Gate-Level Simulation of Quantum Circuits

合集下载

量子多体系统的理论模型

量子多体系统的理论模型

量子多体系统的理论模型引言量子力学是描述微观物质行为的基本理论。

在量子力学中,描述一个系统的基本单位是量子态,而量子多体系统则是由多个量子态组成的系统。

由于量子多体系统的复杂性,需要借助一些理论模型来描述和研究。

本文将介绍一些常见的量子多体系统的理论模型,包括自旋链模型、玻色-爱因斯坦凝聚模型和费米气体模型等。

通过对这些模型的研究,我们可以深入了解量子多体系统的行为和性质。

自旋链模型自旋链模型是描述自旋之间相互作用的量子多体系统的模型。

在自旋链模型中,每个粒子可以处于自旋向上或向下的两种状态。

粒子之间通过自旋-自旋相互作用产生相互作用。

常见的自旋链模型包括Ising模型和Heisenberg模型。

Ising模型Ising模型是最简单的自旋链模型之一。

在一维Ising模型中,每个自旋可以取向上(+1)或向下(-1)。

自旋之间通过简单的相邻自旋相互作用来影响彼此的取向。

可以使用以下哈密顿量来描述一维Ising模型:$$H = -J\\sum_{i=1}^{N}s_is_{i+1}$$其中,J为相邻自旋之间的交换耦合常数,s i为第i个自旋的取向。

Heisenberg模型Heisenberg模型是描述自旋间相互作用的模型,与Ising模型不同的是,Heisenberg模型中的自旋可以沿任意方向取向。

常见的一维Heisenberg模型可以使用以下哈密顿量来描述:$$H = \\sum_{i=1}^{N} J\\mathbf{S}_i \\cdot \\mathbf{S}_{i+1}$$其中,$\\mathbf{S}_i$为第i个自旋的自旋算符,J为自旋间的交换耦合常数。

玻色-爱因斯坦凝聚模型玻色-爱因斯坦凝聚是一种量子多体系统的现象,它描述了玻色子统计的粒子在低温下向基态排列的行为。

玻色-爱因斯坦凝聚模型可以使用用薛定谔方程来描述:$$i\\hbar\\frac{\\partial}{\\partial t}\\Psi(\\mathbf{r},t) = -\\frac{\\hbar^2}{2m}\ abla^2\\Psi(\\mathbf{r},t) +V(\\mathbf{r})\\Psi(\\mathbf{r},t) +g|\\Psi(\\mathbf{r},t)|^2\\Psi(\\mathbf{r},t)$$其中,$\\Psi(\\mathbf{r},t)$是波函数,m是粒子的质量,$V(\\mathbf{r})$是外势场,g是粒子之间的相互作用常数。

时空编码超表面涡旋

时空编码超表面涡旋

时空编码超表面涡旋
时空编码超表面(Spatiotemporal Encoded Metasurface,简称STEMS)是一种具有特殊电磁响应特性的人工结构表面。

涡旋(Vortex)是一种在流体、等离子体和光场等系统中广泛存在的现象,具有独特的拓扑性质。

时空编码超表面涡旋是指在时空编码超表面上产生的涡旋现象。

这种现象通常通过调整超表面的电磁参数来实现。

在时空编码超表面上,涡旋表现为表面电流或表面电磁场的分布特征。

由于时空编码超表面的独特性质,涡旋现象在光子学、等离子体物理学、流体力学等领域具有重要的研究和应用价值。

时空编码超表面涡旋的应用举例:
1. 光学:涡旋光束在光学通信、光学陷阱、光学传感和光学镊子等领域具有广泛应用。

2. 流体力学:涡旋在流体力学中起着关键作用,如旋涡脱落、湍流生成等,对流体的稳定性、传热和传质过程产生影响。

3. 等离子体:等离子体涡旋在等离子体物理、空间物理学和能源领
域具有重要作用,如磁约束聚变、太阳能电池等。

4. 天文学:在天文学中,涡旋现象在星系形成和演化过程中起到关键作用,如恒星的形成和银河系的演化。

5. 无线通信:时空编码超表面可以用于实现高效的无线通信技术,如空间复用、波束成形和指向性天线等。

总之,时空编码超表面涡旋是一种具有广泛研究和应用前景的现象,其在多个领域都发挥着重要作用。

vcs仿真——精选推荐

vcs仿真——精选推荐

vcs仿真1 什么是后仿真?后仿真也成为时序仿真,门级仿真,在芯⽚布局布线后将时序⽂件SDF反标到⽹标⽂件上,针对带有时序信息的⽹标仿真称为后仿真。

2 后仿真是⽤来⼲嘛的?检查电路中的timing violation和 test fail,⼀般都是已知的问题。

⼀般后仿真花销2周左右的时间。

⽹标仿真的⽬的是检查RTL仿真和综合后的⼀致性(logic Equivalence check),由于⽹标仿真⾮常慢,所以⽹标仿真不充分,有的公司没有⽹标仿真,即使有后仿真,后仿真⼀般是时间⾮常少,因为后仿真时间⾮常慢,⼀个case需要⾮常长(跟设计和case有关,⼀般⼀两天跑⼀个case).在实际的芯⽚开发中可以没有⽹标仿真,因为形式化验证和静态时序分析可以保证设计的正确性。

Gate level SimulationInclude the verilog model of standard cell and gate-level netlist to your testbenchAdd the following synopsys directives to the testbench3 有了LEC(等效性检查)和STA(静态时序分析),为什么还要做门级仿真(Gate-level simulation ,GLS)?GLS can catch issues that static timing analysis (STA) or logical equivalence tools are not able to report. The areaswhere GLS is useful include:Overcoming the limitations of STA, such as:–The inability of STA to identify asynchronous interfaces–Static timing constraint requirements, such as those for false and multi-cycle pathsVerifying system initialization and that the reset sequence is correctDFT verification, since scan-chains are inserted after RTL synthesisClock-tree synthesisFor switching factor to estimate powerAnalyzing X state pessimism or an optimistic view, in RTL or GLS4 零延迟仿真(Zero-Delay Simulation)zero-delay mode run much faster than simulation using full timing.在仿真时添加以下仿真参数(VCS)+nospecify+notimingcheck+no_notifier+delay_mode_zero零延迟仿真⽤于调仿真平台,挑testcase, 检验⽹标有没有问题。

清华紫皮数理逻辑 -回复

清华紫皮数理逻辑 -回复

清华紫皮数理逻辑-回复清华紫皮数理逻辑(Tsinghua Purple Book on Mathematical Logic)是清华大学出版社出版的一本经典教材,是国内数理逻辑领域的权威教材之一。

本文将以清华紫皮数理逻辑为主题,对其内容进行逐步回答解析。

清华紫皮数理逻辑是一本介绍数理逻辑的教科书,适合数学、计算机、哲学、语言学等专业的本科生和研究生学习。

该教材系统地介绍了命题逻辑、一阶谓词逻辑和模型论等基础概念与技巧,同时也涵盖了一些高阶逻辑、模态逻辑和递归论等扩展内容。

本文将回答以下四个问题,以帮助读者更好地理解清华紫皮数理逻辑:1. 清华紫皮数理逻辑的主要内容是什么?2. 清华紫皮数理逻辑的特点是什么?3. 清华紫皮数理逻辑适用于哪些专业领域?4. 如何有效地学习清华紫皮数理逻辑?【问题一】清华紫皮数理逻辑的主要内容是什么?清华紫皮数理逻辑主要涵盖了以下内容:1. 命题逻辑:介绍了命题、命题的真值赋值、命题逻辑中的运算、命题逻辑的推理规则等基础概念和技巧。

2. 一阶谓词逻辑:介绍了一阶逻辑中的基本概念,如公式、合式公式、有效推理等。

此外,还包括一阶逻辑中的量词、解释、模型等概念。

3. 模型论:介绍了模型的基本概念,如语言、结构、关系等。

通过模型论的学习,读者可以深入了解逻辑的数学基础和形式化表达能力。

4. 其他扩展内容:除了命题逻辑、一阶逻辑和模型论外,清华紫皮数理逻辑还涉及了一些高阶逻辑、模态逻辑和递归论等扩展内容,使读者对逻辑领域的前沿产生认识。

【问题二】清华紫皮数理逻辑的特点是什么?清华紫皮数理逻辑的特点如下:1. 全面而系统:清华紫皮数理逻辑全面而系统地介绍了数理逻辑的基础概念和技巧,从命题逻辑到一阶逻辑再到模型论,覆盖了数理逻辑的主要内容,能够帮助读者建立起逻辑推理的基本框架。

2. 深入浅出:教材采用了简洁明了的语言和直观的例子,旨在帮助读者理解抽象的逻辑概念。

作者在呈现逻辑理论的同时注重具体技巧和操作方法的介绍,使读者能够掌握实际问题的解决方法。

物理学专业英语

物理学专业英语

华中师范大学物理学院物理学专业英语仅供内部学习参考!2014一、课程的任务和教学目的通过学习《物理学专业英语》,学生将掌握物理学领域使用频率较高的专业词汇和表达方法,进而具备基本的阅读理解物理学专业文献的能力。

通过分析《物理学专业英语》课程教材中的范文,学生还将从英语角度理解物理学中个学科的研究内容和主要思想,提高学生的专业英语能力和了解物理学研究前沿的能力。

培养专业英语阅读能力,了解科技英语的特点,提高专业外语的阅读质量和阅读速度;掌握一定量的本专业英文词汇,基本达到能够独立完成一般性本专业外文资料的阅读;达到一定的笔译水平。

要求译文通顺、准确和专业化。

要求译文通顺、准确和专业化。

二、课程内容课程内容包括以下章节:物理学、经典力学、热力学、电磁学、光学、原子物理、统计力学、量子力学和狭义相对论三、基本要求1.充分利用课内时间保证充足的阅读量(约1200~1500词/学时),要求正确理解原文。

2.泛读适量课外相关英文读物,要求基本理解原文主要内容。

3.掌握基本专业词汇(不少于200词)。

4.应具有流利阅读、翻译及赏析专业英语文献,并能简单地进行写作的能力。

四、参考书目录1 Physics 物理学 (1)Introduction to physics (1)Classical and modern physics (2)Research fields (4)V ocabulary (7)2 Classical mechanics 经典力学 (10)Introduction (10)Description of classical mechanics (10)Momentum and collisions (14)Angular momentum (15)V ocabulary (16)3 Thermodynamics 热力学 (18)Introduction (18)Laws of thermodynamics (21)System models (22)Thermodynamic processes (27)Scope of thermodynamics (29)V ocabulary (30)4 Electromagnetism 电磁学 (33)Introduction (33)Electrostatics (33)Magnetostatics (35)Electromagnetic induction (40)V ocabulary (43)5 Optics 光学 (45)Introduction (45)Geometrical optics (45)Physical optics (47)Polarization (50)V ocabulary (51)6 Atomic physics 原子物理 (52)Introduction (52)Electronic configuration (52)Excitation and ionization (56)V ocabulary (59)7 Statistical mechanics 统计力学 (60)Overview (60)Fundamentals (60)Statistical ensembles (63)V ocabulary (65)8 Quantum mechanics 量子力学 (67)Introduction (67)Mathematical formulations (68)Quantization (71)Wave-particle duality (72)Quantum entanglement (75)V ocabulary (77)9 Special relativity 狭义相对论 (79)Introduction (79)Relativity of simultaneity (80)Lorentz transformations (80)Time dilation and length contraction (81)Mass-energy equivalence (82)Relativistic energy-momentum relation (86)V ocabulary (89)正文标记说明:蓝色Arial字体(例如energy):已知的专业词汇蓝色Arial字体加下划线(例如electromagnetism):新学的专业词汇黑色Times New Roman字体加下划线(例如postulate):新学的普通词汇1 Physics 物理学1 Physics 物理学Introduction to physicsPhysics is a part of natural philosophy and a natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry,and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy.Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.Core theoriesThough physics deals with a wide variety of systems, certain theories are used by all physicists. Each of these theories were experimentally tested numerous times and found correct as an approximation of nature (within a certain domain of validity).For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These theories continue to be areas of active research, and a remarkable aspect of classical mechanics known as chaos was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Isaac Newton (1642–1727) 【艾萨克·牛顿】.University PhysicsThese central theories are important tools for research into more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.Classical and modern physicsClassical mechanicsClassical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism.Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies at rest), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter including such branches as hydrostatics, hydrodynamics, aerodynamics, and pneumatics.Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics the physics of animal calls and hearing, and electroacoustics, the manipulation of audible sound waves using electronics.Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light.Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy.Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.Modern PhysicsClassical physics is generally concerned with matter and energy on the normal scale of1 Physics 物理学observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on the very large or very small scale.For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified.The physics of elementary particles is on an even smaller scale, as it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in large particle accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid.The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics.Quantum theory is concerned with the discrete, rather than continuous, nature of many phenomena at the atomic and subatomic level, and with the complementary aspects of particles and waves in the description of such phenomena.The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with relative uniform motion in a straight line and the general theory of relativity with accelerated motion and its connection with gravitation.Both quantum theory and the theory of relativity find applications in all areas of modern physics.Difference between classical and modern physicsWhile physics aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match their predictions.Albert Einstein【阿尔伯特·爱因斯坦】contributed the framework of special relativity, which replaced notions of absolute time and space with space-time and allowed an accurate description of systems whose components have speeds approaching the speed of light.Max Planck【普朗克】, Erwin Schrödinger【薛定谔】, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales.Later, quantum field theory unified quantum mechanics and special relativity.General relativity allowed for a dynamical, curved space-time, with which highly massiveUniversity Physicssystems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.Research fieldsContemporary research in physics can be broadly divided into condensed matter physics; atomic, molecular, and optical physics; particle physics; astrophysics; geophysics and biophysics. Some physics departments also support research in Physics education.Since the 20th century, the individual fields of physics have become increasingly specialized, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (1879–1955) and Lev Landau (1908–1968)【列夫·朗道】, who worked in multiple fields of physics, are now very rare.Condensed matter physicsCondensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms. More exotic condensed phases include the super-fluid and the Bose–Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials,and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.Condensed matter physics is by far the largest field of contemporary physics.Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967. In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics.Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.Atomic, molecular and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions on the scale of single atoms and molecules.1 Physics 物理学The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of the energy scales that are relevant. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions, low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of high-energy physics.Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light.Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects, but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.High-energy physics (particle physics) and nuclear physicsParticle physics is the study of the elementary constituents of matter and energy, and the interactions between them.In addition, particle physicists design and develop the high energy accelerators,detectors, and computer programs necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally, but are created only during high-energy collisions of other particles.Currently, the interactions of elementary particles and fields are described by the Standard Model.●The model accounts for the 12 known particles of matter (quarks and leptons) thatinteract via the strong, weak, and electromagnetic fundamental forces.●Dynamics are described in terms of matter particles exchanging gauge bosons (gluons,W and Z bosons, and photons, respectively).●The Standard Model also predicts a particle known as the Higgs boson. In July 2012CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson.Nuclear Physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.University PhysicsAstrophysics and Physical CosmologyAstrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the solar system, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe was expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.The Big Bang was confirmed by the success of Big Bang nucleo-synthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle (On a sufficiently large scale, the properties of the Universe are the same for all observers). Cosmologists have recently established the ΛCDM model (the standard model of Big Bang cosmology) of the evolution of the universe, which includes cosmic inflation, dark energy and dark matter.Current research frontiersIn condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity. Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. Particle accelerators have begun probing energy scales in the TeV range, in which experimentalists are hoping to find evidence for the super-symmetric particles, after discovery of the Higgs boson.Theoretical attempts to unify quantum mechanics and general relativity into a single theory1 Physics 物理学of quantum gravity, a program ongoing for over half a century, have not yet been decisively resolved. The current leading candidates are M-theory, superstring theory and loop quantum gravity.Many astronomical and cosmological phenomena have yet to be satisfactorily explained, including the existence of ultra-high energy cosmic rays, the baryon asymmetry, the acceleration of the universe and the anomalous rotation rates of galaxies.Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity, chaos, or turbulence are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sand-piles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems.Vocabulary★natural science 自然科学academic disciplines 学科astronomy 天文学in their own right 凭他们本身的实力intersects相交,交叉interdisciplinary交叉学科的,跨学科的★quantum 量子的theoretical breakthroughs 理论突破★electromagnetism 电磁学dramatically显著地★thermodynamics热力学★calculus微积分validity★classical mechanics 经典力学chaos 混沌literate 学者★quantum mechanics量子力学★thermodynamics and statistical mechanics热力学与统计物理★special relativity狭义相对论is concerned with 关注,讨论,考虑acoustics 声学★optics 光学statics静力学at rest 静息kinematics运动学★dynamics动力学ultrasonics超声学manipulation 操作,处理,使用University Physicsinfrared红外ultraviolet紫外radiation辐射reflection 反射refraction 折射★interference 干涉★diffraction 衍射dispersion散射★polarization 极化,偏振internal energy 内能Electricity电性Magnetism 磁性intimate 亲密的induces 诱导,感应scale尺度★elementary particles基本粒子★high-energy physics 高能物理particle accelerators 粒子加速器valid 有效的,正当的★discrete离散的continuous 连续的complementary 互补的★frame of reference 参照系★the special theory of relativity 狭义相对论★general theory of relativity 广义相对论gravitation 重力,万有引力explicit 详细的,清楚的★quantum field theory 量子场论★condensed matter physics凝聚态物理astrophysics天体物理geophysics地球物理Universalist博学多才者★Macroscopic宏观Exotic奇异的★Superconducting 超导Ferromagnetic铁磁质Antiferromagnetic 反铁磁质★Spin自旋Lattice 晶格,点阵,网格★Society社会,学会★microscopic微观的hyperfine splitting超精细分裂fission分裂,裂变fusion熔合,聚变constituents成分,组分accelerators加速器detectors 检测器★quarks夸克lepton 轻子gauge bosons规范玻色子gluons胶子★Higgs boson希格斯玻色子CERN欧洲核子研究中心★Magnetic Resonance Imaging磁共振成像,核磁共振ion implantation 离子注入radiocarbon dating放射性碳年代测定法geology地质学archaeology考古学stellar 恒星cosmology宇宙论celestial bodies 天体Hubble diagram 哈勃图Rival竞争的★Big Bang大爆炸nucleo-synthesis核聚合,核合成pillar支柱cosmological principle宇宙学原理ΛCDM modelΛ-冷暗物质模型cosmic inflation宇宙膨胀1 Physics 物理学fabricate制造,建造spintronics自旋电子元件,自旋电子学★neutrinos 中微子superstring 超弦baryon重子turbulence湍流,扰动,骚动catastrophes突变,灾变,灾难heterogeneous collections异质性集合pattern formation模式形成University Physics2 Classical mechanics 经典力学IntroductionIn physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of the oldest and largest subjects in science, engineering and technology.Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, as well as astronomical objects, such as spacecraft, planets, stars, and galaxies. Besides this, many specializations within the subject deal with gases, liquids, solids, and other specific sub-topics.Classical mechanics provides extremely accurate results as long as the domain of study is restricted to large objects and the speeds involved do not approach the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to introduce the other major sub-field of mechanics, quantum mechanics, which reconciles the macroscopic laws of physics with the atomic nature of matter and handles the wave–particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, classical mechanics is enhanced by special relativity. General relativity unifies special relativity with Newton's law of universal gravitation, allowing physicists to handle gravitation at a deeper level.The initial stage in the development of classical mechanics is often referred to as Newtonian mechanics, and is associated with the physical concepts employed by and the mathematical methods invented by Newton himself, in parallel with Leibniz【莱布尼兹】, and others.Later, more abstract and general methods were developed, leading to reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advances were largely made in the 18th and 19th centuries, and they extend substantially beyond Newton's work, particularly through their use of analytical mechanics. Ultimately, the mathematics developed for these were central to the creation of quantum mechanics.Description of classical mechanicsThe following introduces the basic concepts of classical mechanics. For simplicity, it often2 Classical mechanics 经典力学models real-world objects as point particles, objects with negligible size. The motion of a point particle is characterized by a small number of parameters: its position, mass, and the forces applied to it.In reality, the kind of objects that classical mechanics can describe always have a non-zero size. (The physics of very small particles, such as the electron, is more accurately described by quantum mechanics). Objects with non-zero size have more complicated behavior than hypothetical point particles, because of the additional degrees of freedom—for example, a baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made up of a large number of interacting point particles. The center of mass of a composite object behaves like a point particle.Classical mechanics uses common-sense notions of how matter and forces exist and interact. It assumes that matter and energy have definite, knowable attributes such as where an object is in space and its speed. It also assumes that objects may be directly influenced only by their immediate surroundings, known as the principle of locality.In quantum mechanics objects may have unknowable position or velocity, or instantaneously interact with other objects at a distance.Position and its derivativesThe position of a point particle is defined with respect to an arbitrary fixed reference point, O, in space, usually accompanied by a coordinate system, with the reference point located at the origin of the coordinate system. It is defined as the vector r from O to the particle.In general, the point particle need not be stationary relative to O, so r is a function of t, the time elapsed since an arbitrary initial time.In pre-Einstein relativity (known as Galilean relativity), time is considered an absolute, i.e., the time interval between any given pair of events is the same for all observers. In addition to relying on absolute time, classical mechanics assumes Euclidean geometry for the structure of space.Velocity and speedThe velocity, or the rate of change of position with time, is defined as the derivative of the position with respect to time. In classical mechanics, velocities are directly additive and subtractive as vector quantities; they must be dealt with using vector analysis.When both objects are moving in the same direction, the difference can be given in terms of speed only by ignoring direction.University PhysicsAccelerationThe acceleration , or rate of change of velocity, is the derivative of the velocity with respect to time (the second derivative of the position with respect to time).Acceleration can arise from a change with time of the magnitude of the velocity or of the direction of the velocity or both . If only the magnitude v of the velocity decreases, this is sometimes referred to as deceleration , but generally any change in the velocity with time, including deceleration, is simply referred to as acceleration.Inertial frames of referenceWhile the position and velocity and acceleration of a particle can be referred to any observer in any state of motion, classical mechanics assumes the existence of a special family of reference frames in terms of which the mechanical laws of nature take a comparatively simple form. These special reference frames are called inertial frames .An inertial frame is such that when an object without any force interactions (an idealized situation) is viewed from it, it appears either to be at rest or in a state of uniform motion in a straight line. This is the fundamental definition of an inertial frame. They are characterized by the requirement that all forces entering the observer's physical laws originate in identifiable sources (charges, gravitational bodies, and so forth).A non-inertial reference frame is one accelerating with respect to an inertial one, and in such a non-inertial frame a particle is subject to acceleration by fictitious forces that enter the equations of motion solely as a result of its accelerated motion, and do not originate in identifiable sources. These fictitious forces are in addition to the real forces recognized in an inertial frame.A key concept of inertial frames is the method for identifying them. For practical purposes, reference frames that are un-accelerated with respect to the distant stars are regarded as good approximations to inertial frames.Forces; Newton's second lawNewton was the first to mathematically express the relationship between force and momentum . Some physicists interpret Newton's second law of motion as a definition of force and mass, while others consider it a fundamental postulate, a law of nature. Either interpretation has the same mathematical consequences, historically known as "Newton's Second Law":a m t v m t p F ===d )(d d dThe quantity m v is called the (canonical ) momentum . The net force on a particle is thus equal to rate of change of momentum of the particle with time.So long as the force acting on a particle is known, Newton's second law is sufficient to。

连续束缚态的动量空间拓扑涡旋光的自旋霍尔效应

连续束缚态的动量空间拓扑涡旋光的自旋霍尔效应

连续束缚态的动量空间拓扑涡旋光的自旋霍尔效应在量子物理中,连续束缚态是一种特殊的状态,其中的粒子被约束在一定的空间范围内,而不是在离散的能级上。

这种状态在许多物理系统中都有出现,例如在超导材料或拓扑绝缘体中。

在动量空间中,连续束缚态表现为一种特殊的拓扑结构,称为拓扑涡旋。

这种拓扑涡旋光具有独特的性质,例如它们具有非零的贝里曲率,这使得粒子在动量空间中的运动轨迹出现弯曲。

自旋霍尔效应是一种特殊的物理现象,其中自旋不同的电子在导体中受到不同的力,导致它们在空间中分离。

这种现象在自旋电子学中有重要的应用,可以用来制造自旋电子器件。

近年来,研究者发现连续束缚态的动量空间拓扑涡旋光可以表现出自旋霍尔效应。

这一发现为理解量子物理中的新奇现象和开发新型量子器件提供了新的思路。

例如,可以利用拓扑涡旋光的自旋霍尔效应来制造高效率的自旋电子器件,或者利用这种效应来控制量子系统的行为。

总的来说,连续束缚态的动量空间拓扑涡旋光的自旋霍尔效应是一个令人兴奋的研究领域,它不仅有助于我们深入理解量子物理的基本原理,还有潜力推动量子技术的发展。

SCI 投稿经历

SCI 投稿经历

今天收到邮件,我的一篇Journal of Applied Physics 论文已被接收,心情当时还是有点激动。

虽然这个杂志的影响因子不是很高,大概2.2左右吧,这也不是我的第一篇SCI论文,但回想这一年发文章的坎坎坷坷,以及亲身经历的四川大地震,心里还是有很多的感触。

这篇论文是我在2008年二月份完成的最初稿,于二月九号投到Physics Letters A上,在经历了Technical check,with editor,under review后,于三月二十号收到编辑的决定信,当时就傻了-拒稿!受打击了。

下面是编辑的信以及审稿意见,我想把它贴出来与虫友们分享,一方面我认为,通过看审稿人的意见,可以帮助大家更好地写作,提高自己的科研水平和能力,另一方面也是答谢小木虫上很多无私的虫友们,是他们将自己的投稿经历贴在网上,与大家分享,我想我没有理由不拿出来哈!同时,也希望小木虫的虫子们能继续发扬这种精神,大家同舟共济,共同提高!好了,废话说了一大堆,不说了,下面是Physics Letters A 的审稿意见:Ms. Ref. No.: ××××××Title: ×××××Physics Letters ADear professor ××,Reviewers' comments on your work have now been received. You will see that they are advising against publication of your work. Therefore I must reject it.For your guidance, I append the reviewers' comments below.Thank you for giving us the opportunity to consider your work.Yours sincerely,×××(编辑名)EditorPhysics Letters AReviewers' comments:Reviewer #2: ManuscriptThe authors present results of the 3D electron potential ofa gated quantum point contact in a AlGaAs/GaAs heterostructure.In contrast to earlier studies, it is now possible to derive thepotential landshape without any adjustable parameter. The resultsstill agree with earlier investigations using simpler phenomenologicalmodels. Since the used nextnano3 program is available since acouple of years, I wonder why this has not been done earlier.The authors emphasize an application of their results. Havingthe complete potential landshape might help, in the future,to better understand the quantized acoustoelectric current inSETSAW devices and to improve their performance.However, the authors do not show or even discuss how this canbe achieved. Therefore I believe that in the present form the paperis not suitable for publication.The authors should consider the following suggestions, questions,and remarks.1) Page 1, first paragraph'... due to the negatively applied gate voltage ...'. It is the SAWthat drives the electrons through the contact, not the gate voltage.Maybe replace this sentence by '..., depending on the applied gatevoltage'.2) Page 3, paragraph starting with 'Generally, the quantized ...''... with fixed x = 1050 nm and ...'. Skip the '.0'. One could addthat this is exactly at the center of the device.3) At the end of the same paragraph is '... once the bias is below ...'Should this not be the gate instead of the bias voltage?4) Page 4, paragraph starting with 'As we know, in the ...''... To be different from previous calculations ...' replace by'... In contrast to previous calculations ...'.5) The strongly different behaviour above and below the pinch-offvoltage is not obvious for the non-experts. All curves look moreor less the same. One could, for example, add another figure, orinsert, to show the potential height versus gate voltage.6) How do these theoretical results of potential height versus gatevoltage compare with experiments? There exists at least onereport to determine the potential height of quantum-point contactsbelow pinch-off as function of gate voltage (Gloos et al., Phys.Rev. B 73, 125326 (2006)). Possibly, one could also compare thepresent data with 3D simulations of quantum dots (Vasileska et al., Semicond. Sci. Technol. 13, A37 (1998)).7) Figure 1,It would be better to mark the distance between the two metal gatesas the relevant parameter, and not the size of one gate.8) Figure 3The numbering of the two density axes looks rather odd. Could it notbe done with integers, like 3 instead of 3.2 or 3.0?9) Figure 5 (b)Should there not be an anomaly or kink in the potential near the Fermilevel?在仔细读了审稿人的意见后,我觉得审稿人提出的5)和6)意见非常好,后来自己想想,决定把文章来个彻底的修改。

澳大利亚研究人员成功模拟光子穿越时间

澳大利亚研究人员成功模拟光子穿越时间

澳大利亚研究人员成功模拟光子穿越时间澳大利亚昆士兰大学的研究人员对外宣布已经成功模拟出单个光子穿越时间回到过去,和过去的自己发生作用的过程。

根据他们的研究结果显示,在这种情况下,量子机制的定律会比现在更诡异。

“在广义相对论中,封闭时类曲线(closed timelike curves,简称CTC)是可以存在的,封闭时类曲线可以理解为从一个点回到过去时间的相同点的时空通路,”博士研究生的研究带头作者Martin Ringbauer告诉Gizmag。

“至今为止,还没有观测到CTC的存在,但是他们的确在爱因斯坦场方程的许多解中出现过。

穿越封闭式类曲线意味着回到过去,所以CTC是个很有意思的东西。

”人类有可能穿越过去?这与传统观点向矛盾。

大家都知道祖父悖论,说的就是这道理。

然而,英国物理学家David Deutsch1991年表示虽然祖父悖论在宏观物体上是不可避免的,但是制约量子粒子,例如光子,的不确定原则却为避免祖父悖论产生矛盾提供了一定的回旋余地。

Deutsch1991表示在以前人们认为,祖父悖论中人要么是不存在,要么存在,不可能陷入同时存在又不存在的状态,也就是说,一物体只能有一种状态。

但是在量子领域,完全不是这么回事,量子可以处于叠加态和混合态,如果把父悖论放到量子学里来看,时间旅行者所处得相对量子状态应该是存在和不存在的混合态,这样就能解决悖论。

为了研究Deutsch的理论对量子粒子在CTC中的运动形式的影响,澳大利亚的这群研究人员着手开始了模拟。

研究人员首先模拟了单个光子如何穿越CTC,回到过去和自己发生互动。

(研究人员使用第二颗光子扮演时间旅行光子过去的化身来进行模拟) 这样的设置并不会导致时间旅行悖论,但是研究人员通过模拟,的确发现了在CTC出现的期间,量子机制定律的确可能改变。

这套量子系统或许可以完美分辨量子系统的不同“态”,因此甚至可能违背了海森堡测不准原理!甚至可能破解量子加密法,完美克隆不同的量子态。

量子模拟 洞悉世界

量子模拟 洞悉世界

量子模拟洞悉世界作者:暂无来源:《世界科学》 2021年第3期唐豪金贤敏唐豪上海交通大学物理与天文学院副研究员金贤敏上海交通大学物理与天文学院长聘教授,集成量子信息技术研究中心主任模拟研究是一个大家并不陌生的研究手段。

例如侦探在推理案发现场时,往往会采用近似的替代物来尝试复现当时的经过,因为不可能让真实的原人物重演。

又如科学家研发飞行器时,会在风洞实验室里人工产生并控制气流,用来模拟飞行器的运行,因为如果研究真实飞行器,一旦坠毁则成本代价太高。

模拟研究使得这些不可能或者太难办的问题变得可能。

量子模拟同样具有这样的目标。

20世纪以来,人们认识到世界不能只用经典力学来解释。

小到凝聚态物理中的电子运动的特性,微生物体中的能量传输,大到宇宙中的黑体辐射,都不能忽略量子效应。

这些从微观到宏观的自然万物,直接观测往往非常困难,如果采用经典计算机进行模拟分析也并不乐观,例如计算多体量子系统,需要消耗指数级的资源,模拟50个自旋粒子组成的多体系统需要计算量高达250量级,让现代最先进的超算望而生畏。

1980年初,诺贝尔物理学奖得主理查德· 费曼(Richard Feynman)提出,是不是可以用一个人工构建的量子系统去模拟自然界中的量子系统呢,这样一来只需要多项式级的计算资源了,使研究原本不可控或者难以实现的量子系统变得可能。

费曼提出这个量子模拟(Quantum Simulation)的思想,并在几年后他类比经典计算机基于逻辑门的数字电路,提出通用量子计算机量子线路的构建。

不过,量子模拟既可以采用这种将量子系统编码到量子线路的数字(Digital)型方式,也可以采用初始提出的直接用一个现成可控的量子系统去类比待模拟的量子系统的类比(Analog)型方式。

两种方式都在实验中取得进展,尤其是近五年来,基于冷原子、离子阱、超导、光子等不同量子物理体系的量子模拟都在快速推进。

量子模拟的意义正在加倍凸显。

通过不断发展的量子模拟实验技术更准确地模拟了解从微观到宏观的自然万物,使人类对科学和世界的认知得到加深与升华。

quantumscape

quantumscape

quantumscapeQuantumscape,也叫量子风景,是一个广泛而深远的话题,它不仅涉及物理学、数学和计算机科学等学科的深奥思想,而且也延伸到许多其他领域,比如材料科学、生物学、能源技术和金融市场等。

这是一个与普通人普遍接触的科学概念不同的新兴话题,有着无可比拟的成功结果。

量子风景兴起于20世纪90年代,是量子物理学研究的一个子领域。

它提供了一种新的方式来解释和研究物理系统。

量子风景是一种基于无穷维可测量量的模型,它不仅简化了量子物理学的研究过程,而且也打开了新型材料、新能源技术、新型传感器和新型金融产品等的开发和应用。

随着研究的不断深入,量子风景的应用空间也越来越大。

在物理学方面,量子风景可以帮助科学家更好地理解物质的本质,更好地分析物质结构和性质,从而为科学家探索特殊的弱相互作用,设计出能够抑制损坏的特性,以及改变和改善物质的本质性质发挥重要作用。

另外,量子风景在材料科学方面也有着重要的应用。

量子风景模型可以帮助材料科学家准确地找到最佳结构构型,使得材料可以耐受更大的负荷,操作更高的温差,从而更好地满足应用的需求。

此外,量子风景也有助于传感器的开发。

量子风景技术可以更精确地识别物体、小分子和物理现象,并且拥有更高的密度、更低的功耗和更小的尺寸,使得传感器更加高效和可靠。

此外,量子风景还可以为能源技术带来变革。

例如,研究人员可以利用量子风景来提高太阳能电池的能量转换效率,并使用量子风景来分析风能、水能和热能等更多重要的能源来源,以获取最大的能源利用效率。

量子风景最后也可以应用在金融市场。

量子风景提供了一种更加先进的计算模型,可以更迅速、更准确地分析市场状况,帮助投资者做出更明智的投资决定,并可以给出更准确的投资建议,从而有效降低投资风险。

总之,量子风景无疑是一个重要的话题,它不仅有助于物理学研究,而且也有助于材料科学、能源技术和金融市场等许多领域的发展。

它的应用将会为各个领域带来更多的价值和发展,将会改变未来的世界。

弦理论镜像对称性破缺机制

弦理论镜像对称性破缺机制

弦理论镜像对称性破缺机制弦理论(String Theory)是一种试图统一量子力学和引力的理论,它认为宇宙中的基本物质不是点状粒子,而是细如弦线的振动。

弦理论的发展使得物理学家在解释自然界中的基本现象时获得了更强大的工具和更深入的见解。

镜像对称性(Mirror Symmetry)是弦理论中一个重要的对称性概念。

在物理学中,对称性是指系统在某个变换下不变的性质。

弦理论提出了一种如镜子中的映像般的对称性,即物理过程在某个特定条件下,可以通过一种映射关系相互转变。

镜像对称性在弦理论的基础研究中起着重要作用,帮助理解弦振动模型的特性并解决了一些难题。

镜像对称性的破缺机制是指在特定条件下,镜像对称性不再成立的情况。

这种破缺可以发生在不同的空间维度和尺度下,导致了物理现象的差异。

弦理论中的破缺机制是一个复杂的领域,牵涉到超弦的拓扑场景、边界条件和背景场的调整等多个方面。

一个经典的例子是Calabi-Yau空间的镜像对称性破缺。

Calabi-Yau空间是弦理论中常用的一类六维流形,它具有特殊的拓扑结构和几何性质。

弦论预言了Calabi-Yau空间存在镜像对称关系,即两个拓扑不同但拥有相同物理性质的空间。

然而,在实际物理过程中,由于背景场的引入和量子修正效应,镜像对称性会被破坏。

这种破缺可以导致物理现象的差异,并且为物理学家提供了理解弦振动模型的新途径。

镜像对称性破缺机制的研究对于弦理论的进一步发展至关重要。

通过研究对称性破缺的机制,物理学家可以更好地理解自然界中的基本粒子和其相互作用,深入研究宇宙的起源和演化。

同时,镜像对称性破缺也为寻找弦理论的有效低能有效场论提供了重要线索。

总结起来,弦理论镜像对称性破缺机制是弦理论中一个重要的研究领域,通过研究对称性的破缺,物理学家可以深入理解弦振动模型和物理现象的差异。

镜像对称性的破缺机制对于解决弦理论中的难题、寻找低能有效场论以及探索宇宙的起源和演化都具有重要意义。

弦理论的研究将持续推动我们对自然界的认识,并为未来的科学发展开辟新的道路。

量子混沌与折叠算法的图像加密系统

量子混沌与折叠算法的图像加密系统

量子混沌与折叠算法的图像加密系统
金聪;刘会
【期刊名称】《光学精密工程》
【年(卷),期】2017(025)003
【摘要】本文提出一种量子混沌与折叠算法相结合的图像加密系统.该系统的主要思想是通过量子混沌映射和二维Logistic映射分别进行Arnold变换,得到两个由伪随机数组成的与灰度图像大小相等的矩阵Q、E,然后利用这两个矩阵对图像分别进行以下操作:一是利用矩阵Q对图像从4个方向进行“折叠操作”,二是使用前一个像素值与当前像素值进行异或,然后将异或得到的值加上E对应的值,以对当前像素值进行修改,从而达到图像扩散的效果,增加差分攻击的难度.利用MATLAB对测试图像进行模拟仿真分析,结果显示,经该加密系统加密后的图像,其水平、竖直和对角线方向像素值的相关性分别为0.001 006、0.000 152、0.000 789,信息熵
H(s)=7.997 3.一系列的实验结果表明该加密系统具有很高的安全性和随机性.【总页数】7页(P749-755)
【作者】金聪;刘会
【作者单位】华中师范大学计算机学院,湖北武汉430079;华中师范大学计算机学院,湖北武汉430079
【正文语种】中文
【中图分类】TP391
【相关文献】
1.量子混沌和分数阶Fourier变换的图像加密算法 [J], 谢国波;邓华军
2.基于混沌系统的量子彩色图像加密算法 [J], 张健;霍达
3.基于洗牌算法的二方向折叠扩散混沌系统图像加密 [J], 赵尹
4.基于显著性检测与混沌对称折叠的图像选择性加密算法 [J], 陈悦; 霍文远
5.基于量子混沌映射和Chen超混沌映射的图像加密算法 [J], 张晓宇;张健
因版权原因,仅展示原文概要,查看原文内容请购买。

旋转门 量子线路

旋转门 量子线路

旋转门量子线路
旋转门量子线路是一种用于量子计算的基本电路,它由一系列旋转门组成,可以用来实现量子比特之间的相互作用和控制。

在量子计算中,旋转门量子线路是非常重要的,因为它可以用来构建更复杂的量子算法和量子电路。

旋转门量子线路的基本组成部分是旋转门,它是一种用于改变量子比特状态的门。

旋转门可以将量子比特从一个状态旋转到另一个状态,例如从|0⟩旋转到|1⟩或从|1⟩旋转到|0⟩。

旋转门的旋转角度可以通过量子比特的控制来调整,这使得旋转门可以用来实现量子比特之间的相互作用和控制。

旋转门量子线路的另一个重要组成部分是控制门,它是一种用于控制量子比特之间相互作用的门。

控制门可以将一个量子比特的状态作为控制位,控制另一个量子比特的状态。

这使得控制门可以用来实现量子比特之间的相互作用和控制。

旋转门量子线路的设计和实现需要考虑许多因素,例如量子比特之间的相互作用、量子比特的噪声和误差等。

为了实现高效的量子计算,需要设计出能够最大程度减少噪声和误差的旋转门量子线路。

旋转门量子线路是一种非常重要的量子电路,它可以用来实现量子比特之间的相互作用和控制,是构建更复杂的量子算法和量子电路的基础。

在未来的量子计算中,旋转门量子线路将发挥越来越重要
的作用,为我们带来更加高效和强大的量子计算能力。

量子计算机的突破与应用

量子计算机的突破与应用

高精度测量与控制
离子阱和光学阱技术能够 实现高精度的测量和控制 ,适用于需要高精度计算 的场景。
拓扑绝缘体和马约拉纳费米子技术
拓扑绝缘体
拓扑绝缘体是一种具有特殊电子 结构的材料,其表面态具有拓扑 保护,可用于实现容错量子计算

马约拉纳费米子
马约拉纳费米子是一种具有特殊 性质的准粒子,其存在与拓扑绝 缘体等材料中,可用于实现拓扑
量子计算。
高容错性与稳定性
拓扑绝缘体和马约拉纳费米子技 术具有高容错性和稳定性,能够 抵抗环境噪声和退相干等因素的
影响。
硬件实现技术比较与前景展望
技术特点比较
超导量子芯片技术具有高集成度和可扩展性;离子阱和光学阱技术具有高精度测量与控制 能力;拓扑绝缘体和马约拉纳费米子技术具有高容错性和稳定性。
应用场景选择
感谢观看
THANKS
量子计算机的突破与
应用
演讲人:
日期:
• 量子计算机基本原理与突破 • 量子计算机硬件实现技术 • 量子计算机软件平台与算法设计 • 量子计算机在各领域应用探索 • 当前挑战及未来发展趋势预测
目录
01
量子计算机基本原理与突破
量子计算基本概念
01
02
03
量子态与量子叠加
量子系统可以处于多个状 态的叠加态中,与经典计 算中的确定状态不同。
等设备提供所需的低温环境。
高集成度与可扩展性
03
超导量子芯片具有高集成度和可扩展性,能够实现多个量子比
特的互联和操控。
离子阱和光学阱技术
离子阱技术
利用电场或磁场将带电离 子囚禁在势阱中,通过激 光等手段对离子进行操控 和测量,实现量子计算。
光学阱技术

有限囚禁势下BEC基态与激发态的性质的开题报告

有限囚禁势下BEC基态与激发态的性质的开题报告

有限囚禁势下BEC基态与激发态的性质的开题报告
报告题目:有限囚禁势下BEC基态与激发态的性质
研究背景:
玻色-爱因斯坦凝聚(BEC)是一种量子现象,它是由一组互相作用的玻色子进入相同的量子状态而形成的物理现象。

BEC的研究自从1995年首次实验成功以来,引起了广泛的关注。

目前BEC的研究已经涉及到多个领域,包括凝聚物理、量子信息、量子计算等。

有限囚禁势是BEC研究中广泛采用的一种调制方法。

在有限囚禁势下,玻色子被限制在一个局部区域内,从而形成一个紧凑的结构,然后通过外界的调制方法,使玻色子进入不同的状态,从而探究BEC的各种性质。

研究内容:
本论文将研究有限囚禁势下BEC基态与激发态的性质。

具体内容包括以下几个方面:
(1)有限囚禁势下BEC基态的性质。

通过数值计算,研究有限囚禁势下BEC基态的粒子密度分布、能级分布、压缩性等基本性质,并与理论分析进行对比。

(2)有限囚禁势下BEC激发态的性质。

通过外界扰动的方式,将BEC从基态激发到激发态,研究激发态的粒子密度分布、能级分布、激子特性等性质,探究有限囚禁势对BEC激发态的影响。

(3)有限囚禁势下BEC基态与激发态的转变。

研究不同条件下,BEC从基态转化为激发态的过程,并探究此过程中的相变特性、相干性等基本性质。

研究意义:
本论文将系统研究有限囚禁势下BEC基态与激发态的性质,为进一步探究BEC 的量子特性、相变特性、量子计算等方面的问题提供基础理论和实验依据。

同时,本论文的研究成果也有望对量子信息、量子计算等领域的发展产生积极的推动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gate-Level Simulation of Quantum Circuits∗
George F. Viamontes, Manoj Rajagopalan, Igor L. Markov and John P. Hayes
arXiv:quant-ph/0208003v1 1 Aug 2002
University of Michigan, Advanced Computer Architecture Laboratory, Ann Arbor, MI 48109-2122 {gviamont,rmanoj,imarkov,jhayes}@
February 1, 2008
Abstract While thousands of experimental physicists and chemists are currently trying to build scalable quantum computers, it appears that simulation of quantum computation will be at least as critical as circuit simulation in classical VLSI design. However, since the work of Richard Feynman in the early 1980s little progress was made in practical quantum simulation. Most researchers focused on polynomial-time simulation of restricted types of quantum circuits that fall short of the full power of quantum computation [7]. Simulating quantum computing devices and useful quantum algorithms on classical hardware now requires excessive computational resources, making many important simulation tasks infeasible. In this work we propose a new technique for gate-level simulation of quantum circuits which greatly reduces the difficulty and cost of such simulations. The proposed technique is implemented in a simulation tool called the Quantum Information Decision Diagram (QuIDD) and evaluated by simulating Grover’s quantum search algorithm [8]. The back-end of our package, QuIDD Pro, is based on Binary Decision Diagrams, well-known for their ability to efficiently represent many seemingly intractable combinatorial structures. This reliance on a well-established area of research allows us to take advantage of existing software for BDD manipulation and achieve unparalleled empirical results for quantum simulation.
∗ Байду номын сангаасhis
into 3 and 5 using Nuclear Magnetic Resonance (NMR) technology. Quantum circuits have also been recognized as necessary infrastructure to support secure quantum communication, quantum cryptography, and precise measurement. In addition to the IBM device, somewhat smaller operational circuits have been implemented using entirely unrelated technologies, including ion traps, electrons floating on liquid helium, quantized currents in super-conductors and polarized photons. While it is not clear which technologies will ultimately result in practical quantum circuits, a number of fundamentally valuable design and test questions can be addressed in technology-independent ways using automated techniques. Our work proposes such a technique and shows its practical benefits. Automated simulation is one of most fundamental aspects in the design and test of classical computing systems. We only mention two reasons for this. First, finding design faults prior to manufacturing is a major cost-saving measure. Simulation allows one to evaluate and compare competing designs when such comparisons cannot be made analytically. Second, simulation in many cases leads to a better understanding of given designs (e.g., allows one to find the most appropriate clock frequency and identify critical paths sensitizable by realistic inputs). Hundreds of simulation tools have been developed in the last 40 years both in the academia and commercially. They span a broad range of applications from circuit-physics simulations (Spice) at the level of individual transistors and wires to architectural simulations of microprocessors (SimpleScalar). Particularly large systems, e.g., recent microprocessors, can be simulated in great detail on specialized hardware, typically large sets of FPGA chips. Recent trends in Electronic Design Automation are further expanding the range of automated simulation to (i) symbolic simulation of high-level programs in Verilog or even C++, and (ii) field-equation solvers that model high-performance clock distribution networks. Simulation of quantum computation appears at least as important as classical simulation, but faces additional objectives and additional obstacles. Given that Boolean logic and common intuition are insufficient to reason about quantum computation, automated simulation may be important to designers of even small (10-20 qubits) quantum computers. Additionally, simulation may be handy in algorithm design. In classical experimental algorithmics, the performance of new heuristics is tested by implementing them on over-the-counter PCs and workstations. Indeed, a number of practically useful heuristics, such as Kernighan-Lin for graph partitioning and Lin-Kernighan for the Traveling Salesman Problem still defy comprehensive theoretical analysis. Since quantum computing hardware is not as commonly available, simulation tools are needed to support research on quantum algorithms whose empirical performance cannot be described by provable results. We also point out that simulation-driven research is already common in computer architecture, where physically manufacturing a new microprocessor to evaluate a new architecture is ruled out by cost considerations. As early as in 1980s Richard Feynman observed that simulating quantum processes on classical hardware seems to require super-polynomial (in the number of qubits) memory and time. Subsequent work [7] identified a number of special-case quantum circuits for which tailor-made simulation techniques require only polynomial-sized memory and polynomial runtime. However, as noted in [7], these “restricted types of quantum circuits fall short of the full power of quantum computation”. Thus, in cases of major interest — Shor’s and Grover’s algorithms — quantum simulation is still performed with straightforward linear-algebraic tools and requires astronomic resources. To this end, a recent work [15] used a 1.3 million-gate FPGA device from Altera running at 30MHz to simulate an 8-qubit quantum circuit. Increasing the size of the simulation to 9 qubits can double the number of gates used.
相关文档
最新文档