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有()A . 0个B . 1个C . 2个D . 3个[反思与感悟]一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据. 跟踪训练3 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均相等,且侧棱长为.17,求四棱台的高.答:【随堂练习】1 .下列说法中正确的是()A .棱柱的面中,至少有两个面互相平行B .棱柱中两个互相平行的平面一定是棱柱的底面C .棱柱中一条侧棱就是棱柱的高D .棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形2. 下列说法中,正确的是()A .有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B .用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台C .棱柱的侧面都是平行四边形,而底面不是平行四边形D .棱柱的侧棱都相等,侧面都是全等的平行四边形3. 下列说法错误的是()A .多面体至少有四个面B .九棱柱有9条侧棱,9个侧面,侧面为平行四边形C .长方体、正方体都是棱柱D .三棱柱的侧面为三角形4. ________________________________________ 对棱柱而言,下列说法正确的序号是 .①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱.【课堂小结】1 .在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2. 对几何体定义的理解要准确,另外,要想真正把握几何体的结构特征,必须多角度、全面地分析,多观察实物,提高空间想象能力.第2课时旋转体与简单组合体的结构特征【学习目标】1•认识组成我们生活的世界的各种各样的旋转体;2•认识和把握圆柱、圆锥、圆台、球体的几何结构特征.【知识梳理】1. 圆柱及其有关的概念以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做. 叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的 __________________ ;平行于轴的边旋转而成的曲面叫做圆柱的________ ;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的 _______________________ .2. 圆锥的概念以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做——3. 圆台的概念用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做.与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线.4. 球及其有关的概念以半圆的直径所在直线为_____________ ,半圆面旋转一周形成的旋转体叫做_______________ ,简称球•半圆的圆心叫做球的________ ,半圆的半径叫做球的半径」圆的直径叫做球的 ____________________ 球常用表示球心的字母0表示.5. 简单组合体(1) 概念:由_____________ 组合而成的几何体叫做简单组合体. 常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.(2) 基本形式:一种是由简单几何体 ___________ 而成,另一种是由简单几何体 _或_________________ 一部分而成.思考探究[情境导学]举世闻名的比萨斜塔是意大利的一个著名景点. 它的构造从外形上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物和它一样,也都是由一些简单几何体组合而成的组合体. 本节我们就来学习旋转体与简单组合体的结构特征.探究点一圆柱的结构特征思考1如图所示的空间几何体叫做圆柱,那么圆柱是怎样形成的呢?与圆柱有关的几个概念是如何定义的?答:思考2如图,平行于圆柱底面的截面,经过圆柱任意两条母线的截面分别是什么图形?答:探究点二圆锥的结构特征思考1 类比圆柱的定义,结合下图你能给圆锥下个定义吗?答:思考2 类比圆柱的轴、底面、侧面、母线的定义,如何定义圆锥的轴、底面、侧面、母线?答:思考3 经过圆锥的任意两条母线的截面是什么图形?圆锥如何用字母表示?答: 探究点三圆台的结构特征思考1 用一个平行于圆锥底面的平面去截圆锥,截面与底面之间的部分叫做圆台.圆台可以由什么平面图形旋转而形成?答:思考2 与圆柱和圆锥一样,圆台也有轴、底面、侧面、母线,它们的含义分别如何?圆台如何用字母表示?答:思考3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?答:例1用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为 1 : 16,截去的圆锥的母线长是3 cm,求圆台的母线长.答:[反思与感悟] 用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程组而解得.跟踪训练1将例1中“截去的圆锥的母线长是3 cm”改为“圆锥SO的母线长为16 cm”其余条件不变,则结果如何?答:探究点四球的结构特征思考类比圆柱、圆锥、圆台的定义,球是如何定义的?球心及球半径是指什么?如何用字母表示球?答:例2 判断下列各命题是否正确:(1 )三棱柱有6个顶点,三棱锥有4个顶点;(2) 圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(3) 一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(4) 圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(5) 到定点的距离等于定长的点的集合是球.答:跟踪训练2 下列叙述中正确的个数是( )①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.A.0 B.1 C.2 D .3 探究点五简单组合体的结构特征思考1 现实生活中的物体多数是由柱体、锥体、台体、球体等简单几何体组合而成的,这些几何体叫做简单组合体.那么这些组合体是怎样构成的?答:思考2 观察教材图1.1-11 中(1)、(3)两物体所示的几何体,你能说出它们各由哪些简单几何体组合而成吗?答:例3 描述下列几何体的结构特征.答:跟踪训练3 数学奥林匹克竞赛中,若你获得第一名,被授予如图所示的奖杯,那么,请你介绍一下你所得的奖杯是由哪些简单几何体组成的?答:随堂练习】1.下图是由哪个平面图形旋转得到的( )2.下列说法正确的是( )A .圆锥的母线长等于底面圆直径B. 圆柱的母线与轴垂直C. 圆台的母线与轴平行D .球的直径必过球心3.下面几何体的截面一定是圆面的是( )A.圆台 B .球C .圆柱D .棱柱4 .以下说法中:①圆台上底面的面积与下底面的面积之比一定小于 1.②矩形绕任意一条直线旋转都可以围成圆柱.③过圆台侧面上每一点的母线都相等.正确的序号为 ___________5. 如图所示的图形绕虚线旋转一周后形成的立体图形分别是由哪些简单几何体组成的?【课堂小结】(1)圆台、棱台可以看作是用一平行于底面的平面去截圆锥、棱锥得到的底面与截面之间的部分;圆台的母线、棱台的侧棱延长后必交于同一点,若不满足该条件,则一定不是圆台或棱台.(2)球面与球是两个不同的概念,球面是半圆以它的直径所在直线为轴旋转一周形成的曲面,也可以看作与定点(球心)的距离等于定长(半径)的所有点的集合•而球体不仅包括球的表面,同时还包括球面所包围的空间.§ 1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图【学习目标】1•了解投影、中心投影和平行投影的概念;2•能画出简单几何体的三视图,能识别三视图所表示的立体模型.【知识梳理】投影(1) 投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的 _____ ,这种现象叫做投影•其中,我们把光线叫做 __________ ,把留下物体影子的屏幕叫做_________________ .(2) 投影的分类①中心投影:光由________ 向外散射形成的投影,叫做中心投影•中心投影的投影线交于______________________ .②平行投影:在一束_________ 光线照射下形成的投影,叫做平行投影.平行投影的______________ 是平行的.在平行投影中,投影线正对着投影面时,叫做 _________________ ,否则叫做____________ .2.三视图(1) 三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的________②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的______③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的______(2) 三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的__________________ 、________ 、_______ 看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规则是:俯视图放在正视图的___________________ ,长度与 _________ 的长度一样,侧视图放在正视图的右边,高度与 ______________ 的高度一样,宽度与____________ 的宽度一样.③在绘制三视图的时候,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线画出•—思考探究13[ 情境导学] 从不同角度看庐山,有古诗:“ 横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.” 对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11 页,然后思考下列问题.思考1 什么是投影、投影线、投影面吗?答:思考2 不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答:[小结] 我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3 用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答:思考4 用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答:思考5 用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答:思考6 一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答:例1如图所示,在正方体ABCD —A I B I C I D I中,E、F分别是AA i、C i D i的中点,G是正方形BCC i B i 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图中的 _________________________________________ .(填序号)[ 反思与感悟] 画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图⑴所示,E、F分别为正方体面ADD ' A'、面BCC ' B'的中心,则四边形BFD ' E 在该正方体的各个面上的投影可能是图(2)中的_____________________________________ .探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答:思考2 三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)? 答:[小结] 一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高, 正俯等长,侧俯等宽.思考3 圆柱、圆锥、圆台的三视图分别是什么?答:思考4球的三视图是什么?下列三视图表示一个什么几何体?探究点三 简单组合体的三视图思考1在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线 和棱不能看见,在画三视图时怎样处理?思考2如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出? (标出字母) 例2如图,设所给的方向为物体的正前方,试画出它的三视图.答: [反思与感悟] ⑴在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视 图)侧(视图)宽相等.⑵习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是 ()(单位:探究点四 将三视图还原成几何体例3说出下面的三视图表示的几何体的结构特征.答:[反思与感悟]通常要根据俯视图判断几何体是多面体还是旋转体, 再结合正视图和侧视图确定具体 的几何结构特征,最终确定是简单几何体还是简单组合体.思考 答:F 图是简单组合体的三视图,想象它们表示的组合体的结构特征,跟踪训练3 下图是一个物体的三视图,试说出物体的形状.答:【随堂练习】1. 如图所示,在正方体ABCD —A i B i C i D i中,M, N分别是BB i, BC的中点,则图中阴影部分在平面ADD i A i上的正投影是()2 .某几何体的三视图如图所示,那么这个几何体是( )A .三棱锥B .四棱锥C .四棱台D .三棱台3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,4 .一个几何体的三视图如图所示,则该几何体可以是则该几何体的侧视图为( )()5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.【课堂小结】1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2 •几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.1.2.3空间几何体的直观图目标1.掌握斜二测画法的作图规则;2•会用斜二测画法画出简单几何体的直观图.【知识梳理】1. 画平面图形直观图的步骤⑴在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x'轴与y'轴,两轴交于点0',且使/ x' O' y'= 45°或135°,它们确定的平面表示水平面.⑵已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度___________________ ,平行于y轴的线段,长度为原来的 ______ .2. 立体图形的直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x' O' y'垂直的轴O' z'.且平行于0 ' z的线段长度.其他同平面图形的画法.思考探究[情境导学]空间几何体除了用三视图表示外,更多的是用直观图来表示. 空间图形能否在平面中画出来,使得既富有立感,又能表达出图形各主要部分的位置关系和度量关系呢?这就是空间几何体的直观图.本节我们就来研究这个问题.探究点一水平放置的平面图形的画法导引用来表示空间图形的平面图叫空间图形的直观图,要画空间几何体的直观图,先要学会水平放置的平面图形的画法.思考1把一个矩形水平放置,从适当的角度观察,给人以平行四边形的感觉,如图.比较两图,其中哪些线段之间的位置关系、数量关系发生了变化?哪些没有发生变化?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档