函数及其表示法练习题

合集下载

函数及其表示练习题

函数及其表示练习题

函数及其表示练习题一、选择题1. 函数f(x)=3x^2-2x+1在x=2处的导数是()。

A. 10B. 12C. 14D. 162. 已知函数f(x)=x^3-2x^2+x-2,求f'(1)的值是()。

A. -1B. 0C. 1D. 23. 函数y=sin(x)+cos(x)的值域是()。

A. [-1, 1]B. [0, √2]C. [1, √2]D. [-√2, √2]4. 若函数g(x)=x^2+1在区间[-1,1]上是增函数,则g(x)的导数g'(x)在该区间内()。

A. 恒为正B. 恒为负C. 恒等于0D. 变化不定5. 函数h(x)=ln(x)的定义域是()。

A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)二、填空题6. 函数f(x)=x^3-6x^2+11x-6的零点个数是_________。

7. 函数f(x)=1/x在x=2处的导数f'(2)是_________。

8. 函数f(x)=x^2+bx+c,当b^2-4ac=0时,该二次函数的图像是_________。

9. 函数f(x)=sin(x)在[0, π]区间内的值域是_________。

10. 若函数f(x)=x^3-3x^2+2x+1在x=1处取得极值,则f'(1)=_________。

三、解答题11. 已知函数f(x)=2x^3-3x^2-12x+5,求其导数f'(x),并找出f'(x)=0时的x值。

12. 给定函数g(x)=x^4-4x^3+6x^2-4x+1,求其在x=0和x=1时的值,并讨论g(x)在区间[0,1]上的单调性。

13. 函数h(x)=e^x-1的图像在x=0处的切线方程是什么?14. 若函数p(x)=x^5-5x^3+3x,求其在x=-1处的二阶导数p''(-1)。

15. 证明函数f(x)=x^3在R上是严格递增的。

表示函数的方法专题训练卷(含答案详解)

表示函数的方法专题训练卷(含答案详解)

1.已知函数f (x )由下表给出,则f (2)=( ).A .1B .2C 2.y =f (x )的图象如图,则函数的定义域是( ).A .[-5,6)B .[-5,0]∪[2,6]C .[-5,0)∪[2,6)D .[-5,0]∪[2,6)3.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ).A .y =50x (x >0)B .y =100x (x >0)C .50y x =(x >0) D .100y x=(x >0) 4.已知()2xf x x =+,则f (f (-1))的值为( ). A .0 B .1 C .-1 D .25.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,下图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图象是( ).6.已知111f x x ⎛⎫=⎪+⎝⎭,则f (x )=________. 7.已知函数f (x )满足f (x -1)=x 2,那么f (2)=__________.8.某班连续进行了5次数学测试,其中智方同学的成绩如表所示,在这个函数中,定义域是__________,值域是__________.9资的方式是:第一个月1 000元,以后每个月比上一个月多100元.设该大学生试用期的第x个月的工资为y元,则y是x的函数,分别用列表法、图象法和解析法表示该函数关系.10.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.参考答案1. 答案:C2. 答案:D3. 答案:C 解析:依题意有12(x +3x )y =100,所以xy =50,50y x =,且x >0,故y 与x 的函数关系式是50y x=(x >0). 4. 答案:C 解析:∵()2x f x x =+,∴f (-1)=112--+=-1. ∴f (f (-1))=f (-1)=112--+=-1. 5. 答案:D解析:(1)开始乘车速度较快,后来步行,速度较慢;(2)开始某人离乙地最远,以后越来越近,最后到达乙地,符合(1)的只有C ,D ,符合(2)的只有B ,D .6. 答案:1x x + 解析:令1t x =,则1x t =,将1x t=代入111f x x⎛⎫= ⎪+⎝⎭,得()1111tf t t t==++.∴()1x f x x =+.7. 答案:9解析:令x -1=2,则x =3,而32=9,所以f (2)=9. 8. 答案:{1, 2,3,4,5} {90,92,93,94,95} 9. 解:(1)该函数关系用列表法表示为:(2)(3)该函数关系用解析法表示为:y=100x+900,x∈{1,2,3,…,6}.10.解:设f(x)=ax2+bx+c(a≠0),∵f(0)=1,∴c=1.又∵f(x+1)-f(x)=2x,∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,即2ax+(a+b)=2x.∴22aa b=⎧⎨+=⎩,,解得a=1,b=-1.∴f(x)=x2-x+1.。

【创新设计】高中数学(人教版必修一)配套练习:1.2函数及其表示习题课(含答案解析)

【创新设计】高中数学(人教版必修一)配套练习:1.2函数及其表示习题课(含答案解析)

§1.2 习题课
课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.
1.下列图形中,不可能作为函数y=f(x)图象的是()
2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N 的关系是()
A.M=A,N=B B.M?A,N=B
C.M=A,N?B D.M?A,N? B
3.函数y=f(x)的图象与直线x=a的交点()
A.必有一个B.一个或两个
C.至多一个D.可能两个以上
4.已知函数,若f(a)=3,则a的值为()
A. 3 B.- 3
C.±3 D.以上均不对
5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()
A.[-1,2] B.[-2,2]
C.[0,2] D.[-2,0]
6.函数y=
x
kx2+kx+1
的定义域为R,则实数k的取值范围为()
A.k<0或k>4 B.0≤k<4 C.0<k<4 D.k≥4或k≤0
一、选择题
1.函数f(x)=
x
x2+1
,则f(
1
x
)等于()。

高一数学函数及其表示试题

高一数学函数及其表示试题

高一数学函数及其表示试题1.下列函数中,图象如图的函数可能是().A.y=x3B.y=2x C.y=D.y=log2x【答案】C【解析】由图像可知,函数的定义域为,且过点;而选项A:的定义域为,选项B:的定义域为,选项C:的定义域为,且过点,选项D:的定义域为;故选C.考点:函数的图像.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与【答案】D【解析】表示同一函数必须具备两个条件:一是定义域相同,二是对应法则相同.对于A,的定义域为,而的定义域为,不符合;对于B,的定义域为,对于的定义域为,不符合;对于C,函数与函数的定义域都为,但当时,与的对应法则不相同,也不符合;对于D,函数与函数的定义域都为,且,两个函数的对应法则也相同,故相同函数的是答案D.【考点】1.函数的概念;2.对数的恒等式.4.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义5.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.6.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式||a|-|b||≤|a±b|≤|a|+|b|,由题,a≤0,则|x-a|≤|x|-a,f(x)≥1,A错误;f(x)≥1恒成立,则a≤0,x≥0,B错误,a<0,则0≤|x-a|≤|x|-a,方程f(x)=a,左边是正数,右边是负数,无解,所以C错误,方程f(x)=a有解,则两边同号,即|x|-a与a同号,可解得0<a≤1,选D.【考点】函数与绝对值不等式.7.下列四组中表示相等函数的是 ( )A.B.C.D.【答案】B【解析】A.的定义域不同;B.是同一函数;C.的定义域不同;D.的值域不同。

函数的表示法习题含答案

函数的表示法习题含答案
若 ,则
解得 或 (舍去),
或 .
(2)由题意:
【点睛】
本题考查分段函数求值以及由函数值求自变量,考查分类讨论思想以及基本求解能力.
20.(1) .(2)
【解析】
【分析】
(1) 对任意的 恒成立,等价于 对任意的 ,由此能求出实数 的最小值.
(2)推导出 ,由此能求出数 的值域.
3.配凑法:由已知条件 ,可将 改写成关于 的表达式,然后以 代替 ,便得 的解析式;
4.消去法:已知 与 之间的关系式,可根据已知条件再构造出另外一个组成方程组,通过解方程组求出
16.(1) ;(2)
【解析】
【分析】
(1)过A、D分别作 于G, 于H,由平面图形的知识可得线段长度,由面积公式分段可得函数解析式;(2)化简A、B集合,由 可得 ,得到关于a的不等式,从而求出 的取值范围。
19.已知
(1)若 ,且 ,求实数 的值;
(2)求 的值.
20.已知函数 .
(1)若 对任意的 恒成立,求实数 的最小值;
(2)若函数 ,求函数 的值域.
参考答案
1.C
【解析】
【分析】
推导出 ,由此能求出结果.
【详解】
函数 的定义域为 当 时, ;
当 时, ;当 时, ,

故选:C.
【点睛】
本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.
【详解】
(1)过A、D分别作 于G, 于H,
因为ABCD是等腰梯形,底角为 ,AB= cm ,
所以BG=AG=DH=HC=2cm ,
又BC=7cm,所以AD=GH=3cm,
(1)当点F在BG上,即 时, ;

函数的表示法训练题(附答案)

函数的表示法训练题(附答案)

函数的表示法训练题(附答案)1.下列各图中,不能是函数f(x)图象的是()解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f(1x)=11+x,则f(x)等于()A.11+x(x≠-1)B.1+xx(x≠0)C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)解析:选C.f(1x)=11+x=1x1+1x(x≠0),∴f(t)=t1+t(t≠0且t≠-1),∴f(x)=x1+x(x≠0且x≠-1).3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=() A.3x+2B.3x-2C.2x+3D.2x-3解析:选B.设f(x)=kx+b(k≠0),∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.4.已知f(2x)=x2-x-1,则f(x)=________.解析:令2x=t,则x=t2,∴f(t)=t22-t2-1,即f(x)=x24-x2-1.答案:x24-x2-11.下列表格中的x与y能构成函数的是()A.x非负数非正数y1-1B.x奇数0偶数y10-1C.x有理数无理数y1-1D.x自然数整数有理数y10-1解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确.2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()A.1B.3C.15D.30解析:选C.法一:令1-2x=t,则x=1-t2(t≠1),∴f(t)=--1,∴f(12)=16-1=15.法二:令1-2x=12,得x=14,∴f(12)=16-1=15.3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是()A.2x+1B.2x-1C.2x-3D.2x+7解析:选B.∵g(x+2)=2x+3=2(x+2)-1,∴g(x)=2x-1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1解析:选D.设f(x)=(x-1)2+c,由于点(0,0)在函数图象上,∴f(0)=(0-1)2+c=0,∴c=-1,∴f(x)=(x-1)2-1.6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为()A.y=12x(x>0)B.y=24x(x>0)C.y=28x(x>0)D.y=216x(x>0)解析:选C.设正方形的边长为a,则4a=x,a=x4,其外接圆的直径刚好为正方形的一条对角线长.故2a=2y,所以y=22a=22×x4=28x. 7.已知f(x)=2x+3,且f(m)=6,则m等于________.解析:2m+3=6,m=32.答案:328.如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则的值等于________.解析:由题意,f(3)=1,∴=f(1)=2.答案:29.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________.解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1.答案:f(x)=x2-2x-110.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).解:令a=0,则f(-b)=f(0)-b(-b+1)=1+b(b-1)=b2-b+1.再令-b=x,即得f(x)=x2+x+1.11.已知f(x+1x)=x2+1x2+1x,求f(x).解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,∴f(x+1x)=f(1+1x)=1+1x2+1x=(1+1x)2-(1+1x)+1.∴f(x)=x2-x+1(x≠1).12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式.解:∵f(2+x)=f(2-x),∴f(x)的图象关于直线x=2对称.于是,设f(x)=a(x-2)2+k(a≠0),则由f(0)=3,可得k=3-4a,∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.∵ax2-4ax+3=0的两实根的平方和为10,∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,∴a=1.∴f(x)=x2-4x+3.。

函数的表示法重难点题型(举一反三)(解析版)

函数的表示法重难点题型(举一反三)(解析版)

1.2.2 函数的表示法重难点题型【举一反三系列】知识链接举一反三【考点1 函数的三种表示方法】【练 1】某种笔记本的单价是 5 元,买x(x ∈{1,2,3,4,5}) 本笔记本需要y 元,试用三种方法表示函数y =f (x) .【思路分析】利用函数的三种表示方法,即可将y表示成x的函数.【答案】解:(1)列表法:x12345y510152025(2)图象法(3)解析法:y=5x,x∈{1,2,3,4,5}.【点睛】本题考查函数的三种表示方法,列表法,图象法以及解析法,比较基础.【练 1.1】已知函数f(x),g(x)分别由下表给出:x123f(x) 211x123g(x) 321则f(g(1))的值为;当g(f(x))=2 时,x=.【思路分析】根据表格先求出g(1)=3,再求出f(3)=1,即f[g(1)]的值;由g(x)=2 求出x =2,即f(x)=2,再求出x的值.【答案】解:由题意得,g(1)=3,则f[g(1)]=f(3)=1∵g[f(x)]=2,即f(x)=2,∴x=1.故答案为:1,1.【点睛】本题是根据表格求函数值或自变量的值,看清楚函数关系和自变量对照表格求出.【练 1.2】在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1 及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图可表示为( )【思路分析】利用在y轴的右侧,S的增长会越来越快,切线斜率会逐渐增大,从而选出正确的选项.【答案】解:由题意知,当t>0 时,S的增长会越来越快,ƒ(3) ƒ(3) 故函数 S 图象在 y 轴的右侧的切线斜率会逐渐增大, 故选:B .【点睛】本题考查函数图象的变化特征,函数的增长速度与图象的切线斜率的关系,体现了数形结合的 数学思想.【练 1.3】如图,函数 f (x )的图象是曲线 O A B ,其中点 O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则 f ⎡ 1 ⎤ ⎢f (3) ⎥ ⎣ ⎦的值等于.【思路分析】先求出 f (3)=1,从而 ƒu 1] =f (1),由此能求出结果.【答案】解:函数 f (x )的图象是曲线 OAB ,其中点 O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),∴f (3)=1,ƒu 1] =f (1)=2.故答案为:2.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.【考点 2 描点法作函数图象】【练 2】作出下列函数的图象并写出定义域、值域.(1)y =2x ;(2)y =(x ﹣2)2+1;(3)y = 2;x(4)y=2x+1,x∈Z 且|x|<2.【思路分析】分别根据函数的单调性进行求解即可.【答案】解:(1)y=2x的定义域(﹣∞,+∞),值域(﹣∞,+∞);(2)函数y=(x﹣2)2+1≥1;定义域为(﹣∞,+∞),值域[1,+∞).(3)y= 2的定义域为(﹣∞,0)∪(0,+∞),值域为(﹣∞,0)∪(0,+∞);x(4)y=2x+1,x∈Z 且|x|<2.的定义域为{﹣1,0,1},此时y=﹣1,1,3,即值域为{﹣1,1,3},对应的图象为:【点睛】本题主要考查函数定义域和值域的求解,比较基础.【练 2.1】画下列函数图象并求值域.(1)y=﹣x2+2x+3;(2)y=|﹣x2+2x+3|;(3)y=|x﹣2|﹣|x﹣1|;(4)y=﹣x2+2|x|+3;(5)y=|x﹣2|+|x﹣1|.【思路分析】利用绝对值的几何意义,画出图象并求值域.【答案】解:(1)y=﹣x2+2x+3,如图所示,值域为(﹣∞,4](2)y=|﹣x2+2x+3|,如图所示,值域为[0,+∞),(3)y=|x﹣2|﹣|x﹣1|,如图所示,值域为[﹣1,1](4)y=﹣x2+2|x|+3,如图所示,值域为(﹣∞,4](5)y=|x﹣2|+|x﹣1|,如图所示,值域为[1,+∞)【点睛】本题考查函数的图象与性质,考查学生的作图能力,考查学生的计算能力,正确作出函数的图象是关键.【练 2.2】作出下列函数的图象并写出它们的值域.(1)y=|x﹣1|+|x+1|;(2)y=x,x∈z且|x|≤2.【思路分析】(1)运用分段函数化简函数y,即可得到所求图象和值域;(2)求得整点坐标,即可得到所求图象和值域.【答案】解:(1)y=|x﹣1|+|x+1|2x,x ≤ 1= 2,— 1<x<1,— 2x,x ≤— 1值域为[2,+∞);(2)y=x,x∈z且|x|≤2,可得x=﹣2,y=﹣2;x=﹣1,y=﹣1;x=0,y=0;x=1,y=1;x=2,y=2.值域为{﹣2,﹣1,0,1,2}.【点睛】本题考查函数的图象的画法和运用:求值域,考查运算能力,属于基础题.【练2.3】画出二次函数f(x)=﹣x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.【思路分析】先画出函数的图象,由图象即可得到相应的答案.【答案】解:图象如图所示:(1)由图象可得f(1)>f(0)>f(3),(2)x1<x2<1,函数在(﹣∞,1)上为增函数,∴f(x1)<f(x2),(3)由函数图象可得函数的值域为(﹣∞,4].【点睛】本题考查了二次函数图象的画法和识别,属于基础题.【考点3 求函数解析式—待定系数法】【练 3】设二次函数f (x) 满足 f (0) = 1,且f (x + 1) -f (x) = 4x ,求f (x) 的解析式.【思路分析】用待定系数法设出f(x)=a x2+b x+c=0(a≠0),再通过已知条件列方程可解得;【答案】解设所求二次函数为f(x)=a x2+b x+c=0(a≠0),∵f(0)=1,∴c=1,则f(x)=a x2+b x+1=0,(a≠0),又∵f(x+1)﹣f(x)=4x,∴a(x+1)2+b(x+1)+1﹣(a x2+b x+1)=4x,即 2ax+a+b=4x,得,2t = 4t 䘞= 䕼∴t = 2䘞 =— 2∴f(x)=2x2﹣2x+1,【点睛】本题考查了函数解析式的求解及常用方法,属中档题.【练 3.1】已知二次函数f (x) 满足条件f (0) = 1和 f (x + 1) -f (x) = 2x ,求 f (x) 的解析式;【思路分析】据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得【答案】解:设y=f(x)=a x2+b x+c∵f(0)=1,f(x+1)﹣f(x)=2x∴c=1;a(x+1)2+b(x+1)+c﹣(a x2+b x+c)=2x∴∴2a=2,a+b=0解得a=1,b=﹣1函数f(x)的表达式为f(x)=x2﹣x+1【点睛】本题考查利用待定系数法,方程组法,换元法求函数的解析式,属于基础题.【练 3.2】已知y =f (x) 是一次函数,且有 f [ f (x)] = 9x + 8 ,求 f (x) 的解析式.【思路分析】设f(x)=ax+b(a≠0),由f[f(x)]=9x+8.比较对应项系数可得方程组,解出即得a,b.从而得到函数解析式.【答案】解:设f(x)=ax+b(a≠0),则f[f(x)]=a f(x)+b=a(a x+b)+b=a2x+a b+b=9x+8∴a2=9且a b+b=8,解得,a=3,b=2 或a=﹣3,b=﹣4,∴一次函数的解析式为:f(x)=3x+2 或f(x)=﹣3x﹣4.【点睛】本题考查一次函数的性质及图象,属基础题,若已知函数类型,可用待定系数法求其解析式.属于基础题.【练 3.3】已知二次函数f (x) =x2 +ax +b ,A = {x | f (x) = 2x} = {22} ,试求f (x) 的解析式.【思路分析】由已知中二次函数f(x)=x2+a x+b,A={x|f(x)=2x}={22},可得方程(x)=x2+a x+b=2x有两个相等的实根 22,由韦达定理求出a,b的值得答案.【答案】解:∵二次函数f(x)=x2+a x+b,A={x|f(x)=2x}={22},故方程(x)=x2+a x+b=2x有两个相等的实根22,即方程x2+(a﹣2)x+b=0有两个相等的实根22,即22+22=﹣(a﹣2)且22×22=b,解得:a=﹣42,b=484,故f(x)=x2﹣42x+484.【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是答案的关键,是基础题.【考点4 求函数解析式—换元法】【练 4】设函数f (x) 满足f (2x - 3) =x2 +x -1 ,求 f (x) 的解析式;【思路分析】可设2x﹣3=t,从而求得x=1t3,代入f(2x﹣3)=x2+x﹣1并整理可得出ƒ(t)=1t22 2 42t 11,从而得出ƒ(x) = 1 x2 2x 11;4 4 4【答案】解:设2x﹣3=t,则x=1t3,带入f(2x﹣3)=x2+x﹣1得:ƒ(t)=(1t3)21t3—1=1t22 22 2 2 2 42t 11;4∴ƒ(x) = 1 x2 2x 11;4 4【点睛】考查换元求函数解析式的方法.x x【练 4.1】已知f ( +1) =x + 2 ,求 f (x) 的解析式【思路分析】令x—1=t,则x=t+1,x=(t+1)2,(t≥﹣1),代入函数的表达式求出即可;【答案】解:令x—1=t,则x=t+1,x=(t+1)2,(t≥﹣1),∴ 由f(x —1)=x+2 x,得:f(t)=(t+1)2+2(t+1)=t2+4t+3,(t≥﹣1),∴f(x)=x2+4x+3,(x≥﹣1).【点睛】本题考查的是函数的解析式求法,用待定系数法求解,本题难度不大,属于基础题.【练 4.2】已知函数f (x) 满足关系式f (x + 2) = 2x + 5 ,求f (x) 的解析式;【思路分析】将f(x+2)=2x+5 中的x+2 看作整体,解得x,代入其解析式,则解得f(x).【答案】解:令t=x+2,∴x=t﹣2∴f(t)=2t+1令x=t∴f(x)=2x+1【点睛】本题主要考查用换元法求函数解析式,要注意等价转化,即要注意换元前后的取值范围.【练4.3】已知f(1—x)=2x,求f(x)的解析式;1x【思路分析】令1—x =t,然后,用t表示x,利用换元法求解其解析式;1x【答案】解:令1—x =t,1x∴x= 1—t,1t∴f(t)=21—t,1t∴f(x)=21—x;1x【点睛】本题重点考查了换元法求解函数的解析式,【考点5 求函数解析式—代入法】【练5】已知f(x)=3x2+1,g(x)=2x﹣1,求f[g(x)]和g[f(x)]的解析式.【思路分析】分别把g(x)和f(x)整体代入到f(x)和g(x)的解析式化简可得.【答案】解:∵f(x)=3x2+1,g(x)=2x﹣1,∴f[g(x)]=3(2x﹣1)2+1=12x2﹣12x+4;∴g[f(x)]=2(3x2+1)﹣1=6x2+1【点睛】本题考查复合函数的解析式,属基础题.【练5.1】已知函数f(x)=2x+1,g(x)=3x2﹣5(1)求f(1),g(2)的值(2)求g(a+1)的表达式(3)求f(g(x))的表达式.【思路分析】(1)根据函数f(x)、g(x)的对应法则,分别将x=1、x=2 代入,即可求出f(1),g(2)的值;(2)根据g(x)的对应法则,用a+1 代替x,化简即可得出g(a+1)的表达式;(3)先在f(x)表达式中用g(x)代替x,得f(g(x))=2g(x)+1,再将g(x)表达式代入即可得到所求.【答案】解:根据题意,得(1)f(1)=2×1+1=3,g(2)=3×22﹣5=7;(2)g(a+1)=3(a+1)2﹣5=3a2+6a﹣2;(3)f(g(x))=2g(x)+1=2[3x2﹣5]+1=6x2﹣9.【点睛】本题给出函数f(x)、g(x)的表达式,求f(g(x)的表达式.着重考查了函数的定义和解析式的求法等知识,属于基础题.【练5.2】已知f(x)=2x﹣1,g(x)1=1x2(1)求f(x+1),g (1),f(g (x));x(2)写出函数f(x)与g(x)定义域和值域.【思路分析】(1)分别代入化简即可;(2)直接写出定义域与值域.【答案】解:(1)f(x+1)=2(x+1)﹣1=2x+1;g(1)= 1 = x2 ,x 111x22xf(g(x))=f( 1 )=2 1 —1;1x2 1x2(2)函数f(x)的定义域为R,值域R;g(x)的定义域为R,值域为(0,1].【点睛】本题考查了函数的定义域与值域的求法,属于基础题.【练5.3】函数f(x)=3x﹣1,若f[g(x)]=2x+3,则g(x)=.【思路分析】直接利用函数的解析式,求解即可.【答案】解:函数f(x)=3x﹣1,若f[g(x)]=2x+3,可得 3g(x)﹣1=2x+3,解得g(x)= 2 x 4.3 3故答案为:2 x 4.3 3【点睛】本题考查函数的解析式的求法,考查计算能力.【考点6 求函数解析式—方程组法】【练 6】已知函数f(x)对任意的x∈R 都满足f(x)+2f(﹣x)=3x﹣2,求f(x)的解析式.【思路分析】利用方程思想求解函数的解析式即可.【答案】解:函数f(x)对任意的x∈R 都满足f(x)+2f(﹣x)=3x﹣2,…①,则f(﹣x)+2f(x)=﹣3x﹣2,…②,①﹣2×②可得:﹣3f(x)=9x+2,可得f(x)=﹣3x—2.3f(x)的解析式:f(x)=﹣3x—2.3【点睛】本题考查函数的解析式的求法,考查函数与方程的思想的应用,考查计算能力.【练 6.1】已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.【思路分析】由题意,设f(x)=a x+b,代入f[f(x)]中,利用多项式相等,对应系数相等,求出a、b的值即可;【答案】解:∵f(x)是一次函数,∴设f(x)=ax+b,(a≠0),则f[f(x)]=f[a x+b]=a(a x+b)+b=a2x+a b+b,又∵f[f(x)]=9x+4,∴a2x+a b+b=9x+4,即t2 = 9 ,t䘞䘞= 4解得t = 3或t =— 3,䘞 = 1 䘞 =— 2∴f(x)=3x+1 或f(x)=﹣3x﹣2;【点睛】本题考查了求函数解析式的问题,解题时应用待定系数法,设出函数的解析式,求出系数即可,是中档题.【练6.2】已知f(x)﹣2f(1)=3x﹣2,求f(x)的解析式.x【思路分析】根据f(x)﹣2f(1)=3x﹣2,用1代替x,得出另一方程,解方程组,求出f(x)的解析x x式.【答案】解:∵f(x)﹣2f(1)=3x﹣2…①,x∴f(1)﹣2f(x)=3•1—2…②,x x②×2,得;2f(1)﹣4f(x)= 6—4…③,x x③+①,得;﹣3f (x )=3x 6 —6,x∴f (x )=﹣x — 2 —2.x【点睛】本题考查了利用方程组求函数解析式的应用问题,是基础题目.【练 6.3】已知 f (x )是一次函数,且 2f (1)+3f (2)=3,2f (﹣1)﹣f (0)=﹣1,求 f (x )的解析式;【思路分析】根据题意,设f (x )=k x +b ,结合题意可得 2(m 䘞) 3(2m 䘞) = 3,解可得 k 、b 的值,2( — m 䘞) — 䘞 =— 1 代入函数的解析式即可得答案;【答案】解:根据题意,设 f (x )=kx +b , 若 2f (1)+3f (2)=3,2f (﹣1)﹣f (0)=﹣1,则有 2(m 䘞) 3(2m 䘞) = 3, 2( — m 䘞) — 䘞 =— 1解可得:k = 4,b =— 1;99则 f (x )= 4x — 1;99【点睛】本题考查待定系数法求函数的解析式,注意待定系数法的应用,属于基础题.【考点 7 分段函数求值】⎧1 x -1,x ≤ 0【练 7】设函数 f (x ) = ⎪ 2若 f (a ) = a ,则实数 a 的值为()⎨ 1 ⎪ ,x > 0 ⎩ xA. ±1B. -1 C . -2 或-1 D . ±1 或-2【思路分析】由分段函数的解析式知,当 x ≥0 时,f (X )= 1 x — 1;当 x <0 时,f (x )= 1;分别令 f2x(a )=a ,即得实数 a 的取值.【答案】解:由题意知,f (a )=a ;当 a ≥0 时,有1t — 1 = t ,解得 a =﹣2,(不满足条件,舍去);2当 a <0 时,有1= t ,解得 a =1(不满足条件,舍去)或 a =﹣1.t⎨ 所以实数 a 的值是:a =﹣1. 故选:B .【点睛】本题考查了分段函数中用解析式解方程的简单问题,需要分段讨论,是分段函数的常用方法.⎧ 1x +1,x ≤ 0【练 7.1】已知 f (x ) = ⎪ 2⎪⎩- (x -1)2,x > 0使 f (x ) ≥ -1 成立的 x 的取值范围是( )A .[-4 , 2)B .[-4 , 2]C . (0 , 2]D . (-4 , 2]【思路分析】由分段函数,讨论 x ≤0,x >0,由一次不等式和二次不等式的解法,解不等式,求并集即可得到所求范围.【答案】解:f (x )=1 x 1,x ≤ 䕼2,— (x — 1)2,x >䕼由 f (x )≥﹣1,x ≤ 䕼x >䕼可得 1 x 1 ≤— 1或2— (x — 1)2 ≤— 1,即x ≤ 䕼x ≤— 2 或 x >䕼 , 䕼 ≤ x ≤ 2即有﹣4≤x ≤0 或 0<x ≤2, 可得﹣4≤x ≤2. 即 x 的取值范围是[﹣4,2]. 故选:B .【点睛】本题考查分段函数的运用:解不等式,考查一次不等式和二次不等式的解法,考查运算能力, 属于中档题.⎧⎪x 2 + 4x + 3,x ≤ 0 【练 7.2】已知函数 f (x ) = ⎨则 f ( f (5) ) = ( )⎩⎪ 3 - x ,x > 0A .0B . -2 C. -1 D .1【思路分析】分段函数是指在定义域的不同阶段上对应法则不同,因此分段函数求函数值时,一定要看清楚自变量所处阶段,例如本题中,5∈{x |x >0},而 f (5)=﹣2∈{x |x ≤0},分别代入不同的对应法则求值即可得结果【答案】解:因为 5>0,代入函数解析式 f (x )=x 2 4x 3,x ≤ 䕼得 f (5)=3﹣5=﹣2,3 — x ,x >䕼⎨- x - 2a ,x ≥ 1所以 f (f (5))=f (﹣2),因为﹣2<0,代入函数解析式 f (x )==(﹣2)2+4×(﹣2)+3=﹣1故选:C .x 2 4x3,x ≤ 䕼3 — x ,x >䕼得 f (﹣2)【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,解题时要认真细致,准确运算.【练 7.3】已知实数 a ≠ 0 ,函数 f (x ) = ⎧ 2x + a ,x < 1,若 f (1 - a ) = f (1 + a ) ,则 a 的值为()⎩A. - 34B. 34 C. - 35D. 35【思路分析】若 a >0,则 1﹣a <1,1+a >1,由 f (1﹣a )=f (1+a ),得 2(1﹣a )+a =﹣(1+a )﹣ 2a ;若 a <0,则 1﹣a >1,1+a <1,由 f (1﹣a )=f (1+a ),得 2(1+a )+a =﹣(1﹣a )﹣2a .由此能求出 a 的值.【答案】解:∵实数 a ≠0,函数 f (x )=2xt ,x <1— x — 2t ,x ≤ 1,f (1﹣a )=f (1+a ),∴若 a >0,则 1﹣a <1,1+a >1,又 f (1﹣a )=f (1+a ),∴2(1﹣a )+a =﹣(1+a )﹣2a ,解得 a =— 3,不成立;2若 a <0,则 1﹣a >1,1+a <1,又 f (1﹣a )=f (1+a ),∴2(1+a )+a =﹣(1﹣a )﹣2a ,解得 a =— 3.4∴a =— 3.4故选:B .【点睛】本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.。

函数及其表示典型例题及详细解答

函数及其表示典型例题及详细解答

1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.下列函数中,不满足...f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x答案 C解析 将f (2x )表示出来,看与2f (x )是否相等. 对于A ,f (2x )=|2x |=2|x |=2f (x ); 对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于C ,f (2x )=2x +1≠2f (x ); 对于D ,f (2x )=-2x =2f (x ),故只有C 不满足f (2x )=2f (x ),所以选C. 2.函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) 答案 C解析 要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x >0,(log 2x )2-1>0,解得x >2或0<x <12.故f (x )的定义域为⎝⎛⎭⎫0,12∪(2,+∞). 3.(2015·课标全国Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1, x ≥1,则f (-2)+f (log 212)等于( )A .3B .6C .9D .12 答案 C解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=22log 121-=22log 12×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.4.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B. 5.给出下列四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数的定义域和值域一定是无限集合. 其中真命题的序号有________. 答案 ①②解析 对于①函数是映射,但映射不一定是函数;对于②f (x )是定义域为{2},值域为{0}的函数;对于③函数y =2x (x ∈N )的图象不是一条直线;对于④函数的定义域和值域不一定是无限集合.题型一 函数的概念例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎨⎧1 (x ≥0)-1 (x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列四组函数中,表示同一函数的是()A.y=x-1与y=(x-1)2B.y=x-1与y=x-1 x-1C.y=4lg x与y=2lg x2D.y=lg x-2与y=lg x100(2)下列所给图象是函数图象的个数为()A .1B .2C .3D .4答案 (1)D (2)B解析 (1)A 中两函数对应关系不同;B 、C 中的函数定义域不同,答案选D.(2)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.题型二 函数的定义域命题点1 求给定函数解析式的定义域 例2 (1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数f (x )=lg (x +1)x -1的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞)答案 (1)A (2)C解析 (1)由题意知⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0,所以函数f (x )的定义域为(-3,0],故选A.(2)要使函数f (x )=lg (x +1)x -1有意义,需满足x +1>0且x -1≠0,得x >-1,且x ≠1,故选C.命题点2 求抽象函数的定义域例3 (1)若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)x -1的定义域是( )A .[0,2 015]B .[0,1)∪(1,2 015]C .(1,2 016]D .[-1,1)∪(1,2 015](2)若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为( ) A .[-1,1] B .[1,2] C .[10,100] D .[0,lg 2]答案 (1)B (2)C解析 (1)令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015].故选B.(2)因为f (x 2+1)的定义域为[-1,1],则-1≤x ≤1,故0≤x 2≤1,所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应关系,所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100].故选C.命题点3 已知定义域求参数范围例4 若函数f (x )R ,则a 的取值范围为________. 答案 [-1,0]解析 因为函数f (x )的定义域为R ,所以222+-x ax a-1≥0对x ∈R 恒成立,即222+-x ax a≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 思维升华 简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)抽象函数:①无论是已知定义域还是求定义域,均是指其中的自变量x 的取值集合; ②对应f 下的范围一致.(3)已知定义域求参数范围,可将问题转化,列出含参数的不等式(组),进而求范围.(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________.(2)函数y =ln (x +1)-x 2-3x +4的定义域为___________________________.答案 (1)[12,32] (2)(-1,1)解析 (1)因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足⎩⎨⎧0≤x +12≤2,0≤x -12≤2,解得:12≤x ≤32,所以函数g (x )的定义域是[12,32].(2)由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x <1.题型三 求函数解析式例5 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x )·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x )x -1中,用1x 代替x ,得f (1x )=2f (x )1x-1,将f (1x )=2f (x )x -1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________________. 答案 (1)x 2-1(x ≥1) (2)-12x (x +1)(3)23lg(x +1)+13lg(1-x ) (-1<x <1) 解析 (1)设x +1=t (t ≥1),则x =t -1. 代入f (x +1)=x +2x , 得f (t )=t 2-1(t ≥1), ∴f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1).(3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).2.分类讨论思想在函数中的应用典例 (1)(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,13x ,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(2)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1, +∞)解析 (1)当x <1时,e x -1≤2,解得x ≤1+ln 2, ∴x <1.当x ≥1时,13x ≤2,解得x ≤8,∴1≤x ≤8. 综上可知x ∈(-∞,8]. (2)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.答案 (1)(-∞,8] (2)C温馨提醒 (1)求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解.(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.(3)当自变量含参数或范围不确定时,要根据定义域分成的不同子集进行分类讨论.[方法与技巧]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法.4.分段函数问题要分段求解.[失误与防范]1.复合函数f[g(x)]的定义域也是解析式中x的范围,不要和f(x)的定义域相混.2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.A组专项基础训练(时间:30分钟)1.下列各组函数中,表示同一函数的是()A.f(x)=x,g(x)=(x)2B.f(x)=x2,g(x)=(x+1)2C.f(x)=x2,g(x)=|x|D.f(x)=0,g(x)=x-1+1-x答案C解析在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.2.已知函数f(x)=11-x2的定义域为M,g(x)=ln(1+x)的定义域为N,则M∪(∁R N)等于()A .{x |x <1}B .{x |x ≥1}C .∅D .{x |-1≤x <1}答案 A解析 M =(-1,1),N =(-1,+∞),故M ∪(∁R N )={x |x <1},故选A.3.已知f (x )为偶函数,且当x ∈[0,2)时,f (x )=2sin x ,当x ∈[2,+∞)时,f (x )=log 2x ,则f ⎝⎛⎭⎫-π3+f (4)等于( )A .-3+2B .1C .3 D.3+2 答案 D解析 因为f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=2sin π3=3, f (4)=log 24=2,所以f ⎝⎛⎭⎫-π3+f (4)=3+2. 4.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 (待定系数法)设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,选B.5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-x D .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x =-log 2x .6.已知函数f (x )=log 21x +1,f (a )=3,则a =________.答案 -78解析 由题意可得log 21a +1=3,所以1a +1=23,解得a =-78.7.已知函数y =f (2x )的定义域为[-1,1],则y =f (log 2x )的定义域是________. 答案 [2,4]解析 ∵函数f (2x )的定义域为[-1,1], ∴-1≤x ≤1,∴12≤2x ≤2.∴在函数y =f (log 2x )中,12≤log 2x ≤2,∴2≤x ≤4.8.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________. 答案 0 22-3解析 ∵f (-3)=lg [(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx . 又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得⎩⎨⎧a =12,b =12.∴f (x )=12x 2+12x .10.根据如图所示的函数y =f (x )的图象,写出函数的解析式.解 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -72;当-1≤x <1时,同理可设f (x )=cx +d (c ≠0), 将点(-1,-2),(1,1)代入,可得f (x )=32x -12;当1≤x <2时,f (x )=1.所以f (x )=⎩⎨⎧-32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.B 组 专项能力提升 (时间:20分钟)11.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 [0,3)解析 因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点.当a =0时,函数y =13的图象与x 轴无交点;当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3). 12.若函数f (x )=x 2-1x 2+1,则(1)f (2)f (12)=________;(2)f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)=________.答案 (1)-1 (2)0解析 (1)∵f (x )+f (1x )=x 2-1x 2+1+1-x21+x 2=0,∴f (x )f (1x )=-1(x ≠±1),∴f (2)f (12)=-1. (2)∵f (3)+f (13)=0,f (4)+f (14)=0,…,f (2 017)+f (12 017)=0,∴f (3)+f (4)+…+f (2 017)+f (13)+…+f (12 017)=0.13.已知函数f (x )=4|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个. 答案 5解析 由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.14.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x=1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.15.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗? (3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解(1)点A表示无人乘车时收支差额为-20元,点B表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价.(3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.。

新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析

新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析

3.1.1函数及其表示方法第三章函数3.1 函数的概念与性质3.1.1函数及其表示方法课时1 函数的概念考点1函数的概念1.下列说法正确的是()。

A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应法则也就确定了答案:C解析:由函数的定义可知,函数的定义域和值域为非空的数集。

2.下列四个图形中,不是以x为自变量的函数的图像是()。

图3-1-1-1-1答案:C解析:根据函数定义,知对自变量x的任意一个值,都有唯一确定的实数(函数值)与之对应。

显然选项A,B,D 满足函数的定义,而选项C不满足。

故选C。

3.(2018·河北衡水中学高一月考)下列四组函数中,表示同一函数的是()。

3 B.y=1与y=x0A.y=√x2与y=√x3C.y=2x+1与y=2t+1D.y=x与y=(√x)2答案:C3=x,它们的对应关系不同,不是同一函数;对于B,y=1(x∈R),y=x0=1(x≠0),它们的解析:对于A,y=√x2=|x|,y=√x3定义域不同,不是同一函数;对于C,y=2x+1与y=2t+1,它们的定义域相同,对应关系也相同,是同一函数;对于D,y=x(x∈R),y=(√x)2=x(x≥0),它们的定义域不同,不是同一函数。

【易错点拨】考查同一函数的问题,注意把握同一函数的定义,必须保证是三要素完全相同,才是同一函数。

4.(2019·西安高一检测)下列式子中不能表示函数y=f(x)的是()。

A.x=y2B.y=x+1C.x+y=0D.y=x2答案:A5.给出下列两个集合间的对应关系:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;②A={0,1},B={-1,0,1},f:A中的数的开方;③A=Z,B=Q,f:A中的数的倒数;④A=R,B={正实数},f:A中的数取绝对值;⑤A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍。

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)祖π数学之高分速成新人教八年级下册基础知识3 函数的表示1.函数的表示方法可以用解析式法、列表法和图像法。

解析式法是用公式表示函数,列表法是将函数的定义域和值域列成表格,图像法是用函数的图像来表示函数。

2.描点法画函数图形的一般步骤是先确定定义域和值域,然后选择若干个自变量值,计算出相应的函数值,最后在平面直角坐标系中标出这些点,连接起来就是函数的图形。

题型1】图像法表示函数1.2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进。

官兵们坐车以某一速度匀速前进,但中途被阻停下。

为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往。

根据函数的图像,可以判断出官兵们行进的距离S与行进时间t之间的关系。

2.故事中的乌鸦喝水问题可以用函数的图像来表示。

设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,可以画出函数的图像来表示乌鸦喝水的情景。

3.在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止。

设点E运动的路程为x,△BCE的面积为y。

根据函数的图像,可以求出当x=7时,点E应运动到哪个位置。

4.在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B-C-D作匀速运动。

根据函数的图像,可以求出△ABP的面积S与点P运动的路程x之间的函数图像。

5.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,加快了骑车速度。

根据XXX到学校剩下的路程s关于时间t的函数图像,可以判断出符合XXX行驶情况的图像。

6.XXX每天坚持体育锻炼,星期天从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家。

根据XXX离家的距离y(米)与时间t(分钟)之间关系的函数图像,可以判断出当天XXX的运动情况。

7.小以400米/分叶的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。

2023版新教材高中数学第三章函数-函数及其表示方法第3课时分段函数课时作业新人教B版必修第一册

2023版新教材高中数学第三章函数-函数及其表示方法第3课时分段函数课时作业新人教B版必修第一册

第3课时 分段函数必备知识基础练1.函数f(x)=,则f(f(2))的值为( )A.-1 B.-3C.0 D.-82.已知函数f(x)=,若f(a)=10,则实数a的值为( )A.±3 B.3 C.-3 D.-3或-53.设函数f(x)=则f()=________,若f(x0)>1,则x0的取值范围是________.4.设x∈R,则函数y=2|x-1|-3|x|的值域为________.5.已知函数f(x)=2x-1,g(x)=求f(g(x))和g(f(x))的解析式.6.设函数f(x)=且f(-4)=f(0),f(-2)=-1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.关键能力综合练7.设f(x)=则f(5)的值是( )A.24 B.21 C.18 D.168.已知f(x)=如果f(x0)=3,那么x0=( )A.2或- B.2C.- D.2或9.设x∈R,定义符号函数sgn x=则( )A.|x|=x|sgn x| B.|x|=x sgn |x|C.|x|=|x|sgn x D.|x|=x sgn x10.令[x]表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2,若函数f(x)=3[x]-[2x],则函数f(x)在区间[0,2]上所有可能取值的和为( )A.1 B.2 C.3 D.411.(多选)已知f(x)=则满足不等式xf(x)+x≤2的x的值有( )A.1 B.2 C.3 D.-112.求函数f(x)=-+x2的定义域,并画出图象,再求其值域.核心素养升级练13.若定义运算a⊙b=则函数f(x)=x⊙(2-x)的值域为________.14.已知函数f(x)=1+,(1)用分段函数的形式表示函数f(x);(2)在坐标系中画出函数f(x)的图象;(3)在同一坐标系中,再画出函数g(x)=(x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)>的解集.第3课时 分段函数必备知识基础练1.解析:因为函数f(x)=,所以f(2)=22-2-3=-1,所以f(f(2))=f(-1)=1-(-1)2=0.答案:C2.解析:因为函数f(x)=,f(a)=10,所以当a≤0时,f(a)=a2+1=10,解得a=-3或a=3(舍去);当a>0时,f(a)=-2a=10,解得a=-5(舍去),所以实数a的值为-3.答案:C3.解析:f()= ==,当x0≤0时,由-x0-1>1,得x0<-2,当x0>0时,由>1,得x0>1,所以x0的取值范围为(-∞,-2)∪(1,+∞).答案: (-∞,-2)∪(1,+∞)4.解析:当x≥1时,y=2(x-1)-3x=-x-2,当0≤x<1时,y=-2(x-1)-3x=-5x+2,当x<0时,y=-2(x-1)+3x=x+2,故y=根据函数解析式作出函数图象,如图所示,由图象可以看出,函数的值域为{y|y≤2}.答案:{y|y≤2}5.解析:当x≥0时,g(x)=x2,f(g(x))=2x2-1,当x<0时,g(x)=-1,f(g(x))=-2-1=-3,所以f(g(x))=因为当2x-1≥0,即x≥时,g(f(x))=(2x-1)2,当2x-1<0,即x<时,g(f(x))=-1,所以g(f(x))=6.解析:(1)因为f(-4)=f(0),f(-2)=-1,所以16-4b+c=3,4-2b+c=-1,解得:b=4,c=3,所以f(x)=(2)分析函数的定义域为[-4,4],当-4≤x<0时,f(x)=x2+4x+3=(x+2)2-1,由-4≤x<0可得,-1≤f(x)≤3,当0≤x≤4时,f(x)=-x+3,所以-1≤f(x)≤3,所以函数的值域为[-1,3],其图象如图所示.关键能力综合练7.解析:f(5)=f(f(10)),f(10)=f(f(15))=f(18)=21,f(5)=f(21)=24.答案:A8.解析:因为f(x)=所以若x0<0,f(x0)=x=3,则x0=-,同理若x0>0,f(x0)=x0+1=3,则x0=2.答案:A9.解析:当x<0时,|x|=-x,x|sgn x|=x,x sgn |x|=x,|x|sgn x=(-x)·(-1)=x,排除A,B,C.答案:D10.解析:因为[x]表示不超过x的最大整数,所以:当0≤x<时,有0≤2x<1,则[x]=0,则3[x]=0,[2x]=0,此时f(x)=0,当≤x<1时,有1≤2x<2,则[x]=0,则3[x]=0,[2x]=1,此时f(x)=-1,当1≤x<时,有2≤2x<3,则[x]=1,则3[x]=3,[2x]=2,此时f(x)=1,当≤x<2时,有3≤2x<4,则[x]=1,则3[x]=3,[2x]=3,此时f(x)=0,当x=2时,2x=4,则[x]=2,则3[x]=6,[2x]=4,此时f(x)=2,函数f(x)在区间[0,2]上所有可能取值的和为0-1+1+0+2=2.答案:B11.解析:当x≥0时,f(x)=1,代入xf(x)+x≤2,解得x≤1,所以0≤x≤1,当x<0时,f(x)=0,代入xf(x)+x≤2,解得x≤2,所以x<0.综上可知x≤1.答案:AD12.解析:由题意知,该函数的定义域为{x|x≠0},f(x)=其图象如图所示,由图象可知,所求函数的值域为[-,+∞).核心素养升级练13.解析:由题意得f(x)=画出函数f(x)的图象,值域是(-∞,1].答案:(-∞,1]14.解析:(1)因为当x≥0时,f(x)=1;当x<0时,f(x)=x+1,所以f(x)=(2)函数图象如图:所以不等式f(x)>的解集为{x|x>1} .。

函数及其表示知识点+练习题+答案

函数及其表示知识点+练习题+答案

函数及其表示考纲知识梳理一、函数与映射的概念集合,可以不是数集,而函数中的两个集合必须是非空数集。

二、函数的其他有关概念〔1〕函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域〔2〕一个函数的构成要素 定义域、值域和对应法则 〔3〕相等函数如果两个函数的定义域一样,并且对应关系完全一致,则这两个函数为相等函数。

注:假设两个函数的定义域与值域一样,是否为相等函数.〔不一定。

如果函数y=*和y=*+1,其定义域与值域完全一样,但不是相等函数;再如y=sin*与y=cos*,其定义域为R ,值域都为[-1,1],显然不是相等函数。

因此凑数两个函数是否相等,关键是看定义域和对应关系〕〔4〕函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。

〔5〕分段函数假设函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。

分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个局部组成,但它表示的是个函数。

函数及其表示测试题1、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是〔 A 〕A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞解析由,函数先增后减再增当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。

当0<x ,3,36-==+x x故3)1()(=>f x f ,解得313><<-x x 或 2、试判断以下各组函数是否表示同一函数.〔1〕f 〔*〕=2x ,g 〔*〕=33x ;〔2〕f 〔*〕=x x ||,g 〔*〕=⎩⎨⎧<-≥;01,01x x〔3〕f 〔*〕=1212++n n x ,g 〔*〕=〔12-n x 〕2n -1〔n ∈N *〕;〔4〕f 〔*〕=x 1+x ,g 〔*〕=x x +2; 〔5〕f 〔*〕=*2-2*-1,g 〔t 〕=t 2-2t -1。

专题03 函数及其表示方法-2022年高考数学一轮复习小题多维练(新高考版)(解析版)

专题03 函数及其表示方法-2022年高考数学一轮复习小题多维练(新高考版)(解析版)

2022年高考数学一轮复习小题多维练(新高考版)专题03 函数及其表示方法一、单选题1.若函数f(x)=ln(e2x﹣ae x+1)对x∈R恒有意义,则实数a的取值范围是()A.(﹣∞,+∞)B.(2,+∞)C.(﹣2,2)D.(﹣∞,2)【答案】D【分析】根据对数函数以及指数函数的性质求出a的取值范围即可.【解答】解:由题意得:e2x﹣ae x+1>0恒成立,即a<=e x+恒成立,∵e x+≥2,当且仅当e x=1即x=0时“=”成立,故a<2,故选:D.【知识点】函数的定义域及其求法2.已知函数f(x)的定义域为(﹣1,1),则函数的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)【答案】A【分析】根据函数f(x)的定义域,列出使函数g(x)有意义的不等式组,求出解集即可.【解答】解:函数f(x)的定义域为(﹣1,1),令,解得,即1<x<2,所以函数的定义域为(1,2).故选:A.【知识点】函数的定义域及其求法3.已知函数的值域为[0,+∞),则m的取值范围是()A.[0,4]B.(0,4]C.(0,4)D.[4,+∞)【答案】D【分析】当m=0时,mx2+mx+1=1对任意实数x恒成立,不合题意;要使函数的值域为[0,+∞),需二次三项式mx2+mx+1对应的二次函数开口向上且判别式大于等于0,由此联立不等式组求解.【解答】解:当m=0时,mx2+mx+1=1对任意实数x恒成立,不合题意;要使函数的值域为[0,+∞),则,解得m≥4.∴m的取值范围是[4,+∞).故选:D.【知识点】函数的值域4.设f(x)是定义在R上以2为周期的偶函数,当x∈[2,3]时,f(x)=x,则x∈[﹣2,0]时,f(x)的解析式为()A.f(x)=2+|x+1|B.f(x)=3﹣|x+1|C.f(x)=2﹣x D.f(x)=x+4【答案】B【分析】①当x∈[﹣2,﹣1]时,则x+4∈[2,3],由题意可得:f(x+4)=x+4.再根据函数的周期性可得f (x)=f(x+4)=x+4.②当x∈[﹣1,0]时,则2﹣x∈[2,3],由题意可得:f(2﹣x)=2﹣x.再根据函数的周期性与函数的奇偶性可得函数的解析式.【解答】解:①当x∈[﹣2,﹣1]时,则x+4∈[2,3],因为当x∈[2,3]时,f(x)=x,所以f(x+4)=x+4.又因为f(x)是周期为2的周期函数,所以f(x)=f(x+4)=x+4.所以当x∈[﹣2,﹣1]时,f(x)=x+4.②当x∈[﹣1,0]时,则2﹣x∈[2,3],因为当x∈[2,3]时,f(x)=x,所以f(2﹣x)=2﹣x.又因为f(x)是周期为2的周期函数,所以f(﹣x)=f(2﹣x)=2﹣x.因为函数f(x)是定义在实数R上的偶函数,所以f(x)=f(﹣x)=f(2﹣x)=2﹣x.所以由①②可得当x∈[﹣2,0]时,f(x)=3﹣|x+1|.故选:B.【知识点】奇函数、偶函数、函数的周期性、函数解析式的求解及常用方法5.函数f(x)=ax m(1﹣2x)n(a>0)在区间[0,]上的图象如图所示,则m、n的值可能是()A.m=1,n=1B.m=1,n=2C.m=2,n=3D.m=3,n=1【答案】D【分析】由图得,原函数的极大值点约为0.375.把选项代入验证看哪个对应的极大值点符合要求即可得出答案.【解答】解:由于本题是选择题,可以用代入法来作,由图得,原函数的极大值点约为0.375.当m=1,n=1时,f(x)=ax(1﹣2x)=﹣2a(x﹣)2+.在x=处有极大值,故A错误;当m=1,n=2时,f(x)=ax m(1﹣2x)n=ax(1﹣2x)2=a(4x3﹣4x2+x),所以f′(x)=a(2x﹣1)(6x﹣1),a>0,令f′(x)=0⇒x=,x=,即函数在x=处有极大值,故B错误;当m=2,n=3时,f(x)=ax m(1﹣2x)n=ax2(1﹣2x)3,有f'(x)=a(1﹣2x)2(2x﹣10x2),令f′(x)=0⇒x=0,x=,x=,即函数在x=处有极大值,故C错误;当m=3,n=1时,f(x)=ax m(1﹣2x)n=ax3(1﹣2x)=a(x3﹣2x4),有f′(x)=ax2(3﹣8x),令f′(x)=0,⇒x=0,x=,即函数在x=处有极大值,故D正确.故选:D.【知识点】函数的图象与图象的变换、函数解析式的求解及常用方法6.函数f(x)=sin()+cos()的图象大致是()A.B.C.D.【答案】C【分析】令,结合复合函数的单调性可知函数f(x)先增后减,进而排除选项A,B;再根据时,f(x)<0,f(0)=1,排除选项D,进而得解.【解答】解:函数f(x)的定义域为R,令,可知函数t(x)在R上单调递增,且t(x)的值域为(﹣1,1),又因为,结合复合函数的单调性,可知函数f(x)先增后减,故选项A,B错误;当时,f(x)<0,f(0)=1,故选项D错误.故选:C.【知识点】函数的图象与图象的变换7.已知函数f(x)=,则方程f2(x)﹣f(x)=0的不相等的实根个数()A.5B.6C.7D.8【答案】C【分析】方程f2(x)﹣f(x)=0可解出f(x)=0或f(x)=1,方程f2(x)﹣f(x)=0的不相等的实根个数即两个函数f(x)=0或f(x)=1的所有不相等的根的个数的和,根据函数f(x)的形式,求方程的根的个数的问题可以转化为求两个函数y=0,y=1的图象与函数f(x)的图象的交点个数的问题.【解答】解:方程f2(x)﹣f(x)=0可解出f(x)=0或f(x)=1,方程f2(x)﹣f(x)=0的不相等的实根个数即两个函数f(x)=0或f(x)=1的所有不相等的根的个数的和,方程的根的个数与两个函数y=0,y=1的图象与函数f(x)的图象的交点个数相同,如图,由图象,y=1的图象与函数f(x)的图象的交点个数有四个,y=0的图象与函数f(x)的图象的交点个数有三个,故方程f2(x)﹣f(x)=0有七个解,故选:C.【知识点】函数的零点与方程根的关系、分段函数的解析式求法及其图象的作法8.如图,已知函数f(x)的图象关于坐标原点对称,则函数f(x)的解析式可能是()A.f(x)=x2ln|x|B.f(x)=xlnx C.D.【答案】C【分析】据题意可知f(x)是奇函数,从而可以排除A,B;当x>0时,,从而排除选项D,只能选C.【解答】解:∵f(x)的图象关于原点对称;∴函数f(x)是奇函数;f(x)=x2ln|x|为偶函数,f(x)=xlnx是非奇非偶函数,∴A,B都错误;∵x>0时,,∴D错误.故选:C.【知识点】函数解析式的求解及常用方法二、多选题9.下列函数中,值域为[2,+∞)的是()A.y=x+,x>0B.=cos x+,x∈(﹣,)C.y=D.y=x+【答案】ABC【分析】根据基本不等式(a>0)即可判断选项A,B,C都正确,对于选项D,x<0时,y<0,从而判断选项D错误,从而得出正确的选项.【解答】解:A.x>0时,,当且仅当x=1时取等号,符合题意,该选项正确;B.时,0<cos x≤1,,当且仅当cos x=1时取等号,符合题意,该选项正确;C.,当且仅当,即x=0时取等号,该选项正确;D.当x<0时,,该选项错误.故选:ABC.【知识点】函数的值域10.已知集合M={﹣1,1,2,4},N={1,2,4,16},请根据函数定义,下列四个对应法则能构成从M到N的函数的是()A.y=2x B.y=|x|C.y=x+2D.y=x2【答案】BD【分析】根据题意,由函数的定义依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=2x,当x=4时,y=8∉N,故A错误;对于B,y=|x|,任取x∈M,总有y=|x||∈N,故B正确,对于C,y=x+2,当x=4时,y=6∉N,故C错误,对于D,y=x2,任取x∈M,总有y=x2∈N,故D正确.故选:BD.【知识点】函数的概念及其构成要素11.下列各组函数中是同一函数的是()A.f(x)=x与g(x)=B.f(x)=与g(x)=C.f(x)=x﹣1与g(x)=D.f(x)=x2+1与g(t)=t2+1【答案】BD【分析】根据相同函数的定义:定义域和对应关系都相同.【解答】解:对于A:f(x)=x与g(x)=|x|的对应关系不同,因此不是同一函数;对于B:f(x)==与g(x)=,因此是同一函数;对于C:f(x)=x﹣1与g(x)===x﹣1,(x≠﹣1),定义域不同,因此不是同一函数;对于D:f(x)=x2+1与g(t)=t2+1,定义域和对应关系都相同,因此是同一函数.故选:BD.【知识点】判断两个函数是否为同一函数12.若函数y=x2﹣4x﹣4的定义域为[0,m],值域为[﹣8,﹣4],则实数m的值可能为()A.2B.3C.4D.5【答案】ABC【分析】求出二次函数的对称轴方程,可知当m=2时函数有最小值,再由f(0)=﹣4结合二次函数的对称性可得m的可能取值.【解答】解:函数y=x2﹣4x﹣4的对称轴方程为x=2,当0≤m≤2时,函数在[0,m]上单调递减,x=0时取最大值﹣4,x=m时有最小值m2﹣4m﹣4=﹣8,解得m=2.则当m>2时,最小值为﹣8,而f(0)=﹣4,由对称性可知,m≤4.∴实数m的值可能为2,3,4.故选:ABC.【知识点】函数的值域、函数的定义域及其求法13.已知符号函数sgn(x)=,下列说法正确的是()A.函数y=sgn(x)是奇函数B.对任意的x≥0,sgn(x)=1C.对任意的x∈R,x•sgn(x)=|x|D.y=2x•sgn(﹣x)的值域为(﹣∞,1)【答案】AC【分析】由已知结合函数单调性的定义及指数函数的性质分别检验各选项即可判断.【解答】解:sgn(x)=的图象如图所示,图象关于原点对称,为奇函数,A正确;当x=0时,x=0,sgn(x)=0,当x>0时,x>0,sgn(x)=1,B错误;因为x•sgn(x)==|x|,C正确;因为y=2x sgn(﹣x)=其值域为[0,1)∪(﹣∞,﹣1],D不正确.故选:AC.【知识点】函数的值域14.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述不正确的是()A.f(a)>f(e)>f(d)B.函数f(x)在[a,b]上递增,在[b,d]上递减C.函数f(x)的极值点为c,eD.函数f(x)的极大值为f(b)【答案】ABD【分析】根据导数与函数单调性的关系及所给图象可得f(x)的单调性,判断函数的极值即可.【解答】解:由导数与函数单调性的关系知,当f′(x)>0时f(x)递增,f′(x)<0时f(x)递减,结合所给图象知,x∈(a,c)时,f′(x)>0,∴f(x)在(a,c)上单调递增,x∈(c,e)时,f′(x)<0,∴f(x)在(c,e)上单调递减,函数f(x)在x=c处取得极大值,在x=e处取得极小值;f(c)>f(e),故选:ABD.【知识点】利用导数研究函数的单调性、函数的图象与图象的变换三、填空题15.已知函数,则该函数的定义域是.【答案】(-1,1)【分析】根据对数函数成立的条件即可得到结论.【解答】解:要使函数有意义,则,即(x﹣1)(x+1)<0,即﹣1<x<1,即函数的定义域为(﹣1,1),故答案为:(﹣1,1).【知识点】函数的定义域及其求法16.若函数f(x)=(a>0,a≠1)的定义域和值域都是[0,1],则log a+log=﹣.【答案】-1【分析】因为f(1)=0,所以f(x)是[0,1]上的递减函数,根据f(0)=1解得a=2,再代入原式可得.【解答】解:因为f(1)=0,所以f(x)是[0,1]上的递减函数,所以f(0)=1,即=1,解得a=2,所以原式=log2+log=log2)=﹣1,故答案为:﹣1.【知识点】函数的值域、函数的定义域及其求法17.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是﹣∞﹣.【答案】(1,+∞)∪(-∞,-1)【分析】由题意便知方程组至少有两个解,从而可得到至少有两个解,从而有k=1+|x|>1,这样即求出k的取值范围.【解答】解:根据题意知方程至少有两个不同实数根;即至少有两个实数根;∴;∴k=1+|x|>1;由=﹣x至少有两个不同实数根,同理可得k<﹣1.∴实数k的取值范围为(1,+∞)∪(﹣∞,﹣1).故答案为:(1,+∞)∪(﹣∞,﹣1).【知识点】函数的定义域及其求法、函数的值域18.设奇函数f(x)定义在(﹣π,0)∪(0,π)上,其导函数为f′(x),且f()=0,当0<x<π时,f′(x)sin x﹣f(x)cos x<0,则关于x的不等式f(x)<2f()sin x的解集为﹣.【分析】设g(x)=,利用导数判断出g(x)单调性,根据函数的单调性求出不等式的解集.【解答】解:设g(x)=,∴g′(x)=,∵f(x)是定义在(﹣π,0)∪(0,π)上的奇函数,故g(﹣x)===g(x)∴g(x)是定义在(﹣π,0)∪(0,π)上的偶函数.∵当0<x<π时,f′(x)sin x﹣f(x)cos x<0∴g'(x)<0,∴g(x)在(0,π)上单调递减,∴g(x)在(﹣π,0)上单调递增.∵f()=0,∴g()==0,∵f(x)<2f()sin x,即g()•sin x>f(x);①当sin x>0时,即x∈(0,π),g()>=g(x);所以x∈(,π);②当sin x<0时,即x∈(﹣π,0)时,g()=g(﹣)<=g(x);所以x∈(﹣,0);不等式f(x)<2f()sin x的解集为解集为(﹣,0)∪(,π).故答案为:(﹣,0)∪(,π)【知识点】利用导数研究函数的单调性、函数的定义域及其求法19.函数的单调递增区间为﹣∞﹣,值域为﹣∞﹣.【分析】通过求导判断函数的单调递增区间,根据单调性判断函数的值域.【解答】解:>0,解得x>或x<﹣,函数的单调递增区间为(﹣∞,﹣)和(,+∞),单调递减区间为(﹣,),即函数在x=﹣处有极小值f(﹣)=﹣4,在x=处有极小值f()=4,所以函数的值域为(﹣∞,﹣4)∪(4,+∞).故答案为:(﹣∞,﹣)和(,+∞),(﹣∞,﹣4]∪[4,+∞).【知识点】函数的单调性及单调区间、函数的值域20.若f(x)=|x﹣a|•|x﹣3a|,且x∈[0,1]上的值域为[0,f(1)],则实数a的取值范围是.【分析】结合图象,分类讨论即可得解.【解答】解:结合图象,①当a=0时,显然成立;②当a<0时,f(x)在[0,1]上递增,最小值为3a2≠0,不成立;③当a>0时,要使值域为[0,f(1)],则需满足,即,故;综上,实数a的取值范围为.故答案为:.【知识点】函数的值域21.设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则函数f(x)在[1,2]上的解析式是﹣【答案】f(x)=log2(3-x)【分析】设x∈(1,2),则x﹣2∈(﹣1,0),2﹣x∈(0,1),由已知表达式可求得f(2﹣x),再由f (x)为周期为2的偶函数,可得f(x)=f(x﹣2)=f(2﹣x),从而得到答案.【解答】解:∵f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),∴设x∈(1,2),则x﹣2∈(﹣1,0),2﹣x∈(0,1),∴f(2﹣x)=log2[(2﹣x)+1]=log2(3﹣x),又f(x)为周期为2的偶函数,所以f(x)=f(x﹣2)=f(2﹣x)=log2(3﹣x).故答案为:f(x)=log2(3﹣x).【知识点】函数解析式的求解及常用方法22.甲乙两地相距500km,汽车从甲地匀速行驶到乙地,速度v不能超过120km/h.已知汽车每小时运输成本为元,则全程运输成本与速度的函数关系是y=,当汽车的行驶速度为km/h时,全程运输成本最小.【分析】由已知可得汽车从甲地匀速行驶到乙地的时间为:,结合汽车每小时运输成本为元,可得:全程运输成本与速度的函数关系式,再由基本不等式可得v=100时,y取最小值.【解答】解:∵甲乙两地相距500km,故汽车从甲地匀速行驶到乙地的时间为:,又由汽车每小时运输成本为元,则全程运输成本与速度的函数关系是y=•()=(0<v≤120),由基本不等式得≥2=3600,当且仅当,即v=100时,取最小值,故答案为:(0<v≤120),100【知识点】函数解析式的求解及常用方法23.函数y=5sin(x+)(﹣15≤x≤10)的图象与函数y=图象的所有交点的横坐标之和为.【答案】-7【分析】由函数解析式可得两函数图象均关于点(﹣1,0)对称,再分析可得在(﹣1,0)内两函数图象有一个交点,画出图象的大致形状,即可求得两图象所有交点的横坐标之和.【解答】解:函数y=5sin(x+)的图象关于点(﹣1,0)对称,对于函数y=,当x=﹣1时,y=0,当x≠﹣1时,可得y=在(﹣1,0)上单调递增,在(0,+∞)上单调递减,且当x∈(﹣1,+∞)时,y=的最大值为,函数图象关于点(﹣1,0)对称;对于函数y=5sin(x+),当x=0时,y=5sin>=,故在(﹣1,0)内两函数图象有一个交点.根据两函数图象均关于点(﹣1,0)对称,画出两函数在[﹣15,10]上的大致图象,得到交点横坐标之和为﹣1+(﹣2)×3=﹣7【知识点】函数的图象与图象的变换、正弦函数的图象24.已知函数y=与函数y=的图象共有k(k∈N*)个公共点,A1(x1,y1),A2(x2,y2),…,A k(x k,y k),则(x i+y i)=.【答案】2【分析】f(x)关于(0,1)对称,同理g(x)=关于(0,1)对称,如图所示,两个图象有且只有两个交点,即可得出结论.【解答】解:由题意,函数f(x)==2﹣,f(﹣x)+f(x)=2,∴f(x)关于(0,1)对称,同理g(x)=关于(0,1)对称,如图所示,两个图象有且只有两个交点,∴(x i+y i)=2,故答案为2.【知识点】函数的图象与图象的变换25.函数f(x)=,若关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解,则a的取值范围是.【分析】程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解x,即要求f(x)=常数有3个不同的f (x),根据题意,先做出函数f(x)的图象,结合图象可知,只有当f(x)=a时,有3个根,再结合方程2f2(x)﹣(2a+3)f(x)+3a=0有2个不同的实数解,可求【解答】解:方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解,解:∵题中原方程2f2(x)﹣(2a+3)f(x)+3a=0有且只有5个不同实数解,∴即要求对应于f(x)等于某个常数有3个不同实数解,∴故先根据题意作出f(x)的简图:由图可知,只有当f(x)=a时,它有三个根.所以有:1<a<2 ①.再根据2f2(x)﹣(2a+3)f(x)+3a=0有两个不等实根,得:△=(2a+3)2﹣4×2×3a>0⇒②结合①②得:1<a<或a<2.故答案为:(1,)∪(,2).【知识点】指数型复合函数的性质及应用、函数的零点与方程根的关系、分段函数的解析式求法及其图象的作法26.设定义域为R的函数若关于x的方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=.【答案】2【分析】题中原方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根,即要求对应于f(x)=某个常数有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=4时,它有三个根.故关于x的方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根.【解答】解:∵题中原方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根,∴即要求对应于f(x)等于某个常数有3个不同实数解,∴故先根据题意作出f(x)的简图:由图可知,只有当f(x)=4时,它有三个根.故关于x的方程f2(x)﹣(2m+1)f(x)+m2=0有一个实数根4.∴42﹣4(2m+1)+m2=0,∴m=2,或m=6,m=6时,方程f2(x)﹣(2m+1)f(x)+m2=0有5个不同的实数根,所以m=2.故答案为:2.【知识点】函数与方程的综合运用、分段函数的解析式求法及其图象的作法。

函数的表示方法练习题 试题

函数的表示方法练习题  试题

心尺引州丑巴孔市中潭学校函数的表示方法练习题一、阅读课本完成以下问题:1、函数的三种表示方法1〕、用____来表示两个变量之间函数关系的方法称为解析法,这个____通常叫做函数的_____,简称_____。

2〕、用____来表示两个变量之间函数关系的方法称为列举法。

3〕、用____表示两个变量之量的函数关系的方法称为图象法。

2.各种表示法的优点3、分段函数的概念在定义域内________上,有______的函数通常叫做分段函数。

二、探究新知1、下表列出的是2006年全国普通高等招生全国统一考试〔全国卷1〕数学9理工类〕这个表格表示的是函数关系吗?为什么?2、f(x)是一次函数,且f[f(x)]=4x-1,能否由此求出f(x)的解析式?三、知识应用举例例1.根据条件,分别求出()f x 的表达式。

〔1〕2211()f x x x x +=+; 〔2〕21(1)1x f x x +=-; 〔3〕[()]21f f x x =-,其中()f x 为一次函数;〔4〕221()()(,,,0,)af x bf cx a b c R abc a b x+=∈≠≠。

例2、画出以下函数图象,并求其值域。

〔1〕2[2,1),()2[1,);x x f x x x ⎧-∈-=⎨-∈+∞⎩ 〔2〕2()2||1f x x x =-+。

例3〔1〕假设2(1)21,f x x +=+求(1).f x - 〔2〕设2()44f x x x =--的定义域为[]2,1t t --,对任意,t R ∈ 求函数()f x 的最小值()g t 的解析式.四、实战演习1.以下函数表示同一个函数的是 ( )A .24(),()22x f x g x x x -==+- B.()1,()f x x g x =-C .()21,()21f x x g t t =+=+ D.()()f x g x ==2.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,那么它的高y 与x 的函数关系式是( )A.)0x (x 50y >=B.)0x (x 100y >=C.)0x (x 50y >=D.)0x (x100y >= 3. 函数f(x)=⎪⎩⎪⎨⎧<+=->)0(1)0()0(02x x x x π,那么复合函数 f{f[f(-1)]}的值等于 ( )A x 2 +1B 2π+1C -πD 0 5.设函数2()231f x x x =+-,那么(1)f x += 6.函数(21)32,f x x +=-且()7,f a =那么______.a =7.一次函数()f x 满足(2)5,(0)1,f f =-= 那么函数()f x 的解析式为 . 8.、函数()f x 的图象如下列图,那么它的一个解析式是_____。

函数的三种表达方法习题及答案

函数的三种表达方法习题及答案

一.选择题1.如图反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为akm,小刚在青稞地除草比在菜地浇水多用了bmin,则a和b的值分别是()A.1,8;B.0.5,12;C.1,12;D.0.5,8答案:D2.x分钟A.C.答案:C3.为y (km答案:C4.一根弹簧原长12cm,它所挂重物质量不超过10kg,并且每挂重物1kg,就伸长1.5cm,挂重物后弹簧长度y(cm)与重物x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10);B.y=1.5x+12(0≤x≤10);C.y=1.5x+10(0≤x);D.y=1.5(x-12)(0≤x≤10)答案:B5.百货大楼进了一批画布,出售时要在进价的基础上加一定的利润,其数量x(米)与售价y(元)如下表:7.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。

下列函数图象能表达这一过程的是()答案:C8.小亮因感冒发烧住院治疗,护士为了较直观地了解小亮这天24小时的体温和时间的关系,可选择的比较好的方式是()A.列表法;B.图象法;C.解析式法;D.以上三种方法都可以答案:B9.小文,小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路b=480.A.答案:B10.A.乙前4C.答案:C11.E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()答案:D12.如图,正方形ABCD的边长为2,动点P从A出发,在正方形的边上沿着A?B?C的方向运动到点C停止.设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系()答案:A13.周末,小明骑自行车从家里出发到野外郊游。

从家出发0.5小时后到达甲地,游玩一段时间后,按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同的路线去乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车的速度是小明的3倍,下面说法正确的有()个。

高一数学函数及其表示试题

高一数学函数及其表示试题

高一数学函数及其表示试题1.下列各组函数是同一函数的是()A.B.C.D.【答案】D.【解析】对于A,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即A不正确;对于B,函数的定义域为,函数的定义域为或,两者的定义域不相同,所以不是同一函数,即B不正确;对于C,函数的定义域为,函数的定义域为,两者的定义域不相同,所以不是同一函数,即C不正确;对于D,函数的定义域和值域均为,函数的定义域和值域也均为,两者的定义域和值域均相同,所以是同一函数,即D正确.【考点】相等函数的概念.2.,则 ( )A.B.C.D.【答案】D【解析】本题主要考查函数解析式.由,故选D.【考点】函数解析式,诱导公式.3.已知定义域为的函数同时满足以下三个条件:(1)对任意的,总有;(2);(3)若,,且,则有成立,则称为“友谊函数”,请解答下列各题:(1)若已知为“友谊函数”,求的值;(2)函数在区间上是否为“友谊函数”?并给出理由.(3)已知为“友谊函数”,假定存在,使得且,求证:.【答案】(1)(2)是友谊函数(3)见解析.【解析】(1)利用赋值法由得,再由得,所以(2)分别验证(1)由指数函数的性质在区间上的最小值为0,(2)直接带入验证易得(3)利用做差法直接比较(3)先利用单调性的定义证明抽象函数的单调性,然后再证明取得,又由,得(2)显然在上满足(1);(2).(3)若,,且,则有故满足条件(1)、(2)、(3),所以为友谊函数.(3)由(3)知任给其中,且有,不妨设所以:.下面证明:(i)若,则有或若,则,这与矛盾;(2)若,则,这与矛盾;综上所述:【考点】函数的概念与性质.4.下列各组函数表示同一函数的是()A.B.C.D.【答案】C【解析】排除,因为三个选项中两个函数的定义域各不相同,故C正确。

【考点】函数的三要素。

5.函数的定义域为R,且定义如下:(其中是非空实数集).若非空实数集满足,则函数的值域为.【答案】【解析】解:根据题意:当时,=当时,=当时,=综上可知,对于任意,所以答案应填:【考点】函数的概念与分段函数.6.设是集合M到集合N的映射, 若N="{1,2}," 则M不可能是()A.{-1}B.C.D.【答案】D【解析】对应法则是,根据映射的定义,集合M中的任何一个元素在N中都要有唯一的元素和他对应,而D选项中的2,,,不满足定义,所以不正确,故选D.【考点】映射的定义7.已知函数(1)若,求的值;(2)求的值.【答案】(1)1;(2)1006【解析】(1)因为.所以可以计算出的值为1,即表示两个自变量的和为1的函数值的和为1.(2)由(1)可知两个自变量的和为1的函数值的和为1.所以令…①.利用倒序又可得到…②.所以由①+②可得2S=2012.所以S=1006.试题解析:. 5分(2). 10分【考点】1.函数的表示法.2.倒序求和法.8.如果两个函数的对应关系相同,值域相同,但定义域不同,则这两个函数为“同族函数”,那么函数的“同族函数”有()A.3个B.7个C.8个D.9个【答案】D【解析】1的原象是;2的原象是.值域为{1,2},定义域分别为{1,},{,-1},{,-1},{,1},{,-1,1},{,-1,1},{,,-1},{,,1},{,,1,-1},共9个.故答案为:9.【考点】函数的概念及构成要素.点评:1的原象是正负1;2的原象是正负.值域为{1,2},由此来判断解析式为y=x2,值域为{1,2}的“同族函数”的个数.9.下列各组函数中,表示同一函数的是()A.B.C.D.【答案】C【解析】本小题考查了构成函数的三要素等知识。

函数的表示法练习题(可打印修改)

函数的表示法练习题(可打印修改)

为( )
A. f x x2 3x 1
B. f x x2 3 x 1
2
C. f x 1 x2 3 x 2
22
D. f x 2x2 1 x 2
2
二、填空题(20 分)
8、一水池有 2 个进水口,1 个出水口,进出水速度分别如图甲、乙所示,某天
0 点到 6 点,该水池的蓄水量如图丙所示(至少代开一蓄个水水量口)
函数中的较小者,则 f x的最大值为( )
A.2
B.1
C.-1
3、设
f
x
x
x 2
1
,
则f
1 x


D.无最大值
A. f x
B. f x
C.
f
1
x
D.
f
1
x
4、已知集合 A N*,B=m m 2n 1, n Z,映射 f : A B 使 A 中任一元素
a 与 B 中元素 2a 1 对应,则与 B 中元素 17 对应的 A 中元素是(
0
,且
f
x0
8
,则
x0
___________。
10、已知函数
f
x
x2 1 x2
,那么
f
1
f
2
f
1 2
f
3
f
1 3பைடு நூலகம்
f
4
f
1 4
______。
11、函数 f x x2 4x 2, x 4, 4的最小值是_________,最大值是
___________。 三、解答题(45 分) 12、在国内投寄外埠平信,每封信不超过 20 g 付邮资 80 分,超过 20 g 不超过

函数的表示法练习题.doc

函数的表示法练习题.doc

D,V3 8A. 2B.3C.6D. 9出题人:罗淡珊审题人:李龙辉一、选择题:(共6小题,每小题5分)1.设g(x + 2) = 2x + 3 ,贝i|g(x)等于()A. 2.x +1B. 2.x — 1C. 2x-3D. 2x + 72,函数y = f(x)的图象与直线x = l的公共点数目是()A,1 B O C 0 或1 D, 1或2,、x+2 (x <—1)3已知/■(%) = (,若/(x) = 3,贝Ux的值是()%2 (x > -1)A, 1 B 1或邑C 1,—或土右2 24.小王于上午8时从甲地出发去相距50千米的乙地.下图中,折线OABC是表示小王离开甲地的时间t (时)与路程S(千米)之间的函数关系的图象.根据图象给出的信息,下列判断中,错误的是A.小王11时到达乙地B.小王在途中停了半小时C.与8: 00-9: 30相比,小王在10: 00-11: 00前进的速度较慢D.出发后1小时,小王走的路程少于25千米5.向高为H的水瓶中注水,注满为止。

如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()7.定义在R上的函数f (%)满足/(x+y) = /(X)+ /(y) + 2xy(x,y ⑴=2则f(一3)等于()11.设函数/(X)=< —x-l(x >0), 若f(Q)>。

.则实数Q的取值范围是8.设 /(%)=["'(二* 则/(5)的值为()[/[/(% +6)],(x< 10)A. 10B. 1 1 C 12 D* 13%1.填空题:(共2小题,每小题5分)9./(x) = - X " c的定义域为,值域为[2-x (xe(l,2])10.若3/(%)-/(-) = 4^,则/■(》)=(x < 0).二、解答题:(共2大题)12.求下列函数的值域(l)y = ^7 (2)y二~~; (3)y = x-Vl-2xx-1 x— 2x —213. (14分)某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润,最大利润是多少?函数的表示法参考答案:一、选择题1、(B)令x+2=t,则x=t-2,则g(x+2)=g(t)=2(t-2)+3=2t-l,所以g(x)=2x-l2、(C)有可能是没有交点的,如果有交点,那么对于1 = 1仅有一个函数值3、(D)该分段函数的二段各自的值域为(YO,1],(1,”O),而3e(l,+8)f (%) = x1 = 3, % = +A/3, M-X > —1 x = A/3:4、(D)5、(A)分析随着H的变化,体积V的变化程度6、(A), 7.(C)二、填空题8、119、[0, 2], [0, 1]分段函数的定义域、值域是各个部分定义域、值域的并集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习题第一课时1、如下图,求出A 、B 、C 、D 、E 、F 、O 点的坐标.2、若点A 的坐标为(2,-3),则它在第 象限内,它关于x 轴的对称点的坐标为 ;在第_______象限.它关于y 轴的对称点的坐标为 ;它关于原点的对称点的坐标为 ;点(3-,π-)在____,点(3,0)在____,点(0,-5)在____.3、请在下图中建立直角坐标系,并写出图中各点的坐标:A :( , )B :( , )C :( , )D :( , ) 4.下列各点,在第三象限的是( )A .(2, 4)B .(2, -4)C .(-2, 4)D .(-2, -4)5、已知点P 在第二象限内,且到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标为 ; 6. 若点P 在x 轴的下方, y 轴的左方, 到每条件坐标轴的距离都是3,则点P 的坐标为( )A. (3,3)B. (-3,3)C. (-3,-3)D. (3,-3).7. 点A 在y 轴上,距离原点4个单位长度,则A 点的坐标是( ) .8. 在坐标系中, 点C(-2,3)向左平移3个单位长度后坐标为( ) 9. 点P(x ,y)在第四象限,|x |=1,|y |=3,则P 点的坐标是 ( ) A.(1,3) B. (-1,3) C. (-1,-3) D. (1,-3) [B 组]9、已知A(a –1,3)在y 轴上,则a = .10、 在直角坐标系中,点(2x -6,x -5)在第四象限,则x 的取值范围是__。

A 、3<x <5 B 、-3<x <5 C 、-5<x <3 D 、-5<x <-3 11、(1)在平面直角坐标系中的点与有序实数对之间成___关系.(2)如果点P (x ,y )的坐标满足xy >0,那么点P 在__象限,如果满足xy= 0,那么点P _____.(3)点P(m -2,m -3)在第四象限,m 的取值范围是__. (4)若点(m,2)与(3, n)关于原点对称,则m+n 的值__ .(5) 已知线段AB 的两个端点的坐标分别是A(3,4),B(-2,1),求: ①把线段AB 向右平移2个单位后的线段的两个端点坐标__ ②线段AB 关于x 轴对称图形的两个端点的坐标;__ ③线段AB 关于Y 轴对称图形的两个端点的坐标;__ [C 组]12.平面直角坐标系内,已知点P (a ,b )且ab <0,则点P 在第__象限。

13、如果点M(a +b ,ab)在第二象限,则点N(a ,b)在第__象限。

14、已知:点A 、B 、C 的坐标分别为)3,0(A 、)5,0(-B 、)0,6(C ,求△ABC 的面积.15、若点P (a ,b )在第四象限,则点(b -a ,a -b )在第__象限。

16、已知点P 在第二象限,它的横坐标与纵坐标的和为1,点P 的坐标可以是__(填上一个你认为正确的即可) 第二课时 1、画出函数321+-=x y 的图象,并在图象上分别找出满足下列条件的点,写出它的坐标:(1)横坐标是-4的点; (2)和y 轴距离是2个单位长的点.2、如图,正方形ABCD的边长为4,P为DC上的点.,设DP=x,(1)△APD的面积y 关于x的函数关系式为(2)自变量x的取值范围为(3)画出这个函数的图象.(4)观察你所画的图象,回答下列问题(a)当x= 时,△APD的面积y= 4(b)当x增大时,y的值如何变化?(c)当x=时,△APD的面积最大。

3、等腰△ABC的周长为10cm,底边BC的长为ycm,腰AB的长为xcm.(1)写出y关于x的函数关系式(2)求x的取值范围(3)画出函数的图象(4)观察你所画的图象,求y的取值范围解:4、下列哪些点在函数2-=xy的图象上?为什么?哪些不在?为什么?A(1,-1)、B(0,2)、C(-1,-2)、D(2,0)、E(6,8)、F(-1,-3)5、下列各点不在函数的图象上的是()A 、B 、C 、D 、6、点中,在函数的图象上的点有()A、1个B、2个C、3个D、4个7、函数的图象过四个点中的()A、1个B、2个C、3个D、4个8、下列函数中,图象经过原点的为( )A.y=5x+1 B.y=-5x-1 C.y=-5xD.y=51-x[B组]9、点(a,6),在函数y=x3的图象上,则a=10、数y=kx+5的图象经过(1,-2),则k=[C组]11、别在同一坐标系内画出各组函数的图象,并观察每组图象之间的关系和区别.12、已知函数(1)画出这个函数的图象;(2)写出相应的函数与x轴交点坐标,与y轴的交点坐标;(3)判断点是否在这个函数的图象上,如果在将它画在图象上.(第1题)x 13、若点 在函数 的图象上,且当 时, . (1)求a 、c 的值;(2)如果点(-1,m )和点(n ,6)也在函数的图象上,求m ,n 的值. 第三课时1、一天,亮亮发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜,亮亮才感觉身上不那么发烫了,下面各图能基本上反映出亮亮这一天(0时-24时)体温的变化情况的是( )2、星期天晚饭后,小红从家里出去散步,如图描述了她散步过程中离家的距离与散步的时间t (分)之间的函数关系,依据图象,下面描述符合小红散步情景的是( ) A 从家出发,到一个公共阅报栏看了一 会儿报,就回家了。

B 从家出发,到一个公共阅报栏看了一 会儿报,继续向前走了一段,然后回家了。

C 从家出发,一直散步(没有停留),然后回家了。

D 从家出发,散了一会儿步,就找同学去 了,18分钟后才开始返回。

3、如果A 、B 两人在一次百米赛跑中,路程s (米)与赛跑的时间t(秒)的关系如图所示,则下列说法正确的是( )A 、 A 比B 先出发 B 、 A 、B 两人的速度相同C 、 A 先到达终点D 、 B 比A 跑的路程多4、丹家距学校m 千米,一天她从家上学先以a 千米/时的速度跑步锻炼前进,后以匀速b千米/时步行到达学校,共用n 小时图17-2-12份中能够反映李丹同学距学校的距离s (千米)与上学的时间t(小时)之间的大致图象是 ( )5、汽车在行驶过程中,速度往往是变化的,下图图象表示的是一辆汽车的速度随时间变化而变化的情况。

(1) 汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2) 汽车在哪些时间段保持匀速行驶?时速分别是多少?(3)出发后8分钟到10分钟辶间可能发生了什么情况?6、如图,图中直线AB 、CD 分别表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港的过程中,路程y (km )随时间x (小时)变化的图象(轮船出发的时间记作0)(1)分别求轮船和快艇行驶过程中y 与x 间的函数关系式; (2)求轮船和快艇行驶时的速度分别是多少; (3)由图中哪点可以得知,快艇出发多少时间赶上轮船, 为什么?(4)若用函数关系式来解决问题(3),你会怎样做? 为什么? (4) 结合以上问题和你对图示中点A 、B 、C 、D 、E 的理解,用一段话描述一下事情的经过.7、如图表示某学校秋游活动时,学生乘坐旅游车所行走的路程与时间的关系的示意图,请根据示意田回答下列问题:1.学生何时下车参观第一风景区?参观时间有多长?5002001002.11:00时该车离开学校有多远?3.学生何时返回学校,返回学校时车的平均速度是多少?[B组]8、小刚,爸爸,爷爷同时从家中出发到达同一目的地后又立即返回,小刚去时骑自行车,返回时步行;爷爷去时步行,返回时骑自行车;爸爸往返都步行。

三人步行的速度不等,小刚与爷爷骑自行车的速度相等,每个人走的路程与时间的关系分别如下图中的一个,走完一个往返,小刚用____min,爸爸用_______min,爷爷用_______min。

9、小明为了表示爷爷吃过晚饭后,出门散步、报亭看报、回家的过程,绘制了爷爷离家的路程S(米)与外出的时间(分)之间的关系图(如图17-1-3所示),请根据这个关系图回答下列问题.(1)这个关系图反映了哪几个变量之间的关系?(2)任取变量t的一个值,变量S有几个值与它对应,变S是t的函数吗?(3)报亭离爷爷家多远?爷爷在报亭看了多长时间的报?(4)爷爷出门、返回的平均速度分别是多少?10、在下列几个图象下的括号内分别填上对应函数的序号:(1)一杯越晾越凉的水(水温与时间的关系)(2)一面冉冉上升的旗子(高度与时间的关系)(3)足球守门员大脚开出去的球(高度与时间的关系)(4)匀速行驶的汽车(速度与时间的关系)[C组]11、如图所示是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h与注水时间t间的函数关系()12、沿墙用长32米的竹篱笆围成一个矩形的护栏(三面),设矩形的宽为x m,求矩形的面积s与x的函数关系式,画出此函数的图象,并指出当x为何值时面积最大?最大面积是多少?13、一函数的图象如下图,根据图象:观察下图回答下列问题:(1)确定自变量x的取值范围;(2)求当时,y的值;(3)求当时,对应的x的值;(4)当x为何值时,函数值y最大?(5)当x为何值时,函数值y最小?(6)当y随x的增大而增大时,求相应的x值在什么范围内?(7)当y随x的增大而减小时,求相应的x值在什么范围内?h thO thththOOODCBA。

相关文档
最新文档