2017-2018学年新人教版高中数学必修四全册导学案
(人教版)高中数学必修四导学案例全集
第一章三角函数1.1 任意角和弧度制1.1.1 任意角一、授课目的:1、知识与技术〔1〕实行角的见解、引入大于360 角和负角;〔2〕理解并掌握正角、负角、零角的定义;〔 3〕理解任意角以及象限角的见解;(4) 掌握全部与角终边相同的角〔包括角〕的表示方法;〔5〕成立运动变化见解,深刻理解实行后的角的见解;〔6〕揭穿知识背景,惹起学生学习兴趣 . 〔7〕创立问题状况,激发学生解析、研究的学习态度,增强学生的参加意识 .2、过程与方法经过创立情境:“转体 720 ,逆〔顺〕时针旋转〞,角有大于 360 角、零角和旋转方向不相同所形成的角等,引入正角、负角和零角的见解;角的见解获取实行今后,将角放入平面直角坐标系,引入象限角、非象限角的见解及象限角的判断方法;列出几个终边相同的角,画出终边所在的地址,找出它们的关系,研究拥有相同终边的角的表示;讲解例题,总结方法,牢固练习.3、神情与价值经过本节的学习,使同学们对角的见解有了一个新的认识,即有正角、负角和零角之分 . 角的见解实行今后,知道角之间的关系 . 理解掌握终边相同角的表示方法,学会运用运动变化的见解认识事物.二、授课重、难点重点 :理解正角、负角和零角的定义,掌握终边相同角的表示法.难点 :终边相同的角的表示.三、学法与授课用具从前的学习使我们知道最大的角是周角 , 最小的角是零角 . 经过回忆和观察平常生活中实质例子 , 把对角的理解进行了实行 . 把角放入坐标系环境中今后 , 认识象限角的见解 . 经过角终边的旋转掌握终边相同角的表示方法 . 我们在学习这局部内容时 , 第一要弄清楚角的表示符号 , 以及正负角的表示 . 其他还有相同终边角的会集的表示等 .授课用具 : 电脑、投影机、三角板四、授课设想【创立情境】思虑 : 你的手表慢了 5 分钟,你是怎样将它校准的?假设你的手表快了小时,你应该怎样将它校准?当时间校准今后,分针转了多少度?[ 取出一个钟表 , 实质操作 ] 我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上, 这就是说角已不能是限制于 0 360 之间,这正是我们这节课要研究的主要内容——任意角.【研究新知】1.初中时,我们已学习了0360 角的见解,它是怎样定义的呢?[ 展现投影 ] 角能够看作平面内一条射线绕着端点从一个地址旋转到另一个地址所成的图形 . 如图 1.1-1 ,一条射线由原来的地址OA,绕着它的端点 O 按逆时针方向旋转到停止地址 OB ,就形成角.旋转开始时的射线 OA 叫做角的始边, OB 叫终边,射线的端点 O 叫做叫的极点 .2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体 720 〞〔即转体2周〕,“转体 1080 〞〔即转体 3 周〕等 , 都是遇到大于360的角以及按不相同方向旋转而成的角.同学们思虑一下: 可否再举出几个现实生活中“大于360的角或按不相同方向旋转而成的角〞的例子 , 这些说了然什么问题 ?又该怎样区分和表示这些角呢 ?[ 展现课件 ] 如自行车车轮、螺丝扳手等按不相同方向旋转时成不相同的角 ,这些都说了然我们研究实行角见解的必要性.为了差异起见,我们规定 : 按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).若是一条射线没有做任何旋转 , 我们称它形成了一个零角(zero angle).[ 展现课件 ] 如教材图 1.1.3(1)中的角是一个正角,它等于750;图 1.1.3(2)中,正角210 ,负角150 ,660 ;这样,我们就把角的见解实行到了任意角〔any angle 〕, 包括正角、负角和零角 . 为了简单起见,在不惹起混淆的前提下,“角〞或“ 〞可简记为 .3.在今后的学习中,我们常在直角坐标系内谈论角,为此我们必定认识象限角这个见解 .角的极点与原点重合,角的始边与x 轴的非负半轴重合。
2018年新人教A版高中数学必修四全册学案
人教A版高中数学必修四全册学案汇编目录第一章三角函数1.1任意角和蝗制1.1.1任意角1.1.2蝗制1.2任意的三角函数1.2.1第1课时任意角的三角函数的定义1.2.1第2课时三角函数线及其应用1.2.2同角三角函数的基本关系1.3三角函数的诱导公式第1课时公式二公式三和公式四第2课时公式五和公式六1.4三角函数的图象与性质1.4.1正弦函数余弦函数的图象1.4.2第1课时正弦余弦函数的周期性与奇偶性1.4.2第2课时正弦余弦函数的单调性与最值1.4.3正切函数的性质与图象1.5函数y=Asinωx+φ的图象1.6三角函数模型的简单应用阶段复习课第1课任意角的三角函数及诱导公式阶段复习课第2课三角函数的图象与性质及其应用第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义 2.4.2平面向量数量积的坐标表示模夹角 2.5平面向量应用举例2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例阶段复习课第3课平面向量第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.1两角差的余弦公式3.1.2第1课时两角和与差的正弦余弦公式 3.1.2第2课时两角和与差的正切公式3.1.3二倍角的正弦余弦正切公式3.2简单的三角恒等变换阶段复习课第4课三角恒等变换1.1.1 任意角学习目标:1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角及区间角的表示方法.(难点、易错点)[自主预习·探新知]1.角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示:如图111,图111(1)始边:射线的起始位置OA,(2)终边:射线的终止位置OB,(3)顶点:射线的端点O.这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.任意角的分类(1)按旋转方向分(2)按角的终边位置分①前提:角的顶点与原点重合,角的始边与x轴的非负半轴重合②分类:[基础自测]1.思考辨析(1)第二象限角大于第一象限角.( )(2)第二象限角是钝角.( )(3)终边相同的角不一定相等,但相等的角终边一定相同.( )(4)终边相同的角有无数个,它们相差360°的整数倍.( )[解析](1)错误.如第二象限角100°小于第一象限角361°.(2)错误.如第二象限角-181°不是钝角.(3)(4)都正确.[答案](1)×(2)×(3)√(4)√2.50°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是________.-670°[由题意知,所得角是50°-2×360°=-670°.]3.已知0°≤α<360°,且α与600°角终边相同,则α=________,它是第________象限角.240°三[因为600°=360°+240°,所以240°角与600°角终边相同,且0°≤240°<360°,故α=240°,它是第三象限角.][合作探究·攻重难](1)①锐角都是第一象限角;②第一象限角一定不是负角;③小于180°的角是钝角、直角或锐角;④始边和终边重合的角是零角.其中正确说法的序号为________(把正确说法的序号都写上).(2)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,作出下列各角,并指出它们是第几象限角.①420°.②855°.③-510°. 【导学号:84352000】(1)①[(1)①锐角是大于0°且小于90°的角,终边落在第一象限,是第一象限角,所以①正确;②-350°角是第一象限角,但它是负角,所以②错误;③0°角是小于180°的角,但它既不是钝角,也不是直角或锐角,所以③错误;④360°角的始边与终边重合,但它不是零角,所以④错误.](2)作出各角的终边,如图所示:由图可知:①420°是第一象限角.②855°是第二象限角.③-510°是第三象限角.[规律方法] 1.判断角的概念问题的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限.(2)第一步,将α写成α=k ·360°+β(k ∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.提醒:理解任意角这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”.[跟踪训练]1.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},则下面关系正确的是( )A .A =B =CB .A ⊆C C .A ∩C =BD .B ∪C ⊆CD [由已知得B C ,所以B ∪C =C ,故D 正确.]2.给出下列四个命题:①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.其中正确的命题有( )【导学号:84352001】A .1个B .2个C .3个D .4个D [-90°<-75°<0°,180°<225°<270°,360°+90°<475°<360°+180°,-360°<-315°<-270°.所以这四个命题都是正确的.](1).(2)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.[思路探究] (1)根据-885°与k ·360°,k ∈Z 的关系确定k .(2)先写出与α终边相同的角k ·360°+α,k ∈Z ,再由已知不等式确定k 的可能取值.(1)(-3)×360°+195° [(1)-885°=-1 080°+195°=(-3)×360°+195°.](2)与α=-1 910°终边相同的角的集合为{β|β=k ·360°-1 910°,k ∈Z }.∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴31136≤k <61136(k ∈Z ),故取k =4,5,6. k =4时,β=4×360°-1 910°=-470°;k=5时,β=5×360°-1 910°=-110°;k=6时,β=6×360°-1 910°=250°.[规律方法] 1.在0°到360°范围内找与给定角终边相同的角的方法(1)一般地,可以将所给的角α化成k·360°+β的形式(其中0°≤β<360°,k∈Z),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.2.运用终边相同的角的注意点所有与角α终边相同的角,连同角α在内可以用式子k·360°+α,k∈Z表示,在运用时需注意以下四点:(1)k是整数,这个条件不能漏掉.(2)α是任意角.(3)k·360°与α之间用“+”连接,如k·360°-30°应看成k·360°+(-30°),k∈Z.(4)终边相同的角不一定相等,但相等的角终边一定相同,终边相同的角有无数个,它们相差周角的整数倍.提醒:表示终边相同的角,k∈Z这一条件不能少.[跟踪训练]3.下面与-850°12′终边相同的角是( )A.230°12′B.229°48′C.129°48′D.130°12′B[与-850°12′终边相同的角可表示为α=-850°12′+k·360°(k∈Z),当k=3时,α=-850°12′+1 080°=229°48′.]4.在-360°~360°之间找出所有与下列各角终边相同的角,并判断各角所在的象限.①790°;②-20°. 【导学号:84352002】[解]①∵790°=2×360°+70°=3×360°-290°,∴在-360°~360°之间与它终边相同的角是70°和-290°,它们都是第一象限的角.②∵-20°=-360°+340°,∴在-360°~360°之间与它终边相同的角是-20°和340°,它们都是第四象限的角.[探究问题1.若射线OA的位置是k·360°+10°,k∈Z,射线OA绕点O逆时针旋转90°经过的区域为D,则终边落在区域D(包括边界)的角的集合应如何表示?提示:终边落在区域D包括边界的角的集合可表示为{α|k·360°+10°≤α≤k·360°+100°,k ∈Z}.2.若角α与β的终边关于x 轴、y 轴、原点、直线y =x 对称,则角α与β分别具有怎样的关系?[提示] (1)关于x 轴对称:若角α与β的终边关于x 轴对称,则角α与β的关系是β=-α+k ·360°,k ∈Z .(2)关于y 轴对称:若角α与β的终边关于y 轴对称,则角α与β的关系是β=180°-α+k ·360°,k ∈Z .(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k ·360°,k ∈Z .(4)关于直线y =x 对称:若角α与β的终边关于直线y =x 对称,则角α与β的关系是β=-α+90°+k ·360°,k ∈Z .(1)若α是第一象限角,则-α2是( ) A .第一象限角B .第一、四象限角C .第二象限角D .第二、四象限角(2)已知,如图112所示.图112①分别写出终边落在OA ,OB 位置上的角的集合.②写出终边落在阴影部分(包括边界)的角的集合.[思路探究] (1)由α的范围写出α2的范围→确定α2是第几象限角→ 根据角终边的对称性确定-α2是第几象限角 (2)①观察图形→确定终边落在OA ,OB 位置上的角②由小到大分别标出起始和终止边界对应的角→加上360°的整数倍,得所求集合(1)D [(1)因为α是第一象限角,所以k ·360°<α<k ·360°+90°,k ∈Z ,所以k ·180°<α2<k ·180°+90°,k ∈Z , 所以α2是第一、三象限角,又因为-α2与α2的终边关于x 轴对称, 所以-α2是第二、四象限角.] (2)①终边落在OA 位置上的角的集合为{α|α=90°+45°+k ·360°,k ∈Z }={α|α=135°+k ·360°,k ∈Z };终边落在OB 位置上的角的集合为{α|α=-30°+k ·360°,k ∈Z }.②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于[-30°,135°]之间的与之终边相同的角组成的集合,故该区域可表示为{α|-30°+k ·360°≤α≤135°+k ·360°,k ∈Z }.母题探究:1.若将本例(2)改为如图113所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?图113[解] 在0°~360°范围内,终边落在阴影部分(包括边界)的角为60°≤β<105°与240°≤β<285°,所以所有满足题意的角β为{β|k ·360°+60°≤β<k ·360°+105°,k ∈Z }∪{β|k ·360°+240°≤β<k ·360°+285°,k ∈Z }={β|2k ·180°+60°≤β<2k ·180°+105°,k ∈Z }∪{β|(2k +1)·180°+60°≤β<(2k +1)·180°+105°,k ∈Z }={β|n ·180°+60°≤β<n ·180°+105°,n ∈Z }.故角β的取值集合为{β|n ·180°+60°≤β<n ·180°+105°,n ∈Z }.2.若将本例(2)改为如图114所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?图114[解] 在0°~360°范围内,阴影部分(包括边界)表示的范围可表示为:150°≤β≤225°,则所有满足条件的角β为{β|k ·360°+150°≤β≤k ·360°+225°,k ∈Z }.[规律方法] 1.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.2.n α或αn 所在象限的判断方法:(1)用不等式表示出角n α或αn 的范围;(2)用旋转的观点确定角n α或αn 所在象限.例如:k ·120°<α3<k ·120°+30°,k ∈Z .由0°<α3<30°,每次逆时针旋转120°可得α3终边的位置.提醒:表示区间角时要注意实线边界与虚线边界的差异.[当 堂 达 标·固 双 基]1.下列说法正确的是( )A .三角形的内角是第一象限角或第二象限角B .第四象限的角一定是负角C .60°角与600°角是终边相同的角D .将表的分针拨慢10分钟,则分针转过的角为60°D [A 错误,90°角既不是第一象限角也不是第二象限角;B 错误,280°角是第四象限角,但它不是负角;C 错误,600°-60°=540°不是360°的倍数;D 正确,分针转一周为60分钟,转过的角度为-360°,将分针拨慢是逆时针旋转,拨慢10分钟转过的角为360°×16=60°.]2.下列各个角中与2 017°终边相同的是( )A .-147°B .677°C .317°D .217°D [因为2 017°=360°×5+217°,所以与2 017°终边相同的角是217°.]3.已知角α的终边在如图115阴影表示的范围内(不包含边界),那么角α的集合是________. 【导学图115{α|k·360°+45°<α<k·360°+150°,k∈Z}[观察图形可知,角α的集合是{α|k·360°+45°<α<k·360°+150°,k∈Z}.]4.角α,β的终边关于y轴对称,若α=30°,则β=________.150°+k·360°,k∈Z[∵30°与150°的终边关于y轴对称,∴β的终边与150°角的终边相同.∴β=150°+k·360°,k∈Z.]5.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°.【导学号:84352005】[解](1)与-120°终边相同的角的集合为M={β|β=-120°+k·360°,k∈Z}.当k=1时,β=-120°+1×360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角.(2)与640°终边相同的角的集合为M={β|β=640°+k·360°,k∈Z}.当k=-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角.1.1.2 弧度制学习目标:1.了解弧度制下,角的集合与实数集之间的一一对应关系.2.理解“弧度的角”的定义,掌握弧度与角度的换算、弧长公式和扇形面积公式,熟悉特殊角的弧度数.(重点、难点)3.了解“角度制”与“弧度制”的区别与联系.(易错点)[自 主 预 习·探 新 知]1.度量角的两种单位制 (1)角度制:①定义:用度作为单位来度量角的单位制. ②1度的角:周角的1360.(2)弧度制:①定义:以弧度作为单位来度量角的单位制. ②1弧度的角:长度等于半径长的弧所对的圆心角. 2.弧度数的计算思考:比值l r与所取的圆的半径大小是否有关?[提示] 一定大小的圆心角α所对应的弧长与半径的比值是唯一确定的,与半径大小无关. 3.角度制与弧度制的换算4.一些特殊角与弧度数的对应关系设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则(1)弧长公式:l =αR .(2)扇形面积公式:S =12lR =12αR 2.[基础自测]1.思考辨析(1)1弧度的角是周角的1360.( )(2)弧度制是十进制,而角度制是六十进制.( ) (3)1弧度的角大于1度的角.( )[解析] (1)错误,1弧度的角是周角的12π.(2)(3)都正确.[答案] (1)× (2)√ (3)√ 2.(1)7π5化为角度是________.(2)105°的弧度数是________.(1)252° (2)7π12 [(1)7π5=⎝ ⎛⎭⎪⎫7π5×180π°=252°;(2)105°=105×π180 rad =7π12rad.]3.半径为2,圆心角为π6的扇形的面积是________.π3 [由已知得S 扇=12×π6×22=π3.] [合 作 探 究·攻 重 难](1)②将-5π12rad 化为角度为________.(2)已知α=15°,β=π10,γ=1,θ=105°,φ=7π12,试比较α,β,γ,θ,φ的大小.【导学号:84352012】(1)①5π8rad ②-75° [(1)①因为1°=π180rad ,所以112°30′=π180×112.5 rad=5π8rad.②因为1 rad =⎝⎛⎭⎪⎫180π°,所以-5π12rad =-⎝ ⎛⎭⎪⎫5π12×180π°=-75°.] (2)法一(化为弧度):α=15°=15×π180=π12,θ=105°=105×π180=7π12.显然π12<π10<1<7π12.故α<β<γ<θ=φ.法二(化为角度):β=π10=π10×⎝ ⎛⎭⎪⎫180π°=18°,γ=1≈57.30°,φ=7π12×⎝ ⎛⎭⎪⎫180π°=105°.显然,15°<18°<57.30°<105°. 故α<β<γ<θ=φ.[规律方法] 角度制与弧度制互化的关键与方法关键:抓住互化公式π rad =180°是关键;方法:度数×π180=弧度数;弧度数×⎝ ⎛⎭⎪⎫180π°=度数; 角度化弧度时,应先将分、秒化成度,再化成弧度. [跟踪训练]1.(1)将-157°30′化成弧度为________. (2)将-11π5化为度是________.(1)-78π rad (2)-396° [(1)-157°30′=-157.5°=-3152×π180 rad =-78π rad.(2)-11π5=-11π5×⎝ ⎛⎭⎪⎫180π°=-396°.]2.在[0,4π]中,与72°角终边相同的角有________.(用弧度表示) 25π,125π [因为终边与72°角相同的角为θ=72°+k ·360°(k ∈Z ). 当k =0时,θ=72°=25π;当k =1时,θ=432°=125π,所以在[0,4π]中与72°终边相同的角有25π,125π.](1)A.⎩⎨⎧⎭⎬⎫π4B.⎩⎨⎧⎭⎬⎫π4,5π4 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=π4+2k π,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=π4+k π,k ∈Z (2)用弧度表示终边落在如图117所示阴影部分内(不包括边界)的角θ的集合.图117[思路探究] (1)判断角α的终边位置→用弧度制表示角α的集合(2)在[0,2π内找角表示终边落在第一象限阴影内的角→加k πk ∈Z 表示角θ的集合(1)D [(1)因为角α的终边经过点(a ,a )(a ≠0), 所以角α的终边落在直线y =x 上,所以角α的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=π4+k π,k ∈Z .] (2)因为30°=π6 rad,210°=7π6rad ,这两个角的终边所在的直线相同,因为终边在直线AB 上的角为α=k π+π6,k ∈Z ,而终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z. [规律方法] 1.弧度制下与角α终边相同的角的表示:在弧度制下,与角α的终边相同的角可以表示为{β|β=2k π+α,k ∈Z },即与角α终边相同的角可以表示成α加上2π的整数倍.2.根据已知图形写出区域角的集合的步骤: (1)仔细观察图形.(2)写出区域边界作为终边时角的表示.(3)用不等式表示区域范围内的角. 提醒:角度制与弧度制不能混用. [跟踪训练]3.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )C [A ,B 中弧度与角度混用,不正确.94π=2π+π4,所以94π与π4终边相同.-315°=-360°+45°,所以-315°也与45°终边相同.故选C.]4.用弧度写出终边落在如图118阴影部分(不包括边界)内的角的集合.图118[解] 30°=π6,150°=5π6.终边落在题干图中阴影区域内角的集合(不包括边界)是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪π6+k π<β<5π6+k π,k ∈Z .[1.用公式|α|=lr求圆心角时,应注意什么问题?提示:应注意结果是圆心角的绝对值,具体应用时既要注意其大小,又要注意其正负.2.在使用弧度制下的弧长公式及面积公式时,若已知的角是以“度”为单位,需注意什么问题? 提示:若已知的角是以“度”为单位,则必须先把它化成弧度后再计算,否则结果易出错.(1)如图119,以正方形ABCD 中的点A 为圆心,边长AB 为半径作扇形EAB ,若图中两块阴影部分的面积相等,则∠EAD 的弧度数大小为________.图119(2)已知扇形OAB 的周长是60 cm ,面积是20 cm 2,求扇形OAB 的圆心角的弧度数. [思路探究] (1)先根据两块阴影部分的面积相等列方程再解方程求∠EAD 的弧度数.(2)先根据题意,列关于弧长和半径的方程组,再解方程组求弧长和半径,最后用弧度数公式求圆心角的弧度数.(1)2-π2 [(1)设AB =1,∠EAD =α,∵S 扇形ADE =S 阴影BCD ,由题意可得12×12×α=12-π×124,∴解得α=2-π2.](2)设扇形的弧长为l ,半径为r , 则⎩⎪⎨⎪⎧2r +l =60,12lr =20,∴⎩⎪⎨⎪⎧r =15+205,l =4015+205或⎩⎪⎨⎪⎧r =15-205,l =4015-205,∴扇形的圆心角的弧度数为lr=43-3205或43+3205. 母题探究:1.(变条件)将本例(2)中的条件“60”改为“10”,“20”改为“4”,其他条件不变,求扇形圆心角的弧度数.[解] 设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,依题意有⎩⎪⎨⎪⎧l +2r =10,①12lr =4.②由①得l =10-2r ,代入②得r 2-5r +4=0, 解得r 1=1,r 2=4. 当r =1时,l =8(cm),此时,θ=8 rad >2π rad 舍去.当r =4时,l =2(cm),此时,θ=24=12rad.2.(变结论)将本例(2)中的条件“面积是20 cm 2”删掉,求扇形OAB 的最大面积及此时弧长AB . [解] 设弧长为l ,半径为r ,由已知l +2r =60, 所以l =60-2r ,|α|=l r =60-2rr,从而S =12|α|r 2=12·60-2r r ·r 2=-r 2+30r =-(r -15)2+225,当r =15时,S 取最大值为225,这时圆心角α=l r =60-2rr=2,可得弧长AB =αr =2×15=30.[规律方法] 弧度制下解决扇形相关问题的步骤:(1)明确弧长公式和扇形的面积公式:l =|α|r ,S =12αr 2和S =12lr .(这里α必须是弧度制下的角)(2)分析题目的已知量和待求量,灵活选择公式. (3)根据条件列方程(组)或建立目标函数求解. 提醒:看清角的度量制,恰当选用公式.[当 堂 达 标·固 双 基]1.下列转化结果错误的是( )A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-76πD.π12化成度是15° C [对于A,60°=60×π180=π3;对于B ,-103π=-103×180°=-600°;对于C ,-150°=-150×π180=-56π;对于D ,π12=112×180°=15°.故选C.]2.29π6是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B [29π6=4π+5π6.∵56π是第二象限角,∴29π6是第二象限角.]3.圆的半径为r ,该圆上长为32r 的弧所对的圆心角是( )A.23 rad B.32 rad C.23π D.32π B [由弧度数公式α=l r ,得α=32r r =32,因此圆弧所对的圆心角是32 rad.]4.若把-570°写成2k π+α(k ∈Z,0≤α<2π)的形式,则α=________. 5π6 [-570°=-19π6=-4π+5π6.] 5.求半径为π cm ,圆心角为120°的扇形的弧长及面积. [解] 因为r =π,α=120×π180=2π3,所以l =αr =2π23 cm ,S =12lr =π33cm 2.第1课时任意角的三角函数的定义学习目标:1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.(重点、难点)2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.(易错点)3.掌握公式——并会应用.[自主预习·探新知]1.单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:图121(2)结论①y叫做α的正弦,记作sin_α,即sin α=y;②x叫做α的余弦,记作cos_α,即cos α=x;③yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.正弦、余弦、正切函数在弧度制下的定义域4(1)图示:图122(2)口诀:“一全正,二正弦,三正切,四余弦”. 5.诱导公式一[基础自测]1.思考辨析(1)sin α表示sin 与α的乘积.( )(2)设角α终边上的点P (x ,y ),r =|OP |≠0,则sin α=y r,且y 越大,sin α的值越大.( ) (3)终边相同的角的同一三角函数值相等.( ) (4)终边落在y 轴上的角的正切函数值为0.( )[解析] (1)错误.sin α表示角α的正弦值,是一个“整体”.(2)错误.由任意角的正弦函数的定义知,sin α=y r.但y 变化时,sin α是定值. (3)正确.(4)错误.终边落在y 轴上的角的正切函数值不存在. [答案] (1)× (2)× (3)√ (4)×2.已知sin α>0,cos α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [由正弦、余弦函数值在各象限内的符号知,角α是第二象限角.] 3.sin 253π=________.32 [sin 253π=sin ⎝ ⎛⎭⎪⎫8π+π3=sin π3=32.] 4.角α终边与单位圆相交于点M ⎝⎛⎭⎪⎫32,12,则cos α+sin α的值为________.3+12 [cos α=x =32,sin α=y =12, 故cos α+sin α=3+12.] [合 作 探 究·攻 重 难][探究问题]1.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α,cos α,tan α为何值?提示:sin α=y r ,cos α=x r ,tan α=y x.2.sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变?提示:sin α,cos α,tan α的值只与α的终边位置有关,不随P 点在终边上的位置的改变而改变.(1)已知角θ的终边上有一点P (x,3)(x ≠0),且cos θ=1010x ,则sin θ+tan θ的值为________.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值. [思路探究] (1)依据余弦函数定义列方程求x →依据正弦、正切函数定义求sin θ+tan θ(2)判断角α的终边位置→分类讨论求sin α,cos α,tan α (1)310+3010或310-3010 [(1)因为r =x 2+9,cos θ=x r ,所以1010x =xx 2+9. 又x ≠0,所以x =±1,所以r =10. 又y =3>0,所以θ是第一或第二象限角.当θ为第一象限角时,sin θ=31010,tan θ=3,则sin θ+tan θ=310+3010.当θ为第二象限角时,sin θ=31010,tan θ=-3,则sin θ+tan θ=310-3010.](2)直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r=-2+32=2,所以sin α=32,cos α=-12,tan α=-3; 在第四象限取直线上的点(1,-3), 则r =12+-32=2,所以sin α=-32,cos α=12,tan α=- 3. 母题探究:1.将本例(2)的条件“3x +y =0”改为“y =2x ”其他条件不变,结果又如何? [解] 当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2.当角的终边在第三象限时,在角的终边上取点Q (-1,-2), 由r =|OQ |=-2+-2=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.2.将本例(2)的条件“落在直线3x +y =0上”改为“过点P (-3a,4a ) (a ≠0)”,求2sin α+cos α.[解] 因为r =-3a2+a2=5|a |,①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,所以2sin α+cos α=-85+35=-1.[规律方法] 由角α终边上任意一点的坐标求其三角函数值的步骤: (1)已知角α的终边在直线上时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值. ②在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr ,cos α=x r.已知α的终边求α的三角函数时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.(1)【导学号:84352022】A .第一象限B .第二象限C .第三象限D .第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.[思路探究] (1)先判断tan α,cos α的符号,再判断角α终边在第几象限. (2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最后判断乘积的符号.(1)C [(1)因为点P 在第四象限,所以有⎩⎪⎨⎪⎧tan α>0,cos α<0,由此可判断角α终边在第三象限.](2)①∵145°是第二象限角, ∴sin 145°>0,∵-210°=-360°+150°, ∴-210°是第二象限角, ∴cos(-210°)<0, ∴sin 145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0.[规律方法] 判断三角函数值在各象限符号的攻略:基础:准确确定三角函数值中各角所在象限; 关键:准确记忆三角函数在各象限的符号;注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误. 提醒:注意巧用口诀记忆三角函数值在各象限符号. [跟踪训练]1.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是________. -2<a ≤3 [因为cos α≤0,sin α>0,所以角α的终边在第二象限或y 轴非负半轴上,因为α终边过(3a -9,a +2),所以⎩⎪⎨⎪⎧3a -9≤0,a +2>0,所以-2<a ≤3.]2.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.四 [角α是第三象限角,则角α2是第二、四象限角,∵⎪⎪⎪⎪⎪⎪sin α2=-sin α2,∴角α2是第四象限角.]求值:(1)tan 405°-sin 450°+cos 750°; (2)sin 7π3cos ⎝ ⎛⎭⎪⎫-23π6+tan ⎝ ⎛⎭⎪⎫-15π4cos 13π3.[解] (1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30° =1-1+32=32. (2)原式=sin ⎝ ⎛⎭⎪⎫2π+π3cos ⎝ ⎛⎭⎪⎫-4π+π6+tan ⎝ ⎛⎭⎪⎫-4π+π4·cos ⎝ ⎛⎭⎪⎫4π+π3=sin π3cos π6+tan π4cos π3=32×32+1×12=54.[规律方法] 利用诱导公式一进行化简求值的步骤(1)定形:将已知的任意角写成2k π+α的形式,其中α∈[0,2π),k ∈Z . (2)转化:根据诱导公式,转化为求角α的某个三角函数值. (3)求值:若角为特殊角,可直接求出该角的三角函数值. [跟踪训练] 3.化简下列各式:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 125π·tan 4π. 【导学号:84352023】[解] (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°) =a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2.(2)sin ⎝ ⎛⎭⎪⎫-116π+cos 125π·tan 4π=sin ⎝⎛⎭⎪⎫-2π+π6+cos 25π·ta n 0=sin π6+0=12.[当 堂 达 标·固 双 基]1.sin(-315°)的值是( ) A .-22B .-12C .22D .12C [sin(-315°)=sin(-360°+45°)=sin 45°=22.] 2.若sin θ·cos θ>0,则θ在( ) A .第一或第四象限 B .第一或第三象限 C .第一或第二象限D .第二或第四象限B [因为sin θ·cos θ>0,所以sin θ<0,cos θ<0或sin θ>0,cos θ>0所以θ在第三象限或第一象限.]3.已知角α终边过点P (1,-1),则tan α的值为( ) A .1 B .-1 C .22D .-22B [由三角函数定义知tan α=-11=-1.]4.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于x 轴对称,若sin α=15,则sin β=________. -15 [设角α的终边与单位圆相交于点P (x ,y ), 则角β的终边与单位圆相交于点Q (x ,-y ), 由题意知y =sin α=15,所以sin β=-y =-15.]5.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos 25π3+tan ⎝⎛⎭⎪⎫-15π4. 【导学号:84352024】[解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos 25π3+tan ⎝⎛⎭⎪⎫-15π4 =cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4 =cos π3+tan π4=12+1=32.第2课时 三角函数线及其应用学习目标:1.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.(重点)2.能利用三角函数线解决一些简单的三角函数问题.(难点)[自 主 预 习·探 新 知]1.有向线段(1)定义:带有方向的线段.(2)表示:用大写字母表示,如有向线段OM ,MP . 2.三角函数线(1)作图:①α的终边与单位圆交于P ,过P 作PM 垂直于x 轴,垂足为M . ②过A (1,0)作x 轴的垂线,交α的终边或其反向延长线于点T . (2)图示:图123(3)结论:有向线段MP 、OM 、AT ,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.[基础自测]1.思考辨析(1)角α的正弦线的长度等于sin α.( )(2)当角α的终边在y 轴上时,角α的正切线不存在.( ) (3)余弦线和正切线的始点都是原点.( )[解析] (1)错误.角α的正弦线的长度等于|sin α|. (2)正确.(3)错误.正切线的始点是(1,0). [答案] (1)× (2)√ (3)× 2.角π7和角8π7有相同的( )A .正弦线B .余弦线C .正切线D .不能确定C [角π7和角8π7的终边互为反向延长线,所以正切线相同.]3.如图124,在单位圆中角α的正弦线、正切线完全正确的是( )图124A .正弦线MP ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线MP ,正切线ATC [α为第三象限角,故正弦线为MP ,正切线为AT ,C 正确.][合 作 探 究·攻 重 难](1)-π4;(2)17π6;(3)10π3.[解] 如图.其中MP 为正弦线,OM 为余弦线,AT 为正切线. [规律方法] 三角函数线的画法作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线.作正切线时,应从A,点引x 轴的垂线,交α的终边α为第一或第四象限角或α终边的反向延长线α为第二或第三象限角于点T ,即可得到正切线AT .[跟踪训练]1.作出-5π8的正弦线、余弦线和正切线.[解] 如图:sin ⎝ ⎛⎭⎪⎫-5π8=MP , cos ⎝ ⎛⎭⎪⎫-5π8=OM , tan ⎝ ⎛⎭⎪⎫-5π8=AT .[1.利用三角函数线如何解答形如sin α≥a ,sin α≤a (|a |≤1)的不等式? 提示:对形如sin α≥a ,sin α≤a (|a |≤1) 的不等式:画出如图①所示的单位圆;在y 轴上截取OM =a ,过点(0,a )作y 轴的垂线交单位圆于两点P 和P ′,并作射线OP 和OP ′;写出终边在OP 和OP ′上的角的集合;图中阴影部分即为满足不等式sin α≤a 的角α的范围,其余部分即为满足不等式sin α≥a 的角α的范围.图①2.利用三角函数线如何解答形如cos α≥a ,cos α≤a (|a |≤1)的不等式? 提示:对形如cos α≥a ,cos α≤a (|a |≤1)的不等式:画出如图②所示的单位圆;在x 轴上截取OM =a ,过点(a,0)作x 轴的垂线交单位圆于两点P 和P ′,作射线OP 和OP ′;写出终边在OP 和OP ′上的角的集合;图中阴影部分即为满足不等式cos α≤a 的角α的范围,其余部分即为满足不等式cos α≥a 的角α的范围.图②利用三角函数线确定满足下列条件的角α的取值范围. (1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.。
2017-2018学年北师大版高中数学必修4全册学案
2017-2018学年高中数学北师大版必修4全册同步学案目录第一章 1 周期现象-§2 角的概念的推广第一章 3 弧度制第一章 4.1 单位圆与任意角的正弦函数、余弦函数的定义-4.2 单位圆与周期性第一章 4.1 单位圆与正弦函数、余弦函数的基本性质第一章 4.4 单位圆的对称性与诱导公式(一)第一章 4.4 单位圆的对称性与诱导公式(二)第一章 5.1 正弦函数的图像第一章 5.2 正弦函数的性质第一章 6 余弦函数的图像与性质第一章7 正切函数第一章8 函数y=Asin(ωx+φ)的图像与性质(一)第一章8 函数y=Asin(ωx+φ)的图像与性质(二)第一章9 三角函数的简单应用第一章章末复习课第二章 1 从位移、速度、力到向量第二章 2.1 向量的加法第二章 2.2 向量的减法第二章 3.1 数乘向量第二章 3.2 平面向量基本定理第二章 4.1 平面向量的坐标表示-4.2 平面向量线性运算的坐标表示第二章 4.3 向量平行的坐标表示第二章 5 从力做的功到向量的数量积(一)第二章 5 从力做的功到向量的数量积(二)第二章 6 平面向量数量积的坐标表示第二章向量应用举例第二章章末复习课第三章 1 同角三角函数的基本关系第三章 2.1 两角差的余弦函数第三章 2.2 两角和与差的正弦、余弦函数第三章 2.3 两角和与差的正切函数第三章 3 二倍角的三角函数(一)第三章 3 二倍角的三角函数(二)第三章疑难规律方法第三章章末复习课学习目标 1.了解现实生活中的周期现象.2.了解任意角的概念,理解象限角的概念.3.掌握终边相同的角的含义及其表示.知识点一周期现象思考“钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.”这样的现象,具有怎样的属性?梳理(1)以相同间隔重复出现的现象叫作周期现象.(2)要判断一种现象是否为周期现象,关键是看每隔一段时间这种现象是否会________出现,若出现,则为周期现象;否则,不是周期现象.知识点二角的相关概念思考1将射线OA绕着点O旋转到OB位置,有几种旋转方向?思考2如果一个角的始边与终边重合,那么这个角一定是零角吗?梳理(1)角的概念:角可以看成平面内____________绕着________从一个位置________到另一个位置所形成的图形.(2)角的分类:按旋转方向可将角分为如下三类:知识点三象限角思考把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?梳理在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:________在第几象限就是第几象限角;轴线角:________落在坐标轴上的角.知识点四终边相同的角思考1假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?思考2如何表示与60°终边相同的角?梳理终边相同角的表示一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与________的整数倍的和.类型一周期现象的应用例1水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?反思与感悟(1)应用周期现象中“周而复始”的规律性可以达到“化繁为简”、“化无限为有限”的目的.(2)只要确定好周期现象中重复出现的“基本单位”就可以把问题转化到一个周期内来解决.跟踪训练1利用例1中的水车盛800升的水,至少需要多少时间?类型二 象限角的判定例2 在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.反思与感悟 判断象限角的步骤 (1)当0°≤α<360°时,直接写出结果.(2)当α<0°或α≥360°时,将α化为k ·360°+β(k ∈Z ,0°≤β<360°),转化为判断角β所属的象限.跟踪训练2 (1)判断下列角所在的象限,并指出其在0°~360°范围内终边相同的角. ①549°;②-60°;③-503°36′.(2)若α是第二象限角,试确定2α、α2是第几象限角.类型三 终边相同的角命题角度1 求与已知角终边相同的角例3 在与角10 030°终边相同的角中,求满足下列条件的角. (1)最大的负角;(2)最小的正角;(3)[360°,720°)的角.反思与感悟 求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.跟踪训练3 写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.命题角度2 求终边在给定直线上的角的集合 例4 写出终边在直线y =-3x 上的角的集合.反思与感悟求终边在给定直线上的角的集合,常用分类讨论的思想,即分x≥0和x<0两种情况讨论,最后再进行合并.跟踪训练4写出终边在直线y=33x上的角的集合.1.下列是周期现象的为()①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次;③某超市每天的营业额;④某地每年6月份的平均降雨量.A.①②④B.②④C.①②D.①②③2.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}3.2 017°是第________象限角.4.一个质点,在平衡位置O点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O点开始计时,质点向左运动第一次到达M 点用了0.3 s,又经过0.2 s第二次通过M点,则质点第三次通过M点,还要经过的时间是________s.5.已知,如图所示.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.1.判断是否为周期现象,关键是看在相同的间隔内,图像是否重复出现.2.由于角的概念推广了,那么终边相同的角有无数个,这无数个终边相同的角构成一个集合.与α角终边相同的角可表示为{β|β=α+k·360°,k∈Z},要领会好k∈Z的含义.3.熟记终边在坐标轴上的各角的度数,才能正确快速地用不等式表示各象限角,注意不等式表示的角的终边随整数k的改变而改变时,要对k分类讨论.答案精析问题导学知识点一思考周而复始,重复出现.梳理(2)重复知识点二思考1有顺时针和逆时针两种旋转方向.思考2不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.梳理(1)一条射线端点旋转(2)逆时针方向旋转顺时针方向旋转没有作任何旋转知识点三思考终边可能落在坐标轴上或四个象限内.梳理终边终边知识点四思考1它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相隔了2个周角的和及1个周角.思考260°+k·360°(k∈Z).梳理周角题型探究例1解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1 920(升).跟踪训练1解设x分钟后盛水y升,由例1知每转一圈,水车最多盛水16×10=160(升),所以y=x5·160=32x,为使水车盛800升的水,则有32x≥800,所以x≥25,即水车盛800升的水至少需要25分钟.例2解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.跟踪训练2 解 (1)①∵549°=189°+360°,∴549°角为第三象限的角,与189°角终边相同. ②∵-60°=300°-360°,∴-60°角为第四象限的角,与300°角终边相同. ③∵-503°36′=216°24′-2×360°,∴-503°36′角为第三象限的角,与216°24′角终边相同. (2)由题意得90°+k ·360°<α<180°+k ·360°(k ∈Z ),① 所以180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).故2α是第三或第四象限角或终边落在y 轴非正半轴上的角. 由①得45°+k ·180°<α2<90°+k ·180°(k ∈Z ),当k 为偶数时,令k =2n (n ∈Z ),得45°+n ·360°<α2<90°+n ·360°(n ∈Z ),故α2是第一象限角.当k 为奇数时,令k =2n +1(n ∈Z ),得45°+180°+n ·360°<α2<90°+180°+n ·360°(n ∈Z ),即225°+n ·360°<α2<270°+n ·360°(n ∈Z ),故α2为第三象限角. 综上可知,α2为第一或第三象限角.例3 解 与10 030°终边相同的角的一般形式为β=k ·360°+10 030°(k ∈Z ).(1)由-360°<k ·360°+10 030°<0°,得-10 390°<k ·360°<-10 030°,解得k =-28,故所求的最大负角为β=-50°. (2)由0°<k ·360°+10 030°<360°, 得-10 030°<k ·360°<-9 670°, 解得k =-27,故所求的最小正角为β=310°. (3)由360°≤k ·360°+10 030°<720°, 得-9 670°≤k ·360°<-9 310°, 解得k =-26,故所求的角为β=670°.跟踪训练3 解 由终边相同的角的表示知,与角α=-1 910°终边相同的角的集合为{β|β=k ·360°-1 910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴31136≤k<61136(k∈Z),故取k=4,5,6.当k=4时,β=4×360°-1 910°=-470°;当k=5时,β=5×360°-1 910°=-110°;当k=6时,β=6×360°-1 910°=250°.例4解终边在y=-3x(x<0)上的角的集合是S1={α|α=120°+k·360°,k∈Z};终边在y=-3x(x≥0)上的角的集合是S2={α|α=300°+k·360°,k∈Z}.因此,终边在直线y=-3x上的角的集合是S=S1∪S2={α|α=120°+k·360°,k∈Z}∪{α|α=300°+k·360°,k∈Z},即S={α|α=120°+2k·180°,k∈Z}∪{α|α=120°+(2k+1)·180°,k∈Z}={α|α=120°+n·180°,n∈Z}.故终边在直线y=-3x上的角的集合是S={α|α=120°+n·180°,n∈Z}.跟踪训练4解终边在y=33x(x≥0)上的角的集合是S1={α|α=30°+k·360°,k∈Z};终边在y=33x(x<0)上的角的集合是S2={α|α=210°+k·360°,k∈Z}.因此,终边在直线y=33x上的角的集合是S=S1∪S2={α|α=30°+k·360°,k∈Z}∪{α|α=210°+k·360°,k∈Z},即S={α|α=30°+2k·180°,k∈Z}∪{α|α=30°+(2k+1)·180°,k∈Z}={α|α=30°+n·180°,n∈Z}.故终边在直线y=33x上的角的集合是S={α|α=30°+n·180°,n∈Z}.当堂训练1.C 2.C 3.三 4.1.45.解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一角度制与弧度制思考1在初中学过的角度制中,1度的角是如何规定的?思考2在弧度制中,1弧度的角是如何规定的,如何表示?思考3“1弧度的角”的大小和所在圆的半径大小有关系吗?梳理(1)角度制和弧度制(2)角的弧度数的计算设r是圆的半径,l是圆心角α所对的弧长,则角α的弧度数的绝对值满足|α|=lr.知识点二角度制与弧度制的换算思考角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢?梳理(1)角度与弧度的互化(2)一些特殊角的度数与弧度数的对应关系知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示? 梳理类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以180°π即可. 跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.类型二 用弧度制表示终边相同的角例2 已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A .π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A .2 B.2sin 1 C .2sin 1 D.4sin 1反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关 2.时针经过一小时,转过了( )A.π6 rad B .-π6 radC.π12rad D .-π12rad3.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或45.已知⊙O 的一条弧AE 的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是________.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 易知:度数×π180 rad =弧度数,弧度数×180°π=度数.3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.答案精析问题导学 知识点一思考1 周角的1360等于1度.思考2 在单位圆中,长度为1的弧所对的圆心角称为1弧度角.思考3 在半径为1的圆中,1弧度的角为长度为1的弧所对的圆心角,又当半径不同时,同样的圆心角所对的弧长与半径之比是常数,故1弧度角的大小与所在圆的半径大小无关. 梳理 (1)度 弧度 弧度 知识点二思考 利用1°=π180 rad 和1 rad =180°π进行弧度与角度的换算.梳理 (1)2π 360° π 180° 0.017 45 57.30° (2)45° 90° 135° 270° 0 π6 π3 2π35π6 知识点三思考 设扇形的半径为r ,弧长为l ,α为其圆心角,则S =12lr ,l =αr .题型探究例1 解 (1)20°=20π180=π9. (2)-15°=-15π180=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.跟踪训练1 解 (1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 例2 解 (1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-29π6;当k =-2时,γ=-17π6;当k =-1时,γ=-5π6.跟踪训练2 解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180π)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°. ∴在[0°,720°]内与2π5角终边相同的角为72°,432°.例3 (1)A (2)D跟踪训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R , 根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 当堂训练1.D 2.B 3.D 4.C 5.-34.1单位圆与任意角的正弦函数、余弦函数的定义4.2单位圆与周期性学习目标 1.理解任意角的正弦函数、余弦函数的定义及其应用.2.掌握同角的正弦、余弦函数值间的关系.3.理解周期函数的定义.知识点一任意角的正弦函数和余弦函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,PM⊥x 轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦分别等于什么?思考2对确定的锐角α,sin α,cos α的值是否随P点在终边上的位置的改变而改变?思考3若取|OP|=1时,sin α,cos α的值怎样表示?梳理(1)对于任意角α,使角α的顶点与原点重合,始边与x轴的非负半轴重合,终边与单位圆交于唯一的点P(u,v),那么点P的____________定义为角α的正弦函数,记作________;点P的____________定义为角α的余弦函数,记作________.(2)对于给定的角α,点P的纵坐标v、横坐标u都是唯一确定的,所以正弦函数、余弦函数都是以角为自变量,以单位圆上点的坐标为函数值的函数.知识点二正弦、余弦函数的定义域思考对于任意角α,sin α,cos α都有意义吗?梳理正弦函数、余弦函数的定义域知识点三正弦、余弦函数值在各象限的符号思考根据三角函数的定义,你能判断正弦、余弦函数的值在各象限的符号吗?梳理正弦、余弦函数在各象限的符号知识点四周期函数思考由sin(x+2kπ)=sin x(k∈Z)可知函数值随着角的变化呈周期性变化,你能说一下函数的变化周期吗?梳理一般地,对于函数f(x),如果存在____________,对定义域内的____________x值,都有____________,我们就把f(x)称为周期函数,____称为这个函数的周期.特别地,正弦函数、余弦函数是周期函数,称2kπ(k∈Z,k≠0)为正弦函数、余弦函数的周期,其中2π是正弦函数、余弦函数正周期中________的一个,称为____________,简称为周期.类型一 正弦函数、余弦函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ的值.反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应的三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a,4a )(a ≠0),求2sin α+cos α的值.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b 2,cos α=aa 2+b 2. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α的值.类型二 正弦、余弦函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( )A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4.反思与感悟准确确定正弦函数、余弦函数值中角所在象限是基础,准确记忆正弦函数、余弦函数值在各象限的符号是解决这类问题的关键.跟踪训练3若三角形的两内角A,B,满足sin A cos B<0,则此三角形必为()A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都有可能类型三周期性例4(1)已知函数f(x)在其定义域上都满足f(x+2)=-f(x),求证:函数f(x)是以4为周期的周期函数;(2)已知函数f(x)在其定义域上都满足f(x+2)=-1f(x),求证:函数f(x)是以4为周期的周期函数.反思与感悟(1)证明函数是周期函数,只需根据定义:存在非零常数T,对任意定义域内实数x,都有f(x+T)=f(x).(2)一般地,如果f(x+a)=-f(x),那么f(x)的周期为2a(a≠0);如果f(x+a)=1f(x),那么f(x)的周期也为2a(a≠0).跟踪训练4若函数y=f(x)(x∈R)满足f(x)=f(x-a)+f(x+a)(a<0),f(2a)=1,求f(14a)的值.1.已知角α的终边经过点(-4,3),则cos α等于()A.45B.35 C .-35D .-452.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-23.设f (x )是以1为一个周期的函数,且当x ∈(-1,0)时,f (x )=2x +1,则f (72)的值为( )A .2B .0C .-1D .-34.点P (sin 2 016°,cos 2 016°)位于第________象限. 5.已知角α的终边在直线y =2x 上,求sin α+cos α的值.1.三角函数的定义是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点在终边上的位置无关这一关键点. 2.三角函数值的符号主要涉及开方、去绝对值等计算问题,同时也要注意终边在坐标轴上的角的三角函数值情况,因角的终边经过的点决定了三角函数值的符号,所以当点的位置不确定时注意进行讨论,体现了分类讨论的思想.3.正弦、余弦函数的周期性反映了终边相同的角的三角函数值相等,作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.答案精析问题导学 知识点一思考1 sin α=y r ,cos α=xr .思考2 不会.思考3 sin α=y ,cos α=x .梳理 (1)纵坐标v v =sin α 横坐标u u =cos α 知识点二思考 由三角函数的定义可知,对于任意角α,sin α,cos α都有意义. 知识点三思考 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (u ,v ),则sin α=v ,cos α=u .当α为第一象限角时,v >0,u >0,故sin α>0,cos α>0,同理可得α在其他象限时三角函数值的符号. 知识点四思考 2π,4π,6π,-2π,…等都是函数的周期.梳理 非零实数T 任意一个 f (x +T )=f (x ) T 最小 最小正周期 题型探究例1 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=xr=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010. 跟踪训练1 解 r =(-3a )2+(4a )2=5|a |. ①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.例2 解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则 x =k ,y =-3k , r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r =-3k 10k =-31010,1cos α=r x =10k k =10, ∴10sin α+3cos α=10×⎝⎛⎭⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,1cos α=r x =-10k k =-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.跟踪训练2 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点,则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12.例3 (1)D(2)解 ①∵145°是第二象限角, ∴sin 145°>0,∵-210°=-360°+150°, ∴-210°是第二象限角, ∴cos (-210°)<0, ∴sin 145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0, ∴sin 3·cos 4<0. 跟踪训练3 B例4 证明 (1)∵f (x +4)=f [(x +2)+2]=-f (x +2) =-[-f (x )]=f (x ),∴由周期函数定义知,函数f (x )是以4为周期的周期函数. (2)∵f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ),∴由周期函数定义知,函数f (x )是以4为周期的周期函数. 跟踪训练4 解 由f (x )=f (x -a )+f (x +a ),① 得f (x +a )=f (x )+f (x +2a ).② ①+②,得f (x -a )+f (x +2a )=0, 即f (x -a )=-f (x +2a ), ∴f (x )=-f (x +3a ), 即f (x +3a )=-f (x ),∴f (x +6a )=-f (x +3a )=f (x ). ∴T =6a 为函数y =f (x )的一个周期, ∴f (14a )=f (6a ×2+2a )=f (2a )=1. 当堂训练1.D 2.C 3.B 4.三5.解 在直线y =2x 上任取一点P (x,2x )(x ≠0), 则r =x 2+(2x )2=5|x |. ①若x >0,则r =5x , 从而sin α=2x 5x=255,cos α=x 5x =55, ∴cos α+sin α=355.②若x <0,则r =-5x , 从而sin α=2x-5x=-255,cos α=x -5x =-55,∴cos α+sin α=-355.4.3 单位圆与正弦函数、余弦函数的基本性质学习目标 1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题.知识点 正弦、余弦函数的性质思考1 正弦函数、余弦函数的最大值、最小值分别是多少?思考2 能否认为正弦函数在单位圆的右半圆是单调增加的?梳理正弦、余弦函数的性质类型一 正弦余数、余弦函数的定义域 例1 求下列函数的定义域. (1)y =2sin x -3; (2)y =lg(sin x -22)+1-2cos x .反思与感悟 (1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.跟踪训练1 函数y =2sin x +1的定义域为_________________________________________. 类型二 正、余弦函数的值域与最值例2 (1)求函数y =cos x (-π3≤x ≤5π6)的值域.(2)已知函数y =a sin x +1的最大值为3,求它的最小值.反思与感悟 (1)求正、余弦函数的值域或最值时应注意定义域,解题时可借助图像结合正、余弦函数的单调性进行分析.(2)对于含有参数的值域或最值,应注意对参数讨论.跟踪训练2 函数y =2+cos x ,x ∈(-π3,2π3]的值域为________.类型三 正、余弦函数的单调性例3 函数y =cos x 的一个递增区间为( ) A .(-π2,π2)B .(0,π)C .(π2,3π2)D .(π,2π)反思与感悟 利用单位圆有助于理解记忆正弦、余弦函数的单调区间,特别注意不连贯的单调区间不能并.跟踪训练3 求下列函数的单调区间.(1)y =sin x ,x ∈[-π,π];(2)y =cos x ,x ∈[-π,π].1.函数y =sin x ,x ∈[-π4,π4]的最大值和最小值分别是( )A .1,-1B .1,22 C.22,-22D .1,-222.不等式2sin x -1≥0的解集为____________________________________________. 3.函数y =2cos x -1的定义域为_____________________________________________. 4.求y =-2sin x ,x ∈[-π6,π]的值域.利用单位圆来研究正弦、余弦函数的基本性质,能够加深对正弦、余弦函数性质的理解与认识,同时也有助于提升学生利用数形结合思想解决问题的意识.答案精析问题导学 知识点思考1 设任意角x 的终边与单位圆交于点P (cos x ,sin x ),当自变量x 变化时,点P 的横坐标是cos x ,|cos x |≤1,纵坐标是sin x ,|sin x |≤1,所以正弦函数、余弦函数的最大值为1,最小值为-1.思考2 不能,右半圆可以表示无数个区间,只能说正弦函数在每一个区间[2k π-π2,2k π+π2](k ∈Z )上是增加的. 梳理 2π [-π2+2k π,π2+2k π]题型探究例1 解 (1)自变量x 应满足2sin x -3≥0,即sin x ≥32. 图中阴影部分就是满足条件的角x 的范围,即{x |2k π+π3≤x ≤2k π+2π3,k ∈Z }.(2)由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示, ∴{x |2k π+π3≤x <2k π+3π4,k ∈Z }.跟踪训练1 [-π6+2k π,7π6+2k π],k ∈Z例2 解 (1)∵y =cos x 在区间[-π3,0]上是增加的,在区间[0,5π6]上是减少的,∴当x =0时,y max =1,当x =5π6时,y min =cos 5π6=-32,∴y =cos x (-π3≤x ≤5π6)的值域是[-32,1].(2)当a >0时,y max =a ×1+1=3,得a =2, ∴当sin x =-1时,y min =2×(-1)+1=-1; 当a <0时,y max =a ×(-1)+1=3,得a =-2, ∴当sin x =1时,y min =-2×1+1=-1. ∴它的最小值为-1. 跟踪训练2 [32,3]例3 D跟踪训练3 解 (1)y =sin x 在x ∈[-π,π]上的递增区间为[-π2,π2],递减区间为[-π,-π2],[π2,π]. (2)y =cos x 在x ∈[-π,π]上的递增区间为[-π,0],递减区间为[0,π]. 当堂训练1.C 2.{x |π4+2k π≤x ≤3π4+2k π,k ∈Z }3.⎣⎡⎦⎤-π3+2k π,π3+2k π ,k ∈Z 4.解 由x ∈[-π6,π],得sin x ∈[-12,1],∴y =[-2,1],∴y =-2sin x ,x ∈[-π6,π]的值域为[-2,1].4.4 单位圆的对称性与诱导公式(一)学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关的诱导公式解决一些三角函数的求值、化简和证明问题.知识点2kπ±α,-α,π±α的诱导公式思考1设α为任意角,则2kπ+α,π+α,-α,2kπ-α,π-α的终边与α的终边有怎样的对应关系?思考22kπ+α,π+α,-α,2kπ-α,π-α终边和单位圆的交点与α的终边和单位圆的交点有怎样的对称关系?试据此分析角α与-α的正弦函数、余弦函数的关系.梳理对任意角α,有下列关系式成立:sin(2kπ+α)=sin α,cos(2kπ+α)=cos α(1.8)sin(-α)=-sin α,cos(-α)=cos α(1.9)sin(2π-α)=-sin α,cos(2π-α)=cos α(1.10)sin(π-α)=sin α,cos(π-α)=-cos α(1.11)sin(π+α)=-sin α,cos(π+α)=-cos α(1.12)公式1.8~1.12叫作正弦函数、余弦函数的诱导公式.这五组诱导公式的记忆口诀是“____________________________”.其含义是诱导公式两边的函数名称________,符号则是将α看成________时原角所在象限的正弦函数、余弦函数值的符号.类型一给角求值问题例1求下列各三角函数式的值.(1)cos 210°;(2)sin 11π4;(3)sin(-43π6);(4)cos(-1 920°).反思与感悟利用诱导公式求任意角三角函数值的步骤(1)“负化正”:用公式一或三来转化.(2)“大化小”:用公式一将角化为0°到360°间的角.(3)“角化锐”:用公式二或四将大于90°的角转化为锐角.(4)“锐求值”:得到锐角的三角函数后求值.跟踪训练1求下列各三角函数式的值.(1)sin 1 320°; (2)cos ⎝⎛⎭⎫-31π6.类型二 给值(式)求值问题例2 (1)已知sin(π+α)=-0.3,则sin(2π-α)=________. (2)已知cos(π6-α)=22,则cos(5π6+α)=________.反思与感悟 解决此类问题的关键是抓住已知角与所求角之间的关系,从而灵活选择诱导公式求解,一般可从两角的和、差的关系入手分析,解题时注意整体思想的运用. 跟踪训练2 已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ=________. 类型三 利用诱导公式化简 例3 化简下列各式. (1)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.引申探究若本例(1)改为:sin (n π-α)cos (n π-α)cos[α-(n +1)π]·sin[(n +1)π-α](n ∈Z ),请化简.反思与感悟 利用诱导公式进行化简,主要是进行角的转化,最终达到角的统一,能求值的要求出值.跟踪训练3 化简:cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α).1.sin 585°的值为( ) A .-22 B.22 C .-32 D.322.cos(-16π3)+sin(-16π3)的值为( )。
最新人教 B 版高中数学必修4第一章导学案
课题:角的概念的推广12第一章第 1 节第 1 3课时【学习目标】1.了解角的概念及推广。
2.掌握终边相同的角及象限角的概念。
45【学习重点】角的概念的推广。
6【学习难点】1.角的旋转合成。
2.终边相同的角的集合。
7【学习方法】阅读,讨论,练习8【学习过程】9一、预习成果展示(学生以思维导图形式展示预习成果)1011121314二、小组探究解疑(小组合作学习新知,讨论解疑)15161.角的概念的推广:172.角的加减法运算:183.终边相同的角的集合:194.象限角(轴上角):20三、反馈矫正点拨(将难点问题集中呈现,教师点拨)211.(1)分别写出终边在x正半轴和负半轴,y正半轴和负半轴,x轴和y轴上的角的集合。
22232425(2)分别写出第一象限、第二象限、第三象限和第四象限的角的集合。
262728292.在直角坐标系中,判断下列语句的真假: 30(1)第一象限的角一定是锐角。
31(2)终边相同的角一定相等。
32(3)相等的角终边一定相同。
33(4)小于90°的角一定是锐角。
34(5)象限角为钝角的终边一定在第二象限。
35(6)终边在直线y=3x 上的象限角表示为0060360k +⋅,k ∈Z 。
36373.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几38象限角: 39(1)-150° (2)650° (3)-950°15′ 40414243444.射线OA 绕端点O 逆时针旋转270°到达OB 位置,由OB 位置顺时针旋转一45周到达OC 位置,求∠AOC 的大小? 464748495051四、 强化巩固练习(通过精选习题训练巩固新知) 521.若α分别是第一,二,三,四象限的角,那么2α分别是第几象限角?α2的53终边又分别在哪呢?(你能总结出一点规律吗) 54555657582.小明发现自己的手表走慢了10分钟,他想把时间调准那么时针和分针各旋59转了多大的角度呢? 606162633.(1)若︒<<<︒-9090βα ,则βα-的取值范围是_________________. 6465(2)若︒<<<︒-6030βα ,则βα-的取值范围是_________________. 6667五、 反思总结提升(绘制完善思维导图总结本课内容) 687071727374【课后作业】75《阳光课堂》对应练习(一)767778课题:弧度制和弧度制与角度制的换算79第一章第 1 节第 2 80课时81【学习目标】1.了解弧度的意义。
新课程高中数学必修4教案
新课程高中数学必修4教案
教案范本
第一课时
主题:集合与命题
教学目标:学生将能够理解集合的概念,掌握集合的运算及性质,了解命题的基本结构和逻辑运算。
教学内容:
1. 集合的基本概念和表示方法
2. 集合的运算:并集、交集、差集、补集
3. 集合的性质:幂集、空集、全集
4. 命题及逻辑运算:与、或、非、等价、蕴含
教学活动:
1. 引导学生思考日常生活中的集合问题,如班级里喜欢看电影的同学的集合是什么等
2. 讲解集合的基本概念和运算,并进行相关例题讲解
3. 设计讨论题,让学生解答关于集合的问题,巩固学习成果
4. 引导学生掌握命题的基本结构和逻辑运算,进行适当的练习
作业安排:
1. 完成课后习题,复习集合的概念和运算
2. 思考并总结日常生活中的命题,写出具体例子
评价标准:
1. 熟练掌握集合的基本概念和运算
2. 能够准确运用命题的逻辑运算,理解命题间的关系
拓展延伸:
学生可以通过实际场景中的案例,更好地理解集合和命题的应用,同时可以深入学习集合的进阶内容和更复杂的逻辑运算。
人教版--高一数学必修4全套导学案
第二章平面向量2.1 向量的概念及表示【学习目标】1。
了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量的概念;并会区分平行向量、相等向量和共线向量;2。
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别;3。
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 【学习重难点】重点:平行向量的概念和向量的几何表示;难点:区分平行向量、相等向量和共线向量;【自主学习】1。
向量的定义:__________________________________________________________;2。
向量的表示:(1)图形表示:(2)字母表示:3。
向量的相关概念:(1)向量的长度(向量的模):_______________________记作:______________ (2)零向量:___________________,记作:_____________________(3)单位向量:________________________________(4)平行向量:________________________________(5)共线向量:________________________________(6)相等向量与相反向量:_________________________思考:(1)平面直角坐标系中,起点是原点的单位向量,它们的终点的轨迹是什么图形?____(2)平行向量与共线向量的关系:____________________________________________(3)向量“共线”与几何中“共线"有何区别:__________________________________ 【典型例题】例1.判断下例说法是否正确,若不正确请改正:(1)零向量是唯一没有方向的向量;(2)平面内的向量单位只有一个;(3)方向相反的向量是共线向量,共线向量不一定是相反向量; (4)向量a 和b 是共线向量,//b c ,则a 和c 是方向相同的向量;(5)相等向量一定是共线向量;例2。
2017-2018学年新人教A版高中数学必修4全册学案254P
2017~2018学年人教A版高中数学必修4全册学案解析目录✧第一章三角函数1.1.1任意角✧第一章三角函数1.1.2蝗制✧第一章三角函数1.2.1任意角的三角函数第一课时三角函数的定义✧第一章三角函数1.2.1任意角的三角函数第二课时三角函数线及其应用✧第一章三角函数1.2.2同角三角函数的基本关系✧第一章三角函数1.3三角函数的诱导公式一✧第一章三角函数1.3三角函数的诱导公式二✧第一章三角函数1.4.1正弦函数余弦函数的图象✧第一章三角函数1.4.2正弦函数余弦函数的性质一✧第一章三角函数1.4.2正弦函数余弦函数的性质二✧第一章三角函数1.4.3正切函数的性质与图象✧第一章三角函数1.5函数y=Asinωx+φ的图象一✧第一章三角函数1.5函数y=Asinωx+φ的图象二✧第一章三角函数1.6三角函数模型的简单应用✧第二章平面向量2.1平面向量的实际背景及基本概念✧第二章平面向量2.2.1向量加法运算及其几何意义✧第二章平面向量2.2.2向量减法运算及其几何意义✧第二章平面向量2.2.3向量数乘运算及其几何意义✧第二章平面向量2.3.1平面向量基本定理✧第二章平面向量2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算✧第二章平面向量2.3.4平面向量共线的坐标表示✧第二章平面向量2.4.1平面向量数量积的物理背景及其含义✧第二章平面向量2.4.2平面向量数量积的坐标表示模夹角✧第二章平面向量2.5平面向量应用举例✧第三章三角恒等变换3.1.1两角差的余弦公式✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式1 ✧第三章三角恒等变换3.1.2两角和与差的正弦余弦正切公式2 ✧第三章三角恒等变换3.1.3二倍角的正弦余弦正切公式✧第三章三角恒等变换3.2简单的三角恒等变换1.1.1 任意角1.理解任意角的概念.2.掌握终边相同角的含义及其表示.(重点、难点)3.掌握轴线角、象限角及区间角的表示方法.(易错点)[基础²初探]教材整理1 任意角的概念阅读教材P2~P3“第5行”以上内容,完成下列问题.1.角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的表示:如图111,图111(1)始边:射线的开始位置OA,(2)终边:射线的终止位置OB,(3)顶点:射线的端点O.这时,图中的角α可记为“角α”或“∠α”或简记为“α”.3.角的分类:按旋转方向,角可以分为三类:时钟经过1小时,时针转动的角的大小是________.【解析】时钟是顺时针转,故形成的角是负角,又经过12个小时时针转动一个周角,故经过1个小时时针转动周角的112,所以转动的角的大小是-112³360°=-30°.【答案】-30°教材整理2 象限角与轴线角阅读教材P3“图1.13至探究”以上内容,完成下列问题.1.象限角:以角的顶点为坐标原点,角的始边为x轴正半轴,建立平面直角坐标系,角的终边(除端点外)在第几象限,就说这个角是第几象限角.2.如果角的终边在坐标轴上,称这个角为轴线角.下列说法:①第一象限角一定不是负角;②第二象限角大于第一象限角;③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中错误的序号为________(把错误的序号都写上).【解析】由象限角定义可知①②③④都不正确.【答案】①②③④教材整理3 终边相同的角阅读教材P3“探究”以下至P4“例1”以上内容,完成下列问题.1.前提:α表示任意角.2.表示:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k²360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.判断(正确的打“√”,错误的打“³”)(1)终边相同的角不一定相等,但相等的角终边一定相同.( )(2)终边相同的角有无数个,它们相差360°的整数倍.( )(3)终边相同的角的表示不唯一.( )【解析】由终边相同角的定义可知(1)(2)(3)正确.【答案】(1)√(2)√(3)√[小组合作型]任意角的概念与终边相同的角(1)已知集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系正确的是( )A.A=B=CB.A⊆CC.A∩C=BD.B∪C⊆C(2)下面与-850°12′终边相同的角是( )【导学号:00680000】A.230°12′B.229°48′C.129°48′D.130°12′【精彩点拨】正确理解第一象限角、锐角、小于90°的角的概念.【自主解答】(1)第一象限角可表示为k²360°<α<k²360°+90°,k∈Z;锐角可表示为0°<β<90°,小于90°的角可表示为γ<90°.由三者之间的关系可知,选 D.(2)与-850°12′终边相同的角可表示为α=-850°12′+k²360°(k∈Z),当k=3时,α=-850°12′+1 080°=229°48′.【答案】(1)D (2)B1.判断角的概念问题的关键与技巧:(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.(2)技巧:判断命题为真需要证明,而判断命题为假只要举出反例即可.2.在0°到360°范围内找与给定角终边相同的角的方法:(1)一般地,可以将所给的角α化成k²360°+β的形式(其中0°≤β<360°,k∈Z),其中的β就是所求的角.(2)如果所给的角的绝对值不是很大,可以通过如下方法完成:当所给角是负角时,采用连续加360°的方式;当所给角是正角时,采用连续减360°的方式,直到所得结果达到要求为止.[再练一题]1.有下列说法:①相差360°整数倍的两个角,其终边不一定相同;②终边相同的角一定相等;③终边关于x轴对称的两个角α,β之和为k²360°(k∈Z).其中正确说法的序号是________.【解析】①不正确.终边相同的两个角一定相差360°的整数倍,反之也成立;②不正确.由①可知终边相同的两个角一定相差k²360°(k∈Z).③正确.因为终边关于x轴对称的两个角,当α∈(-180°,180°),且β∈(-180°,180°)时α+β=0°,当α,β为任意角时,α+β=k²360°(k∈Z).【答案】 ③象限角与区间角的表示(1)-1 154°是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)已知角β的终边在如图112所示的阴影部分内,试指出角β的取值范围.图112【精彩点拨】 找出0°~360°内阴影部分的角的集合――→+k ²360° k ∈Z 适合题意的角的集合 【自主解答】 (1)∵-1 154°=-4³360°+286°,∴在0°~360°之间,与-1 154°终边相同的角α=286°,286°是第四象限角.故-1 154°角为第四象限角.【答案】 D(2)阴影在x 轴上方部分的角的集合为:A ={β|k ²360°+60°≤β<k ²360°+105°,k <Z }.阴影在x 轴下方部分的角的集合为:B ={β|k ²360°+240°≤β<k ²360°+285°,k ∈Z }.所以阴影部分内角β的取值范围是A ∪B ,即{β|k ²360°+60°≤β<k ²360°+105°,k ∈Z }∪{β|k ²360°+240°≤β<k ²360+285°,k ∈Z },其中B 可以化为:{β|k ²360°+180°+60°≤β<k ²360°+180°+105°,k ∈Z }.即{β|(2m +1)³180°+60°≤β<(2m +1)³180°+105°,m ∈Z }.集合A 可以化为{β|2m ³180°+60°≤β<2m +180°+105°,m ∈Z }.故A ∪B 可化为{β|n ²180°+60°≤β<n ²180°+105°,n ∈Z }.1.象限角的判定方法:(1)在坐标系中画出相应的角,观察终边的位置,确定象限.(2)第一步,将α写成α=k ²360°+β(k ∈Z,0°≤β<360°)的形式;第二步,判断β的终边所在的象限;第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.2.表示区间角的三个步骤:第一步:先按逆时针的方向找到区域的起始和终止边界;第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°;第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.[再练一题]2.写出图113中阴影部分(不含边界)表示的角的集合. 【导学号:70512000】图113【解】 在-180°~180°内落在阴影部分的角的集合为大于-45°小于45°,所以终边落在阴影部分(不含边界)的角的集合为{α|-45°+k ²360°<α<45°+k ²360°,k ∈Z }.[探究共研型]αk 所在象限的判定方法及角的终边对称问题探究1 若α是第二象限角,则α3是第几象限角? 【提示】 (1)代数推导法:由题意知90°+k ²360°<α<180°+k ²360°(k ∈Z ),30°+k ²120°<α3<60°+k ²120°(k ∈Z ). 故α3是第一或第二或第四象限角. (2)画图法:如图①将各个象限2等分,从x 轴正半轴开始逆时针方向依次标注1,2,3,4,循环下去,直到填满为止,α2就在标注2的区域,即第一或第三象限的后半区(如图①阴影区域).同理,可得α3在第一、二、四象限(如图②阴影区域).探究2 若角α与β的终边关于x 轴、y 轴、原点、直线y =x 对称,则角α与β分别具有怎样的关系?【提示】 (1)关于x 轴对称:若角α与β的终边关于x 轴对称,则角α与β的关系是β=-α+k ²360°,k ∈Z .(2)关于y 轴对称:若角α与β的终边关于y 轴对称,则角α与β的关系是β=180°-α+k ²360°,k ∈Z .(3)关于原点对称:若角α与β的终边关于原点对称,则角α与β的关系是β=180°+α+k ²360°,k ∈Z .(4)关于直线y =x 对称:若角α与β的终边关于直线y =x 对称,则角α与β的关系是β=-α+90°+k ²360°,k ∈Z .已知α为第二象限角,则2α,α2分别是第几象限角? 【导学号:70512001】 【精彩点拨】 可由α范围写出2α,α2的范围后,直接求得2α的范围,然后分k 为奇数或偶数两种情况确定α2的位置. 【自主解答】 ∵α是第二象限角,∴90°+k ²360°<α<180°+k ²360°,∴180°+2k ²360°<2α<360°+2k ²360°,k ∈Z ,∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2²360°<α2<90°+k 2²360°. 当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ²360°<α2<90°+n ²360°, 此时,α2为第一象限角; 当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ²360°<α2<270°+n ²360°,此时,α2为第三象限角.∴α2为第一或第三象限角.1.解决此类问题,要先确定α的范围,进一步确定出n α或αn的范围,再根据k 与n 的关系进行讨论.2.一般地,要确定αn所在的象限,可以作出各个象限的从原点出发的n 等分射线,它们与坐标轴把圆周等分成4n 个区域,从x 轴的非负半轴起,按逆时针方向把这4n 个区域依次循环标上号码1,2,3,4,则标号为n 的区域就是根据α所在第几象限时αn的终边所落在的区域.[再练一题]3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】 ∵α是第四象限角,则角α应满足:k ²360°-90°<α<k ²360°,k ∈Z , ∴-k ²360°<-α<-k ²360°+90°,则-k ²360°+180°<180°-α<-k ²360°+90°+180°,k ∈Z ,当k =0时,180°<180°-α<270°,故180°-α为第三象限角.【答案】 C1.若α是第一象限角,则-α2是( ) A.第一象限角 B.第一、四象限角C.第二象限角D.第二、四象限角 【解析】 因为α是第一象限角,所以α2为第一、三象限角,所以-α2是第二、四象限角.【答案】 D2.与-457°角终边相同的角的集合是( )A.{α|α=k²360°+457°,k∈Z}B.{α|α=k²360°+97°,k∈Z}C.{α|α=k²360°+263°,k∈Z}D.{α|α=k²360°-263°,k∈Z}【解析】当选项C的集合中k=-2时,α=-457°.【答案】 C3.下列各角中,与角330°的终边相同的角是( )A.510°B.150°C.-150°D.-390°【解析】与330°终边相同的角的集合为S={β|β=330°+k²360°,k∈Z},当k=-2时,β=330°-720°=-390°,故选 D.【答案】 D4.若角α与角β终边相同,则α-β=________.【解析】根据终边相同角的定义可知:α-β=k²360°(k∈Z).【答案】k²360°(k∈Z)5.在0°到360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角:(1)-120°;(2)640°.【解】(1)与-120°终边相同的角的集合为M={β|β=-120°+k²360°,k∈Z}. 当k=1时,β=-120°+1³360°=240°,∴在0°到360°范围内,与-120°终边相同的角是240°,它是第三象限的角. (2)与640°终边相同的角的集合为M={β|β=640°+k²360°,k∈Z}.当k=-1时,β=640°-360°=280°,∴在0°到360°范围内,与640°终边相同的角为280°,它是第四象限的角.1.1.2 弧 度 制1.了解弧度制下,角的集合与实数集之间的一一对应关系.2.理解“弧度的角”的定义,掌握弧度与角度的换算、弧长公式和扇形面积公式,熟悉特殊角的弧度数.(重点、难点)3.“角度制”与“弧度制”的区别与联系.(易错点)[基础²初探]教材整理1 角度制与弧度制的定义阅读教材P 6~P 7第三行以上内容,完成下列问题. 1. 角度制与弧度制的定义如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=l r.判断(正确的打“√”,错误的打“³”) (1)1弧度是1度的圆心角所对的弧.( ) (2)1弧度是长度为半径的弧.( ) (3)1弧度是1度的弧与1度的角之和.( )(4)1弧度是长度等于半径的弧所对的圆心角,它是角的一种度量单位.( ) 【解析】 根据弧度制的定义知(4)正确. 【答案】 (1)³ (2)³ (3)³ (4)√ 教材整理2 角度制与弧度制的换算阅读教材P 7第四行至P 8例3以上内容,完成下列问题. 1.角度与弧度的互化2.将下列角度与弧度进行互化.(1)20°=________;(2)-15°=________; (3)7π12=________;(4)-115π=________.【解析】(1)20°=20³π180=π9;(2)-15°=-15³π180=-π12;(3)712π=712π³⎝⎛⎭⎪⎫180π°=105°;(4)-115π=-115π³⎝ ⎛⎭⎪⎫180π°=-396°.【答案】 (1)π9 (2)-π12 (3)105° (4)-396°教材整理3 扇形的弧长与面积公式 阅读教材P 8例3内容,完成下列问题.设扇形的半径为R ,弧长为l ,α为其圆心角,则圆心角为π3弧度,半径为6的扇形的面积为________.【解析】 扇形的面积为12³62³π3=6π.【答案】 6π[小组合作型]角度与弧度的互化与应用(1)把-157°30′化成弧度为________,-5π12化成度为________.(2)在[0,4π]中,与72°角终边相同的角有________.(用弧度表示)【精彩点拨】 在进行角度与弧度的换算时,关键是抓住π rad =180°,1°=π180 rad这一关系.【自主解答】 (1)-157°30′=-157.5°=-3152³π180 rad =-78π rad.-5π12=-5π12³⎝ ⎛⎭⎪⎫180π°=-75°. (2)因为终边与72°角相同的角为θ=72°+k ²360°(k ∈Z ). 当k =0时,θ=72°=25π;当k =1时,θ=432°=125π,所以在[0,4π]中与72°终边相同的角有25π,125π.【答案】 (1)-78π,-75°(2)25π,125π角度制与弧度制互化的关键与方法1 关键:抓住互化公式π rad =180°是关键;2 方法:度数³π180=弧度数;弧度数³⎝ ⎛⎭⎪⎫180π°=度数;3 角度化弧度时,应先将分、秒化成度,再化成弧度.[再练一题]1.把56°15′化为弧度是( ) 【导学号:00680003】A.5π8 B.5π4 C.5π6D.5π16【解析】 56°15′=56.25°=2254³π180 rad =5π16 rad.【答案】 D用弧度数表示角(1)与角23π终边相同的角是( )A.113π B.2k π-23π(k ∈Z )C.2k π-103π(k ∈Z )D.(2k +1)π+23π(k ∈Z )(2)若α是第三象限的角,则π-α2是( )A.第一或第二象限的角B.第一或第三象限的角C.第二或第三象限的角D.第二或第四象限的角【精彩点拨】 (1)可把选择题中角写成2k π+α(k ∈Z ,α∈[0,2π))形式来判断; (2)可由α范围写出π-α2范围后,根据k 为奇数或偶数来确定π-α2终边位置.【自主解答】 (1)A 中,11π3=2π+53π,与角53π终边相同,故A 错;B 中,2k π-23π,k ∈Z ,当k =1时,得[0,2π)之间的角为43π,故与43π有相同的终边,B 错;C 中,2k π-103π,k ∈Z ,当k =2时,得[0,2π)之间的角为23π,与23π有相同的终边,故C 对;D 中,(2k +1)π+23π,k ∈Z ,当k =0时,得[0,2π)之间的角为53π,故D 错.(2)因为α为第三象限的角,所以有2k π+π<α<2k π+32π,k ∈Z ,k π+π2<α2<k π+34π,k ∈Z ,-k π-34π<-α2<-k π-π2,k ∈Z ,故-k π+π4<π-α2<-k π+π2,k ∈Z .当k 为偶数时,π-α2在第一象限;当k 为奇数时,π-α2在第三象限,故选B.【答案】 (1)C (2)B1.弧度制下与角α终边相同的角的表示:在弧度制下,与角α的终边相同的角可以表示为{β|β=2k π+α,k ∈Z },即与角α终边相同的角可以表示成α加上2π的整数倍.2.确定角范围时,k 的值的取法:在表示角或角的范围时,通常会用到k ,如α=π4+2k π(k ∈Z )①,k π-π3<β<k π-π6,k ∈Z ②,在确定角α或β的范围时,要根据k 的系数来取值,如①中k 的系数为2π,则取k 的任一个值如0,得α=π4在第一象限.②中k 的系数为π,则要分k 为奇数、偶数两种情况取值.k 为奇数时,取k =1,得β∈⎝ ⎛⎭⎪⎫23π,56π,在第二象限;k 为偶数时,取k=0,得β∈⎝ ⎛⎭⎪⎫-π3,-π6,在第四象限,则β为第二或第四象限的角.[再练一题]2.用弧度表示终边落在如图116所示阴影部分内(不包括边界)的角θ的集合.图116【解】 因为30°=π6 rad,210°=7π6rad ,这两个角的终边所在的直线相同,因为终边在直线AB 上的角为α=k π+π6,k ∈Z ,而终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z . [探究共研型]弧长公式与扇形面积公式的应用探究1 用公式|α|=lr求圆心角时,应注意什么问题?【提示】 应注意结果是圆心角的绝对值,具体应用时既要注意其大小,又要注意其正负.探究2 在使用弧度制下的弧长公式及面积公式时,若已知的角是以“度”为单位,需注意什么问题?【提示】 若已知的角是以“度”为单位,则必须先把它化成弧度后再计算,否则结果出错.(1)设扇形的周长为8 cm ,面积为4 cm 2,则扇形的圆心角的弧度数是( ) 【导学号:70512003】A.1 radB.2 radC.3 radD.4 rad(2)已知扇形的周长为20 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?【精彩点拨】 (1)可由扇形周长和面积建立方程组,通过解方程组求得;(2)可通过建立扇形面积的目标函数来求解.【自主解答】 (1)设扇形半径为r ,弧长为l ,由题意得⎩⎪⎨⎪⎧2r +l =8,12l ²r =4,解得⎩⎪⎨⎪⎧l =4,r =2,则圆心角α=lr=2 rad.【答案】 B(2)设扇形的半径为r ,弧长为l ,面积为S ,则l =20-2r ,∴S =12lr =12(20-2r )²r =-r 2+10r =-(r -5)2+25(0<r <10),∴当半径r =5 cm 时,扇形的面积最大,为25 cm 2,此时α=l r =20-2³55=2 rad.∴当它的半径为5 cm ,圆心角为2 rad 时, 扇形面积最大,最大值为25 cm 2.弧度制下解决扇形相关问题的步骤:(1)明确弧长公式和扇形的面积公式:l =|α|r ,S =12αr 2和S =12lr .(这里α必须是弧度制下的角)(2)分析题目的已知量和待求量,灵活选择公式. (3)根据条件列方程(组)或建立目标函数求解.[再练一题]3.已知一扇形的圆心角为α,所在圆半径为R ,周长为4R ,则扇形中所含弓形的面积是________.【解析】 由周长为4R 可知扇形的弧长为2R ,面积为S =12lR =12²2R ²R =R 2,圆心角弧度数为|α|=l R=2RR=2,所以扇形中除弓形外所含的三角形的高为R cos 1,底为2R sin 1,所以此三角形面积为S 1=12²R cos 1²2R sin 1=R 2sin 1cos 1,从而弓形面积为S 2=S -S 1=R 2(1-sin 1cos 1).【答案】 R 2(1-sin 1cos 1)1.下列转化结果错误的是( ) A.22°30′化成弧度是π8B.-10π3化成度是-600°C.-150°化成弧度是-7π6D.π12化成度是15° 【解析】 对于A,22°30′=22.5³π180=π8,正确;对于B ,-10π3=⎝ ⎛⎭⎪⎫-10π3³180π°=-600°,正确;对于C ,-150°=-150³π180=-5π6,错误;对于D ,π12=⎝ ⎛⎭⎪⎫π12³180π°=15°,正确.【答案】 C2.正确表示终边落在第一象限的角的范围的是( ) A.⎝⎛⎭⎪⎫2k π,2k π+π2(k ∈Z ) B.⎝⎛⎭⎪⎫k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π,2k π+π2(k ∈Z ) D.⎣⎢⎡⎭⎪⎫k π,k π+π2(k ∈Z ) 【解析】 B 中,k =1时为⎝ ⎛⎭⎪⎫π,32π,显然不正确;因为第一象限角不含终边在坐标轴的角,故C ,D 均错,只有A 正确.【答案】 A3.与30°角终边相同的角的集合是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=k ²360°+π6,k ∈ZB.{α|α=2k π+30°,k ∈Z }C.{α|α=2k ²360°+30°,k ∈Z }D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪α=2k π+π6,k ∈Z【解析】 ∵30°=30³π180 rad =π6rad ,∴与30°终边相同的所有角可表示为α=2k π+π6,k ∈Z ,故选 D.【答案】 D4.在半径为10的圆中,240°的圆心角所对弧长为( )【导学号:00680004】A.403πB.203πC.2003π D.4003π 【解析】 240°=240³π180 rad =43π rad ,∴弧长l =|α|²r =43π³10=403π,选A.【答案】 A5.一个扇形的面积为1,周长为4,求该扇形圆心角的弧度数.【解】 设扇形的半径为R ,弧长为l ,圆心角为α, 则2R +l =4.①由扇形的面积公式S =12lR ,得12lR =1.②由①②得R =1,l =2,∴α=lR=2 rad. ∴扇形的圆心角为2 rad.1.2.1 任意角的三角函数1.掌握任意角的正弦、余弦、正切的定义,会判断三角函数值的符号.(重点)2.掌握诱导公式及其应用.(重点)3.了解三角函数线的意义,会利用三角函数线表示任意角的正弦、余弦、正切.(难点)[基础²初探]教材整理1 任意角的三角函数阅读教材P 11~P 12例1以上内容,完成下列问题.1.单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.2.定义:图121在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: (1)y 叫做α的正弦,记作sin α,即sin α=y ; (2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)yx 叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.正弦函数sin α的定义域是R ;余弦函数cos α的定义域是R ;正切函数tan α的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π+π2,k ∈Z .判断(正确的打“√”,错误的打“³”)(1)由sin α=yr,故角α终边上的点P (x ,y )满足y 越大,sin α的值越大.( )(2)终边相同的角,其三角函数值也相等.( )(3)三角函数是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.( )【解析】 (1)当y 越大时,y r比值不变,故sin α不变. (2)由正弦定义知正确. (3)由三角函数定义知正确. 【答案】 (1)³ (2)√ (3)√教材整理2 正弦、余弦、正切函数值在各象限内的符号 阅读教材P 13“探究”内容,完成下列问题.图122口诀:“一全正,二正弦,三正切,四余弦”.已知α是第三象限角,则sin α________0,cos α________0,tan α________0.(填“>”或“<”)【答案】 < < > 教材整理3 诱导公式一阅读教材P 14“例4”以上内容,完成下列问题.cos ⎝ ⎛⎭⎪⎫-11π6等于________. 【解析】 cos ⎝ ⎛⎭⎪⎫-11π6=cos ⎝ ⎛⎭⎪⎫-2π+π6=cos π6=32.【答案】32教材整理4 三角函数线阅读教材P 15倒数第四行至P 17“练习”以上部分,完成下列问题.1.(1)把规定了正方向的直线称为有向直线.(2)有向线段:规定了方向(即规定了起点和终点)的线段称为有向线段.2.三角函数线的定义:如图123,①设任意角α的顶点在原点O (O 亦为单位圆圆心),始边与x 轴的正半轴重合,终边与单位圆相交于点P (x ,y ),②过点P 作x 轴的垂线,垂足为M ;过点A (1,0)作单位圆的切线,③设它与角α的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (由于过切点的半径垂直于圆的切线,所以AT 平行于y 轴).图123于是sin α=y =MP ,cos α=x =OM ,tan α=y x =MP OM =ATOA=AT . 我们规定与坐标轴同向时,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线、正切线.3.轴线角的三角函数线:当角α的终边与x 轴重合时,正弦线、正切线分别变成一个点,此时角α的正弦值和正切值都为0;当角α的终边与y 轴重合时,余弦线变成一个点,正切线不存在,此时角α的正切值不存在.如图124,在单位圆中角α的正弦线、正切线完全正确的是( )图124A.正弦线PM ,正切线A ′T ′B.正弦线MP ,正切线A ′T ′C.正弦线MP ,正切线ATD.正弦线PM ,正切线AT【解析】 α为第三象限角,故正弦线为MP ,正切线为AT ,C 正确. 【答案】 C[小组合作型]任意角三角函数的定义及应用(1)若sin α=35,cos α=-45,则在角α终边上的点有( )A.(-4,3)B.(3,-4)C.(4,-3)D.(-3,4)(2)若α=-π3,则sin α=________,cos α=________,tan α=________.(3)已知角α的终边过点P (-3a,4a )(a ≠0),则2sin α+cos α=________.【精彩点拨】 准确理解任意角三角函数的定义是解题的关键.【自主解答】 (1)由sin α,cos α的定义知x =-4,y =3,r =5时,满足题意,故选A.(2)因为角-π3的终边与单位圆交于P ⎝ ⎛⎭⎪⎫12,-32,所以sin α=-32,cos α=12,tan α=- 3. (3)因为r = -3a 2+ 4a 2=5|a |, ①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,所以2sin α+cos α=-85+35=-1.【答案】 (1)A (2)-32 12- 3 (3)1或-1由角α终边上任意一点的坐标求其三角函数值的步骤: (1)已知角α的终边在直线上时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr,cos α=x r.已知α的终边求α的三角函数时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.[再练一题]1.设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.若点P 的坐标为⎝ ⎛⎭⎪⎫12,32,求f (θ)的值. 【导学号:00680006】【解】 由点P 的坐标为⎝ ⎛⎭⎪⎫12,32和三角函数定义得sin θ=32,cos θ=12,所以f (θ)=3sin θ+cos θ=3³32+12=2.三角函数符号的判断判断下列各式的符号.(1)sin 2 015°cos 2 016°tan 2 017°; (2)tan 191°-cos 190°; (3)sin 2cos 3tan 4.【精彩点拨】 角度确定了,所在的象限就确定了,三角函数值的符号也就确定了,因此只需确定角所在象限,即可进一步确定各式的符号.【自主解答】 (1)∵2 015°=1 800°+215°=5³360°+215°, 2 016°=5³360°+216°,2 017°=5³360°+217°, ∴它们都是第三象限角,∴sin 2 015°<0,cos 2 016°<0,tan 2 017°>0, ∴sin 2 015°cos 2 016°tan 2 017°>0. (2)∵191°角是第三象限角,∴tan 191°>0,cos 191°<0, ∴tan 191°-cos 191°>0. (3)∵π2<2<π,π2<3<π,π<4<3π2,∴2是第二象限角,3是第二象限角,4是第三象限角, ∴sin 2>0,cos 3<0,tan 4>0, ∴sin 2cos 3tan 4<0.判断三角函数值在各象限符号的攻略:1 基础:准确确定三角函数值中各角所在象限;2 关键:准确记忆三角函数在各象限的符号;3 注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误.[再练一题]2.(1)已知点P (tan α,cos α)在第四象限,则角α终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限(2)下列各式:①sin(-100°);②cos(-220°); ③tan(-10);④cos π. 其中符号为负的有( ) A.1个 B.2个 C.3个D.4个 【解析】 (1)因为点P 在第四象限,所以有⎩⎪⎨⎪⎧tan α>0,cos α<0,由此可判断角α终边在第三象限.(2)-100°在第三象限,故sin (-100°)<0;-220°在第二象限,故cos(-220°)<0;-10∈⎝ ⎛⎭⎪⎫-72π,-3π,在第二象限,故tan(-10)<0;cos π=-1<0.【答案】 (1)C(2)D诱导公式一的应用求下列各式的值:(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°);(2)sin ⎝⎛⎭⎪⎫-11π6+cos 125π²tan 4π. 【精彩点拨】 利用诱导公式,把每个角化为[0,2π)间的角,再利用特殊角的三角函数求值.【自主解答】 (1)原式=a 2sin(-4³360°+90°)+b 2tan(360°+45°)-2ab cos(-3³360°)=a 2sin 90°+b 2tan 45°-2ab cos 0° =a 2+b 2-2ab =(a -b )2.(2)sin ⎝ ⎛⎭⎪⎫-116π+cos 125π²tan 4π=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos 125π²tan 0 =sin π6+0=12.1.利用诱导公式一可把任意角的三角函数化归为[0,2π)内的三角函数,实现“负化正,大化小”,体现了数学中的化归转化思想.2.一定要熟记一些特殊角的三角函数,有利于准确求值.[再练一题] 3.求下列各式的值: (1)cos 253π+tan ⎝ ⎛⎭⎪⎫-154π; (2)sin 810°+tan 1 125°+cos 420°. 【解】 (1)cos 253π+tan ⎝ ⎛⎭⎪⎫-154π=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=cos π3+tan π4 =12+1=32. (2)原式=sin(2³360°+90°)+tan(3³360°+45°)+cos(360°+60°)=sin 90°+tan 45°+cos 60°=1+1+12=52.[探究共研型]三角函数线问题探究1 有人说:在三角函数线上,点P 的坐标为(cos α,sin α),点T 的坐标为(1,tan α),你认为正确吗?【提示】 正确.由三角函数的定义可知sin α=yr ,cos α=x r,而在单位圆中,r =1,所以单位圆上的点都是(cos α,sin α);另外角的终边与直线x =1的交点的横坐标都是1,所以根据tan α=y x,知纵坐标y =tan α,所以点T 的坐标为(1,tan α).探究2 利用三角函数线如何解答形如sin α≥a ,sin α≤a (|a |≤1);cos α≥a ,cos α≤a (|a |≤1)的不等式.【提示】 (1)对形如sin α≥a ,sin α≤a (|a |≤1)的不等式:画出如图①所示的单位圆;在y 轴上截取OM =a ,过点(0,a )作y 轴的垂线交单位圆于两点P 和P ′,并作射线OP 和OP ′;写出终边在OP 和OP ′上的角的集合;图中阴影部分即为满足不等式sin α≤a 的角α的范围,其余部分即为满足不等式sin α≥a 的角α的范围.图①(2)对形如cos α≥a ,cos α≤a (|a |≤1)的不等式:画出如图②所示的单位圆;在x 轴上截取OM =a ,过点(a,0)作x 轴的垂线交单位圆于两点P 和P ′,作射线OP 和OP ′;写出终边在OP 和OP ′上的角的集合;图中阴影部分即为满足不等式cos α≤a 的角α的范围,其余部分即为满足不等式cos α≥a 的角α的范围.图②在单位圆中画出适合下列条件的角α的终边范围,并由此写出角α的集合. (1)sin α≥32;(2)cos α≤-12. 【精彩点拨】 根据三角函数线,在单位圆中首先作出满足sin α=32,cos α=-12的角的终边,然后由已知条件确定角α的终边范围.【自主解答】 (1)作直线y =32,交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域(图(1)中阴影部分)即为角α的终边的范围.故满足条件的角α的集合为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12,交单位圆于C ,D 两点,连接OC 与OD ,则OC 与OD 围成的区域(图(2)中的阴影部分)即为角α的终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k π+4π3,k ∈Z .1.三角函数线是利用数形结合思想解决有关问题的工具,要注意利用其来解决问题.2.三角函数线的主要作用是解三角不等式、比较大小及求函数的定义域,在求三角函数定义域时,一般转化为不等式(组),因此必须牢固掌握三角函数线的画法及意义.[再练一题]4.求函数y =2cos x -1的定义域. 【解】 由题意得:2cos x -1≥0, 则有cos x ≥12.如图在x 轴上取点M 1使OM 1=12,过M 1作x 轴的垂线交单位圆于点P 1,P 2,连接OP 1,OP 2.则OP 1与OP 2围成的区域(如图中阴影部分)即为角x 的终边的范围.。
高中数学必修4导学案
高中数学必修4导学案(总102页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--任意角课前预习学案一、预习目标1、认识角扩充的必要性,了解任意角的概念,与过去学习过的一些容易混淆的概念相区分;2、能用集合和数学符号表示终边相同的角,体会终边相同角的周期性;3、能用集合和数学符号表示象限角;4、能用集合和数学符号表示终边满足一定条件的角.二、预习内容1.回忆:初中是任何定义角的?一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。
旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
在体操比赛中我们经常听到这样的术语:“转体720o”(即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转如果慢了5分钟,又该如何校正2.角的概念的推广:3.正角、负角、零角概念4.象限角思考三个问题:1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?3.是不是任意角都可以归结为是象限角,为什么?4.已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)4200;(2)-750;(3)8550;(4)-5100.5.终边相同的角的表示课内探究学案一、学习目标(1)推广角的概念,理解并掌握正角、负角、零角的定义;(2)理解任意角以及象限角的概念;(3)掌握所有与角a 终边相同的角(包括角a )的表示方法;学习重难点:重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
难点: 把终边相同的角用集合和数学符号语言表示出来。
二、学习过程例1. 例1在0360︒︒~范围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2.写出终边在y 轴上的角的集合.例3.写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤ 720︒<的元素β写出来.(三)【回顾小结】1.尝试练习(1)教材P第3、4、5题.6(2)补充:时针经过3小时20分,则时针转过的角度为,分针转过的角度为。
新编人教a高中数学必修4全册导学案版本
目录1.1.1任意角1.1.2弧度制1.2.1任意角的三角函数(1)1.2.1任意角的三角函数(2)1.2.2同角三角函数的基本关系1.3三角函数的诱导公式(1)1.3三角函数的诱导公式(2)1.4.1正弦,余弦函数的图像1.4.2正弦函数,余弦函数的性质1.4.3正切函数的性质与图像1.5 函数y=Asin(ωx+φ)的图象2.1平面向量的实际背景及基本概念2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例第二章平面向量复习3.1.1两角差的余弦公式3.1.2两角和与差的正弦、余弦、正切公式3.1.3二倍角的正弦、余弦、正切公式3.2简单的三角恒等变换任意角1. 1.1任意角班级姓名一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。
2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。
问题1、按方向旋转形成的角叫做正角,按- 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。
零角的与重合。
如果α是零角,那么α= 。
问题2、问题3、画出下列各角(1)780o (2)-120o(3)-660o(4)1200o问题4、象限角与象限界角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标重合;(2)使角的始边和x轴重合.这时,角的终边落在第几象限,就说这个角是的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做,这个角不属于任何一个象限。
高中数学必修四导学案[1]
(完整版)高中数学必修四导学案(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中数学必修四导学案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中数学必修四导学案(word版可编辑修改)的全部内容。
§1。
1。
1 任意角1。
理解任意角的概念,学会在平面内建立适当的坐标系讨论任意角。
2。
能在0º到360º范围内,找出一个与已知角终边相同的角,并判定其为第几象限角。
3。
能写出与任一已知角终边相同的角的集合.25体操跳水比赛中有“转体720º”,“翻腾转体两周半”这样的动作名称,720º在这里表示什么?二、新课导学※探索新知问题1:在初中我们是如何定义一个角的?角的范围是什么?问题2:(1)手表慢了5分钟,如何校准,校准后,分针转了几度?(2)手表快了10分钟,如何校准,校准后,分针转了几度?问题3:任意角的定义(通过类比数的正负,定义角的正负和零角的概念)问题4:能以同一条射线为始边作出下列角吗?210º—150º—660º问题5:上述三个角分别是第几象限角,其中哪些角的终边相同.问题6:具有相同终边的角彼此之间有什么关系?你能写出与60º角的终边相同的角的集合吗?※典型例题例1:在0º到360º的范围内,找出与下列各角终边相同的角,并分别判断它们是第几象限角:(1)650º(2)—150º (3)-990º15¹变式训练:(1)终边落在x轴正半轴上的角的集合如何表示?终边落在x轴上呢?(2)终边落在坐标轴上的角的集合如何表示?例2:若α与240º角的终边相同(1)写出终边与α的终边关于直线y=x 对称的角β的集合。
人教版高中数学必修4全册导学案全集
人教版高中数学必修4全册导学案全集标题:人教版高中数学必修4全册导学案全集导学案是高中数学教学中的重要辅助教材,为学生提供了系统、全面的学习指导和练习题。
本文将全面介绍人教版高中数学必修4全册的导学案内容,帮助学生更好地掌握数学知识。
第一章函数及其应用本章主要介绍了函数的概念、函数的表示法、函数的性质以及函数方程的应用。
通过导学案中的练习题,学生可以锻炼观察问题、建立数学模型和解决实际问题的能力。
第二章二次函数本章重点讲解了二次函数的概念、图像、性质以及应用。
通过导学案中的案例分析,学生可以理解二次函数在现实中的应用,并能够运用二次函数来解决实际问题。
第三章三角函数本章主要介绍了正弦函数、余弦函数、正切函数以及它们的图像和性质。
导学案中的练习题旨在帮助学生熟悉三角函数的运算和性质,并能够应用三角函数解决实际问题。
第四章推理与证明本章重点讲解了数学中的命题、命题的联结词、命题的等价关系以及命题的推理方法。
导学案中的练习题旨在培养学生的逻辑思维和推理能力,并能够运用推理方法解决实际问题。
第五章指数与对数函数本章主要介绍了指数函数和对数函数的概念、性质、运算法则以及指数与对数方程的应用。
导学案中的实例分析和练习题有助于学生理解指数与对数函数在现实中的应用,并能够熟练运用它们解决实际问题。
第六章平面向量本章重点讲解了平面向量的概念、向量的运算法则、向量共线、共面以及平面向量与几何的应用等内容。
导学案中的案例分析和练习题旨在帮助学生理解平面向量的性质和应用,并能够运用平面向量解决实际问题。
第七章空间几何体的位置关系本章主要介绍了空间几何体的位置关系,包括平行、垂直、相交等。
导学案中的练习题旨在提高学生观察问题和分析问题的能力,并能够应用位置关系解决实际问题。
第八章空间向量与空间解析几何本章重点讲解了空间向量的概念、运算法则以及空间向量与几何的应用。
通过导学案中的案例分析和练习题,学生可以掌握空间向量的性质和应用,并能够运用空间向量解决实际问题。
2017-2018学年北师大版高中数学必修4全册学案
2017-2018学年高中数学北师大版必修4全册同步学案目录第一章 1 周期现象-§2 角的概念的推广第一章 3 弧度制第一章 4.1 单位圆与任意角的正弦函数、余弦函数的定义-4.2 单位圆与周期性第一章 4.1 单位圆与正弦函数、余弦函数的基本性质第一章 4.4 单位圆的对称性与诱导公式(一)第一章 4.4 单位圆的对称性与诱导公式(二)第一章 5.1 正弦函数的图像第一章 5.2 正弦函数的性质第一章 6 余弦函数的图像与性质第一章7 正切函数第一章8 函数y=Asin(ωx+φ)的图像与性质(一)第一章8 函数y=Asin(ωx+φ)的图像与性质(二)第一章9 三角函数的简单应用第一章章末复习课第二章 1 从位移、速度、力到向量第二章 2.1 向量的加法第二章 2.2 向量的减法第二章 3.1 数乘向量第二章 3.2 平面向量基本定理第二章 4.1 平面向量的坐标表示-4.2 平面向量线性运算的坐标表示第二章 4.3 向量平行的坐标表示第二章 5 从力做的功到向量的数量积(一)第二章 5 从力做的功到向量的数量积(二)第二章 6 平面向量数量积的坐标表示第二章向量应用举例第二章章末复习课第三章 1 同角三角函数的基本关系第三章 2.1 两角差的余弦函数第三章 2.2 两角和与差的正弦、余弦函数第三章 2.3 两角和与差的正切函数第三章 3 二倍角的三角函数(一)第三章 3 二倍角的三角函数(二)第三章疑难规律方法第三章章末复习课学习目标 1.了解现实生活中的周期现象.2.了解任意角的概念,理解象限角的概念.3.掌握终边相同的角的含义及其表示.知识点一周期现象思考“钟表上的时针每经过12小时运行一周,分针每经过1小时运行一周,秒针每经过1分钟运行一周.”这样的现象,具有怎样的属性?梳理(1)以相同间隔重复出现的现象叫作周期现象.(2)要判断一种现象是否为周期现象,关键是看每隔一段时间这种现象是否会________出现,若出现,则为周期现象;否则,不是周期现象.知识点二角的相关概念思考1将射线OA绕着点O旋转到OB位置,有几种旋转方向?思考2如果一个角的始边与终边重合,那么这个角一定是零角吗?梳理(1)角的概念:角可以看成平面内____________绕着________从一个位置________到另一个位置所形成的图形.(2)角的分类:按旋转方向可将角分为如下三类:知识点三象限角思考把角的顶点放在平面直角坐标系的原点,角的始边与x轴的非负半轴重合,旋转该角,则其终边(除端点外)可能落在什么位置?梳理在直角坐标系内,使角的顶点与原点重合,角的始边与x轴的非负半轴重合.象限角:________在第几象限就是第几象限角;轴线角:________落在坐标轴上的角.知识点四终边相同的角思考1假设60°的终边是OB,那么-660°,420°的终边与60°的终边有什么关系,它们与60°分别相差多少?思考2如何表示与60°终边相同的角?梳理终边相同角的表示一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k×360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与________的整数倍的和.类型一周期现象的应用例1水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?反思与感悟(1)应用周期现象中“周而复始”的规律性可以达到“化繁为简”、“化无限为有限”的目的.(2)只要确定好周期现象中重复出现的“基本单位”就可以把问题转化到一个周期内来解决.跟踪训练1利用例1中的水车盛800升的水,至少需要多少时间?类型二 象限角的判定例2 在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角. (1)-150°;(2)650°;(3)-950°15′.反思与感悟 判断象限角的步骤 (1)当0°≤α<360°时,直接写出结果.(2)当α<0°或α≥360°时,将α化为k ·360°+β(k ∈Z ,0°≤β<360°),转化为判断角β所属的象限.跟踪训练2 (1)判断下列角所在的象限,并指出其在0°~360°范围内终边相同的角. ①549°;②-60°;③-503°36′.(2)若α是第二象限角,试确定2α、α2是第几象限角.类型三 终边相同的角命题角度1 求与已知角终边相同的角例3 在与角10 030°终边相同的角中,求满足下列条件的角. (1)最大的负角;(2)最小的正角;(3)[360°,720°)的角.反思与感悟 求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k 的值.跟踪训练3 写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.命题角度2 求终边在给定直线上的角的集合 例4 写出终边在直线y =-3x 上的角的集合.反思与感悟求终边在给定直线上的角的集合,常用分类讨论的思想,即分x≥0和x<0两种情况讨论,最后再进行合并.跟踪训练4写出终边在直线y=33x上的角的集合.1.下列是周期现象的为()①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次;③某超市每天的营业额;④某地每年6月份的平均降雨量.A.①②④B.②④C.①②D.①②③2.与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}3.2 017°是第________象限角.4.一个质点,在平衡位置O点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O点开始计时,质点向左运动第一次到达M 点用了0.3 s,又经过0.2 s第二次通过M点,则质点第三次通过M点,还要经过的时间是________s.5.已知,如图所示.(1)写出终边落在射线OA,OB上的角的集合;(2)写出终边落在阴影部分(包括边界)的角的集合.1.判断是否为周期现象,关键是看在相同的间隔内,图像是否重复出现.2.由于角的概念推广了,那么终边相同的角有无数个,这无数个终边相同的角构成一个集合.与α角终边相同的角可表示为{β|β=α+k·360°,k∈Z},要领会好k∈Z的含义.3.熟记终边在坐标轴上的各角的度数,才能正确快速地用不等式表示各象限角,注意不等式表示的角的终边随整数k的改变而改变时,要对k分类讨论.答案精析问题导学知识点一思考周而复始,重复出现.梳理(2)重复知识点二思考1有顺时针和逆时针两种旋转方向.思考2不一定,若角的终边未作旋转,则这个角是零角.若角的终边作了旋转,则这个角就不是零角.梳理(1)一条射线端点旋转(2)逆时针方向旋转顺时针方向旋转没有作任何旋转知识点三思考终边可能落在坐标轴上或四个象限内.梳理终边终边知识点四思考1它们的终边相同.-660°=60°-2×360°,420°=60°+360°,故它们与60°分别相隔了2个周角的和及1个周角.思考260°+k·360°(k∈Z).梳理周角题型探究例1解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升),所以水车1小时内最多盛水160×12=1 920(升).跟踪训练1解设x分钟后盛水y升,由例1知每转一圈,水车最多盛水16×10=160(升),所以y=x5·160=32x,为使水车盛800升的水,则有32x≥800,所以x≥25,即水车盛800升的水至少需要25分钟.例2解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.跟踪训练2 解 (1)①∵549°=189°+360°,∴549°角为第三象限的角,与189°角终边相同. ②∵-60°=300°-360°,∴-60°角为第四象限的角,与300°角终边相同. ③∵-503°36′=216°24′-2×360°,∴-503°36′角为第三象限的角,与216°24′角终边相同. (2)由题意得90°+k ·360°<α<180°+k ·360°(k ∈Z ),① 所以180°+2k ·360°<2α<360°+2k ·360°(k ∈Z ).故2α是第三或第四象限角或终边落在y 轴非正半轴上的角. 由①得45°+k ·180°<α2<90°+k ·180°(k ∈Z ),当k 为偶数时,令k =2n (n ∈Z ),得45°+n ·360°<α2<90°+n ·360°(n ∈Z ),故α2是第一象限角.当k 为奇数时,令k =2n +1(n ∈Z ),得45°+180°+n ·360°<α2<90°+180°+n ·360°(n ∈Z ),即225°+n ·360°<α2<270°+n ·360°(n ∈Z ),故α2为第三象限角. 综上可知,α2为第一或第三象限角.例3 解 与10 030°终边相同的角的一般形式为β=k ·360°+10 030°(k ∈Z ).(1)由-360°<k ·360°+10 030°<0°,得-10 390°<k ·360°<-10 030°,解得k =-28,故所求的最大负角为β=-50°. (2)由0°<k ·360°+10 030°<360°, 得-10 030°<k ·360°<-9 670°, 解得k =-27,故所求的最小正角为β=310°. (3)由360°≤k ·360°+10 030°<720°, 得-9 670°≤k ·360°<-9 310°, 解得k =-26,故所求的角为β=670°.跟踪训练3 解 由终边相同的角的表示知,与角α=-1 910°终边相同的角的集合为{β|β=k ·360°-1 910°,k ∈Z }. ∵-720°≤β<360°,即-720°≤k ·360°-1 910°<360°(k ∈Z ),∴31136≤k<61136(k∈Z),故取k=4,5,6.当k=4时,β=4×360°-1 910°=-470°;当k=5时,β=5×360°-1 910°=-110°;当k=6时,β=6×360°-1 910°=250°.例4解终边在y=-3x(x<0)上的角的集合是S1={α|α=120°+k·360°,k∈Z};终边在y=-3x(x≥0)上的角的集合是S2={α|α=300°+k·360°,k∈Z}.因此,终边在直线y=-3x上的角的集合是S=S1∪S2={α|α=120°+k·360°,k∈Z}∪{α|α=300°+k·360°,k∈Z},即S={α|α=120°+2k·180°,k∈Z}∪{α|α=120°+(2k+1)·180°,k∈Z}={α|α=120°+n·180°,n∈Z}.故终边在直线y=-3x上的角的集合是S={α|α=120°+n·180°,n∈Z}.跟踪训练4解终边在y=33x(x≥0)上的角的集合是S1={α|α=30°+k·360°,k∈Z};终边在y=33x(x<0)上的角的集合是S2={α|α=210°+k·360°,k∈Z}.因此,终边在直线y=33x上的角的集合是S=S1∪S2={α|α=30°+k·360°,k∈Z}∪{α|α=210°+k·360°,k∈Z},即S={α|α=30°+2k·180°,k∈Z}∪{α|α=30°+(2k+1)·180°,k∈Z}={α|α=30°+n·180°,n∈Z}.故终边在直线y=33x上的角的集合是S={α|α=30°+n·180°,n∈Z}.当堂训练1.C 2.C 3.三 4.1.45.解(1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.(2)终边落在阴影部分(含边界)的角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.学习目标 1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换.2.体会引入弧度制的必要性,建立角的集合与实数集一一对应关系.3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点一角度制与弧度制思考1在初中学过的角度制中,1度的角是如何规定的?思考2在弧度制中,1弧度的角是如何规定的,如何表示?思考3“1弧度的角”的大小和所在圆的半径大小有关系吗?梳理(1)角度制和弧度制(2)角的弧度数的计算设r是圆的半径,l是圆心角α所对的弧长,则角α的弧度数的绝对值满足|α|=lr.知识点二角度制与弧度制的换算思考角度制和弧度制都是度量角的单位制,它们之间如何进行换算呢?梳理(1)角度与弧度的互化(2)一些特殊角的度数与弧度数的对应关系知识点三 扇形的弧长及面积公式思考 扇形的面积与弧长公式用弧度怎么表示? 梳理类型一 角度与弧度的互化 例1 将下列角度与弧度进行互化. (1)20°;(2)-15°;(3)7π12;(4)-11π5.反思与感悟 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180°即可求解.把弧度转化为角度时,直接用弧度数乘以180°π即可. 跟踪训练1 (1)把112°30′化成弧度; (2)把-5π12化成度.类型二 用弧度制表示终边相同的角例2 已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角.反思与感悟 用弧度制表示终边相同的角2k π+α(k ∈Z )时,其中2k π是π的偶数倍,而不是整数倍,还要注意角度制与弧度制不能混用.跟踪训练2 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α≤2π; (2)在[0°,720°]内找出与2π5角终边相同的角.类型三 扇形的弧长及面积公式的应用例3 (1)若扇形的中心角为120°,半径为3,则此扇形的面积为( ) A .π B.5π4 C.3π3 D.23π9(2)如果2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为( ) A .2 B.2sin 1 C .2sin 1 D.4sin 1反思与感悟 联系半径、弧长和圆心角的有两个公式:一是S =12lr =12|α|r 2,二是l =|α|r ,如果已知其中两个,就可以求出另一个.求解时应注意先把度化为弧度,再计算. 跟踪训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数.1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关 2.时针经过一小时,转过了( )A.π6 rad B .-π6 radC.π12rad D .-π12rad3.若θ=-5,则角θ的终边在( ) A .第四象限 B .第三象限 C .第二象限D .第一象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形圆心角的弧度数是( ) A .1 B .4 C .1或4D .2或45.已知⊙O 的一条弧AE 的长等于该圆内接正三角形的边长,则从OA 顺时针旋转到OE 所形成的角α的弧度数是________.1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 易知:度数×π180 rad =弧度数,弧度数×180°π=度数.3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,在具体应用时,要注意角的单位取弧度.答案精析问题导学 知识点一思考1 周角的1360等于1度.思考2 在单位圆中,长度为1的弧所对的圆心角称为1弧度角.思考3 在半径为1的圆中,1弧度的角为长度为1的弧所对的圆心角,又当半径不同时,同样的圆心角所对的弧长与半径之比是常数,故1弧度角的大小与所在圆的半径大小无关. 梳理 (1)度 弧度 弧度 知识点二思考 利用1°=π180 rad 和1 rad =180°π进行弧度与角度的换算.梳理 (1)2π 360° π 180° 0.017 45 57.30° (2)45° 90° 135° 270° 0 π6 π3 2π35π6 知识点三思考 设扇形的半径为r ,弧长为l ,α为其圆心角,则S =12lr ,l =αr .题型探究例1 解 (1)20°=20π180=π9. (2)-15°=-15π180=-π12.(3)7π12=712×180°=105°. (4)-11π5=-115×180°=-396°.跟踪训练1 解 (1)112°30′=⎝⎛⎭⎫2252°=2252×π180=5π8. (2)-5π12=-⎝⎛⎭⎫5π12×180π°=-75°. 例2 解 (1)2 010°=2 010×π180=67π6=5×2π+7π6,又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-29π6;当k =-2时,γ=-17π6;当k =-1时,γ=-5π6.跟踪训练2 解 (1)∵-1 480°=-1 480×π180=-74π9,而-74π9=-10π+16π9,且0≤α≤2π,∴α=16π9.∴-1 480°=16π9+2×(-5)π.(2)∵2π5=2π5×(180π)°=72°,∴终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z ),当k =0时,θ=72°;当k =1时,θ=432°. ∴在[0°,720°]内与2π5角终边相同的角为72°,432°.例3 (1)A (2)D跟踪训练3 解 设扇形的半径为R ,弧长为l ,则2R +l =4,∴l =4-2R , 根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad. 当堂训练1.D 2.B 3.D 4.C 5.-34.1单位圆与任意角的正弦函数、余弦函数的定义4.2单位圆与周期性学习目标 1.理解任意角的正弦函数、余弦函数的定义及其应用.2.掌握同角的正弦、余弦函数值间的关系.3.理解周期函数的定义.知识点一任意角的正弦函数和余弦函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,PM⊥x 轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦分别等于什么?思考2对确定的锐角α,sin α,cos α的值是否随P点在终边上的位置的改变而改变?思考3若取|OP|=1时,sin α,cos α的值怎样表示?梳理(1)对于任意角α,使角α的顶点与原点重合,始边与x轴的非负半轴重合,终边与单位圆交于唯一的点P(u,v),那么点P的____________定义为角α的正弦函数,记作________;点P的____________定义为角α的余弦函数,记作________.(2)对于给定的角α,点P的纵坐标v、横坐标u都是唯一确定的,所以正弦函数、余弦函数都是以角为自变量,以单位圆上点的坐标为函数值的函数.知识点二正弦、余弦函数的定义域思考对于任意角α,sin α,cos α都有意义吗?梳理正弦函数、余弦函数的定义域知识点三正弦、余弦函数值在各象限的符号思考根据三角函数的定义,你能判断正弦、余弦函数的值在各象限的符号吗?梳理正弦、余弦函数在各象限的符号知识点四周期函数思考由sin(x+2kπ)=sin x(k∈Z)可知函数值随着角的变化呈周期性变化,你能说一下函数的变化周期吗?梳理一般地,对于函数f(x),如果存在____________,对定义域内的____________x值,都有____________,我们就把f(x)称为周期函数,____称为这个函数的周期.特别地,正弦函数、余弦函数是周期函数,称2kπ(k∈Z,k≠0)为正弦函数、余弦函数的周期,其中2π是正弦函数、余弦函数正周期中________的一个,称为____________,简称为周期.类型一 正弦函数、余弦函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ的值.反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应的三角函数值.②在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a,4a )(a ≠0),求2sin α+cos α的值.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.反思与感悟 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a ,b ),则对应角的三角函数值分别为sin α=b a 2+b 2,cos α=aa 2+b 2. 跟踪训练2 已知角α的终边在直线y =3x 上,求sin α,cos α的值.类型二 正弦、余弦函数值符号的判断例3 (1)若α是第二象限角,则点P (sin α,cos α)在( )A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4.反思与感悟准确确定正弦函数、余弦函数值中角所在象限是基础,准确记忆正弦函数、余弦函数值在各象限的符号是解决这类问题的关键.跟踪训练3若三角形的两内角A,B,满足sin A cos B<0,则此三角形必为()A.锐角三角形B.钝角三角形C.直角三角形D.以上三种情况都有可能类型三周期性例4(1)已知函数f(x)在其定义域上都满足f(x+2)=-f(x),求证:函数f(x)是以4为周期的周期函数;(2)已知函数f(x)在其定义域上都满足f(x+2)=-1f(x),求证:函数f(x)是以4为周期的周期函数.反思与感悟(1)证明函数是周期函数,只需根据定义:存在非零常数T,对任意定义域内实数x,都有f(x+T)=f(x).(2)一般地,如果f(x+a)=-f(x),那么f(x)的周期为2a(a≠0);如果f(x+a)=1f(x),那么f(x)的周期也为2a(a≠0).跟踪训练4若函数y=f(x)(x∈R)满足f(x)=f(x-a)+f(x+a)(a<0),f(2a)=1,求f(14a)的值.1.已知角α的终边经过点(-4,3),则cos α等于()A.45B.35 C .-35D .-452.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-23.设f (x )是以1为一个周期的函数,且当x ∈(-1,0)时,f (x )=2x +1,则f (72)的值为( )A .2B .0C .-1D .-34.点P (sin 2 016°,cos 2 016°)位于第________象限. 5.已知角α的终边在直线y =2x 上,求sin α+cos α的值.1.三角函数的定义是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点在终边上的位置无关这一关键点. 2.三角函数值的符号主要涉及开方、去绝对值等计算问题,同时也要注意终边在坐标轴上的角的三角函数值情况,因角的终边经过的点决定了三角函数值的符号,所以当点的位置不确定时注意进行讨论,体现了分类讨论的思想.3.正弦、余弦函数的周期性反映了终边相同的角的三角函数值相等,作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.答案精析问题导学 知识点一思考1 sin α=y r ,cos α=xr .思考2 不会.思考3 sin α=y ,cos α=x .梳理 (1)纵坐标v v =sin α 横坐标u u =cos α 知识点二思考 由三角函数的定义可知,对于任意角α,sin α,cos α都有意义. 知识点三思考 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (u ,v ),则sin α=v ,cos α=u .当α为第一象限角时,v >0,u >0,故sin α>0,cos α>0,同理可得α在其他象限时三角函数值的符号. 知识点四思考 2π,4π,6π,-2π,…等都是函数的周期.梳理 非零实数T 任意一个 f (x +T )=f (x ) T 最小 最小正周期 题型探究例1 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=xr=xx 2+9. 又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010. 跟踪训练1 解 r =(-3a )2+(4a )2=5|a |. ①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.例2 解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则 x =k ,y =-3k , r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r =-3k 10k =-31010,1cos α=r x =10k k =10, ∴10sin α+3cos α=10×⎝⎛⎭⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,1cos α=r x =-10k k =-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.跟踪训练2 解 因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点,则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32, cos α=a 2a =12.若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12.例3 (1)D(2)解 ①∵145°是第二象限角, ∴sin 145°>0,∵-210°=-360°+150°, ∴-210°是第二象限角, ∴cos (-210°)<0, ∴sin 145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin 3>0,cos 4<0, ∴sin 3·cos 4<0. 跟踪训练3 B例4 证明 (1)∵f (x +4)=f [(x +2)+2]=-f (x +2) =-[-f (x )]=f (x ),∴由周期函数定义知,函数f (x )是以4为周期的周期函数. (2)∵f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ),∴由周期函数定义知,函数f (x )是以4为周期的周期函数. 跟踪训练4 解 由f (x )=f (x -a )+f (x +a ),① 得f (x +a )=f (x )+f (x +2a ).② ①+②,得f (x -a )+f (x +2a )=0, 即f (x -a )=-f (x +2a ), ∴f (x )=-f (x +3a ), 即f (x +3a )=-f (x ),∴f (x +6a )=-f (x +3a )=f (x ). ∴T =6a 为函数y =f (x )的一个周期, ∴f (14a )=f (6a ×2+2a )=f (2a )=1. 当堂训练1.D 2.C 3.B 4.三5.解 在直线y =2x 上任取一点P (x,2x )(x ≠0), 则r =x 2+(2x )2=5|x |. ①若x >0,则r =5x , 从而sin α=2x 5x=255,cos α=x 5x =55, ∴cos α+sin α=355.②若x <0,则r =-5x , 从而sin α=2x-5x=-255,cos α=x -5x =-55,∴cos α+sin α=-355.4.3 单位圆与正弦函数、余弦函数的基本性质学习目标 1.会利用单位圆研究正弦、余弦函数的基本性质.2.能利用正弦、余弦函数的基本性质解决相关的问题.知识点 正弦、余弦函数的性质思考1 正弦函数、余弦函数的最大值、最小值分别是多少?思考2 能否认为正弦函数在单位圆的右半圆是单调增加的?梳理正弦、余弦函数的性质类型一 正弦余数、余弦函数的定义域 例1 求下列函数的定义域. (1)y =2sin x -3; (2)y =lg(sin x -22)+1-2cos x .反思与感悟 (1)求函数的定义域,就是求使解析式有意义的自变量的取值范围,一般通过解不等式或不等式组求得,对于三角函数的定义域问题,还要考虑三角函数自身定义域的限制.(2)要特别注意求一个固定集合与一个含有无限多段的集合的交集时,可以取特殊值把不固定的集合写成若干个固定集合再求交集.跟踪训练1 函数y =2sin x +1的定义域为_________________________________________. 类型二 正、余弦函数的值域与最值例2 (1)求函数y =cos x (-π3≤x ≤5π6)的值域.(2)已知函数y =a sin x +1的最大值为3,求它的最小值.反思与感悟 (1)求正、余弦函数的值域或最值时应注意定义域,解题时可借助图像结合正、余弦函数的单调性进行分析.(2)对于含有参数的值域或最值,应注意对参数讨论.跟踪训练2 函数y =2+cos x ,x ∈(-π3,2π3]的值域为________.类型三 正、余弦函数的单调性例3 函数y =cos x 的一个递增区间为( ) A .(-π2,π2)B .(0,π)C .(π2,3π2)D .(π,2π)反思与感悟 利用单位圆有助于理解记忆正弦、余弦函数的单调区间,特别注意不连贯的单调区间不能并.跟踪训练3 求下列函数的单调区间.(1)y =sin x ,x ∈[-π,π];(2)y =cos x ,x ∈[-π,π].1.函数y =sin x ,x ∈[-π4,π4]的最大值和最小值分别是( )A .1,-1B .1,22 C.22,-22D .1,-222.不等式2sin x -1≥0的解集为____________________________________________. 3.函数y =2cos x -1的定义域为_____________________________________________. 4.求y =-2sin x ,x ∈[-π6,π]的值域.利用单位圆来研究正弦、余弦函数的基本性质,能够加深对正弦、余弦函数性质的理解与认识,同时也有助于提升学生利用数形结合思想解决问题的意识.答案精析问题导学 知识点思考1 设任意角x 的终边与单位圆交于点P (cos x ,sin x ),当自变量x 变化时,点P 的横坐标是cos x ,|cos x |≤1,纵坐标是sin x ,|sin x |≤1,所以正弦函数、余弦函数的最大值为1,最小值为-1.思考2 不能,右半圆可以表示无数个区间,只能说正弦函数在每一个区间[2k π-π2,2k π+π2](k ∈Z )上是增加的. 梳理 2π [-π2+2k π,π2+2k π]题型探究例1 解 (1)自变量x 应满足2sin x -3≥0,即sin x ≥32. 图中阴影部分就是满足条件的角x 的范围,即{x |2k π+π3≤x ≤2k π+2π3,k ∈Z }.(2)由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.则不等式组的解的集合如图(阴影部分)所示, ∴{x |2k π+π3≤x <2k π+3π4,k ∈Z }.跟踪训练1 [-π6+2k π,7π6+2k π],k ∈Z例2 解 (1)∵y =cos x 在区间[-π3,0]上是增加的,在区间[0,5π6]上是减少的,∴当x =0时,y max =1,当x =5π6时,y min =cos 5π6=-32,∴y =cos x (-π3≤x ≤5π6)的值域是[-32,1].(2)当a >0时,y max =a ×1+1=3,得a =2, ∴当sin x =-1时,y min =2×(-1)+1=-1; 当a <0时,y max =a ×(-1)+1=3,得a =-2, ∴当sin x =1时,y min =-2×1+1=-1. ∴它的最小值为-1. 跟踪训练2 [32,3]例3 D跟踪训练3 解 (1)y =sin x 在x ∈[-π,π]上的递增区间为[-π2,π2],递减区间为[-π,-π2],[π2,π]. (2)y =cos x 在x ∈[-π,π]上的递增区间为[-π,0],递减区间为[0,π]. 当堂训练1.C 2.{x |π4+2k π≤x ≤3π4+2k π,k ∈Z }3.⎣⎡⎦⎤-π3+2k π,π3+2k π ,k ∈Z 4.解 由x ∈[-π6,π],得sin x ∈[-12,1],∴y =[-2,1],∴y =-2sin x ,x ∈[-π6,π]的值域为[-2,1].4.4 单位圆的对称性与诱导公式(一)学习目标 1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关的诱导公式解决一些三角函数的求值、化简和证明问题.知识点2kπ±α,-α,π±α的诱导公式思考1设α为任意角,则2kπ+α,π+α,-α,2kπ-α,π-α的终边与α的终边有怎样的对应关系?思考22kπ+α,π+α,-α,2kπ-α,π-α终边和单位圆的交点与α的终边和单位圆的交点有怎样的对称关系?试据此分析角α与-α的正弦函数、余弦函数的关系.梳理对任意角α,有下列关系式成立:sin(2kπ+α)=sin α,cos(2kπ+α)=cos α(1.8)sin(-α)=-sin α,cos(-α)=cos α(1.9)sin(2π-α)=-sin α,cos(2π-α)=cos α(1.10)sin(π-α)=sin α,cos(π-α)=-cos α(1.11)sin(π+α)=-sin α,cos(π+α)=-cos α(1.12)公式1.8~1.12叫作正弦函数、余弦函数的诱导公式.这五组诱导公式的记忆口诀是“____________________________”.其含义是诱导公式两边的函数名称________,符号则是将α看成________时原角所在象限的正弦函数、余弦函数值的符号.类型一给角求值问题例1求下列各三角函数式的值.(1)cos 210°;(2)sin 11π4;(3)sin(-43π6);(4)cos(-1 920°).反思与感悟利用诱导公式求任意角三角函数值的步骤(1)“负化正”:用公式一或三来转化.(2)“大化小”:用公式一将角化为0°到360°间的角.(3)“角化锐”:用公式二或四将大于90°的角转化为锐角.(4)“锐求值”:得到锐角的三角函数后求值.跟踪训练1求下列各三角函数式的值.(1)sin 1 320°; (2)cos ⎝⎛⎭⎫-31π6.类型二 给值(式)求值问题例2 (1)已知sin(π+α)=-0.3,则sin(2π-α)=________. (2)已知cos(π6-α)=22,则cos(5π6+α)=________.反思与感悟 解决此类问题的关键是抓住已知角与所求角之间的关系,从而灵活选择诱导公式求解,一般可从两角的和、差的关系入手分析,解题时注意整体思想的运用. 跟踪训练2 已知cos ⎝⎛⎭⎫π6+θ=33,则cos ⎝⎛⎭⎫5π6-θ=________. 类型三 利用诱导公式化简 例3 化简下列各式. (1)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α);(2)1+2sin 290°cos 430°sin 250°+cos 790°.引申探究若本例(1)改为:sin (n π-α)cos (n π-α)cos[α-(n +1)π]·sin[(n +1)π-α](n ∈Z ),请化简.反思与感悟 利用诱导公式进行化简,主要是进行角的转化,最终达到角的统一,能求值的要求出值.跟踪训练3 化简:cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α).1.sin 585°的值为( ) A .-22 B.22 C .-32 D.322.cos(-16π3)+sin(-16π3)的值为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年人教版高中数学必修四全册导学案目录课题:任意角 (1)课题:1.1.2 弧度制 (5)课题:任意角的三角函数 (9)课题:三角函数的诱导公式(1) (12)课题:三角函数的诱导公式(2) (15)课题: 正弦函数、余弦函数的图象 (19)课题: 正弦函数、余弦函数的性质 (23)课题: 正切函数的性质和图象 (26)课题: 函数y=Asin(ωx+φ)的图象(1) (30)课题: 函数y=Asin(ωx+φ)的图象(2) (36)课题:同角三角函数的基本关系 (41)课题:用单位圆中的线段表示三角函数值 (44)课题: 平面几何中的向量方法 (49)课题: 平面向量的实际背景及基本概念 (50)课题: 向量的加法运算及其几何意义 (53)课题: 向量的减法运算及其几何意义 (57)课题: 向量数乘运算及其几何意义 (60)课题: 平面向量的基本定理 (63)课题: 平面向量数量积的坐标表示、模、夹角 (67)课题: 平面向量的数量积的物理背景及其含义 (68)课题: 二倍角的正弦、余弦和正切公式 (70)课题: 两角差的余弦公式 (72)课题: 两角和与差的正弦、余弦、正切公式 (73)课题: 简单的三角恒等变换 (75)课题:任意角,即任意一个与角k +α(边 。
即学即练:1.如图⑴、⑵中终边分别为所对应的角分别属于第 、 、 象限角。
2.下列角中终边与330°相同的角是( )A .30°B .30°C .630°D .630° 3. 把1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是( ) A .45o4×360° B .45o4×360°C .45o5×360° D .315o5×360°4.下列结论中正确的是( ) A. 小于90°的角是锐角B. 第二象限的角是钝角C. 相等的角终边一定相同D. 终边相同的角一定相等【课外拓展】1.下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .=2. 若α是第一象限的角,则是( ) A. 第一象限的角B. 第一或第三象限的角C. 第二或第三象限的角D. 第二或第四象限的角3. 下列各角中,与角的终边相同的角是 ( )A .B .C .D .123OB OB OB 、、---------{}Z k k ∈±⋅=,90360| αα{}Z k k ∈+⋅=,90180| αα2α330︒510︒870︒150-︒750-︒⑵B 1 y⑴Ox45°B 2O x B 3y30°60o4.(1)终边落在 (x ≥0)上的角的集合为 。
(2)终边与角相同的角的集合为 。
5. 若角的终边与角的终边相同,那么在内,与角有相同终边的角为 。
6. 写出与角终边相同的角的集合S ,并把S 中适合不等式3600≤β<360的元素β写出来.7. 已知角的终边经过点,求角。
8. (选做)如图,请终边落在阴影部分(含边界)的角的集合【课堂检测】1. ,则在( )A.第一象限B.第二象限C.第三象限D.第四象限2. 与-1000°终边相同的最小正角是__________3. 在“①160°②480°③960°④1600°”这四个角中,属于第二象限的角是________.4. 终边落在x轴的非负半轴上,角的集合:________________________ . 终边落在x轴的非正半轴上,角的集合:33y x =20-θ60[0,360)︒︒2θ21--α(1,3)P α300α=α--第8________________________ . 【拓展探究】探究1. 写出下列象限角的集合:(1)第一象限;(2)第二象限;(3)第三象限;(4)第四象限.探究2. 写出与角的终边相同的角的集合S ,并写出S 中适合不等式的元素β.【当堂训练】1. 与405°角终边相同的角是( )A. k ·360°-45°B. k ·360°-405°C. k ·360°+45°D. k ·180°+45°2. 下列各式中不正确的是( )A. 终边在x 轴上的角的集合是B. 终边在y 轴上的角的集合是C. 终边在坐标轴上的角的集合是D. 终边在直线y =x 上的角的集合是 3. 若角满足,角与有相同始边且有相同终边,则角=4. 已知角是第一象限角,则是第几象限角? 【小结与反馈】1. 如果角的终边在坐标轴上,这个角不属于任何象限; 2.判断一个角是第几象限角,只要把改写成,,那么在第几象限,就是第几象限角.若角与角适合关系:,,则终边相同;若角与适合关系:,,则、 终边互为反向延长线;45α=360720β-≤<()k Z ∈()k Z ∈()k Z ∈()k Z ∈{}0|180 k k z αα=⋅∈{}00|90180 k k z αα=+⋅∈{}0|90 k k z αα=⋅∈{}00|45k 360 k z αα=+⋅∈α0360α<<3ααααα2360,k k z α'+⋅∈0360α'≤<α'ααβ(2)180k αβ-=⋅k z ∈αβ、αβ=21)180k αβ-+⋅(k z ∈β课题:1.1.2 弧度制正角的弧度数为“弧度”可用“=13. 若一段圆弧等于其所在的圆的内接正三角形的边长,则其所对的圆心角的弧度数为( )A.B.C.D.24. ① ; ② ; ③;④ 度; ⑤ 度; ⑥ 度。
5. 已知中心角为的扇形,其弧长为,则它所在圆的半径为 。
6. 已知扇形的圆心角为,半径长为6。
(1)求弧的弧长; (2)求弓形的面积。
7. 把写成的形式;(2)若且与(1)中终边相同,求。
8.(选做)自行车大链轮有48个齿,小链轮有20个齿,彼此由链条连接,当大链轮转过一周时,小链轮转过的角度是多少度?多少弧度?【课堂检测】1. 弧度的角的终边所在的象限是 ( )A .第一象限B .第二象限C .第三象限D .第四象限2. 已知扇形的半径为,面积为,那么这个扇形中心角的弧度数是 ( ) A .1 B . C .2 D .43232π318︒=rad 315︒=rad 1110-︒=rad 6π=78π-=2≠30︒πOAB α120︒AB DAB 1480-2k πα+(,[0,2))k Z απ∈∈[4,0]βπ∈-βαβ2R 2R 2oAB 3.把化成度,即________ 4. 用弧度表示终边在y 轴上的角的集合是:______________________________ 【拓展探究】探究1. 一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的弧长为 ( A .70 cm B .cm C .()cm D . cm探究2. 如图,已知扇形的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积.变式:已知扇形的周长为20 cm ,当扇形的中心角为多大时,它有最大面积,最大面积是多少?【当堂训练】 1. 弧度化角度:角度化弧度:-720°=____________2.某扇形的面积为1,它的周长为4,那么该扇形圆心角的度数为 ( ) A .2°B .2C .4°D .43. 下列与的终边相同的角的表达式中,正确的是( )A. 2k π+45°B. k ·360°+C. k ·360°-315°(k ∈z)D. k π+(k ∈z)34rad π34rad π=6703425-3π3π35AOB _________127=π2cm cm π49π49π45课题:任意角的三角函数课题:三角函数的诱导公式(1)=__________ =___________ =__________ 225))cos α+2040)=.))360αα-+cos(b +)())()sin 360180cos 180ααα+⋅+⋅--3,=2cos()3sin( 4cos()sin(2)παπααπα--+-+-求:课题:三角函数的诱导公式(2)104)_________=25παπ⎫-⎪⎭的值. 是方程的一个根,且2221sin 2sin 3sin 89+++⋅⋅⋅+cos α25760x x --=α课题: 正弦函数、余弦函数的图象和 ; ②图象,③借助正弦线作出y= sinx,的图象后,因为终边相同的角有相同的三角函数,所以函数y= sinx,,的图象,与函数y= sinx,的图象的形状 。
因此,我们只要将函数y= sinx,的图象向左、向右平行移动(每次移动个单位长度),就得到 。
个单位而得到。
即学即练:1. 函数y =2+sinx ,x ∈[0,2π]的图象上,起着关键作用的五个点的坐标分别是:_____________________________________________________ 。
2. 函数,x ∈[0,2π]的图象上,起着关键作用的五个点的坐标分别是:____________________________________________________。
3.函数y =2+sinx ,x ∈[0,2π]的图象可由函数y =sinx ,x ∈[0,2π]的图象向___平移_____个单位而得的。
4. 函数,x ∈[0,2π]的图象可由,x ∈[0,2π]的图象关于_____对称变换而得到。
【课外拓展】1.[]0,2x π∈[]2,2x k k πππ∈+k 0k z ∈≠且[]0,2x π∈[]0,2x π∈2πcos sin ,cos sin 2y x x y x y x π⎛⎫==+∴== ⎪⎝⎭④图象可以由向平移cos y x =-cos y x =-cos y x =()y=sin x 函数的一个单调增区间是:【拓展探究】探究1.画出下列函数的图象:(1) y=1+sin ,∈[0,2π]; (2)y= cos ,∈[0,2π], 探究2. 利用“五点法”作出函数的图象, 并指出画出的图象与函数:的图象有什么关系.【当堂训练】1.2. 若函数y=2cosx(0≤x ≤2π)的图象和直线y=2围成一个封闭的平面图形, 求这个封闭图形的面积.3. 利用正弦函数和余弦函数的图象,求满足的x 的集合: 【小结与反馈】掌握用五点法作正弦函数和余弦函数的简图,能用正弦函数和余弦函数的图象解最简单的三角x x -x x 5sin(),(,)222y x x πππ⎡⎤=-∈⎢⎥⎣⎦5cos ,,22y x x ππ⎡⎤=-∈⎢⎥⎣⎦()()02sin cos x x x π>在区间,内,使成立的的取值范围是 A.,42ππ⎛⎫⎪⎝⎭ B.,4ππ⎛⎫ ⎪⎝⎭5C.,44ππ⎛⎫ ⎪⎝⎭53D.,,442ππππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭1cos 2x ≤课题: 正弦函数、余弦函数的性质【自主学习】 知识梳理:正弦函数y =sinx,的性质1. 定义域为 。